29.07.2014 Views

discrete-event simulation in clinical trials - Institut für Statistik ...

discrete-event simulation in clinical trials - Institut für Statistik ...

discrete-event simulation in clinical trials - Institut für Statistik ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DRUGS CLINICAL TRIAL OPTIMIZATION<br />

USING DISCRETE EVENT SIMULATION, ITS<br />

MODELING AND VALIDATION<br />

25th July<br />

<strong>Institut</strong> <strong>für</strong> <strong>Statistik</strong><br />

Ludwig-Maximilians-Universität München<br />

Ludwigstr. 33<br />

München<br />

dose<br />

⎛ CL ⎞<br />

C ( t)<br />

= exp ⎜ − t ⎟<br />

V ⎝ V ⎠<br />

Dr.Toni Monleón Get<strong>in</strong>o<br />

Departament of Statistics<br />

y = f ( t , b ) + e<br />

i i i i<br />

= X B +<br />

i i i i<br />

University of Barcelona (Spa<strong>in</strong>) / GORS (Optimization <strong>in</strong><br />

Health Research Group)<br />

amonleong@wanadoo.es. Phone: 0034934021560<br />

b<br />

1<br />

n<br />

1<br />

2<br />

ZB<br />

−<br />

− 2<br />

⎡<br />

−1<br />

⎤<br />

L= (2 π) V exp ⎢− ( y − Xθ)' V ( y − Xθ)<br />

⎥<br />

⎣ 2<br />


ABSTRACT<br />

The possibility of perform<strong>in</strong>g complete <strong>simulation</strong>s of<br />

cl<strong>in</strong>ical <strong>trials</strong>, based on pharmacological action models, has<br />

been considered s<strong>in</strong>ce the advent of the computer era, as<br />

a tool to optimize their practical realisation. Thanks to the<br />

advances <strong>in</strong> computation technology and <strong>in</strong> <strong>discrete</strong> <strong>event</strong><br />

<strong>simulation</strong> tools, today it is possible to perform realistic,<br />

large-scale cl<strong>in</strong>ical trial <strong>simulation</strong>s <strong>in</strong> a regular basis us<strong>in</strong>g<br />

suitable tools of <strong>simulation</strong>.<br />

In this sem<strong>in</strong>ar, we illustrate the process of construct<strong>in</strong>g<br />

realistic <strong>simulation</strong> models based <strong>in</strong> l<strong>in</strong>ear and non-l<strong>in</strong>ear<br />

mixed models us<strong>in</strong>g SAS and the LeanSim framework.<br />

LeanSim is an object-oriented general purpose <strong>simulation</strong><br />

tool, developed <strong>in</strong> C/C++, with a process-<strong>in</strong>teraction<br />

modell<strong>in</strong>g approach. These characteristics of LeanSim<br />

make it very flexible, facilitat<strong>in</strong>g its adaptation to simulate<br />

cl<strong>in</strong>ical <strong>trials</strong>.<br />

Some cl<strong>in</strong>ical <strong>trials</strong> (repeated measures designs) will be<br />

simulated and a methodology to build models of cl<strong>in</strong>ical<br />

<strong>trials</strong> and to simulate, validate and verify statistically them<br />

will be shown. A second part of the talk will be centered <strong>in</strong><br />

the statistical and data analysis facets of model validation<br />

and verification, based on the porcentage variation of<br />

likelihood criteria, compar<strong>in</strong>g the conceptual model and the<br />

<strong>simulation</strong> replications. A last and very <strong>in</strong>complete, for the<br />

moment, part of this research is centered <strong>in</strong> the use of<br />

Bayesian <strong>in</strong>ference to predict the behaviour of drugs <strong>in</strong> the<br />

organism of a new patient, based <strong>in</strong> a population model.<br />

2


Schedule<br />

• Cl<strong>in</strong>ical trial framework<br />

• Modell<strong>in</strong>g and <strong>simulation</strong> of cl<strong>in</strong>ical <strong>trials</strong><br />

• Discrete <strong>event</strong>s <strong>in</strong>tegrated <strong>simulation</strong><br />

• Open questions<br />

3


What is a cl<strong>in</strong>ical trial?<br />

DRUG<br />

Specific effect<br />

Regression to mean<br />

Disease state<br />

Health State<br />

Placebo<br />

Stochastic variations<br />

4


Randomization<br />

5


Cl<strong>in</strong>ical <strong>trials</strong> phases<br />

Phase I: Researchers test a new drug or treatment <strong>in</strong> a small group of<br />

people for the first time to evaluate its safety, determ<strong>in</strong>e a safe dosage range,<br />

and identify side effects.<br />

Phase II: The drug or treatment is given to a larger group of people to see if<br />

it is effective and to further evaluate its safety.<br />

Phase III: The drug or treatment is given to large groups of people to<br />

confirm its effectiveness, monitor side effects, compare it to commonly used<br />

treatments, and collect <strong>in</strong>formation that will allow the drug or treatment to be<br />

used safely.<br />

Phase IV: Studies are done after the drug or treatment has been marketed<br />

to gather <strong>in</strong>formation on the drug's effect <strong>in</strong> various populations and any side<br />

effects associated with long-term use.<br />

6


The bio-pharmacological basis of cl<strong>in</strong>ical <strong>trials</strong><br />

Drug <strong>in</strong> pharmaceutical form<br />

Compartment models<br />

Particle<br />

Periferic compartment (tissues)<br />

Liver<br />

Central compartment<br />

Biological effects<br />

Disolution<br />

dose ⎛ CL ⎞<br />

C ( t)<br />

= exp ⎜ − t ⎟<br />

V ⎝ V ⎠<br />

( t)<br />

= a exp − α t + b exp − β t + c exp − k<br />

( ) ( ) ( t )<br />

C<br />

01<br />

7


The solution of the DE system model will be<br />

discretized and its parametes estimated by means of<br />

NLMM to contemplate population variations with<strong>in</strong><br />

and betwen subjetcs.<br />

8


Dk<br />

k<br />

[ exp( −ket)<br />

− exp( −kat<br />

] ei<br />

e a<br />

C<br />

p<br />

= ) +<br />

Cl(<br />

ka<br />

− ke<br />

)<br />

where<br />

k<br />

a<br />

= exp(0,47 + b )<br />

0i<br />

Cl = exp( − 3,22 + b )<br />

b0i∼N(0; 0,03),<br />

b1i∼N(0;0,4)<br />

eij∼N(0; 0,7).<br />

1i<br />

9


Conceptual Models<br />

PK<br />

e a ( −ket) ( −kat)<br />

Cp<br />

= e − e + ei<br />

Cl( ka<br />

−ke)<br />

⎣<br />

⎦<br />

PD<br />

Dk k<br />

⎡<br />

⎤<br />

% of Movility<br />

85,00<br />

84,50<br />

84,00<br />

83,50<br />

83,00<br />

82,50<br />

82,00<br />

81,50<br />

81,00<br />

80,50<br />

80,00<br />

79,50<br />

79,00<br />

78,50<br />

78,00<br />

Y i = X i b + Z i b i + e i<br />

2 4 6 8 10 12 14<br />

Weeks c s n<br />

Repeated measures models<br />

Phase II-IV<br />

EF<br />

( E<br />

e<br />

max<br />

=<br />

Log ( EC )<br />

+ b1<br />

i)<br />

dosis<br />

50<br />

+ dosis<br />

PK/PD<br />

10


Simulation general<br />

framework


Problem<br />

What if?<br />

Solution?<br />

Model<br />

Simulation<br />

The body<br />

12


Modelization/Simulation process<br />

Statistical analysis (p-value,…)<br />

PK models<br />

2 compartent 1st order model, macro-constants, lagtime,<br />

1st order elim<strong>in</strong>ation<br />

( − α t ) + b exp ( − t ) + c exp ( k t )<br />

C ( t)<br />

= a exp<br />

β −<br />

01<br />

<strong>discrete</strong> approximation of the cont<strong>in</strong>uous differential equations<br />

n replications<br />

Statistical analysis -<br />

<strong>in</strong>ference (p-value,…)<br />

Monte-Carlo<br />

Simulation<br />

y = f ( t , b ) + e<br />

b<br />

i i i i<br />

= X B +<br />

ZB<br />

i i i i<br />

13


Why simulate a CT?<br />

Extrapolate a cl<strong>in</strong>ical trial<br />

Optimize the results<br />

Over parametrized models!<br />

Time extrapolation!<br />

14


Sargent paradigm<br />

15


Validation<br />

‣ The model has been<br />

validated and verified <strong>in</strong><br />

function of a fixed end<br />

po<strong>in</strong>ts (goals).<br />

‣ Sett<strong>in</strong>g end po<strong>in</strong>ts and<br />

establish<strong>in</strong>g the scope<br />

of the model is more<br />

difficult than the<br />

methodology itself.<br />

16


Statistic phases of the process<br />

‣ Validation of the conceptual model:<br />

• Try model<br />

• Parameter estimation or Adjustment<br />

• Validation of the model suppositions:<br />

residual analysis, confidence <strong>in</strong>tervals,<br />

etc<br />

‣ Operational validation: basically<br />

comparation between real data and<br />

simulated data<br />

17


Operational validation<br />

‣ Does the model (conceptual + <strong>simulation</strong>)<br />

reproduces <strong>in</strong> a suitable form the real system?<br />

‣ Usual scope: lihelihood – confidence bands:<br />

goodness of fit<br />

• Null hypothesis: “the model is valid”<br />

• Althernative hypothesis: “The model is wrong”<br />

18


Operational validation:<br />

methodological difficulties<br />

‣ Given an<br />

end po<strong>in</strong>t, a<br />

perfectly<br />

valid model<br />

will be<br />

rejected if<br />

the patient<br />

size (of<br />

<strong>simulation</strong>)<br />

is<br />

sufficiently<br />

big<br />

19


Use of mixed models <strong>in</strong> CTS<br />

‣ Statistical model used<br />

frequently to conceptual<br />

hierarchical (multilevel) of<br />

repeated measures and <strong>in</strong><br />

PK/PD (Proc MIXED /<br />

NLMIXED <strong>in</strong> SAS).<br />

‣ We can model covariance<br />

structure “between” levels and<br />

“with<strong>in</strong>” levels.<br />

‣ We can calculate <strong>in</strong>dividual<br />

trajetories for any patient<br />

20


Mixed model: General form<br />

‣ L<strong>in</strong>ear mixed model form:<br />

Y<br />

i<br />

= X β + Z b + ε<br />

‣ Y i vector of observations<br />

‣ X i y Z i design matrix<br />

‣ β fixed parameters vector<br />

‣ b i ~ N(0,D) random vector of<br />

observations<br />

‣ ε i ~ N(0,Σ i ) residual vector<br />

‣ b i y ε i they are <strong>in</strong>dependent<br />

i<br />

i<br />

i<br />

i<br />

21


Mixed model<br />

‣ L<strong>in</strong>ear mixed model<br />

Y<br />

i<br />

=X β + Z b + ε<br />

i<br />

i<br />

i<br />

i<br />

‣ Fitted to data:<br />

• Parameter estimation<br />

• Parameter CI<br />

• Tests of goodness of fit<br />

22


Types of <strong>simulation</strong>s <strong>in</strong> function of “t”:<br />

Cont<strong>in</strong>ous<br />

Discrete<br />

Discrete <strong>event</strong>s.<br />

The models based on <strong>simulation</strong> of discreet <strong>event</strong>s have sufficient<br />

flexibility and adequacy to the cl<strong>in</strong>ical reality to be used, on the other<br />

way round, the trees of decision and the models of Markov have been<br />

the methods used with major frequency <strong>in</strong> the evaluations<br />

farmacoeconomics, and very rarely <strong>in</strong> the <strong>simulation</strong> of cl<strong>in</strong>ical <strong>trials</strong><br />

(Caro JJ. Pharmacoeconomics 23(4):323-332 2005 ).<br />

Time (t)<br />

General plann<strong>in</strong>g <strong>in</strong> <strong>discrete</strong> time <strong>event</strong>s:<br />

INICIALIZATION<br />

t = 0;<br />

Initialize states of the system and the statistical<br />

counters;<br />

Initialize <strong>event</strong>s list;<br />

PRINCIPAL PROGRAM<br />

If <strong>simulation</strong> time < time rule<br />

Do:<br />

counters;<br />

list;<br />

End;<br />

RESULTS<br />

Determ<strong>in</strong>e type of next <strong>event</strong>;<br />

Advance <strong>simulation</strong> time<br />

Up date condition system + statistical<br />

Generate future <strong>event</strong>s + put <strong>in</strong> the <strong>event</strong><br />

Compute + pr<strong>in</strong>t <strong>in</strong>terest<strong>in</strong>g estimations;<br />

23


Introduction to Discrete Event Simulation<br />

www.dmem.strath.ac.uk/~pball/<strong>simulation</strong>/simulate.html#experimentation<br />

Peter Ball Design Manufacture & Eng<strong>in</strong>eer<strong>in</strong>g Management University of<br />

Strathclyde p.d.ball@strath.ac.uk<br />

SDL->DEVS->PETRI<br />

A <strong>discrete</strong> <strong>event</strong> is someth<strong>in</strong>g that occurs at an <strong>in</strong>stant of time<br />

There are a number of different ways of represent<strong>in</strong>g the logic<br />

with<strong>in</strong> a <strong>discrete</strong> <strong>event</strong> <strong>simulation</strong> model: •Event (patient)<br />

•Activity (Generator, Destroyer, server)<br />

•Process<br />

Detail of the <strong>event</strong> approach structure (from Kreutzer, 1986) 24


SIMULATION METHODOLOGY:<br />

Statistical pakage SAS (SAS <strong>Institut</strong>e, Cary, NC).<br />

LeanSim environment (Guasch y col., 2003)<br />

LEANSIM<br />

New methodology used<br />

complex<br />

environments.<br />

<strong>in</strong><br />

Open and suitable environment.<br />

Discrete <strong>event</strong>s. Library of C+ clases. Class to generate random<br />

multivariate variables bases <strong>in</strong> the method of Jacobi.<br />

Components for manag<strong>in</strong>g <strong>simulation</strong> resources. System of<br />

synchronization between activities and objects. Kernel of <strong>simulation</strong><br />

adapted to support multiple executions. Withdrawal and statistical<br />

analysis of a standard form for all the elements.<br />

Set of classes that allow a representation <strong>in</strong> a three-dimensional<br />

universe.<br />

LeanGen<br />

LeanEditor<br />

LeanStatistics<br />

25


Integrated models and <strong>simulation</strong><br />

Logistics<br />

26


Realistic <strong>simulation</strong> by means of <strong>discrete</strong> envents<br />

Hospital 1<br />

Pacient<br />

…<br />

Hospital n<br />

Total poblation considered<br />

Eligible for the study<br />

Non eligible for the study<br />

Registered on the study<br />

Reflected for the study<br />

Ramdomized<br />

Study treatment assignation<br />

No randomized<br />

Alternativ assignation treatment<br />

Withdrawn<br />

Drop out<br />

Que<strong>in</strong>g dur<strong>in</strong>g visits<br />

Hospital i<br />

T 1<br />

= W(β=2, λ, γ =0)<br />

0 moths<br />

T 2<br />

= fix<br />

2 months+/- 10 days<br />

+/- 10 days<br />

4 months<br />

+/- 10 days<br />

6 months<br />

+/- 10 days<br />

8 meses<br />

Holydays / weekends<br />

N(0, 10)<br />

+/- 10 days<br />

10 months<br />

Time flow<br />

Y ( u n i d a d e s )<br />

Y (unidades)<br />

Riesgo AA<br />

10,3<br />

10,25<br />

10,2<br />

10,15<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

0 2 4 6 8 10<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Pacebo (Conceptual)<br />

10,1<br />

0 2 4 6 8 10<br />

Pacebo (Conceptual)<br />

50 mg (Conceptual)<br />

100 mg (Conceptual)<br />

Placebo (Conceptual)<br />

50 mg (Conceptual)<br />

Modelo de enfermedad<br />

Tiempo (meses)<br />

100 mg (Conceptual)<br />

Atribute variation<br />

Modelo de enfermedad<br />

Tiempo (meses)<br />

0<br />

0 5 10 15 20 25<br />

Tiempo (meses)<br />

Dosis de máximo efecto<br />

Dosis óptima<br />

Complete cl<strong>in</strong>ical trial<br />

Models<br />

Simulation:<br />

•Var between-patients,<br />

•Var <strong>in</strong>ter-patient<br />

•Global error<br />

Disease sub-model<br />

Efficacy<br />

submodel<br />

Safety submodel<br />

27


EXAMPLE OF MODELLING AND SIMULATION OF PHASE II-III<br />

CLINICAL TRIAL BASED IN DRUG ACTION AND DISEASE<br />

MODEL<br />

‣N=144 patients (40 per dos<strong>in</strong>g group (+ withdrawn):<br />

placebo, 50 mg or 100 mg). α=0,05 y β=0,80; δ = 3,2 (Y)<br />

‣End po<strong>in</strong>t: Search<strong>in</strong>g the most efficient dose to treat<br />

disease (E), but m<strong>in</strong>imiz<strong>in</strong>g the risk of adverse <strong>event</strong>s (side<br />

effects).<br />

‣ p-value treatments < 0,05<br />

‣ p-valor adverse <strong>event</strong>s < 0,05<br />

‣Scope of the <strong>simulation</strong>:<br />

Pharmacological action (PD).<br />

Disease model (E)<br />

Use of different parameters PK/PD of previous cl<strong>in</strong>ical<br />

<strong>trials</strong> (Fase I).<br />

Efficacy.<br />

Safety.<br />

Logistic subjects (number of hospitals recuit<strong>in</strong>g<br />

patients, recuit<strong>in</strong>g time, time between visits, time of last<br />

visit (end of cl<strong>in</strong>ical trial) withdrawn, etc).<br />

‣Time schedule: 11 visits, every moth (0,1,2,…, 10 months).<br />

‣First end po<strong>in</strong>t: Y (efficacy), RAA (Safety): Risk of adverse<br />

<strong>event</strong>.<br />

28


STATISTICAL MODELLING<br />

1-Disease progress:<br />

E = 10+ 0,1( b + slope )<br />

0i<br />

b 0i ∼N(0; 1)<br />

slope = oscillations of the disease<br />

<strong>in</strong> the time = 2<br />

2-Effect of the drug over Y (Efficacy):<br />

EF<br />

( E<br />

e<br />

max<br />

=<br />

Log ( EC )<br />

+ b1<br />

i)<br />

dosis<br />

50<br />

+ dosis<br />

EF = drug effect<br />

b 1i ∼N(0; 1) E max = 0,5<br />

Log(EC50) = 1,5 (100mg); 4,5 (50 mg)<br />

Y = E *(1 + EF * RAF)<br />

+<br />

e ij ∼N(0, 2).<br />

e i<br />

Sub-models<br />

RAF<br />

= 1−<br />

e<br />

−RATE*<br />

tiempo<br />

RAF = effect of the time delay<br />

on the drug action<br />

RATE = 0,5<br />

3-Adverse <strong>event</strong> risk (Stanski y Jenk<strong>in</strong>s,2004) (Safety):<br />

RAA<br />

e<br />

1+<br />

e<br />

( −k<br />

+ ( c+<br />

b<br />

1i<br />

=<br />

( −k<br />

+ ( c+<br />

b<br />

)* tiempo)<br />

1i<br />

)* tiempo)<br />

+ e<br />

K = moment of rise AA<br />

c = 0,11 (placebo), 0,35 (50 mg) y 0,45 (100 mg).<br />

b 1i ∼N(0; 0,01) e ij ∼N(0; 0,1).<br />

i<br />

4-Logistic characteristics-> Integrated model<br />

•Withdrawns: 20% (5% per visit)<br />

•Stochastic distribution of patients recruitement ∼ Weibull<br />

•Error time dur<strong>in</strong>g the visit ∼ Normal<br />

•Behaviour of hopitals dur<strong>in</strong>g recruitement (same number of<br />

patients / time delay)<br />

29


CONCEPTUAL MODEL SIMULATION (Plann<strong>in</strong>g)<br />

Generator<br />

N=144<br />

W(β=2, δ, γ=0)<br />

W 1<br />

W<br />

δ =10<br />

2 W 3<br />

δ =15 δ =20<br />

HOSPITAL 1<br />

HOSPITAL 2<br />

HOSPITAL 3<br />

n=6 visits<br />

W i<br />

+ t j<br />

+ N(0, 10) [t = time between visits]<br />

Wait<strong>in</strong>g<br />

Server<br />

p withdrawn<br />

=0,03<br />

.<br />

.<br />

.<br />

10,3<br />

.<br />

.<br />

.<br />

Change <strong>in</strong> attributes<br />

Pacebo (Conceptual)<br />

Destructor:<br />

End<br />

Destructor:<br />

Withdrawn<br />

Y (unidades)<br />

10,25<br />

10,2<br />

10,15<br />

Modelo de enfermedad<br />

Placebo<br />

10,1<br />

0 2 4 6 8 10<br />

Tiempo (meses)<br />

Treatment<br />

assignation<br />

50 mg<br />

100 mg<br />

Y (unidades)<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

Pacebo (Conceptual)<br />

50 mg (Conceptual) Dosis de máximo efecto<br />

100 mg (Conceptual)<br />

Dosis óptima<br />

Modelo de enfermedad<br />

10<br />

0 2 4 6 8 10<br />

Tiempo (meses)<br />

Riesgo AA<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

Placebo (Conceptual)<br />

50 mg (Conceptual)<br />

100 mg (Conceptual)<br />

0,2<br />

0<br />

0 5 10 15 20 25<br />

Tiempo (meses)<br />

30


N=144<br />

Start of CT<br />

W(10)<br />

0 months<br />

Time<br />

Hospital 1<br />

Generator<br />

48 patients<br />

48 patients<br />

48 patients<br />

Hospital 2<br />

+/- 10 days<br />

2 monts 0 months<br />

+/- 10 days 2 months<br />

4 months<br />

+/- 10 days<br />

4 months<br />

6 months<br />

+/- 10 days<br />

8 months<br />

+/- 10 days<br />

10 months<br />

Time<br />

W(15) W(20)<br />

6 months<br />

8 months<br />

Recruit<strong>in</strong>g delay TIME<br />

Hospital 3<br />

0 months<br />

2 months<br />

4 months<br />

Time<br />

6 months<br />

8 months<br />

End CT<br />

10 months<br />

10 months<br />

ECT = TR + TBV (fix) + TEBV + Que<strong>in</strong>g + Calendar + Withdrawns<br />

Que<strong>in</strong>g (restrictions)<br />

Calendars (Hollidays, …)<br />

31


Variation <strong>in</strong> cl<strong>in</strong>ical end po<strong>in</strong>ts<br />

Efficacy submodel<br />

16<br />

Placebo (Conceptual) 50 mg (Conceptual)<br />

100 mg (Conceptual) Placebo (Simulación)<br />

50 mg (Simulación) 100 mg Simulación<br />

Risk AA Y (unities)<br />

Y (unidades)<br />

Riesgo AA<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

PVMCBV:<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0 2 4 6 8 10<br />

Time (months)<br />

Tiempo (meses)<br />

p= 0,0466 [-0,01136; 0,10472],<br />

VMCBP:<br />

0<br />

λ : 0,78 a un 12%<br />

Safety sub-model<br />

Placebo (Conceptual) 50 mg (Conceptual)<br />

100 mg (Conceptual) Placebo (Simulación)<br />

50 mg (Simulación) 100 mg (Simulación)<br />

0<br />

0 2 4 6 8 10<br />

Tiempo (meses)<br />

Time (months)<br />

0<br />

PVMCBV: p= 0,0230 [-0,0208; 0,06699]<br />

32


Determ<strong>in</strong>ation of the end<strong>in</strong>g moment of the CT:<br />

The ed<strong>in</strong>g moment CT have calculated (Day 0 a Visit 10 month) per<br />

hospital, us<strong>in</strong>g 40 <strong>simulation</strong> replications:<br />

•Hospital 1: 385,525 [381,132; 389,917] days<br />

•Hospital 2: 385,975 [381,169; 390,780] days<br />

•Hospital 3: 393,575 [388,773; 398,376] days<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Centro 1<br />

Centro 2<br />

Centro 3<br />

234<br />

264<br />

275<br />

280<br />

287<br />

292<br />

297<br />

302<br />

308<br />

315<br />

321<br />

326<br />

331<br />

336<br />

343<br />

350<br />

363<br />

374<br />

399<br />

Duration od the Cl<strong>in</strong>ical trial(days)<br />

Duración del ensayo clínico (días)<br />

Simulation scenarios:<br />

1- Increase 50 % the speed of recruitment respect regard to the <strong>in</strong>itial<br />

model:<br />

•Hospital 1: 381,125 [375,822; 386,427] días<br />

•Hospital 2: 387,475 [381,271; 317,222] días<br />

•Hospital 3: 391,075 [386,617; 395,532] días<br />

2-The recruitment period for the 3 hopitals has been changed for 90<br />

days average:<br />

•Hospital 1: 531,414 [519,611; 543,217] días<br />

•Hospital 2: 532,829 [522,036; 543,622] días<br />

•Hospital 3: 535,780 [525,433; 546,127] días<br />

33


Open questions<br />

‣ Prediction of a new trajectory for a new case<br />

(imcomplete) us<strong>in</strong>g the population <strong>in</strong>formation <strong>in</strong> PK<br />

(Bayesian prediction)<br />

Interest<strong>in</strong>g<br />

implications <strong>in</strong> adjust<br />

the drug dose to the<br />

patient, m<strong>in</strong>imize risk<br />

of toxicity, <strong>in</strong>crease<br />

efficacy<br />

Prior<br />

Posterior<br />

SAS<br />

34


‣Validation/Verification methodologies for<br />

complex <strong>simulation</strong> models<br />

C oncentración (m g/L)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Tiempo (h)<br />

Conceptual<br />

Conceptual model<br />

Concentración Real data real<br />

Concentración (mg/L)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Simulation model (IC95%)<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Tiempo (h)<br />

Simulation<br />

Simulación Conceptual<br />

PVLIR<br />

i<br />

LLR − LLRi<br />

100<br />

LLR<br />

=<br />

2<br />

2<br />

35


1<br />

n<br />

1<br />

2<br />

−<br />

− 2<br />

⎡<br />

−1<br />

⎤<br />

L= (2 π) V exp ⎢− ( y −Xθ)' V ( y −Xθ)<br />

⎥<br />

⎣ 2<br />

⎦<br />

%-LL<br />

12<br />

C<br />

C<br />

11 C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

10<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C C C<br />

C C C<br />

C C C C<br />

C C<br />

C C C<br />

C C<br />

C<br />

CC<br />

C C<br />

C C C<br />

CC<br />

CC<br />

C<br />

C C<br />

C<br />

CC<br />

C C<br />

C<br />

9<br />

C<br />

CC<br />

C C C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

8<br />

C C<br />

CC<br />

CC<br />

C C<br />

C C<br />

CC<br />

C<br />

C<br />

C<br />

C C<br />

CC<br />

C C<br />

C<br />

C C<br />

C C<br />

C C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

7<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C C C<br />

C C<br />

C C<br />

C C<br />

C<br />

C<br />

CC<br />

C C C<br />

C<br />

C<br />

C<br />

C C<br />

C C C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C CC C C<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C 6<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

CC<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C C C C<br />

CC<br />

CC<br />

C<br />

C C<br />

CC C<br />

C<br />

C<br />

C C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

CC<br />

C C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C C C<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

CC<br />

C C<br />

C C C<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C C<br />

C<br />

C C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C C C<br />

C<br />

5<br />

C<br />

C<br />

C C<br />

C<br />

C C<br />

C C C<br />

C<br />

C C<br />

C<br />

CC<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C C C<br />

C C<br />

C<br />

C<br />

C<br />

C C C<br />

C C<br />

C<br />

C C C<br />

C<br />

C<br />

C C C C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C C C<br />

C<br />

C<br />

4 C<br />

C<br />

C<br />

C C<br />

C C<br />

C<br />

C C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C C C C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

3<br />

C<br />

C<br />

C<br />

C<br />

C<br />

2<br />

C<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Number of replications<br />

PLOT %-LL %AIC %AIC CCC%AIC<br />

Percentage of PVL between 1000 <strong>simulation</strong> replicas and conceptual model us<strong>in</strong>g the<br />

computacional model (σ= 2,8532) (Range:2.44379-11.8056 for BIC, 2.19090-<br />

11.56709 for AICC, 2.18605- 11.56225 for AIC, 2.09318-11.49733 for -LLR ).<br />

%-LL<br />

35<br />

C<br />

34<br />

C<br />

C<br />

C<br />

C C<br />

33<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

32 C<br />

C C<br />

C CC<br />

C C<br />

C<br />

CC<br />

C C<br />

C C<br />

C<br />

C CC<br />

C C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C CC<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

31<br />

C<br />

CC<br />

CC C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

30<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C C C<br />

C C<br />

C C<br />

C<br />

C C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

CC<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C C C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

29<br />

C<br />

C C<br />

C<br />

C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C C C<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C C C<br />

C<br />

28 C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C C C<br />

C<br />

CC<br />

C<br />

C<br />

C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

CC<br />

C<br />

C C<br />

C C<br />

C C<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

CC C<br />

C<br />

C C<br />

C CC<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

CC<br />

C CC<br />

C<br />

C C CC C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C C<br />

C<br />

C CC<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

27<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C C<br />

C<br />

CC<br />

C<br />

CC<br />

C<br />

C<br />

CC<br />

C C C C<br />

C<br />

C<br />

C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C CC<br />

CC<br />

C<br />

C<br />

C C C<br />

C<br />

C<br />

C C C<br />

C C C C<br />

C<br />

C C C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C C CC C<br />

C<br />

C C<br />

C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C C C C<br />

C<br />

C<br />

C<br />

CC<br />

C C C<br />

C<br />

C C<br />

C C C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C C C<br />

C<br />

C C C C<br />

C C<br />

C<br />

C<br />

CC<br />

C<br />

C<br />

C<br />

CC<br />

C C C<br />

C C C<br />

26 C C CC<br />

C<br />

C C<br />

C<br />

C C C C<br />

C C C C<br />

C C<br />

C<br />

C CC<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

25<br />

C C<br />

C C<br />

C<br />

C<br />

C<br />

C<br />

24<br />

σ<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Number of replications<br />

PLOT %-LL %AIC %AIC CCC%AIC<br />

Percentage of PVL between 1000 <strong>simulation</strong> replicas and conceptual model <strong>in</strong>creas<strong>in</strong>g<br />

the variability of the global model error (σ=5) <strong>in</strong> the upper range (Range: 23.9939-<br />

33.9592 for BIC, 24.2873- 34.2680 for AICC, 24.2922- 34.2729 for AIC, 24.4640 -<br />

34.4744 for -LLR )<br />

36


Vielen dank <strong>für</strong><br />

Ihre<br />

Aufmerksamkeit<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!