20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Assume l 1 = l 2 , m 1 = m 2 .<br />

(b) If l 1 ̸⊥ m 1 , l 1 ̸⊥ (m 1 − 1), (l 1 − 1) ̸⊥ m 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

l(M ⊗ N) = 2 + (l 1 − 1)#(m 1 − 1).<br />

(c) If l 1 ⊥ m 1 , (l 1 − 1) ⊥ m 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if σ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(d) If l 1 ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

{<br />

2 + (l 1 − 1)#(m 1 − 1) if ρ = 1,<br />

l(M ⊗ N) =<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

(e) If (l 1 − 1) ⊥ m 1 , l 1 ⊥ (m 1 − 1), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

⎧<br />

⎪⎨ 2 + (l 1 − 1)#(m 1 − 1) if ρ = σ = 1,<br />

l(M ⊗ N) = l 1 + m 1 if ρ = σ ≠ 1,<br />

⎪⎩<br />

l 1 + m 1 + 1<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

We remark that if any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> statements l ⊥ m, (l − 1) ⊥ m <strong>and</strong> l ⊥ (m − 1) holds<br />

true, <str<strong>on</strong>g>the</str<strong>on</strong>g>n so does precisely <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining <strong>on</strong>es. Hence 3(b)–3(e) in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

give a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> cases. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 4:1, it is not difficult to prove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> inequalities:<br />

(3.1) l(M(A l ) ⊗ M(A m )) l(M(A l ) ⊗ M(B m )) l(M(A l ) ⊗ M(A m+1 )) .<br />

It is entirely possible that each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se inequalities are identities. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for<br />

example if l = 8, m = 9: l(M(A 8 ) ⊗ M(A 9 )) = 2 + 8#9 = 2 + 15 = 2 + 8#10 =<br />

l(M(A 8 ) ⊗ M(A 10 )).<br />

Corollary 5. Let l, m < 2q, 0 < l 1 , l 2 , m 1 , m 2 < 2q, <strong>and</strong> ρ, σ ∈ k {0}.<br />

1. M(A l ) ⊗ M(B m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q,<br />

2. M(A l ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if, l + m 2q + 1.<br />

3. M(A l1 B −1<br />

l 2<br />

, ρ) ⊗ M(A m ) has a projective direct summ<strong>and</strong> precisely when<br />

max{l 1 + m − 1, l 2 + m} 2q.<br />

4. If l 1 ≠ l 2 or m 1 ≠ m 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has a projective direct<br />

summ<strong>and</strong> if, <strong>and</strong> <strong>on</strong>ly if,<br />

max{l 1 + m 1 − 1, l 1 + m 2 , l 2 + m 1 , l 2 + m 2 − 1} 2q .<br />

5. If l 1 = l 2 , m 1 = m 2 <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ( A l1 B −1<br />

l 2<br />

, ρ ) ⊗ M ( A m1 Bm −1<br />

2<br />

, σ ) has projective direct<br />

summ<strong>and</strong>s if, <strong>and</strong> <strong>on</strong>ly if,<br />

(a) l 1 ⊥ (m 1 − 1), ρ ≠ σ <strong>and</strong> l 1 + m 1 = 2q, or<br />

(b) l 1 ̸⊥ (m 1 − 1), <strong>and</strong> l 1 + m 1 2q.<br />

We remark that, for l, m < 2q, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l + m 2q implies l ̸⊥ m. Thus, in<br />

particular, in 5(a) above, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> l 1 ⊥ (m 1 − 1) is equivalent to (l 1 − 1) ⊥ m 1 , <strong>and</strong><br />

similarly, in 5(b), l 1 ̸⊥ (m 1 − 1) could be replaced by (l 1 − 1) ̸⊥ m 1 .<br />

–27–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!