20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The octahedral axiom makes a diagram in D b (mod T )<br />

R<br />

∥<br />

R<br />

⏐<br />

↓<br />

R<br />

⏐<br />

↓<br />

1 ̂⊗ a<br />

−−−→ R −−−→ R/(a) −−−→ ΣR<br />

⏐<br />

⏐<br />

δ↓<br />

↓<br />

∥<br />

0<br />

−−−→ ΣK −−−→ ΣK ⊕ ΣR −−−→ ΣR<br />

⏐<br />

⏐<br />

∥<br />

↓<br />

↓<br />

δ<br />

−−−→ ΣK −−−→ ΣC −−−→ ΣR<br />

⏐<br />

⏐<br />

↓<br />

∥<br />

↓<br />

R/(a) −−−→ ΣK ⊕ ΣR −−−→ ΣC −−−→ ΣR/(a)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom row being an exact triangle. Rotating it, we obtain an exact triangle<br />

K ⊕ R → C → R/(a) → Σ(K ⊕ R)<br />

in D b (mod T ). The exact functor D b (mod T ) → D − (Mod R ⊗ k R) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical<br />

ring homomorphism R ⊗ k R → T sends this to an exact triangle<br />

(4.2) K ⊕ R → R ⊗ L A R → R/(a) → Σ(K ⊕ R)<br />

in D − (Mod R ⊗ k R). As R is a local domain <strong>and</strong> a is a n<strong>on</strong>-zero element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal<br />

ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R, we have dim R/(a) = d − 1 < d. Hence <strong>on</strong>e can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> inducti<strong>on</strong> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R/(a), <strong>and</strong> sees that<br />

D b (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

for some integer m ≥ 1 <strong>and</strong> some prime ideals p 1 , · · · , p h <str<strong>on</strong>g>of</str<strong>on</strong>g> R that c<strong>on</strong>tain a. Now, let X<br />

be any object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R). Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> exact functor X ⊗ L R − to (4.2) gives an exact<br />

triangle in D − (Mod R)<br />

(4.3) (X ⊗ L R K) ⊕ X → X ⊗ L A R → X ⊗ L R R/(a) → Σ((X ⊗ L R K) ⊕ X).<br />

Note that X ⊗ L R R/(a) is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Db (mod R/(a)) = 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R/(a)<br />

m<br />

. As<br />

an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod R), <str<strong>on</strong>g>the</str<strong>on</strong>g> complex X ⊗ L R R/(a) bel<strong>on</strong>gs to 〈R/p 1 ⊕ · · · ⊕ R/p h 〉 R m . We<br />

observe from (4.3) that X is in 〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 R d+1+m . Thus we obtain Db (mod R) =<br />

〈R⊕R/p 1 ⊕· · ·⊕R/p h 〉 d+1+m<br />

. (As R is a domain, <str<strong>on</strong>g>the</str<strong>on</strong>g> zero ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R is a prime ideal.) □<br />

Now, we make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 10 also gives a ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

affine case <str<strong>on</strong>g>of</str<strong>on</strong>g> Rouquier’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. Actually, we obtain a more detailed result as follows.<br />

Recall that a commutative ring R is said to be essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over a field k if<br />

R is a localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated k-algebra. Of course, every finitely generated<br />

k-algebra is essentially <str<strong>on</strong>g>of</str<strong>on</strong>g> finite type over k.<br />

Theorem 11. (1) Let R be a finitely generated algebra over a perfect field. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

exist a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> prime ideals p 1 , . . . , p n ∈ Spec R <strong>and</strong> an integer m ≥ 1<br />

such that<br />

D b (mod R) = 〈R/p 1 ⊕ · · · ⊕ R/p n 〉 m<br />

.<br />

–13–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!