22.05.2014 Views

PHY3022S Nuclear and Particle Physics 1 - University of Cape Town

PHY3022S Nuclear and Particle Physics 1 - University of Cape Town

PHY3022S Nuclear and Particle Physics 1 - University of Cape Town

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>University</strong> <strong>of</strong> <strong>Cape</strong> <strong>Town</strong><br />

Department <strong>of</strong> <strong>Physics</strong><br />

<strong>PHY3022S</strong><br />

<strong>Nuclear</strong> <strong>and</strong> <strong>Particle</strong> <strong>Physics</strong><br />

<strong>Nuclear</strong> <strong>Physics</strong> Part 1<br />

Basics<br />

Andy Buffler<br />

UCT <strong>Physics</strong><br />

<strong>and</strong>y.buffler@uct.ac.za<br />

Room 503, RW James Building<br />

1


Atomic <strong>Physics</strong><br />

(David Aschman) 20 lectures<br />

<strong>PHY3022S</strong> Course Outline<br />

<strong>Nuclear</strong> <strong>and</strong> <strong>Particle</strong> <strong>Physics</strong><br />

(Andy Buffler <strong>and</strong> Andrew Hamilton) 20 lectures<br />

Solid State <strong>Physics</strong><br />

(Mark Blumenthal) 20 lectures<br />

For nuclear <strong>and</strong> particle physics …<br />

Prescribed book is<br />

BR Martin, <strong>Nuclear</strong> <strong>and</strong> <strong>Particle</strong> <strong>Physics</strong>: An Introduction (Wiley, 2006)<br />

Also used:<br />

RJ Blin-Stoyle, <strong>Nuclear</strong> <strong>and</strong> <strong>Particle</strong> <strong>Physics</strong> (Chapman <strong>and</strong> Hall, 1991)<br />

Tutor for <strong>Nuclear</strong> <strong>Physics</strong>: Maciej Stankiewicz<br />

2


Conservation <strong>of</strong> energy <strong>and</strong> charge in e + e - production<br />

3


Periodic Table <strong>of</strong> the Elements<br />

6


The nuclear atom<br />

Chapter 1:<br />

RJ Blin-Stoyle,<br />

<strong>Nuclear</strong> <strong>and</strong> <strong>Particle</strong> <strong>Physics</strong><br />

(Chapman <strong>and</strong> Hall, 1991)<br />

7


Radioactivity - history<br />

1885 JJ Thomson discovers the electron<br />

1896 Bequerel …β-radiation from uranium salts<br />

1896 Roentgen … X-rays<br />

1898 Pierre <strong>and</strong> Marie Curie … α-radiation<br />

1900 Villard … γ-radiation


Radioactivity<br />

α-radiation:<br />

Emission <strong>of</strong> an α-particle ( 4 He nucleus) from a nucleus.<br />

Energy around 5 MeV (short range in matter).<br />

β ‒ -radiation: Electron emission in nuclear decay<br />

β + -radiation: Positron emission in nuclear decay<br />

γ-radiation:<br />

De-excitation <strong>of</strong> a nucleus from excited state to lower<br />

state (keV to MeV)<br />

10


Development <strong>of</strong> atomic theory<br />

JJ Thomson (Nobel Prize in <strong>Physics</strong>, 1906)<br />

“Plum pudding” model.<br />

Poor agreement with experiment.<br />

11


The Rutherford model<br />

Ernest Rutherford<br />

(Nobel Prize in Chemistry, 1908)<br />

12


Scattering <strong>of</strong> a 4 He nucleus <strong>of</strong>f …<br />

(a) Thomson’s atom<br />

(b) Rutherford’s atom<br />

Simulation <strong>of</strong> Rutherford scattering<br />

<strong>of</strong>f a gold nucleus<br />

13


Rutherford: “It was the most incredible event that has ever<br />

happened to me in my life. It was almost as incredible as if you<br />

fired a 15 inch shell at a piece <strong>of</strong> tissue paper <strong>and</strong> it came back<br />

<strong>and</strong> hit you.”<br />

Rutherford model (1911): The atom has a small hard central<br />

core (nucleus) where all the positive charge is concentrated.<br />

The negative charge inhabitants the nearly empty space around<br />

the nucleus.<br />

Thus most <strong>of</strong> the alpha particles migrate through the gold foil<br />

with some or no (Coulomb) interaction, but some will<br />

experience a “head-on” collision with a nucleus <strong>and</strong> return in a<br />

backwards direction.<br />

14


But there were still unanswered questions …<br />

… why does the nucleus (all positive charge) not fly apart due<br />

to Coulomb repulsion?<br />

… why do the negative charges not radiate energy, spiral<br />

inwards <strong>and</strong> collapse into the nucleus due to Coulomb<br />

attraction?<br />

… the model did also not explain existing experimental<br />

observations.<br />

15


Atomic size<br />

In a solid, assume all atoms are spherical <strong>and</strong> packed in a tight grid.<br />

For radius R, separation is 2R <strong>and</strong> volume <strong>of</strong> each atom (2R) 3 .<br />

One mole contains N A atoms <strong>and</strong> occupies volume 8N A R 3 .<br />

Volume also given by<br />

Thus<br />

R<br />

3<br />

M 10<br />

…<br />

where is density <strong>and</strong> M molar mass (in g).<br />

1<br />

3 3<br />

1 M<br />

10<br />

<br />

<br />

2 <br />

N <br />

A <br />

Gold has M<br />

…. thus<br />

<br />

197 <strong>and</strong> 19.310 kg m<br />

10<br />

R 1.310 m<br />

3 -3<br />

All atomic radii are about the same: range<br />

<br />

<br />

10<br />

0.5 2.5 10<br />

m


The radioactive decay law<br />

Radioactive decay is a statistical (r<strong>and</strong>om) process.<br />

Consider a set <strong>of</strong> identical unstable nuclei.<br />

The set will obtain N 0 = N(0) <strong>of</strong> these nuclei at t =0 ,<br />

<strong>and</strong> N(t) radioactive nuclei at time t .<br />

i.e. N(t) < N(0) because <strong>of</strong> the decay.<br />

The rate at which the nuclei decay is proportional to N(t):<br />

dN()<br />

t<br />

i.e. Nt<br />

( )<br />

dt<br />

is called the decay constant <strong>and</strong> depends on the nuclide.<br />

represents the probability that any one nucleus will decay<br />

during the next second (or any other time unit).<br />

18


For a particular set <strong>of</strong> nuclides, is the same for each<br />

nucleus, at all times.<br />

dN()<br />

t<br />

dN<br />

N()<br />

t dt<br />

dt<br />

N<br />

<br />

N () t<br />

N<br />

0<br />

dN()<br />

t<br />

<br />

Nt ()<br />

<br />

t<br />

0<br />

dt<br />

log ( ) ()<br />

N t <br />

t<br />

e<br />

N t t<br />

<br />

N (0)<br />

0 log ln<br />

Nt ()<br />

<br />

N(0)<br />

e<br />

t<br />

e<br />

Radioactive decay law:<br />

N( t) N(0)<br />

e t<br />

19


Mean life <strong>of</strong> decay<br />

: decay constant<br />

Nt ()<br />

N(0)<br />

The mean life,<br />

or lifetime,<br />

is defined to<br />

be 1<br />

<br />

N(0)<br />

e<br />

N(0)<br />

When t , N( t) ,<br />

e<br />

<br />

N()<br />

t N e t<br />

0<br />

t<br />

so the lifetime is the time taken for N(0) to drop to 1 N(0)<br />

e<br />

20


Half life <strong>of</strong> decay, T12<br />

T 12<br />

is the time taken for N(t) to drop to 1 2<br />

N(0)<br />

So at t T :<br />

12<br />

1<br />

N( t) N( T12) N(0)<br />

2<br />

T<br />

i.e. N(0) N(0)<br />

e<br />

1<br />

2<br />

T12<br />

2 e<br />

ln 2 T12<br />

ln 2 0.693 T 12<br />

0.693<br />

<br />

<br />

<br />

T 12<br />

is convenient, since when t = m<br />

e.g. after 3 half-lives, N(3 T12)<br />

<br />

12<br />

N<br />

N(0)<br />

1<br />

12<br />

14<br />

18<br />

T 12<br />

N(0)<br />

8<br />

1 2 3<br />

, N(t) is reduced to<br />

N(0)<br />

2 m<br />

21<br />

m


The decay rate<br />

<strong>of</strong>ten more interesting than<br />

Write<br />

Activity<br />

dN()<br />

t<br />

Rt () <br />

dt<br />

Nt ()<br />

dN()<br />

t<br />

R( t) N(0)<br />

e<br />

dt<br />

t<br />

or activity <strong>of</strong> the sample is<br />

itself.<br />

or<br />

R( t) R(0)<br />

e t<br />

where R(0) N(0)<br />

The number <strong>of</strong> disintegrations (decays) per second also reduces<br />

exponentially with decay constant . <br />

SI units <strong>of</strong> activity: 1 bequerel (Bq) = 1 decay per second<br />

Older unit: 1 curie (Ci) = 3.7 10 10 decays per second<br />

22


For a decay chain A → B → C →<br />

A<br />

N ( ) (0) t<br />

A<br />

t N<br />

A<br />

e <br />

A<br />

At<br />

B<br />

For a two stage decay sequence NB( t) N<br />

A(0) e e<br />

B<br />

<br />

A<br />

For a three stage decay sequence<br />

<br />

t<br />

<br />

t<br />

e e e<br />

NC ( t) <br />

A BN<br />

A(0)<br />

<br />

<br />

<br />

A B<br />

Ct<br />

<br />

B A C A A B C B A C B C<br />

t


Interaction <strong>of</strong> radiation with matter<br />

24


Electromagnetic radiation<br />

Three primary processes <strong>of</strong> interaction with matter:<br />

Photoelectric effect, Compton scattering, Pair production<br />

25


7.6 cm x 7.6 cm NaI 1.9 cm x 0.5 cm HPGe<br />

26


Probability per unit length<br />

for removal <strong>of</strong> a photon<br />

Linear absorption coefficient μ<br />

Fractional loss in intensity:<br />

I( x)<br />

I e x<br />

0<br />

Mass attenuation coefficient:<br />

<br />

<br />

27


Discovery <strong>of</strong> the neutron<br />

James Chadwick, 1932<br />

Outside the nucleus, free neutrons are unstable <strong>and</strong> have a half<br />

life <strong>of</strong> 611.0 ± 1.0 s.<br />

<br />

n p e <br />

e<br />

28


Neutrons<br />

Uncharged, do not interact via Coulomb forces<br />

Interact (via collisions or reactions)<br />

with the nuclei <strong>of</strong> absorbing material<br />

Secondary radiation is almost always heavy charged particles<br />

Probability <strong>of</strong> interaction given by a cross section σ (see later)<br />

Fractional loss in intensity <strong>of</strong> a neutron beam irradiating<br />

a material <strong>of</strong> N nuclei per unit volume, <strong>and</strong> thickness x:<br />

N<br />

I( x)<br />

I e <br />

0<br />

x<br />

29


Pulse height spectrum<br />

n<br />

Organic scintillator<br />

p<br />

PMT<br />

n<br />

Energy spectrum<br />

<strong>of</strong> recoil protons<br />

30


Frank Brooks (1931 – 2012) UCT Pr<strong>of</strong>essor <strong>of</strong> <strong>Nuclear</strong> <strong>Physics</strong><br />

… developed in the early 1960s the first<br />

practical systems <strong>of</strong> pulse shape<br />

discrimination (PSD) which allows the<br />

identification <strong>of</strong> different types <strong>of</strong> charged<br />

particles in certain scintillator detectors by<br />

means <strong>of</strong> the characteristics <strong>of</strong> the<br />

scintillation decay.<br />

gammas<br />

PSD in a 5 cm x 5 cm<br />

organic liquid<br />

scintillator<br />

neutrons<br />

AmBe source<br />

Beam <strong>of</strong> 66 MeV neutrons


Charged particles<br />

The linear stopping power (or specific energy loss) for<br />

charged particles in a given absorber ‒dE/dx can be<br />

calculated using the Bethe-Bloch formula …<br />

… better via “Monte Carlo” method<br />

… see www.srim.org<br />

32


Specific energy loss in air<br />

33


“Bragg peak”<br />

34


Radiation units<br />

Activity: the rate <strong>of</strong> spontaneous decay transitions in a sample …<br />

SI unit:<br />

1 bequerel (Bq) = 1 decay per second<br />

Traditional unit: 1 curie (Ci) = 3.7 × 10 10 Bq<br />

Exposure: quantity <strong>of</strong> radiation to which an object is<br />

exposed which is the ionization that the radiation would<br />

produce in dry air …<br />

SI unit:<br />

1 roentgen (R) = 2.58 × 10 -4 C/kg in dry air<br />

… amount <strong>of</strong> radiation which delivers 8.78 mJ<br />

<strong>of</strong> energy to 1 kg <strong>of</strong> dry air<br />

“Exposure” (<strong>and</strong> roentgens) seldom used nowadays …<br />

35


Absorbed dose: a measure <strong>of</strong> the energy deposited in a medium<br />

by ionizing radiation per unit mass …<br />

SI unit: 1 gray (Gy) = 1 J kg -1<br />

Traditional unit: 1 rad = 0.01 gray<br />

The absorbed dose depends not only on the incident radiation but<br />

also on the absorbing material: a s<strong>of</strong>t X-ray beam may deposit four<br />

times more dose in bone than in air, or none at all in a vacuum.<br />

Kerma: “kinetic energy released in matter” … the sum <strong>of</strong> the<br />

initial kinetic energies <strong>of</strong> all the charged particles liberated by<br />

uncharged radiation (i.e., indirectly ionizing radiation such<br />

as photons <strong>and</strong> neutrons) in a sample <strong>of</strong> matter, per unit mass <strong>of</strong><br />

the sample … kerma always greater than absorbed dose since<br />

some <strong>of</strong> the energy escapes from the absorbing volume in the<br />

form <strong>of</strong> bremsstrahlung x-rays or fast moving electrons.<br />

SI unit: grey (G)<br />

36


Equivalent dose: a computed average measure <strong>of</strong> the radiation<br />

absorbed by a fixed mass <strong>of</strong> biological tissue, that attempts to<br />

account for the different biological damage potential <strong>of</strong> different<br />

types <strong>of</strong> ionizing radiation. It is therefore a less fundamental<br />

quantity than the total radiation energy absorbed per mass (the<br />

absorbed dose), but is a more significant quantity for assessing<br />

the health risk <strong>of</strong> radiation exposure.<br />

SI unit: 1 sievert (Sv) = 1 J kg -1<br />

Traditional unit: 1 rem = 0.01 Sv<br />

equivalent dose (H) = absorbed dose (D)<br />

× radiation weighting factor (W R )<br />

37


equivalent dose (H) = absorbed dose (D)<br />

× radiation weighting factor (W R )<br />

Radiation weighting factors (legislated):<br />

Radiation<br />

W R<br />

X-rays, gamma rays, electrons, muons 1<br />

Neutrons: thermal 5<br />

Neutrons: < 0.1 MeV 10<br />

Neutrons: < 2 MeV 20<br />

Neutrons: > 2 MeV 10<br />

High energy protons 5<br />

Alpha particles, fission fragments, heavy nuclei 20<br />

One sievert <strong>of</strong> two different radiations produces the same<br />

biological effect (more or less).<br />

“Dose rate” also useful … equivalent dose per unit time.<br />

38


http://xkcd.com/radiation/<br />

39


<strong>Nuclear</strong> phenomenology<br />

nucleus positive core <strong>of</strong> the atom<br />

discovered by Rutherford in -scattering experiments<br />

… almost all the mass <strong>of</strong> the atom concentrated in the nucleus<br />

… the nucleus consists <strong>of</strong><br />

A nucleons Z protons N neutrons<br />

held together by<br />

strong nuclear forces<br />

positively<br />

charged<br />

no charge<br />

43


• nuclide: a particular combination <strong>of</strong> protons <strong>and</strong> neutrons<br />

• nuclides are characterized <strong>and</strong> represented by:<br />

<br />

<br />

<br />

A A A<br />

AZ , X X X X A<br />

atomic number<br />

mass number<br />

<br />

Z Z N<br />

60 60 60<br />

27 27 33<br />

X: chemical symbol<br />

e.g. 60,27 Co Co Co Co 60<br />

A Z N<br />

neutron number<br />

• isotopes: Nuclides with the same Z<br />

• isotones: Nuclides with the same N<br />

• isobars: Nuclides with the same A<br />

35 36<br />

e.g.<br />

17Cl 17Cl<br />

40 39<br />

e.g.<br />

20Ca 19K<br />

20 20<br />

e.g.<br />

9F 10<br />

Ne<br />

44


<strong>Nuclear</strong> <strong>and</strong> atomic masses<br />

exactly<br />

Mass <strong>of</strong> 1 neutral atom <strong>of</strong> 12 6 C<br />

12.0000<br />

u<br />

One mole <strong>of</strong> a substance contains Avogadro’s number,<br />

N A = 6.02310 23 atoms (or molecules)<br />

… giving 1 u = 1.66110 -27<br />

unified mass unit<br />

One mole <strong>of</strong> a substance <strong>of</strong> molecular weight M u is M 10 -3 kg<br />

Then 0.012 kg <strong>of</strong> 12 C contains N A atoms <strong>of</strong> mass 12 u …<br />

kg<br />

Then<br />

Eu<br />

<br />

27 <br />

8 -1<br />

1.66110 kg 310 m s <br />

<br />

19 -1<br />

1.610 J eV <br />

<br />

2<br />

u c<br />

931.5 MeV<br />

2<br />

So we can write 1 u = 931.5 MeV/c 2<br />

46


Energy equivalent masses:<br />

M p = 1.007276 u = 938 MeV<br />

M n = 1.008665 u = 940 MeV<br />

M e = 0.0005486 u = 0.511 MeV<br />

47


<strong>Nuclear</strong> sizes <strong>and</strong> shapes<br />

Size <strong>and</strong> shape <strong>of</strong> a nucleus can be found from scattering experiments<br />

… use electrons to learn about charge distribution<br />

… <strong>and</strong> hadrons (<strong>of</strong>ten neutrons) to learn about matter distribution<br />

Charge distribution<br />

In principle the charge distribution <strong>of</strong> a nucleus may be<br />

obtained from the measurements <strong>of</strong> the differential cross<br />

section <strong>of</strong> electron scattering, but more reliable<br />

determinations are obtained from numerical solutions <strong>of</strong> the<br />

Dirac equation fitted to experimental data …<br />

48


Radial charge distributions () r <strong>of</strong> various nuclei, in units<br />

<strong>of</strong> e fm −3 ch<br />

; the thickness <strong>of</strong> the curves near r = 0 is a measure<br />

<strong>of</strong> the uncertainty in () r ch .<br />

0<br />

() ch<br />

ch r <br />

ra<br />

b<br />

1<br />

e<br />

“Saxon Woods”<br />

For medium<br />

<strong>and</strong> heavy nuclei …<br />

a<br />

<br />

13<br />

1.07 A fm<br />

b 0.54 fm<br />

0<br />

ch 0.06 to 0.08<br />

49


Mass distribution<br />

Almost identical nuclear density in the nuclear interior <strong>of</strong> all<br />

nuclei.<br />

ch<br />

0<br />

… the decrease in with increasing A is compensated by<br />

the increase in A/Z with increasing A<br />

Interior nuclear density then<br />

nuclear 0.17 nucleons / fm<br />

3<br />

<strong>and</strong> for medium <strong>and</strong> heavy nuclei …<br />

R<br />

13<br />

nuclear<br />

1.2 A fm<br />

50


Elastic differential cross-sections for 52 MeV deuterons on 54 Fe<br />

51


Differential cross-sections<br />

(normalized to the<br />

Rutherford cross-section)<br />

for the elastic scattering <strong>of</strong><br />

30.3 MeV protons, for a<br />

range <strong>of</strong> nuclei compared<br />

with optical model<br />

calculations; the solid <strong>and</strong><br />

dashed lines represent the<br />

results using two different<br />

potentials.<br />

52


Periodic Table <strong>of</strong> the Elements<br />

53


<strong>Nuclear</strong> binding energy<br />

Use atomic masses to define the mass deficit / defect / excess<br />

M ( Z, A) M ( Z, A) Z( M m ) NM<br />

Define the nuclear binding energy to be:<br />

p e n<br />

B<br />

M ( Z, A)<br />

c<br />

2<br />

Measure nuclear masses<br />

with a mass spectrometer<br />

54


… B/A is the binding energy per nucleon for a particular nuclide.<br />

Plotting B/A versus A gives the binding energy curve...<br />

Average<br />

binding<br />

energy<br />

per<br />

nucleon<br />

(MeV)<br />

Mass number A<br />

Note that the region <strong>of</strong> greatest stability is at a maximum <strong>of</strong><br />

8.7 MeV per nucleon, occurring at A = 50 – 80.<br />

55


Example: Binding energy <strong>of</strong> the deuteron.<br />

What is the binding energy <strong>of</strong> the deuteron if<br />

B<br />

D<br />

M c<br />

where<br />

D<br />

2<br />

M D = 2.013553 u<br />

M p = 1.007276 u<br />

M n = 1.008665 u<br />

<br />

<br />

M M M M 0.002388 u<br />

D p n D<br />

MeV <br />

B u<br />

c <br />

uc <br />

2<br />

D<br />

0.002388 931.5 2.224 MeV<br />

2 <br />

n – p capture:<br />

n + p d + g<br />

2.224 MeV<br />

57


Stability <strong>of</strong> nuclides<br />

Not all nuclides are stable. Unstable nuclei decay spontaneously<br />

to become stable.<br />

i.e. emit particles<br />

e.g. Gold has 30 isotopes ( 175 Au 204 Au). Only 197 Au is stable.<br />

The other 29 isotopes are radioactive nuclides (radionuclides)<br />

Organising the nuclides<br />

The periodic table shows the most common or most stable isotope<br />

<strong>of</strong> each element. Usefulness limited since different isotopes have<br />

very different nuclear properties.<br />

The nuclidic chart shows all known nuclides<br />

… is a plot <strong>of</strong> Z vs. N …<br />

58


Stable nuclides shaded dark<br />

Radioactive nuclides<br />

shaded light<br />

For a stable nuclides<br />

with N 20, N Z<br />

This increases to N 1.5 Z,<br />

for N 120<br />

59


“Valley <strong>of</strong> stability”<br />

61


–decay<br />

<strong>Nuclear</strong> decay<br />

4<br />

helium nucleus<br />

2He2<br />

… the unstable “parent” nucleus emits an -particle.<br />

A<br />

Z<br />

X Y He<br />

A4 4<br />

Z2 2<br />

b –decay<br />

b <br />

an electron<br />

… occurs when n p inside a neutron-rich nuclide<br />

X<br />

Y e <br />

A<br />

A<br />

<br />

Z Z1 N1<br />

e<br />

Possible when M ( Z, A) M ( Z 1,<br />

A)<br />

63


–decay<br />

b <br />

X<br />

a positron<br />

… occurs when p n inside a proton-rich nuclide<br />

Y e <br />

A<br />

A<br />

<br />

Z Z1 N1<br />

e<br />

Possible when M ( Z, A) M ( Z 1, A) 2m<br />

e<br />

Electron capture<br />

A nucleus captures an atomic electron which has ventured<br />

too close to the nucleus<br />

X e Y <br />

<br />

A<br />

<br />

A<br />

Z N Z1 N1<br />

e<br />

Possible when M ( Z, A) M ( Z 1, A)<br />

<br />

where is the excitation energy <strong>of</strong> the atomic shell<br />

<strong>of</strong> the daughter nucleus<br />

64


Energy released in radioactive decay<br />

In nuclear decay, binding energy is released, becoming<br />

kinetic energy <strong>of</strong> the decay products…<br />

Q<br />

<br />

<br />

energy released in the decay<br />

mass mass<br />

c<br />

2<br />

before<br />

Q > 0 is a condition for the decay to occur.<br />

A<br />

A4 4<br />

For example, consider the –decay: X Y He<br />

Z<br />

after<br />

Z2 2<br />

The Q–value or disintegration energy is<br />

2 2 2<br />

Q M c ( M c M c )<br />

This can be shown to be the same as:<br />

Q B B B<br />

X<br />

Y<br />

<br />

B B B<br />

<br />

( 4) 4 <br />

A A<br />

4 4 <br />

X<br />

Y<br />

A A <br />

X<br />

Y<br />

65


Ground <strong>and</strong> excited states <strong>of</strong> nuclei<br />

66


Gamma decay<br />

Decay is a ”step” towards stability. Nuclei, like atoms have<br />

discrete energy states. Excited nuclei decay by transitions in<br />

which high energy photons (g-rays) are emitted.<br />

A *<br />

A<br />

ZX<br />

<br />

ZX<br />

g<br />

excited state<br />

e.g. the decay <strong>of</strong> 60<br />

27 Co:<br />

b <br />

g<br />

g<br />

2.50 MeV<br />

(1.17 MeV)<br />

1.33 MeV<br />

(1.33 MeV)<br />

0<br />

60<br />

Co is therefore a source <strong>of</strong> both g s <strong>and</strong> 27 b– s,<br />

both radiation exhibiting a half life <strong>of</strong> 5.3 years.<br />

67


Natural radioactivity<br />

69


Angular momentum <strong>of</strong> a nucleon<br />

1<br />

Nucleons are fermions, therefore spin quantum number s 2<br />

Eigenvalue <strong>of</strong><br />

Eigenvalue <strong>of</strong><br />

2 1 1<br />

s is 2<br />

2 21<br />

sz<br />

is<br />

1<br />

2 <br />

Nucleon has orbital angular momentum quantum number 0,1,2,...<br />

Eigenvalue <strong>of</strong><br />

Eigenvalue <strong>of</strong><br />

Add spin <strong>and</strong> orbital angular momentum vectorially to get<br />

total angular momentum j l s<br />

Eigenvalue <strong>of</strong><br />

Eigenvalue <strong>of</strong><br />

is<br />

2<br />

l 2<br />

z<br />

is<br />

is<br />

m<br />

1<br />

j j1<br />

2<br />

j 2<br />

jz<br />

is<br />

m<br />

j<br />

m l,...,0,..., 1,<br />

<br />

m j,...,0,..., j 1,<br />

j<br />

j<br />

71


Angular momentum <strong>of</strong> a nucleus<br />

Add all spins <strong>of</strong> nucleons vectorially to get total nuclear spin S.<br />

Add all orbital angular momenta vectorially to get total<br />

orbital angular momentum L.<br />

Add total spin <strong>and</strong> total orbital angular momentum vectorially<br />

to get total angular momentum (or nuclear spin)<br />

J L S<br />

Write nucleus wavefunction as<br />

JM<br />

Therefore<br />

<br />

<br />

J 2 1<br />

2<br />

JM<br />

J J JM<br />

<strong>and</strong> JzJM M JM<br />

where<br />

M J, J 1,...,0,..., J 1,<br />

J<br />

72


Parity<br />

Parity is the transformation<br />

r<br />

r<br />

x<br />

x <br />

Pˆ , t P , t<br />

The intrinsic parity <strong>of</strong> a single proton <strong>and</strong> a single neutron<br />

is defined as +1<br />

Under the parity transformation … PY ˆ , 1 Y ,<br />

<br />

Therefore for a single particle nuclear state P 1<br />

Total parity <strong>of</strong> a multiparticle state is the product <strong>of</strong> parities <strong>of</strong><br />

individual particles.<br />

m<br />

m<br />

A pair <strong>of</strong> nucleons with the same l have combined parity <strong>of</strong> +1<br />

… therefore parity <strong>of</strong> a nucleus depends on the parity <strong>of</strong> the last<br />

unpaired proton <strong>and</strong>/or neutron.<br />

73


Spin <strong>and</strong> Parity<br />

Individual <strong>and</strong>/or collective motions <strong>of</strong> nucleons (determined<br />

by nuclear structure <strong>and</strong> dynamics) determine symmetry <strong>and</strong><br />

other properties <strong>of</strong> the nuclear wave function.<br />

A nuclear state is labelled with both its spin <strong>and</strong> parity in the<br />

form J e.g.<br />

1 <br />

2<br />

,1 ,0 ,...<br />

Some observations for ground states:<br />

Even A nuclei have<br />

J 0,1,2,...<br />

Odd A nuclei have<br />

J <br />

1 3 5<br />

2<br />

, 2<br />

, 2<br />

,...<br />

All even-even nuclei have J 0<br />

<br />

74


Recall … the magnetic moment <strong>of</strong> the electron<br />

Classically for an electron <strong>of</strong> charge e <strong>and</strong> mass m orbiting with<br />

angular momentum L … associated orbital magnetic moment is<br />

e<br />

μL<br />

L<br />

2m<br />

And similarly define an intrinsic (spin) magnetic moment<br />

e<br />

μ g s<br />

2 m<br />

where g-factor = 2.0023192 (or 2.000000 from Dirac)<br />

Actual value <strong>of</strong> electron intrinsic magnetic moment is an<br />

eigenvalue <strong>of</strong> when electron is in m substate.<br />

1<br />

z<br />

s 2<br />

e e<br />

1 1 1<br />

2 g 2 g 2<br />

gB<br />

2m<br />

2m<br />

where the Bohr magneton B e 2m<br />

= 9.274 × 10 -24 J T -1<br />

75


<strong>Nuclear</strong> magnetic dipole moments<br />

Both the proton <strong>and</strong> the neutron have an intrinsic magnetic<br />

moment … <strong>and</strong> since the proton is charged, it can also produce a<br />

magnetic moment when in orbital motion.<br />

Write the magnetic moments for spin up protons <strong>and</strong> neutrons as<br />

or<br />

Measure<br />

Then<br />

<br />

p<br />

e<br />

1 1<br />

<br />

p<br />

2<br />

g<br />

p<br />

n<br />

2<br />

gn<br />

2M<br />

p<br />

2<br />

<br />

<br />

g<br />

<br />

1<br />

p 2 p N<br />

<br />

<br />

g<br />

e<br />

M<br />

<br />

p<br />

1<br />

n 2 n N<br />

where the nuclear magneton e 2M<br />

= 5.05078× 10 -27 J T -1<br />

g 5.5856 <strong>and</strong> g 3.8262<br />

p<br />

Note that<br />

2.7928<br />

<strong>and</strong> 1.9131<br />

<br />

p<br />

N<br />

32<br />

n<br />

N<br />

n<br />

n<br />

p<br />

(predicted by quark model)<br />

N<br />

76


Magnetic moments <strong>of</strong> nuclei involve spin <strong>and</strong> orbital<br />

component, <strong>and</strong> are indictors <strong>of</strong> structure.<br />

For a nucleus … the intrinsic magnetic moments <strong>of</strong> the<br />

constituent protons <strong>and</strong> neutrons will contribute to the total<br />

magnetic moment … with further contributions from any<br />

orbital motion <strong>of</strong> the protons.<br />

Then<br />

<br />

<br />

Jg<br />

<br />

J J N<br />

g J<br />

where is the nuclear g-factor … the ratio <strong>of</strong> the magnetic<br />

moment in nuclear magnetons to the total angular momentum<br />

quantum number for the nuclear (or particle) state.<br />

Find<br />

0<br />

for all J = 0 ground states (why?)<br />

77


<strong>Nuclear</strong> electric quadrupole moments<br />

Define quadrupole moment as ( ) 3 2 2<br />

0 ch<br />

r<br />

Q z r dV<br />

… with z-axis along symmetry axis defined by nuclear spin.<br />

Then can write<br />

<br />

<br />

2 2<br />

Q0 Z 3 z r <strong>and</strong> has units <strong>of</strong> barns.<br />

2 2 2 2<br />

z<br />

where r x y z<br />

For a spherical nucleus:<br />

z<br />

r <strong>and</strong> thus Q0 0<br />

2 1 2<br />

3<br />

For a non-spherical nucleus:<br />

z<br />

<br />

r<br />

2 1 2<br />

3<br />

z<br />

z<br />

r Prolate ellipsoid Q0 0<br />

2 1 2<br />

3<br />

z<br />

z<br />

r Oblate ellipsoid Q0 0<br />

2 1 2<br />

3<br />

Find Q0 0<br />

1<br />

for all J = 0 <strong>and</strong> J 2<br />

ground states (why?)<br />

78


A nucleus may be deformed<br />

away from spherical into a<br />

(a) prolate shape (rugby ball)<br />

or<br />

(b) (b) oblate (flying saucer)<br />

79


8 May 2013<br />

A representation <strong>of</strong> the radium-224 nucleus. The<br />

atomic nucleus is a many-body quantum system with a<br />

shape determined by the number <strong>of</strong> nucleons that it<br />

contains <strong>and</strong> the interactions between them. Most <strong>of</strong><br />

the several thous<strong>and</strong> known stable <strong>and</strong> radioactive<br />

atomic nuclei, with differing numbers <strong>of</strong> protons <strong>and</strong><br />

neutrons, are spherical or rugby-ball shaped. But there<br />

is circumstantial evidence that some heavy, unstable<br />

nuclides are distorted into a pear shape through the<br />

phenomenon <strong>of</strong> octupole deformation. Samples <strong>of</strong><br />

these rare atomic species can be accelerated to 8% <strong>of</strong><br />

the speed <strong>of</strong> light in the REX-ISOLDE facility at<br />

CERN, <strong>and</strong> now Coulomb excitation experiments on<br />

beams <strong>of</strong> the short-lived isotopes radium-224 <strong>and</strong><br />

radon-220 have demonstrated clear octupole<br />

deformation in the former. The results make it possible<br />

to discriminate between the various theoretical models<br />

<strong>of</strong> octupole-deformed nuclei, <strong>and</strong> are also relevant to<br />

the pursuit <strong>of</strong> physics beyond the st<strong>and</strong>ard model.<br />

80


The nucleon-nucleon potential<br />

Martin<br />

7.1<br />

We infer that the N-N force must be …<br />

1. Short range (from Rutherford scattering)<br />

2. Attractive at short range (to bind nucleons in<br />

nuclei)<br />

3. Strong relative to Coulomb (to bind protons)<br />

4. Repulsive at very short range (i.e. must<br />

“saturate” (to prevent collapse <strong>of</strong> all nuclei to<br />

the dimension <strong>of</strong> the force range)<br />

V()<br />

r<br />

F r<br />

81


Electrostatic <strong>and</strong> gravitational potential is long range V 1 r .<br />

Near constancy <strong>of</strong> nuclear binding energy per nucleon B/A means<br />

that each nucleon feels only the effect <strong>of</strong> a few neighbours.<br />

This is called saturation … implies the strong inter-nucleon<br />

potential is short range.<br />

Range is <strong>of</strong> order <strong>of</strong> the 1.8 fm inter-nucleon separation.<br />

Since volume A , nuclei do not collapse, there is a very<br />

short range repulsive component. Reminiscent <strong>of</strong> interatomic<br />

potential in molecules. Is nuclear physics just quark chemistry?<br />

Depth <strong>of</strong> potential is <strong>of</strong> order <strong>of</strong> binding energy,<br />

perhaps tens <strong>of</strong> MeV.<br />

82


The deuteron<br />

The deuteron 2 H is the bound state <strong>of</strong> a neutron <strong>and</strong> a proton.<br />

Experimental properties:<br />

Binding energy B = 2.2245 ± 0.0002 MeV<br />

Angular momentum <strong>and</strong> parity J π = 1 +<br />

Magnetic dipole moment μ D = 0.8575 nuclear magnetons<br />

Electric quadrupole moment Q D = 0.00282 × 10 -28 m 2<br />

Deuteron has very small binding energy, <strong>and</strong> no excited states.<br />

Also ( 1.91 2.79) 0.88<br />

n p N N<br />

And with very small Q D , infer that deuteron is in L = 0 state<br />

where L l p<br />

ln<br />

83


Deuteron ground state L = 0<br />

Then since J L S<br />

… J = 1 (measured)<br />

… implies proton <strong>and</strong> neutron spins are aligned (S = 1)<br />

Thus using the st<strong>and</strong>ard spectroscopic notation 2S<br />

1 L<br />

J<br />

where L = S, P, D, F, G, H<br />

for L = 0, 1, 2, 3, 4 …<br />

… the deuteron has a triplet ground state 3 S1<br />

84

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!