23.05.2014 Views

Numerical simulation of the heat transfer in amorphous ... - Physics

Numerical simulation of the heat transfer in amorphous ... - Physics

Numerical simulation of the heat transfer in amorphous ... - Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rev. Sci. Instrum., Vol. 74, No. 10, October 2003<br />

Simulation <strong>of</strong> membrane calorimeter<br />

4403<br />

constant technique, us<strong>in</strong>g an 1800-Å-thick Cu film as a <strong>the</strong>rmal<br />

conduction layer. 16 In this previous measurement, we<br />

found C Cr 234 mJ/K mol70 mJ/K mol at 20 K; <strong>the</strong> contribution<br />

<strong>of</strong> <strong>the</strong> Cr film at 20 K was only 10% <strong>of</strong> <strong>the</strong> total <strong>heat</strong><br />

capacity so that <strong>the</strong> error <strong>in</strong> c Cr was <strong>of</strong> order 30%. Us<strong>in</strong>g <strong>the</strong><br />

numerical technique described here, with no Cu layer, c Cr is<br />

found with less uncerta<strong>in</strong>ty as it represents 50% <strong>of</strong> c tot .We<br />

note that this numerical technique is especially adapted to<br />

measurement <strong>of</strong> <strong>the</strong> low-temperature specific <strong>heat</strong> <strong>of</strong> superconduct<strong>in</strong>g<br />

films and particles for two reasons: 1 <strong>the</strong> <strong>the</strong>rmal<br />

conductivity <strong>of</strong> metals is lowered <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g<br />

state and 2 us<strong>in</strong>g a metallic <strong>the</strong>rmal conduction layer would<br />

<strong>in</strong>troduce spurious effects because <strong>of</strong> <strong>the</strong> proximity effect.<br />

The technique can be straightforwardly adapted to measurement<br />

<strong>of</strong> <strong>the</strong> specific <strong>heat</strong> <strong>of</strong> submicron particles deposited on<br />

<strong>the</strong> membrane as <strong>the</strong> local <strong>the</strong>rmal parameters can be controlled<br />

<strong>in</strong> <strong>the</strong> calculation.<br />

ACKNOWLEDGMENTS<br />

The authors thank B. Woodfield for valuable discussions<br />

concern<strong>in</strong>g calorimetry and <strong>the</strong> NSF, DOE, and Swiss National<br />

Fund for Scientific Research for support.<br />

1 G. R. Stewart, Rev. Sci. Instrum. 54, 11983.<br />

2 R. Bachmann, F. J. DiSalvo, Jr., T. H. Geballe, R. L. Greene, R. E.<br />

Howard, C. N. K<strong>in</strong>g, H. C. Kirsch, K. N. Lee, R. E. Schwall, H.-U.<br />

Thomas, and R. B. Zubeck, Rev. Sci. Instrum. 43, 2051972.<br />

3 P. F. Sullivan and G. Seidel, Phys. Rev. 173, 679 1968.<br />

4 D. W. Denl<strong>in</strong>ger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S.<br />

K. Watson, and F. Hellman, Rev. Sci. Instrum. 65, 946 1994.<br />

5 S. L. Lai, G. Ramanath, L. H. Allen, P. Infante, and Z. Ma, Appl. Phys.<br />

Lett. 67, 12291995.<br />

6 F. Fom<strong>in</strong>aya, T. Fournier, P. Gandit, and J. Chaussy, Rev. Sci. Instrum. 68,<br />

4191 1997.<br />

7 O. Riou, P. Gandit, M. Charalambous, and J. Chaussy, Rev. Sci. Instrum.<br />

68, 1501 1997.<br />

8 E. N. Abarra, K. Takano, F. Hellman, and A. E. Berkowitz, Phys. Rev.<br />

Lett. 77, 3451 1996.<br />

9 F. Hellman, E. N. Abarra, A. L. Shapiro, and R. B. van Dover, Phys. Rev.<br />

B 58, 5672 1998.<br />

10 K. Allen and F. Hellman, J. Chem. Phys. 111, 5291 1999; K. Allen and<br />

F. Hellman, Phys. Rev. B 60, 11765 1999.<br />

11 B. L. Z<strong>in</strong>k, E. Janod, K. Allen, and F. Hellman, Phys. Rev. Lett. 83, 2266<br />

1999.<br />

12 B. L. Z<strong>in</strong>k, B. Revaz, R. Sappey, and F. Hellman, Rev. Sci. Instrum. 73,<br />

1841 2002.<br />

13 D. Kim, F. Hellman, and J. M. D. Coey, Phys. Rev. B 65, 214424 2002.<br />

14 M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, L. S.<br />

Lai, J. E. Greene, and L. H. Allen, Phys. Rev. B 62, 10548 2000; E.A.<br />

Olson, M. Yu. Efremov, A. T. Kwan, S. Lai, F. Schiettekatte, J. T. Warren,<br />

T. Wisleder, M. Zhang, V. Petrova, and L. H. Allen, Appl. Phys. Lett. 77,<br />

2671 2000; M. Y. Efremov, F. Schiettekatte, M. Zhang, E. A. Olson, A.<br />

T. Kwan, R. S. Berry, and L. H. Allen, Phys. Rev. Lett. 85, 3560 2000.<br />

15 B. L. Z<strong>in</strong>k, B. Revaz, and F. Hellman, Rev. Sci. Instrum. submitted.<br />

16 B. Revaz, M.-C. Cyrille, B. L. Z<strong>in</strong>k, Ivan K. Schuller, and F. Hellman,<br />

Phys. Rev. B 65, 094417 2002.<br />

17 Partial Differential Equation Toolbox User’s Guide, The MathWorks, Inc.<br />

1995.<br />

18 D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, J.<br />

Vac. Sci. Technol. A 7, 1259 1989.<br />

19 T1 and T2 were <strong>in</strong>correctly drawn <strong>in</strong> Ref. 4.<br />

20 W. Holmes, J. M. Gildemeister, P. L. Richards, and V. Kotsubo, Appl.<br />

Phys. Lett. 72, 2250 1998.<br />

21 C. Mastrangelo, Y.-C. Tai, and R. S. Muller, Sens. Actuators A 23, 856<br />

1990.<br />

22 L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, Sens. Actuators<br />

A 35, 153 1992.<br />

23 B. L. Z<strong>in</strong>k and F. Hellman, Solid State Commun. accepted.<br />

24 Specific Heat: Elements and Metallic Alloys, edited by Y. S. Touloukian<br />

IFI/Plenum, New York, 1970.<br />

25 I. Y. Guzman, A. F. Demidenko, V. I. Koshchenko, M. S. Fraifel’d, and Y.<br />

V. Egner, IEEE Eng. Med. Biol. Mag. 12, 1546 1976.<br />

26 B. Revaz, Ph.D. <strong>the</strong>sis, University <strong>of</strong> Geneva 1997 unpublished.<br />

27 R. C. Zeller and R. P. Pohl, Phys. Rev. B 4, 2029 1971.<br />

Downloaded 13 Jun 2005 to 128.32.228.151. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!