22.05.2014 Views

PHY2014F Vibrations and Waves Part 3 - University of Cape Town

PHY2014F Vibrations and Waves Part 3 - University of Cape Town

PHY2014F Vibrations and Waves Part 3 - University of Cape Town

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>University</strong> <strong>of</strong> <strong>Cape</strong> <strong>Town</strong><br />

Department <strong>of</strong> Physics<br />

<strong>PHY2014F</strong><br />

<strong>Vibrations</strong> <strong>and</strong> <strong>Waves</strong><br />

<strong>Part</strong> 3<br />

Travelling waves<br />

Boundary conditions<br />

Sound<br />

Interference <strong>and</strong> diffraction<br />

… covering (more or less)<br />

French Chapters 7 & 8<br />

Andy Buffler<br />

Department <strong>of</strong> Physics<br />

<strong>University</strong> <strong>of</strong> <strong>Cape</strong> <strong>Town</strong><br />

<strong>and</strong>y.buffler@uct.ac.za<br />

1


Problem-solving <strong>and</strong> homework<br />

Each week you will be given a take-home<br />

problem set to complete <strong>and</strong> h<strong>and</strong> in for marks ...<br />

In addition to this, you need to work through the following<br />

problems in French, in you own time, at home. You will not be<br />

asked to h<strong>and</strong> these in for marks. Get help from you friends, the<br />

course tutor, lecturer, ... Do not take shortcuts.<br />

Mastering these problems is a fundamental aspect <strong>of</strong> this course.<br />

The problems associated with <strong>Part</strong> 3 are:<br />

7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 7-15, 7-17,<br />

7-18, 7-19, 7-21<br />

You might find these tougher:<br />

2


Travelling waves<br />

For a string clamped at both ends the displacement <strong>of</strong> the<br />

n th normal mode is<br />

⎛nπ<br />

x⎞<br />

yxt ( , ) = Asin⎜ ⎟cosω<br />

n<br />

t ω<br />

n<br />

=<br />

⎝ L ⎠<br />

Since L n λ nπ<br />

vt 2π<br />

vt<br />

= then =<br />

2 L λ<br />

Then write:<br />

And using<br />

⎛nπ<br />

x⎞ ⎛2π<br />

vt⎞<br />

ψ ( xt , ) = Asin⎜ ⎟cos⎜ ⎟<br />

⎝ L ⎠ ⎝ λ ⎠<br />

( ) ( )<br />

sinα sin β = sin α + β + sin α −β<br />

1 { }<br />

2<br />

A ⎛2π x 2πvt⎞ A ⎛2πx 2πvt⎞<br />

ψ ( xt , ) = sin⎜ + ⎟+ sin⎜ − ⎟<br />

2 ⎝ λ λ ⎠ 2 ⎝ λ λ ⎠<br />

A ⎧ 2 π ⎫ A ⎧<br />

sin ( x vt) sin<br />

2 π ⎫<br />

= ⎨ + ⎬+ ⎨ ( x−vt)<br />

⎬<br />

2 ⎩ λ ⎭ 2 ⎩ λ ⎭<br />

nπ<br />

v<br />

L<br />

3


Travelling waves ...2<br />

A ⎧2π<br />

⎫ A ⎧2π<br />

⎫<br />

ψ ( xt , ) = sin⎨ ( x− vt) ⎬+ sin⎨ ( x+<br />

vt)<br />

⎬<br />

2 ⎩ λ ⎭ 2 ⎩ λ ⎭<br />

A wave travelling in<br />

the +ve x-direction<br />

with speed v<br />

A wave travelling in<br />

the −ve x-direction<br />

with speed v<br />

The speed v is called the phase velocity <strong>and</strong> is the speed <strong>of</strong><br />

a crest (or any other point <strong>of</strong> specified phase) ∆x<br />

v = ∆ t<br />

4


Travelling waves ...3<br />

We have shown that a st<strong>and</strong>ing wave<br />

⎛nπ<br />

x⎞ ⎛2π<br />

vt⎞<br />

ψ ( xt , ) = Asin⎜ ⎟cos⎜ ⎟<br />

⎝ L ⎠ ⎝ λ ⎠<br />

can be regarded as the superposition <strong>of</strong> two travelling waves:<br />

A ⎧2π<br />

ψ1( xt , ) = sin⎨<br />

x+<br />

vt<br />

2 ⎩ λ<br />

( )<br />

⎫<br />

⎬<br />

⎭<br />

<strong>and</strong><br />

A ⎧2π<br />

ψ<br />

2( xt , ) = sin⎨<br />

x−vt<br />

2 ⎩ λ<br />

( )<br />

⎫<br />

⎬<br />

⎭<br />

We can think <strong>of</strong> the st<strong>and</strong>ing wave being made up <strong>of</strong> a travelling<br />

wave being reflected back <strong>and</strong> forth from the two ends. The<br />

quantity v introduced in the st<strong>and</strong>ing wave treatment acquires a<br />

definite physical meaning: phase velocity<br />

5


Formation <strong>of</strong> st<strong>and</strong>ing waves<br />

…two waves having the same<br />

amplitude <strong>and</strong> frequency,<br />

travelling in opposite<br />

directions, interfere with each<br />

other.<br />

6


Travelling waves ...4<br />

The travelling waves we have considered are sinusoidal in shape.<br />

Other shapes (wave pulses etc) are possible … <strong>and</strong> can be<br />

represented as the superposition <strong>of</strong> sinusoidal waves.<br />

Any functions f( x− vt)<br />

or gx ( + vt)<br />

are solutions <strong>of</strong> the<br />

wave equation <strong>and</strong> represent travelling waves.<br />

f<br />

wave at time t 1 wave at time t 2<br />

x1<br />

x2<br />

f( x − vt ) = f( x −vt<br />

)<br />

1 1 2 2<br />

∴ x − vt = x −vt<br />

x1−<br />

x2<br />

∴ v =<br />

t − t<br />

1 1 2 2<br />

1 2<br />

x<br />

7


Travelling waves ...5<br />

Travelling waves can be represented by sine or cosine functions:<br />

or<br />

⎧2π<br />

⎫<br />

ψ ( xt , ) = Asin⎨<br />

( x−vt)<br />

⎬<br />

⎩ λ ⎭<br />

⎧2π<br />

⎫<br />

ψ ( xt , ) = Acos⎨<br />

( x−vt)<br />

⎬<br />

⎩ λ ⎭<br />

⎧ ⎛ x v ⎞⎫<br />

= Acos ⎨2π ⎜ − t ⎟⎬<br />

⎩ ⎝ λ λ ⎠⎭<br />

⎧ ⎛ x ⎞⎫<br />

= Acos ⎨2π<br />

⎜ − ft ⎟⎬<br />

⎩ ⎝ λ ⎠⎭<br />

wave number<br />

2π<br />

⎧ ⎛ x t ⎞⎫<br />

k =<br />

= Acos ⎨2π<br />

⎜ − ⎟⎬<br />

λ<br />

⎩ ⎝ λ T ⎠⎭<br />

= Acos{ kx − ωt}<br />

(French: k = 1 λ ! )<br />

8


Travelling waves ...6<br />

Sinusoidal travelling waves:<br />

or<br />

or<br />

ψ ( xt , ) = Asin{ kx− ωt+<br />

φ}<br />

ψ ( xt , ) = Acos kx− ωt+<br />

φ'<br />

{ }<br />

ψ ( xt , ) = Asin{ kx+ ωt+<br />

φ}<br />

ψ ( xt , ) = Acos kx+ ωt+<br />

φ'<br />

{ }<br />

waves in +ve<br />

x-direction<br />

waves in −ve<br />

x-direction<br />

λ ω<br />

Phase velocity v phase = fλ<br />

= 2π<br />

f =<br />

2π<br />

k<br />

9


Different types <strong>of</strong> travelling waves<br />

“transverse”<br />

“longitudinal”<br />

... <strong>and</strong> water waves?<br />

10


French<br />

page 209<br />

Wave speeds in specific media<br />

Transverse waves on a stretched string:<br />

Longitudinal waves in a thin rod: v =<br />

v =<br />

Y<br />

ρ<br />

T<br />

µ<br />

Liquids <strong>and</strong> gases: mainly longitudinal waves<br />

Liquids:<br />

v<br />

B<br />

= B: bulk modulus<br />

ρ<br />

Gases:<br />

v<br />

γ p<br />

= =<br />

ρ<br />

γRT<br />

M<br />

γ<br />

p<br />

: ratio <strong>of</strong> specific heats<br />

: pressure<br />

11


Wave pulses<br />

... not covered in detail.<br />

Read French 216 - 230<br />

12


French<br />

page 228<br />

Superposition <strong>of</strong> wave pulses<br />

13


French<br />

page 253<br />

heavy spring<br />

Reflection <strong>of</strong> wave pulses<br />

light spring<br />

very heavy spring<br />

16


Reflection <strong>of</strong> wave pulses<br />

heavy string light string<br />

17


Reflection <strong>of</strong> wave pulses<br />

Phase change <strong>of</strong> π<br />

(i.e. inversion) on<br />

reflection from fixed end.<br />

No inversion on<br />

reflection from free end.<br />

18


Dispersion<br />

The waves we are most familiar with (e.g. sound waves in air) are<br />

non-dispersive … i.e. waves <strong>of</strong> different frequency travel at the<br />

same speed.<br />

⎧<br />

Travelling wave on a string: 2 π ⎫<br />

yxt ( , ) = Asin⎨<br />

( x−vt)<br />

⎬<br />

⎩ λ ⎭<br />

T<br />

For a continuous string: v<br />

f<br />

n<br />

=<br />

µ<br />

For a lumpy, beaded string:<br />

= nf1<br />

f<br />

n<br />

⎛ nπ<br />

⎞<br />

= 2f0<br />

sin⎜ 2( N + 1)<br />

⎟<br />

⎝ ⎠<br />

… high frequency waves may have a different velocity<br />

than low frequency.<br />

19


Dispersion …2<br />

No dispersion <strong>of</strong> light in a vacuum.<br />

But light is dispersed into colours by a prism:<br />

Snell’s law:<br />

sini<br />

c<br />

= n( λ)<br />

=<br />

sin r v( λ)<br />

refractive index<br />

… important for optic fibre communications …<br />

20


French<br />

page 213, 232 Dispersion …3<br />

Take two sinusoidal travelling waves <strong>of</strong> slightly different frequencies:<br />

{ ω }<br />

{ ω }<br />

ψ1( xt , ) = Acos<br />

kx<br />

1<br />

−<br />

1t<br />

ψ ( xt , ) = Acos<br />

kx−<br />

t<br />

2 2 2<br />

Then ψ ( xt , ) = ψ1( xt , ) + ψ2( xt , )<br />

where<br />

Acos{ kx<br />

1<br />

ω1t} Acos{ kx<br />

2<br />

ω2t}<br />

( kx− ωt) + ( kx−ω t) ( kx−ωt) −( kx−ω<br />

t)<br />

= − + −<br />

⎧ ⎫ ⎧ ⎫<br />

2Acos cos<br />

⎩ 2 ⎭ ⎩ 2 ⎭<br />

⎧k1+ k2 ω1+ ω2 ⎫ ⎧k1−k2 ω1−ω2<br />

⎫<br />

= 2Acos⎨ x− t⎬cos⎨ x−<br />

t⎬<br />

⎩ 2 2 ⎭ ⎩ 2 2 ⎭<br />

1 1<br />

= 2Acos kx −ωt cos ∆kx − ∆ωt<br />

1 1 2 2 1 1 2 2<br />

= ⎨ ⎬ ⎨ ⎬<br />

k<br />

k<br />

{ } { }<br />

+ k<br />

2<br />

ω + ω<br />

2<br />

2 2<br />

1 2<br />

1 2<br />

= ω = 1 2<br />

∆ k = k −k<br />

∆ ω = ω1−ω2<br />

21


Dispersion …4<br />

1 1<br />

{ } { }<br />

ψ ( xt , ) = 2Acos kx−ωt cos ∆kx− ∆ωt<br />

2 2<br />

Average<br />

travelling wave<br />

Envelope<br />

{ − ωt}<br />

cos{ 1 ∆kx − 1 ∆ωt}<br />

cos kx<br />

ω<br />

v phase = ∆ω<br />

2<br />

k<br />

Group velocity = v group =<br />

∆k<br />

2<br />

2 2<br />

=<br />

∆ω<br />

∆k<br />

22


Dispersion …5<br />

Phase velocity:<br />

Group velocity:<br />

v phase =<br />

v group =<br />

ω<br />

k<br />

∆ ω =<br />

∆k<br />

dω<br />

dk<br />

… the wave packet moves at v g … so does transport <strong>of</strong> energy<br />

When analyzing an arbitrary pulse into pure sinusoids …<br />

… if these sinusoids have different characteristic speeds, then<br />

the shape <strong>of</strong> the disturbance must change over time …<br />

… a pulse that is highly localized at t = 0 will become more<br />

<strong>and</strong> more spread out as it moves along.<br />

23


Dispersion …6<br />

Consider surface waves on liquids …<br />

For long wavelength waves (λ ~ m) on deep water (gravity waves):<br />

ω =<br />

gk<br />

then<br />

v<br />

g<br />

ω<br />

vφ<br />

= =<br />

k<br />

dω<br />

1<br />

= =<br />

dk 2<br />

g<br />

k<br />

g<br />

k<br />

∴ v =<br />

φ<br />

1<br />

v<br />

2 g<br />

For short wavelength waves (λ ~ mm) on deep water<br />

(capillary waves or ripples):<br />

ω Sk<br />

S vφ<br />

= =<br />

ω = k<br />

3<br />

then k ρ<br />

ρ<br />

∴ v<br />

3<br />

φ<br />

= v<br />

dω<br />

3 Sk<br />

vg<br />

= =<br />

dk 2 ρ<br />

S = surface tension<br />

2 g<br />

24


Phase <strong>and</strong> group velocities <strong>of</strong> a wave <strong>and</strong> a pulse<br />

with<br />

= φ<br />

2v<br />

g<br />

v<br />

25


French<br />

page 237<br />

The energy in a mechanical wave<br />

Consider a small segment<br />

<strong>of</strong> a string carrying a wave:<br />

ds<br />

T<br />

dy<br />

Mass <strong>of</strong> segment = µ dx<br />

T<br />

dx<br />

y<br />

If u = ∂<br />

y<br />

x<br />

x+<br />

dx x<br />

∂ t<br />

dK 1 ⎛ y<br />

2<br />

µ ∂ ⎞<br />

then kinetic energy per unit length = = ⎜ ⎟<br />

dx 2 ⎝ ∂t<br />

⎠<br />

Potential energy = Tds ( − dx)<br />

2 2<br />

2 2 ∂y<br />

⎛ 1 ∂y<br />

⎞<br />

where<br />

⎛ ⎞ ⎛ ⎞<br />

ds = dx + dy = dx 1+ ⎜ ⎟ = dx<br />

1 + ⎜ ⎟ + ...<br />

⎝∂x⎠ ⎜ 2 ⎝∂x⎠<br />

⎟<br />

⎝<br />

⎠<br />

2<br />

dU 1 ⎛∂y<br />

⎞<br />

Then potential energy per unit length = = T ⎜ ⎟ 26<br />

dx 2 ⎝∂x<br />


The energy in a mechanical wave …2<br />

⎧ ⎛<br />

For a travelling wave on a string: yxt ( , ) = Asin⎨2π<br />

f⎜t−<br />

⎩ ⎝<br />

∂y<br />

⎧ ⎛ x ⎞⎫<br />

Then uy<br />

( x, t) = = 2π<br />

fAcos⎨2π<br />

f ⎜t−<br />

⎟⎬<br />

∂t<br />

⎩ ⎝ v⎠⎭<br />

cos ⎧<br />

2 ⎛ x ⎞⎫<br />

= u0 ⎨ π f ⎜t−<br />

⎟⎬<br />

⎩ ⎝ v ⎠⎭<br />

∂y ⎧2π<br />

fx⎫ ⎧2π<br />

x⎫<br />

At t = 0: uy<br />

( x) = = u0cos⎨ ⎬=<br />

u0cos⎨ ⎬<br />

∂t<br />

⎩ v ⎭ ⎩ λ ⎭<br />

then<br />

2<br />

dK 1 ⎛∂<br />

y ⎞ 1 2 2⎧2π<br />

µ µ u0<br />

cos<br />

x ⎫<br />

= ⎜ ⎟ = ⎨ ⎬<br />

dx 2 ⎝ ∂t<br />

⎠ 2 ⎩ λ ⎭<br />

x<br />

v<br />

⎞⎫<br />

⎟⎬<br />

⎠⎭<br />

<strong>and</strong><br />

λ<br />

1 ⎧2π<br />

x ⎫ 1<br />

K = ∫ µ u cos dx=<br />

λµ u<br />

2 ⎩ λ ⎭ 4<br />

0<br />

2 2 2<br />

0 ⎨ ⎬<br />

0<br />

in one wavelength<br />

27


The energy in a mechanical wave …3<br />

Similarly for potential energy:<br />

At t = 0:<br />

∂y 2π<br />

A ⎧2π<br />

x⎫<br />

=− cos ⎨ ⎬<br />

∂x<br />

λ ⎩ λ ⎭<br />

then<br />

<strong>and</strong><br />

2 2<br />

2π<br />

2 ⎧2<br />

cos<br />

2<br />

dU A T π x ⎫<br />

= ⎨ ⎬<br />

dx λ ⎩ λ ⎭<br />

λ<br />

2 2 2 2<br />

2π A T 2 ⎧2πx⎫<br />

2π<br />

A T λ<br />

U = ∫ cos dx<br />

2 ⎨ ⎬ =<br />

in one wavelength<br />

2<br />

λ λ λ 2<br />

0<br />

⎩ ⎭<br />

2 2 2 1 2<br />

∴ U = π A µ f λ = λµ u u0 = 2π<br />

fA<br />

0<br />

4<br />

Over one wavelength, total energy:<br />

1<br />

E = K + U = λµ u<br />

2<br />

2<br />

0<br />

28


French<br />

page 241<br />

θ<br />

F<br />

Transport <strong>of</strong> energy<br />

y 0<br />

by a wave<br />

⎧ ⎛ x ⎞⎫<br />

yxt ( , ) = Asin⎨2π<br />

f⎜t−<br />

⎟⎬<br />

⎩ ⎝ v ⎠⎭<br />

A long string has one end at x = 0 <strong>and</strong> is driven at this point by a<br />

driving force F equal in magnitude to the tension T <strong>and</strong> applied<br />

in a direction tangent to the string.<br />

At x = 0 : y(0, t) = Asin 2π<br />

ft<br />

⎛∂y⎞ ⎛ 2π<br />

fA ⎞<br />

<strong>and</strong> Fy<br />

=−Tsinθ<br />

≈− T⎜ ⎟ =−T⎜−<br />

cos 2π<br />

ft ⎟<br />

⎝∂x⎠x=<br />

0 ⎝ v ⎠<br />

Then work done:<br />

2π<br />

fAT<br />

W = ∫Fydy0<br />

= ∫ cos 2 π ft d Asin 2π<br />

ft<br />

v<br />

2<br />

( 2π<br />

fA)<br />

T<br />

(<br />

2<br />

= ∫ cos 2π<br />

ft)<br />

dt 29<br />

v<br />

( ) ( )<br />

x


Transport <strong>of</strong> energy by a wave …2<br />

For one complete cycle: from t = 0 to t = 1/f :<br />

2 1 f<br />

2<br />

uT<br />

0<br />

uT<br />

0<br />

1 2<br />

cycle<br />

= ∫ (1+ cos4 π ) = = λµ<br />

0<br />

2v<br />

2vf<br />

2<br />

0<br />

W ft dt u<br />

Then mean power input P =<br />

W<br />

uT 1<br />

2v<br />

2<br />

2<br />

1 0<br />

2<br />

cycle<br />

= = µ<br />

0<br />

f<br />

u v<br />

…thusP = energy per unit length × velocity<br />

… energy flows along medium at velocity v …<br />

…<strong>and</strong> at v g if the medium is dispersive<br />

30


Doppler effect<br />

... frequency changes <strong>of</strong> traveling waves due to motion <strong>of</strong> source<br />

<strong>and</strong>/or detector ...<br />

S: source <strong>of</strong> waves (sound)<br />

λ<br />

D: detector<br />

S D<br />

v S : speed <strong>of</strong> source<br />

v D<br />

: speed <strong>of</strong> detector<br />

v<br />

v : speed <strong>of</strong> travelling wave = f λ<br />

When both vS<br />

<strong>and</strong> vD<br />

are<br />

zero,then the number <strong>of</strong><br />

wavelengths<br />

vt<br />

passing D in time t is<br />

λ<br />

S<br />

v D<br />

D<br />

31


Doppler effect ...2<br />

For the case <strong>of</strong> stationary S <strong>and</strong> moving D:<br />

For moving D we must add (or<br />

subtract) vtλ<br />

D wavelengths.<br />

S<br />

v D<br />

v<br />

D<br />

vt λ ± vDt<br />

Observed frequency: f ' =<br />

t<br />

v±<br />

v<br />

= D<br />

λ<br />

Source frequency: f = v λ<br />

λ<br />

∴ f ' =<br />

f<br />

v<br />

± v<br />

v<br />

D<br />

32


Doppler effect ...3<br />

For the case <strong>of</strong> moving S <strong>and</strong> stationary D:<br />

In time period T, S moves a<br />

distance vT<br />

S<br />

.<br />

Wavelength at D is therefore<br />

shortened (or lengthened) by vT.<br />

Observed wavelength: λ ' = λ ∓<br />

v v vS<br />

v vS<br />

∴ = ∓ = ∓<br />

f ' f f f<br />

v<br />

∴ f ' = f v ∓ v<br />

S<br />

S<br />

vS<br />

For both source <strong>and</strong> detector moving:<br />

v±<br />

vD<br />

f ' = f v ∓ v<br />

S<br />

f<br />

S<br />

v S<br />

D<br />

D<br />

33


Doppler effect ...4<br />

At supersonic speeds v > v , this relationship no longer applies:<br />

All wavefronts are buched along a<br />

V-shaped envelope in 3D ... called a<br />

Mach cone ... a shock wave exists<br />

alongs the surface <strong>of</strong> this cone since the<br />

bunching <strong>of</strong> the wavefronts causes an<br />

abrupt rise <strong>and</strong> fall <strong>of</strong> air pressure as the<br />

surface passes any point ... causes a<br />

“sonic boom”<br />

S<br />

vS<br />

=<br />

v<br />

vS<br />

= v<br />

vS<br />

><br />

v<br />

vt<br />

θ<br />

vt<br />

sinθ = =<br />

vt<br />

S<br />

v<br />

v<br />

S<br />

vt<br />

S<br />

“Mach number”<br />

34


Doppler effect ...5<br />

supersonic<br />

aircraft<br />

travelling<br />

bullet<br />

bow wave<br />

<strong>of</strong> a boat<br />

... get a “sonic boom” whenever<br />

the speed <strong>of</strong> the source <strong>of</strong> the<br />

waves is greater than the speed <strong>of</strong><br />

waves in that medium.<br />

Cherenkov<br />

radiation<br />

35


Doppler effect ...6<br />

36


Physical optics<br />

Electromagnetic radiation can be modelled as a wave or a beam <strong>of</strong><br />

particles ... all observed phenomena can be described by either model,<br />

although the treatment my be easier with one, or the other.<br />

EM radiation propagates in vacuo, <strong>and</strong> may be thought <strong>of</strong> as E <strong>and</strong><br />

B fields in phase with each other, <strong>and</strong> propagating at right angles<br />

to each other <strong>and</strong> to the direction <strong>of</strong> propagation.<br />

Velocity <strong>of</strong> EM radiation in vacuum = constant, c<br />

In a medium <strong>of</strong> refractive index n, v=<br />

c n<br />

EM wave from a point source:<br />

E is in phase around each circle ...<br />

vacuum<br />

c<br />

... get a coherent plane<br />

wave at a large distance<br />

from point source<br />

37


Interference<br />

If we use two in-phase sources to<br />

generate waves on the surface <strong>of</strong> a<br />

liquid it is easy to observe<br />

interference effects. At certain<br />

points the waves are in phase <strong>and</strong><br />

add constructively, <strong>and</strong> at other<br />

points they are out <strong>of</strong> phase,<br />

interfere destructively, giving zero<br />

amplitude.<br />

... this is not an everyday observation with light sources ... the<br />

wavelength <strong>of</strong> light is small (400-800 nm) ... ordinary light<br />

sources are enormously larger than this ... <strong>and</strong> are not<br />

monochromatic.<br />

38


Try this ...?<br />

filter<br />

double<br />

slit<br />

Interference ...2<br />

screen<br />

... no interference<br />

fringes observed ...<br />

light from different<br />

portions <strong>of</strong> source is<br />

incoherent ... no fixed<br />

phase relationship<br />

Thomas Young performed a classic interference experiment in 1801:<br />

... interference fringes<br />

observed on screen ...<br />

filter<br />

pinhole<br />

double<br />

slit<br />

screen<br />

39


Interference ...3<br />

... but why do we see fringes at all ...<br />

doesn’t light travel in straight lines?<br />

Huyghens showed that one could<br />

regard each point on a wavefront as<br />

being a source <strong>of</strong> “secondary wavelets”<br />

... the envelope <strong>of</strong> these secondary<br />

wavelets form a subsequent wavefront<br />

...<br />

wavefronts<br />

40


Huyghens’ Principle<br />

screen<br />

plane<br />

wave<br />

travelling<br />

in this<br />

direction<br />

Aperture large compared with<br />

a wavelength<br />

... some spreading <strong>of</strong> wave<br />

Aperture similar size<br />

to a wavelength ...<br />

large angular spread<br />

from small aperture<br />

41


Young’s double slit experiment<br />

back to Young’s<br />

experiment ...<br />

... the two slits in<br />

the second screen<br />

act as coherent<br />

sources<br />

42


Young’s double slit experiment ...2<br />

d<br />

θ<br />

y<br />

D<br />

screen<br />

Path difference = d sinθ<br />

Maxima on screen when<br />

Minima on screen when<br />

dsinθ<br />

= mλ<br />

1<br />

( m )<br />

dsinθ<br />

= +<br />

y = Dsinθ<br />

for small θ<br />

mλ<br />

∴ y = D for maxima<br />

d<br />

2<br />

λ<br />

m = 0, ±1, ±2, ...<br />

43


Young’s double slit experiment ...3<br />

... a more detailed treatment<br />

d<br />

r<br />

r 2<br />

θ<br />

P<br />

r 1<br />

Suppose a plane wave illuminates the slits ... the waves from<br />

the two slits are in phase at the slits.<br />

Since the distances r 1 <strong>and</strong> r 2 differ, the waves will have a phase<br />

difference at P.<br />

E1 = E0cos( kr1−ω<br />

t)<br />

Electric fields <strong>of</strong> the two waves:<br />

E = E cos( kr −ωt)<br />

2 0 2<br />

... both waves have the same amplitude at P ... not quite right<br />

since r 1 <strong>and</strong> r 2 are different distances ... but ok.<br />

44


Young’s double slit experiment ...4<br />

Total field: E = E1+ E2 = E0cos( kr1− ωt) + E0cos( kr2<br />

−ωt)<br />

( + ) ( − )<br />

⎧k r1 r2 ⎫ ⎧k r1 r2<br />

⎫<br />

= 2E0<br />

cos⎨ −ωt⎬cos⎨ ⎬<br />

⎩ 2 ⎭ ⎩ 2 ⎭<br />

⎧k<br />

⎫<br />

= 2E0<br />

cos{ kr−ωt}<br />

cos⎨ dsinθ<br />

⎬<br />

⎩2<br />

⎭<br />

⎧π<br />

d ⎫<br />

= 2E0<br />

cos{ kr−ωt}<br />

cos⎨ sinθ<br />

⎬<br />

⎩ λ ⎭<br />

2<br />

2<br />

We now take (time average <strong>of</strong> )<br />

I<br />

=<br />

E<br />

E<br />

Thus for one slit only:<br />

similarly:<br />

E<br />

2<br />

2 2 0<br />

1<br />

=<br />

0cos (<br />

1− ω ) =<br />

I E kr t<br />

I =<br />

2<br />

E<br />

2<br />

0<br />

2<br />

2<br />

45


Young’s double slit experiment ...5<br />

2<br />

Write<br />

1<br />

I = I = I = E<br />

0 1 2 2 0<br />

2 2 2⎧π<br />

d ⎫<br />

= 4<br />

0<br />

cos − cos ⎨ sinθ<br />

⎬<br />

⎩ λ ⎭<br />

2⎧π<br />

d ⎫<br />

2φ<br />

∴ I = 4I0cos ⎨ sinθ<br />

⎬=<br />

4I0cos ⎩ λ ⎭ 2<br />

2 π d<br />

So I will have maxima when cos ⎧ ⎨ sinθ<br />

⎫ ⎬ = 1<br />

⎩ λ ⎭<br />

π d<br />

or when sinθ<br />

= mπ<br />

m = 0, ±1, ±2, ...<br />

λ<br />

For both slits: I E { kr ωt}<br />

or dsinθ<br />

= mλ<br />

This approach gives us additional information ...<br />

46


Young’s double slit experiment ...6<br />

Double slit interference pattern<br />

I<br />

two sources<br />

(coherent)<br />

two sources<br />

(incoherent)<br />

single source<br />

⎧π<br />

d ⎫<br />

= I ⎨ θ ⎬<br />

⎩ λ ⎭<br />

2<br />

( θ ) 4<br />

0<br />

cos sin<br />

I<br />

4I 0<br />

2I 0<br />

I 0<br />

m =<br />

π d<br />

sinθ<br />

=<br />

λ<br />

−3 −2 −1 0 1 2 3<br />

−3π −2π −π 0 π 2π 3π<br />

47


Young’s double slit experiment ...7<br />

... can also use phasors ...<br />

Ψ =<br />

Ae<br />

1 0<br />

Ψ jkr ( 2−ωt)<br />

( −ωt)<br />

jkr<br />

1<br />

Ψ =<br />

2 0<br />

δ =<br />

Ae<br />

Ae<br />

0<br />

( − ωt+<br />

δ )<br />

jkr<br />

1<br />

Ψ<br />

Ψ 2<br />

Ψ 1<br />

Ψ 1<br />

Ψ<br />

Ψ 2<br />

Ψ( δ )<br />

2A 0<br />

Ψ<br />

Ψ 1<br />

Ψ 2<br />

0 π 2π<br />

δ<br />

Ψ = 0<br />

Ψ 2<br />

Ψ 1<br />

48


Interference patterns from thin films<br />

“Black” (i.e. destructive intereference)<br />

from very thin film indicates that there is a<br />

phase change <strong>of</strong> π at one <strong>of</strong> the reflections.<br />

t<br />

λ<br />

For wedges having small angle α , bright fringes correspond to an<br />

increase <strong>of</strong> λ 2 in thickness t :<br />

For nearly normal incidence,<br />

x<br />

t λ path difference = 2t<br />

dark<br />

Minima occur when the<br />

π out <strong>of</strong> phase<br />

t = λ 4 path difference = nλ<br />

bright<br />

2π out <strong>of</strong> phase<br />

dark<br />

3π out <strong>of</strong> phase<br />

t<br />

= λ 2<br />

For minima, 2t = nλ<br />

or 2x<br />

n<br />

α = nλ<br />

Distance between fringes:<br />

49<br />

x − n 1<br />

x =<br />

+ n<br />

λ 2α


To obtain fringes on a visible scale a very<br />

small angle is necessary ... such fringes may<br />

be seen on viewing the light reflected from a<br />

soap film held vertically as it “drains” ...<br />

For other interference effects, look up for yourself:<br />

Lloyd’s mirror<br />

Fresnel bi-prism<br />

S 1<br />

S<br />

fringes<br />

S<br />

fringes<br />

S 2 S 1<br />

Michelson<br />

interferometer<br />

fringes<br />

Newton’s rings<br />

fringes<br />

50


Fresnel diffraction<br />

Around 1818 Augustin Fresnel applied Huyghen’s<br />

priciple to the problem <strong>of</strong> diffraction <strong>of</strong> light by<br />

apertures <strong>and</strong> obstacles ... took into account the<br />

realtive phases <strong>of</strong> the secondary wavelets<br />

consequent upon their having to travel diferent<br />

distances to the point <strong>of</strong> observation ... analytical<br />

treatment is complicated<br />

... look at the results <strong>of</strong> a few special cases ...<br />

Shadow <strong>of</strong> a straight edge<br />

(cast by a point source S)<br />

... no sharp edge to the shadow<br />

... illumination diminishes<br />

smoothly into the shadow<br />

... with fringes outside the<br />

shadow.<br />

S<br />

51


Shadow <strong>of</strong> a narrow slit: centre <strong>of</strong><br />

pattern at P may either be a relative<br />

maximum or minimum, depending on<br />

ratio <strong>of</strong> slit width to wavelength.<br />

Shadow <strong>of</strong> a narrow parallel-sided<br />

obstacle: centre always a relative<br />

maximum ... but very faint unless<br />

obstacle is very narrow.<br />

S<br />

S<br />

Shadow <strong>of</strong> a circular obstacle: wavelets from all round<br />

circumference all reinforce at centre <strong>of</strong> shadow.<br />

S<br />

“Poisson” bright spot<br />

(found by Arago)<br />

52


Fraunh<strong>of</strong>er diffraction<br />

... special (limiting) cases <strong>of</strong> Fresnel<br />

diffraction ... when both the distances<br />

to source <strong>and</strong> screen both tend to<br />

infinity ... treatment is easier since the<br />

paths <strong>of</strong> all the wavelets to any point<br />

<strong>of</strong> interest are parallel.<br />

It is practical sometimes to use a lens ... what would be seen at<br />

infinity is then found in its focal plane.<br />

or<br />

S<br />

53


Fraunh<strong>of</strong>er diffraction<br />

by a single slit<br />

Let slit width be a<br />

... picture below very<br />

much distorted in scale...<br />

incident<br />

wave<br />

y<br />

a<br />

2<br />

dy<br />

θ<br />

r<br />

r 0<br />

P<br />

−a<br />

2<br />

ysinθ<br />

To find the intensity <strong>of</strong> the wave at P we “add” the contributions<br />

at P <strong>of</strong> waves originating from all points <strong>of</strong> the aperture.<br />

a 2 a 2<br />

jkr−ω jkr− t−jkysinθ<br />

Ψ ( P)<br />

= ∫<br />

=<br />

( t) ( ω )<br />

0<br />

Ae dy A e dy<br />

−a<br />

2 −a<br />

2<br />

∫<br />

a 2<br />

jkr t jky<br />

( −ω<br />

)<br />

= ∫<br />

0<br />

− sinθ<br />

Ae e dy<br />

−a<br />

2<br />

54


Fraunh<strong>of</strong>er diffraction by a single slit ...2<br />

Ψ ( P)<br />

=<br />

a 2<br />

jkr ( −ωt)<br />

∫<br />

0<br />

jky<br />

−a<br />

2<br />

0<br />

− sinθ<br />

A e e dy<br />

( −ω<br />

)<br />

⎡ 1<br />

⎣−<br />

jk sinθ<br />

jkr t jky<br />

0<br />

− sinθ<br />

= Ae<br />

0 ⎢ e ⎥<br />

=<br />

∴Ψ ( P)<br />

=<br />

a<br />

a<br />

jk sinθ<br />

− jk sinθ<br />

2 2<br />

jkr ( 0−ωt)<br />

e − e<br />

Ae<br />

0<br />

jk sinθ<br />

⎡<br />

⎢use sinφ<br />

=<br />

⎣<br />

Then<br />

Ae<br />

I =Ψ<br />

2 ( P)<br />

⎤<br />

⎦<br />

a<br />

2<br />

−a<br />

1<br />

( −ω<br />

) sin( 2<br />

sinθ<br />

)<br />

jkr t ka<br />

0<br />

a<br />

0 1<br />

2<br />

I( θ )<br />

e<br />

jφ<br />

I<br />

− e<br />

2 j<br />

− jφ<br />

⎤<br />

⎥<br />

⎦<br />

⎛sinα<br />

⎞<br />

⎝ α ⎠<br />

∴ =<br />

0 ⎜ ⎟<br />

kasinθ<br />

2<br />

2<br />

where<br />

⎛sinα<br />

⎞<br />

⎜ ⎟<br />

⎝ α ⎠<br />

1<br />

α =<br />

2<br />

kasinθ<br />

55<br />

α


I( θ )<br />

Fraunh<strong>of</strong>er diffraction by a single slit ...3<br />

I<br />

⎛sinα<br />

⎞<br />

⎝ α ⎠<br />

∴ =<br />

0 ⎜ ⎟<br />

2<br />

1<br />

where α =<br />

2<br />

kasinθ<br />

I 0<br />

I( θ )<br />

α = −3π −2π −π 0 π 2π 3π<br />

λ λ λ<br />

sinθ = −3 λ λ λ<br />

−2 −<br />

2 3 a a a a a a<br />

Minima at<br />

or<br />

α =<br />

mπ<br />

1<br />

2<br />

kasinθ<br />

= mπ<br />

where<br />

or<br />

m = ±1, ±2, ...<br />

m 2π<br />

λ<br />

sinθ = = m<br />

a k a<br />

56


Fraunh<strong>of</strong>er diffraction by a single slit ...4<br />

Using phasors ... consider a single slit as N sources, each <strong>of</strong><br />

amplitude A 0 ... in the example below, N = 10.<br />

The path difference between any two adjacent sources is d sinθ<br />

where d = a N <strong>and</strong> the phase difference is δ = dk sinθ<br />

.<br />

At the central maximum<br />

point at θ = 0 , the waves<br />

from the N sources add in<br />

phase, giving the resultant<br />

amplitude A = NA .<br />

max 0<br />

At the first minimum, the N phasors form a<br />

closed polygon ... the phase difference<br />

between adjacent sources is then δ = 2π<br />

N<br />

When N is large, the waves from the first<br />

<strong>and</strong> last sources are approximately in phase<br />

A 0<br />

A<br />

=<br />

NA<br />

max 0<br />

δ =<br />

57<br />

2π<br />

N


Fraunh<strong>of</strong>er diffraction by a single slit ...5<br />

At a general point<br />

... where the waves from<br />

two adjacent sources differ<br />

in phase by δ ...<br />

The phase difference<br />

between the first <strong>and</strong> last<br />

wave is φ .<br />

r<br />

r<br />

φ 2<br />

φ 2<br />

A<br />

φ<br />

As N increases, the phasor diagram approximates the arc <strong>of</strong> a circle<br />

... the resultant amplitude A is the length <strong>of</strong> the chord <strong>of</strong> this arc.<br />

( )<br />

The length <strong>of</strong> the arc is A ( = NA )<br />

1<br />

From the figure: sin φ 2 = A 2r<br />

or A = 2r sin 2<br />

φ<br />

A max<br />

max 0<br />

Therefore φ = or<br />

r<br />

r<br />

=<br />

Amax<br />

φ<br />

58


Fraunh<strong>of</strong>er diffraction by a single slit ...6<br />

1<br />

A<br />

1 max<br />

sin<br />

1<br />

2<br />

φ<br />

Combining ... A= 2rsin φ = 2 sin φ = Amax<br />

φ<br />

φ<br />

Then<br />

I<br />

I<br />

⎛ φ ⎞<br />

= = ⎜ ⎟<br />

⎝ φ ⎠<br />

2 1<br />

A sin 2<br />

2 1<br />

0<br />

A max 2<br />

2 2 1<br />

2<br />

2<br />

or I<br />

⎛<br />

1<br />

sin 2<br />

φ ⎞<br />

= I0 ⎜ 1 ⎟<br />

⎝ 2<br />

φ ⎠<br />

...where φ is the phase difference between the<br />

first <strong>and</strong> last waves = 2π λ asinθ = kasinθ<br />

( )<br />

2<br />

The second maximum occurs when the N<br />

1<br />

phasors complete circles:<br />

1 2<br />

A<br />

... <strong>and</strong> the resultant amplitude is the diameter <strong>of</strong> the circle ...<br />

2<br />

2<br />

C<br />

3<br />

Amax 2Amax<br />

2 4Amax<br />

The diameter A = = = then A =<br />

2<br />

π π 3 π<br />

9π<br />

4 1<br />

<strong>and</strong> I = I0 = I<br />

2 0<br />

9π<br />

22.2<br />

59


Interference <strong>and</strong> diffraction from a double slit<br />

When there are two or more slits, the intensity pattern on a<br />

screen far away is a combination <strong>of</strong> the single slit diffraction<br />

pattern <strong>and</strong> the multiple slit interference pattern.<br />

2<br />

⎛sinα<br />

⎞<br />

= I0<br />

⎜ ⎟<br />

I( θ ) 4 cos<br />

⎝ α ⎠<br />

2<br />

β<br />

π a<br />

α = sinθ<br />

λ<br />

π d<br />

β = sinθ<br />

λ<br />

60


Interference <strong>and</strong> diffraction from a double slit ...2<br />

intensity pattern<br />

for two slits<br />

if a → 0 :<br />

intensity pattern<br />

for one slit <strong>of</strong><br />

width a :<br />

intensity pattern<br />

for two slits<br />

each <strong>of</strong> width a :<br />

sinθ =<br />

−2 a<br />

λ<br />

λ<br />

−<br />

a<br />

λ<br />

−3 d<br />

−2 d<br />

λ<br />

λ<br />

−<br />

d<br />

0<br />

λ<br />

2 d<br />

λ<br />

d<br />

λ<br />

a<br />

λ<br />

3 d<br />

61<br />

2 a<br />

λ


Interference patterns from multiple slits (diffraction gratings)<br />

d<br />

... many slits, with inter-slit spacing d,<br />

illuminated by a plane wave ...<br />

As with the double slit, each slit acts as a<br />

source <strong>of</strong> waves.<br />

Consider each pair <strong>of</strong> slits as a Young’s double slit.<br />

Slits are coherent, in phase sources for light at an<br />

angle θ to the n th n<br />

bright fringe.<br />

For constructive interference<br />

d<br />

sinθ<br />

n<br />

= nλ<br />

n = 0, ±1, ±2, ...<br />

If m is the number <strong>of</strong> slits, then amplitude at θn<br />

is A = ma<br />

where a is the amplitude form a single slit<br />

2 2 2<br />

Then I ∼ A ∼m<br />

a (...many slits give intense fringes)<br />

62


Interference patterns from multiple slits ...2<br />

d sinθ<br />

θ<br />

r 1<br />

r 2<br />

r 3<br />

r 4<br />

to P<br />

r2 = r1+<br />

dsinθ<br />

r3 = r2 + 2dsinθ<br />

r4 = r1+<br />

3dsinθ<br />

etc.<br />

Total field at P:<br />

E = E1+ E2 + E3 + ...<br />

= E cos( kr − ωt) + E cos( kr − ωt) + E cos( kr − ωt) + ...<br />

0 1 0 2 0 3<br />

Use complex numbers:<br />

( −ω ) ( −ω ) jkr ( −ωt)<br />

E = E e + E e + E e +<br />

jkr1 t jkr2<br />

t<br />

3<br />

0 0 0<br />

...<br />

63


Interference patterns from multiple slits ...3<br />

( −ω ) ( −ω ) jkr ( −ωt)<br />

E = E e + E e + E e +<br />

jkr1 t jkr2<br />

t<br />

3<br />

0 0 0<br />

...<br />

( − ω ) ( − ω + sin θ ) ( − ω + 2 sin θ )<br />

= Ee + Ee + Ee<br />

+<br />

j kr1 t j kr1 t kd j kr1<br />

t kd<br />

0 0 0<br />

...<br />

( )<br />

{ }<br />

1−ω sinθ 2 sin θ ( −1) sinθ<br />

jkr t jkd jkd N jkd<br />

= Ee<br />

0<br />

1 + e + e + ... + e<br />

... for N slits<br />

∴ E =<br />

=<br />

E e<br />

geometric progression<br />

(<br />

jkd sinθ<br />

1−<br />

e )<br />

( −ωt) jkr1<br />

0 jkd sinθ<br />

Ee<br />

1−<br />

e<br />

N<br />

N N N<br />

2 2 2<br />

jkd sinθ (<br />

− jkd sinθ jkd sinθ<br />

e e − e )<br />

( −ωt) jkd θ<br />

(<br />

− jkd θ jkd θ<br />

e e − e )<br />

jkr1<br />

0 sin sin sin<br />

1 1 1<br />

2 2 2<br />

jφ<br />

− jφ<br />

e − e<br />

<strong>and</strong> using sinφ<br />

=<br />

...<br />

2 j<br />

64


Interference patterns from multiple slits ...4<br />

∴ E = E e E e<br />

1<br />

N −1<br />

( ) ( )<br />

1−ω<br />

jkd sinθ<br />

sin<br />

2<br />

2<br />

sinθ<br />

sin( kd sinθ<br />

)<br />

jkr t Nkd<br />

0 0 1<br />

2<br />

=<br />

Ee<br />

0<br />

N −<br />

{ ( 1+ 1 sin<br />

2 ) − }<br />

sin<br />

sin β<br />

jkr jkd θ ωt Nβ<br />

Write<br />

E<br />

=<br />

E e<br />

0<br />

{ −ω<br />

}<br />

sin β<br />

sin β<br />

jkr t N<br />

where<br />

π d<br />

2<br />

sin sin<br />

λ<br />

1<br />

β = kd θ = θ<br />

Then, as before,<br />

I( θ )<br />

I<br />

⎛sin<br />

Nβ<br />

⎞<br />

⎝ sin β ⎠<br />

=<br />

0 ⎜ ⎟<br />

2<br />

65


Interference patterns from multiple slits ...5<br />

I( θ )<br />

I<br />

⎛sin<br />

Nβ<br />

⎞<br />

⎝ sin β ⎠<br />

=<br />

0 ⎜ ⎟<br />

2<br />

β =<br />

π d<br />

sinθ<br />

λ<br />

I<br />

N = 2<br />

N = 3<br />

N = 4<br />

π d<br />

sinθ<br />

= −3π −2π −π 0 π 2π 3π<br />

λ<br />

66


Interference patterns from multiple slits ...6<br />

Phasors for a 10 slit grating (N = 10) ...<br />

δ =<br />

0,2π<br />

δ = 2π<br />

N = 36°<br />

Ψ( δ )<br />

10A 0<br />

δ = 4π<br />

N = 72°<br />

δ = 3π<br />

N = 54°<br />

δ = 5π<br />

N = 90°<br />

0 π 2π<br />

δ<br />

δ = 6π<br />

N = 108° δ = 7π<br />

N = 126°<br />

67


Circular apertures<br />

Different shaped apertures will give<br />

different diffraction patterns.<br />

A commonly encountered aperture in<br />

optics is the circular aperture.<br />

... diffraction pattern described by<br />

a Bessel function, with the first<br />

minimum at<br />

λ<br />

sinθ = 1.22 d<br />

... where d is the diameter<br />

To resolve two objects,<br />

−1<br />

λ<br />

where θR<br />

= sin 1.22<br />

d<br />

Rayleigh criterion<br />

θ > θ R<br />

θ<br />

θ < θ<br />

> θR<br />

θ = θR<br />

R<br />

68


Interference <strong>and</strong> diffraction with water waves<br />

See French 280 - 294<br />

69

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!