20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(2) There exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

As an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 12, we give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above result. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

object defined in (3.1), <strong>and</strong> T <str<strong>on</strong>g>the</str<strong>on</strong>g> direct summ<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T defined in Propositi<strong>on</strong> 15. We<br />

calculate T <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra End A (T ) 0 . Then since A has Gorenstein<br />

parameter l, those can be represented as <str<strong>on</strong>g>the</str<strong>on</strong>g> following explicit form.<br />

Propositi<strong>on</strong> 23. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> above setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s hold<br />

(1) T = ⊕ l−1<br />

i=0 A(i) ≤0.<br />

(2) There exists an algebra isomorphism End A (T ) 0 ≃ Γ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Since A has Gorenstein parameter l, we have T = ⊕ l−1<br />

i=0 A(i) ≤0 by <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T . ( Moreover it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an algebra isomorphism End A (T ) 0 =<br />

⊕l−1<br />

)<br />

End A i=0 A(i) ≤0 ≃ Γ.<br />

□<br />

0<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 22. The asserti<strong>on</strong> follows from Theorem 17 <strong>and</strong> Propositi<strong>on</strong> 23.<br />

Remark 24. The trivial extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras are positively graded self-injective algebras<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter 1. Thus Theorem 22 c<strong>on</strong>tains Theorem 19.<br />

Next we show a c<strong>on</strong>crete examples.<br />

Example 25. We c<strong>on</strong>sider A := K[x]/(x n+1 ), <strong>and</strong> define a grading <strong>on</strong> A by deg x := 1.<br />

Then A is a positively graded self-injective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein parameter n.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A 0 = K is equal to zero, mod Z A has a tilting object by<br />

Theorem 11. Let T be <str<strong>on</strong>g>the</str<strong>on</strong>g> object in mod Z A which was defined in (3.1). Since A has a<br />

unique chain<br />

A ⊃ (x)/(x n+1 ) ⊃ (x 2 )/(x n+1 ) ⊃ · · · ⊃ (x n )/(x n+1 )<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A, it is easy to calculate that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebra<br />

Γ := End A (T ) 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> T is isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> n × n upper triangular matrix algebra over K.<br />

By Theorem 12, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle-equivalence<br />

mod Z A ≃ D b (modΓ).<br />

We observe <str<strong>on</strong>g>the</str<strong>on</strong>g> above triangle-equivalences by c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> case that n = 2, namely<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case that A = K[x]/(x 3 ). For i = 1, 2, we put X i := (x i )/(x 3 ) <str<strong>on</strong>g>the</str<strong>on</strong>g> Z-graded A-<br />

submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Then we have a chain A ⊃ X 1 ⊃ X 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> Z-graded A-submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> A. It<br />

is known that {X i (j) | i = 1, 2, j ∈ Z} is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> indecomposable n<strong>on</strong>-projective<br />

Z-graded A-modules.<br />

The Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> mod Z A is as follows.<br />

X 1 (−2) X 1 (−1) <br />

❄<br />

X 1 X 1 (1) X 1 (2)<br />

❄<br />

❄❄❄❄❄<br />

❄<br />

<br />

❄❄❄❄❄<br />

❄<br />

❄❄❄❄❄<br />

❄❄❄❄❄<br />

· · · · · · · · · · · ·<br />

88888<br />

X 2 8<br />

88888<br />

(−2) X 2 8<br />

8 88888<br />

(−1) X 2 8<br />

88888<br />

X 2 8<br />

(1) X 2 8<br />

<br />

888888<br />

(2)<br />

Here dotted arrows mean <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in mod Z A. We can observe<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> coincides with <str<strong>on</strong>g>the</str<strong>on</strong>g> graded shift functor (−1).<br />

–254–<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!