20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

We are now ready to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> promised characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω-perfect maps.<br />

Propositi<strong>on</strong> 14. Let R be a selfinjective algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite representati<strong>on</strong> type, <strong>and</strong> let<br />

C be an indecomposable module <strong>and</strong> let g : B → C be an irreducible map. Then g is<br />

eventually Ω-perfect if <strong>and</strong> <strong>on</strong>ly if both g <strong>and</strong> Ωg are eventually τ-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Obviously, if g is eventually Ω-perfect <str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect. For <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse directi<strong>on</strong>, assume that both maps g <strong>and</strong> Ωg are eventually<br />

τ-perfect, but that g is not eventually Ω-perfect. By applying enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω, we<br />

may assume that g, Ωg are both τ-perfect, <strong>and</strong> that for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> maps τ i g are <strong>on</strong>to<br />

<strong>and</strong> Ω i τg are <strong>on</strong>e-to-<strong>on</strong>e. Thus, for each i ≥ 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist simple modules S i <strong>and</strong> exact<br />

sequences 0 → S i → Ω 2i B Ω2i g<br />

−→ Ω 2i C → 0 <strong>and</strong> 0 → Ω 2i+1 B Ω2i+1 g<br />

−→ Ω 2i+1 C → S i → 0. But<br />

Ω 2i+2 g is again surjective so we infer from <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> lemma 13 that for each i ≥ 0,<br />

Ω 2 S i<br />

∼ = Si+1 . Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re are <strong>on</strong>ly finitely many n<strong>on</strong>isomorphic simple modules, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence {S 1 , νS 2 = τS 1 , ν 2 S 3 = τ 2 S 1 , · · · } is eventually periodic. Therefore without loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a periodic simple module S, say <str<strong>on</strong>g>of</str<strong>on</strong>g> period n,<br />

whose τ-powers are all simple.<br />

We claim first that <str<strong>on</strong>g>the</str<strong>on</strong>g> simple modules S, τS, · · · , τ n−1 S lie <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> a regular<br />

tube C. To see this, observe first that we can deduce that <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term E <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten sequence 0 → τS → E → S → 0 is indecomposable. Moreover, E<br />

cannot be projective, since o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> each Ausl<strong>and</strong>er-Reiten sequence<br />

ending at a τ i S would be an indecomposable projective-injective module <str<strong>on</strong>g>of</str<strong>on</strong>g> length two.<br />

This would imply that our algebra is selfinjective Nakayama <str<strong>on</strong>g>of</str<strong>on</strong>g> Loewy length two, c<strong>on</strong>tradicting<br />

our assumpti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> R. By c<strong>on</strong>structi<strong>on</strong>, all <str<strong>on</strong>g>the</str<strong>on</strong>g> modules<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> same τ-orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> C have <str<strong>on</strong>g>the</str<strong>on</strong>g> same length, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se lengths increase by <strong>on</strong>e from<br />

a τ-orbit to <str<strong>on</strong>g>the</str<strong>on</strong>g> next <strong>on</strong>e. We may apply now <str<strong>on</strong>g>the</str<strong>on</strong>g> previous lemma <strong>and</strong> infer that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comp<strong>on</strong>ent is a regular comp<strong>on</strong>ent. By <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma we get that all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modules in C are uniserial, a c<strong>on</strong>tradicti<strong>on</strong> since we cannot have uniserial module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

arbitrary large length.<br />

□<br />

Let ∆ be a quiver. A vertex x <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ is called a tip, if <strong>on</strong>ly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ starts or ends<br />

at x. If C is a comp<strong>on</strong>ent whose stable part is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n a module M corresp<strong>on</strong>ds<br />

to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

0 → τM → Y ⊕ P → M → 0<br />

for some projective (possibly zero) module P <strong>and</strong> indecomposable n<strong>on</strong> projective module<br />

Y . Assume that C is a c<strong>on</strong>nected comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten quiver, <strong>and</strong> that<br />

we have C s<br />

∼ = Z∆ for some quiver ∆. Since an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent c<strong>on</strong>tains at<br />

most finitely many indecomposable projective or simple modules, for each indecomposable<br />

module M ∈ C s <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer r such that τ r M has no projective or simple<br />

predecessors in C. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence:<br />

Corollary 15. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ <strong>and</strong> let M be an indecomposable<br />

module in C s . Assume that M corresp<strong>on</strong>ds to a tip <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆. Then M is eventually Ω-<br />

perfect.<br />

□<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

–83–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!