20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.2. Gleas<strong>on</strong>’s Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23. Given a left linear code C ⊂ R n , we apply <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong><br />

formula with G = R n , H = C, <strong>and</strong> V = C[X, Y ], <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring over C in two<br />

indeterminates. Define f i : R → C[X, Y ] by f i (x i ) = X 1−wt(xi) Y wt(xi) , x i ∈ R, where<br />

wt(r) = 0 for r = 0, <strong>and</strong> wt(r) = 1 for r ≠ 0 in R. Let f : R n → C[X, Y ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> f i ; i.e.,<br />

n∏<br />

f(x 1 , . . . , x n ) = X 1−wt(xi) Y wt(xi) = X n−wt(x) Y wt(x) ,<br />

i=1<br />

where x = (x 1 , . . . , x n ) ∈ R n . We recognize that ∑ x∈H<br />

f(x), <str<strong>on</strong>g>the</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong><br />

summati<strong>on</strong> formula, is simply <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight enumerator W C (X, Y ).<br />

To begin to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula, we must calculate<br />

ˆf. By Lemma 26, we first calculate ˆf i .<br />

ˆf i (π i ) = ∑ π i (a)f i (a) = ∑ π i (a)X 1−wt(a) Y wt(a) = X + ∑ π i (a)Y<br />

a∈R<br />

a∈R<br />

a≠0<br />

{<br />

X + (|R| − 1)Y, π i = 1,<br />

=<br />

X − Y, π i ≠ 1.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first line, <strong>on</strong>e evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> case a = 0 versus <str<strong>on</strong>g>the</str<strong>on</strong>g> cases where a ≠ 0. In<br />

going to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d line, <strong>on</strong>e uses Lemma 24. Using Lemma 26, we see that<br />

ˆf(π) = (X + (|R| − 1)Y ) n−wt(π) (X − Y ) wt(π) ,<br />

where π = (π 1 , . . . , π n ) ∈ ̂R n <strong>and</strong> wt(π) counts <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> π i such that π i ≠ 1.<br />

The last task is to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ĝ : H) = ( ̂R n : C) with<br />

r(C), which is where R being Frobenius enters <str<strong>on</strong>g>the</str<strong>on</strong>g> picture. Let ρ be a generating character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R. We use ρ to define a homomorphism β : R → ̂R. For r ∈ R, <str<strong>on</strong>g>the</str<strong>on</strong>g> character β(r) ∈ ̂R<br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g> form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β : R → ̂R is an<br />

isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules. In particular, wt(r) = wt(β(r)).<br />

Extend β to an isomorphism β : R n → ̂R n <str<strong>on</strong>g>of</str<strong>on</strong>g> left R-modules, via β(x)(y) = ρ(y · x), for<br />

x, y ∈ R n . Again, wt(x) = wt(β(x)). For x ∈ R n , when is β(x) ∈ ( ̂R n : C)? This occurs<br />

when β(x)(C) = 1; that is, when ρ(C · x) = 1. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> left ideal C · x <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R is c<strong>on</strong>tained in ker ρ. Because ρ is a generating character, Propositi<strong>on</strong> 7 implies that<br />

C · x = 0. Thus x ∈ r(C). The c<strong>on</strong>verse is obvious. Thus r(C) corresp<strong>on</strong>ds to ( ̂R n : C)<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism β.<br />

The right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> summati<strong>on</strong> formula now simplifies as follows:<br />

1 ∑<br />

1 ∑<br />

ˆf(π) =<br />

|(Ĝ : H)|<br />

(X + (|R| − 1)Y ) n−wt(x) (X − Y ) wt(x)<br />

|r(C)|<br />

π∈(Ĝ:H) x∈r(C)<br />

as desired.<br />

= 1<br />

|r(C)| W r(C)(X + (|R| − 1)Y, X − Y ),<br />

–235–<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!