20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theorem 10. Assume that a CM complete local ring R is an isolated singularity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong> d. Then, for any M, N ∈ CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a natural isomorphism<br />

Ext d R(Hom R (N, M), K R ) ∼ = Ext 1 R(M, Hom R (Ω d Rtr(N), K R )).<br />

Now we discuss some generalities about stable categories. For this let R be a CM<br />

complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. We denote by CM(R) <str<strong>on</strong>g>the</str<strong>on</strong>g> stable category <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

By definiti<strong>on</strong>, CM(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> factor category CM(R)/[R]. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R)<br />

is CM modules over R, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R) are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> Hom R (M, N) :=<br />

Hom R (M, N)/P (M, N) for M, N ∈ CM(R), where P (M, N) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> morphisms<br />

from M to N factoring through projective R-modules. For a CM module M we denote<br />

it by M to indicate that it is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> CM(R).<br />

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if <strong>and</strong> <strong>on</strong>ly<br />

if M ⊕ P ∼ = N ⊕ Q in CM(R) for some projective (hence free) R-modules P <strong>and</strong> Q.<br />

For any R-module M, we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> first syzygy module <str<strong>on</strong>g>of</str<strong>on</strong>g> M by Ω R M. We should<br />

note that Ω R M is uniquely determined up to isomorphism as an object in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable<br />

category. The nth syzygy module Ω n R M is defined inductively by Ωn R M = Ω R(Ω n−1<br />

R<br />

M),<br />

for any n<strong>on</strong>negative integer n.<br />

We say that R is a Gorenstein ring if K R<br />

∼ = R. If R is Gorenstein, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is easy<br />

to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> syzygy functor Ω A : CM(R) → CM(R) is an autoequivalence. Hence, in<br />

particular, <strong>on</strong>e can define <str<strong>on</strong>g>the</str<strong>on</strong>g> cosyzygy functor Ω −1<br />

R<br />

<strong>on</strong> CM(R) which is <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ω R . We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor<br />

[1] = Ω −1<br />

R<br />

. In fact, if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence 0 → L → M → N → 0 in CM(R), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> pushout:<br />

0 −−−→ L −−−→ M −−−→ N −−−→ 0<br />

⏐ ⏐<br />

∥ ↓ ↓<br />

0 −−−→ L −−−→ P −−−→ Ω −1 L −−−→ 0,<br />

where P is projective (hence free). We define <str<strong>on</strong>g>the</str<strong>on</strong>g> triangles in CM(R) are <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences<br />

L −−−→ M −−−→ N −−−→ L[1]<br />

obtained in such a way.<br />

Now we remark <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental dualities called <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten-Serre<br />

duality, which essentially follows from Theorem 10.<br />

Theorem 11. Let R be a Gorenstein complete local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> d. Suppose that R is<br />

an isolated singularity. Then, for any X, Y ∈ CM(R), we have a functorial isomorphism<br />

Ext d R(Hom R (X, Y ), R) ∼ = Hom R (Y, X[d − 1]).<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> triangulated category CM(R) is a (d − 1)-Calabi-Yau category.<br />

2. Degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modules<br />

Let us recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated modules over a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian<br />

algebra, which is given in [12].<br />

Let R be an associative k-algebra where k is any field. We take a discrete valuati<strong>on</strong><br />

ring (V, tV, k) which is a k-algebra <strong>and</strong> t is a prime element. We denote by K <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

–271–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!