20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Therefore, thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> uniform bounds [8, Theorem 2.3] <str<strong>on</strong>g>of</str<strong>on</strong>g> reg G(Q) for parameter<br />

ideals Q in a generalized Cohen-Macaulay ring A, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness in <str<strong>on</strong>g>the</str<strong>on</strong>g> set<br />

Λ i (A) for all 1 ≤ i ≤ d.<br />

We are now in a positi<strong>on</strong> to finish <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1. We may assume that A is complete. Also we may assume A is not<br />

unmixed, because Λ 1 (A) is a finite set (cf. [2, Propositi<strong>on</strong> 4.2]). Let U denote <str<strong>on</strong>g>the</str<strong>on</strong>g> unmixed<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal (0) in A. We put B = A/U <strong>and</strong> t = dim A U (≤ d − 1). We must<br />

show that B is a generalized Cohen-Macaulay ring <strong>and</strong> t = 0.<br />

Let Q be a parameter ideal in A. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

l A (A/Q n+1 ) = l A (B/Q n+1 B) + l A (U/Q n+1 ∩ U)<br />

for all integers n ≥ 0. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> l A (U/Q n+1 ∩ U) is a polynomial in n ≫ 0<br />

with degree t <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist integers {s i Q (U)} 0≤i≤t with s 0 Q (U) = e0 Q (U) such that<br />

t∑<br />

( ) n + t − i<br />

l A (U/Q n+1 ∩ U) = (−1) i s i Q(U)<br />

t − i<br />

for all n ≫ 0, whence<br />

C<strong>on</strong>sequently<br />

l A (A/Q n+1 ) =<br />

(−1) d−i e d−i<br />

Q<br />

i=0<br />

d∑<br />

( ) n + d − i<br />

(−1) i e i Q(B)<br />

+<br />

d − i<br />

i=0<br />

t∑<br />

( ) n + t − i<br />

(−1) i s i Q(U)<br />

.<br />

t − i<br />

{ (−1) d−i<br />

(A) = e d−i<br />

Q<br />

(B) + (−1)t−i s t−i<br />

Q<br />

(U) if 0 ≤ i ≤ t,<br />

(−1) d−i e d−i (B) if t + 1 ≤ i ≤ d.<br />

Q<br />

Therefore, if t < d − 1, we have e 1 Q (A) = e1 Q (B), so that Λ 1(B) = Λ 1 (A) is a finite<br />

set. If t = d − 1, we get −e 1 Q (A) = −e1 Q (B) + s0 Q (U). Since e1 Q (A), e1 Q (B) ≤ 0 <strong>and</strong><br />

s 0 Q (U) = e0 Q (U) ≥ 1, Λ 1(B) is a finite set also in this case. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ 1 (B) is finite in<br />

any case, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring B a generalized Cohen-Macaulay ring.<br />

We now assume that t ≥ 1 <strong>and</strong> choose a system a 1 , a 2 , · · · , a d <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A so<br />

that (a t+1 , a t+2 , · · · , a d )U = (0). Let l ≥ 1 be an integer such that m l is st<strong>and</strong>ard for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ring B <strong>and</strong> choose integers n ≥ l. We look at parameter ideals Q = (a n 1, a n 2, · · · , a n d ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

Then<br />

t∑<br />

( ) t − 1<br />

(−1) d−t e d−t<br />

Q (B) = h j (B)<br />

j − 1<br />

by [10, Korollar 3.2], which is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers n ≥ l. Therefore, since<br />

we see<br />

j=1<br />

i=0<br />

s 0 Q(U) = e 0 (a n 1 ,an 2 ,··· ,an t ) (U) = n t·e 0 (a 1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

(−1) d−t e d−t<br />

Q (A) = (−1)d−t e d−t<br />

Q<br />

(B) + s0 Q(U)<br />

t∑<br />

( ) t − 1<br />

=<br />

h j (B) + n t·e 0 (a<br />

j − 1<br />

1 ,a 2 ,··· ,a t )(U) ≥ n t ,<br />

j=1<br />

–157–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!