15.07.2014 Views

Linköpings Universitet, Hållfasthetslära, IEI/IKP Tore Dahlberg ...

Linköpings Universitet, Hållfasthetslära, IEI/IKP Tore Dahlberg ...

Linköpings Universitet, Hållfasthetslära, IEI/IKP Tore Dahlberg ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tekniska Högskolan i Linköping, <strong>IEI</strong>/<strong>IKP</strong><br />

<strong>Tore</strong> <strong>Dahlberg</strong><br />

TENTAMEN i Mekaniska svängningar och utmattning, 071016 kl 14-18<br />

EXAMINATION in Mechanical Vibrations and Fatigue<br />

DEL 2 - (Problemdel med hjälpmedel)<br />

5. En massa M hängs upp i tre fjädrar (styvhet<br />

k<br />

k 1 = k, k 2 =2k och k 3 =3k).<br />

1 k 2 k1<br />

k (a) Bestäm egenvinkelfrekvensen för systemet<br />

M<br />

3<br />

k2<br />

om massan och fjädrarna monteras enligt figur<br />

k3<br />

M<br />

(a).<br />

(a)<br />

(b) (b) Vad blir egenvinkelfrekvensen om massan<br />

och fjädrarna monteras enligt figur (b)?<br />

English: 5. A mass M is mounted with three springs (stiffness k 1 = k, k 2 =2k,<br />

and och k 3 =3k).<br />

(a) Determine the (angular) eigenfrequency of the system if the mass and the<br />

springs are mounted as shown in figure (a).<br />

(b) What will the eigenfrequency be if mass and springs are mounted as in<br />

figure (b).<br />

Lösning/Solution:<br />

(a) The equation of motion of the mass is Mẍ =−F 1<br />

− F 2<br />

+ F 3<br />

(a)<br />

where<br />

This gives<br />

which gives<br />

(b) The equation of motion of the mass now becomes Mẍ =−∑F<br />

For the two springs in series one obtains (same force F in the two springs)<br />

Enter this into (b). It gives<br />

and the eigenfrequency becomes<br />

F 1<br />

= k 1<br />

x F 2<br />

= k 2<br />

x and F 3<br />

=−k 3<br />

x<br />

Mẍ +(k 1<br />

+ k 2<br />

+ k 3<br />

)x = 0<br />

ω e<br />

= √⎯⎯⎯⎯<br />

(k 1 + k 2 + k 3 )<br />

= √⎯6 √⎯ k M<br />

M = 2.45 √⎯ k M<br />

x = x 1<br />

+ x 2<br />

= F k 1<br />

+ F k 2<br />

giving k 1k 2<br />

k 1 + k 2<br />

x = F<br />

Mẍ + ⎛ ⎜ ⎝<br />

k 1 k 2<br />

k 1 + k 2<br />

+ k 3<br />

⎞ ⎟⎠ x = 0<br />

ω e<br />

= √⎯⎯⎯⎯⎯<br />

⎛ k 1 k 2<br />

⎜<br />

⎝ (k 1 + k 2 ) + k 3<br />

Thus, the eigenfrequency in case (b) goes down, but not that much, because<br />

the stiffest spring k 3 will dominate the behaviour of the mass in both cases.<br />

⎞<br />

⎟<br />

⎠<br />

(b)<br />

1<br />

M = √⎯ 11<br />

3 √⎯ k M = 1.91 √⎯ k M<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!