13.10.2014 Views

Estimating Distributions of Counterfactuals with an Application ... - UCL

Estimating Distributions of Counterfactuals with an Application ... - UCL

Estimating Distributions of Counterfactuals with an Application ... - UCL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

408 CARNEIRO, HANSEN, AND HECKMAN<br />

Let ̂m c = t 1 − µ c m (̂x) to obtain<br />

Pr (M c ≤ ̂m c , M d = (0,...,0) | X = ̂x) = F U c m ,Ũ d m (t 1, t 2 )<br />

We know the left-h<strong>an</strong>d side <strong>an</strong>d thus identify F U c m ,Ũ at the evaluation point t 1, t<br />

m d 2 .<br />

Since (t 1 , t 2 ) is <strong>an</strong>y arbitrary evaluation point in the support <strong>of</strong> Um c , Ũd m we c<strong>an</strong> thus<br />

identify the full joint distribution.<br />

<br />

PROOF OF THEOREM 2.<br />

(<br />

c1 (Q 1 ) − ϕ (Z)<br />

Pr (D 1 = 1 | Z, Q 1 ) = Pr<br />

> ε )<br />

W<br />

σ W σ W<br />

Under (A-1), (A-2), (A-6), (A-7), <strong>an</strong>d (A-9), it follows that c 1(Q 1 ) − ϕ(Z)<br />

σ W<br />

<strong>an</strong>d F˜εW<br />

(where ˜ε W = ε W<br />

σW<br />

) are identified (see M<strong>an</strong>ski, 1988; Matzkin, 1992, 1993). Under<br />

r<strong>an</strong>k condition (A-7), identification <strong>of</strong> c 1(Q 1 ) − ϕ(Z )<br />

σ W<br />

implies identification <strong>of</strong> c 1(Q 1 )<br />

σ W<br />

<strong>an</strong>d ϕ(Z )<br />

σ W<br />

separately. Write<br />

( ) ( )<br />

c2 (Q 2 ) − ϕ (Z) c1 (Q 1 ) − ϕ (Z)<br />

Pr (D 2 = 1 | Z, Q 1, Q 2 ) = F˜εW − F˜εW<br />

σ W σ W<br />

From the absolute continuity <strong>of</strong>˜ε W <strong>an</strong>d the assumption that the distribution function<br />

<strong>of</strong>˜ε W is strictly increasing, we c<strong>an</strong> write<br />

c 2 (Q 2 )<br />

σ W<br />

[<br />

( )]<br />

= F −1<br />

c1 (Q 1 ) − ϕ (Z)<br />

˜ε W<br />

Pr (D 2 = 1 | Z, Q 1 , Q 2 ) + F˜εW + ϕ (Z)<br />

σ W σ W<br />

Thus, we c<strong>an</strong> identify c 2(Q 2)<br />

σ W<br />

over its support <strong>an</strong>d, proceeding sequentially, we c<strong>an</strong><br />

identify c s(Q s)<br />

σ W<br />

, s = 3,...,S. Under (A-8) we c<strong>an</strong> identify η s , s = 2,...,S. <br />

Observe that we could use the final choice (Pr(s = S)) rather th<strong>an</strong> the initial<br />

choice to start <strong>of</strong>f the pro<strong>of</strong> <strong>of</strong> identification using <strong>an</strong> obvious ch<strong>an</strong>ge in the assumptions.<br />

PROOF OF THEOREM 3. From (A-2), the unobservables are jointly independent <strong>of</strong><br />

(X, Z, Q). For fixed values <strong>of</strong> (Z, Q s , Q s−1 ), we may vary the points <strong>of</strong> evaluation<br />

for the continuous coordinates (ys c ) <strong>an</strong>d pick alternative values <strong>of</strong> X = ̂x to trace<br />

out the vector µ c (X) up to intercept terms. Thus, we c<strong>an</strong> identify µ c s,l<br />

(X) upto<br />

a const<strong>an</strong>t for all l = 1,...,N c,s (Heckm<strong>an</strong> <strong>an</strong>d Honoré, 1990). Under (A-2), we<br />

recover the same functions for whatever values <strong>of</strong> Z, Q s , Q s−1 are prespecified<br />

as long as c s (Q s ) > c s−1 (Q s−1 ), so that there is <strong>an</strong> interval <strong>of</strong> ε W bounded above<br />

<strong>an</strong>d below <strong>with</strong> positive probability. This identification result does not require <strong>an</strong>y<br />

passage to a limit argument.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!