23.10.2014 Views

Simulation of Clinical Trials with Mathematical Models ... - CBI

Simulation of Clinical Trials with Mathematical Models ... - CBI

Simulation of Clinical Trials with Mathematical Models ... - CBI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Simulation</strong> <strong>of</strong> <strong>Clinical</strong> <strong>Trials</strong> <strong>with</strong><br />

<strong>Mathematical</strong> <strong>Models</strong>:<br />

Applications to<br />

Comparative Effectiveness Research<br />

November 18, 2010<br />

Badri Rengarajan, M.D.<br />

www.archimedesmodel.com<br />

... a KAISER PERMANENTE Innovation


Goals<br />

• Describe role <strong>of</strong> simulating clinical trials in<br />

comparative effectiveness research (CER)<br />

– Use Archimedes Model as example<br />

• Show examples<br />

– Case studies <strong>of</strong> diabetes treatments<br />

– Describe a tool for comparing >20 interventions for cardiometabolic<br />

risk<br />

2


Topics<br />

• Rationale, mechanisms, and challenges <strong>of</strong> simulating<br />

clinical trials<br />

• Archimedes Model<br />

– Overview<br />

– Validation<br />

– Capabilities and applications<br />

• Case Studies<br />

– DPP expansion and extension<br />

– A-L-L<br />

– Results <strong>of</strong> 20 simulated trials <strong>of</strong> interventions for<br />

cardiometabolic risk<br />

3


Ideally use clinical trials to compare<br />

different interventions<br />

• Not feasible<br />

– Large populations<br />

– Long follow-up times<br />

– High cost, budget constraints<br />

– Ethical issues<br />

– Provider and patient participation<br />

– Large number <strong>of</strong> interventions and options to be studied<br />

• Best available alternative is to simulate the desired<br />

trials<br />

– Design trials<br />

– Replace trials<br />

4


There are several ways to try to predict results<br />

<strong>of</strong> trials, each has limitations<br />

5<br />

Mechanism<br />

Comparison <strong>of</strong> trials for different<br />

treatments<br />

(also tests, devices, procedures)<br />

Registry data<br />

Questionnaires for physicians,<br />

patients<br />

Potential Limitations<br />

• “Apples vs. Oranges” comparisons<br />

̶ Different patient populations<br />

̶ Different interventions<br />

̶ Different endpoints/outcomes<br />

• Confounding factors<br />

• Missing/incomplete data<br />

• Calibration <strong>of</strong> responses<br />

• Inability to verify<br />

PK/PD modeling<br />

Pilot trial<br />

• May not be predictive <strong>of</strong> clinical<br />

outcomes – too far upstream<br />

• Insufficient powering<br />

• Requires time for protocol development,<br />

enrollment, and analysis


<strong>Simulation</strong> methods have their own challenges,<br />

and differ in their capabilities<br />

Potential Challenges<br />

• Limited to current knowledge <strong>of</strong> drug action, efficacy/effectiveness,<br />

safety, dosing<br />

• May not capture <strong>of</strong>f-target toxicities<br />

• Not a substitute for a real trial<br />

Differences Among Methods<br />

• Level <strong>of</strong> accuracy in capturing physiological and pathophysiological<br />

relationships<br />

• Level <strong>of</strong> integration across different organs and disease processes<br />

• Ability to capture clinical care processes<br />

• Ability to capture healthcare system costs<br />

• Ability to capture downstream/ripple effects on outcomes and costs<br />

6


Topics<br />

• Rationale, mechanisms, and challenges <strong>of</strong> simulating<br />

clinical trials<br />

• Archimedes Model<br />

– Overview<br />

– Validation<br />

– Capabilities and applications<br />

• Case Studies<br />

– DPP expansion and extension<br />

– A-L-L<br />

– Results <strong>of</strong> 20 simulated trials <strong>of</strong> interventions for<br />

cardiometabolic risk<br />

7


Archimedes uses mathematics to<br />

enhance decision making<br />

• The Archimedes Model is a mathematical<br />

model <strong>of</strong> human physiology, diseases,<br />

interventions, and healthcare systems<br />

– Physiology-based<br />

– Realistic<br />

– Comprehensive<br />

– <strong>Clinical</strong>ly and administratively detailed<br />

– Rigorously validated<br />

• Enables decision makers to understand likely<br />

outcomes <strong>of</strong> various interventions<br />

8


9<br />

Physiological Pathways are Represented as<br />

Equations in Virtual People<br />

Family<br />

history<br />

Sex<br />

Race/<br />

ethnicity<br />

Age<br />

BMI<br />

Height<br />

Type 1<br />

Diabetes<br />

feature<br />

Type 2<br />

Diabetes<br />

feature<br />

Age, sex,<br />

race/<br />

ethnicity<br />

Weight<br />

Diabetes<br />

blood<br />

pressure<br />

factor<br />

Peripheral<br />

resistance<br />

Cardiac<br />

output<br />

Gliburide<br />

Arterial<br />

compliance<br />

Insulin Insulin<br />

treatment<br />

Systolic<br />

Cardiac<br />

output<br />

blood<br />

pressure<br />

Pulse \<br />

pressure<br />

Insulin<br />

Insulin<br />

Insulin<br />

level level level level level<br />

Unexplained<br />

variance in<br />

OGT<br />

FPG<br />

OGT<br />

Ketoacidosis<br />

Random<br />

plasma<br />

glucose<br />

Insulin<br />

Amount<br />

Insulin<br />

Joint Insulin<br />

Glucose<br />

Random<br />

Amount<br />

Diabetes Amount Insulin<br />

uptake by<br />

error and<br />

feature Amount<br />

muscle uptake by<br />

variation<br />

Amount uptake by<br />

muscle uptake by<br />

Efficiency <strong>of</strong><br />

muscle FPG<br />

insulin use<br />

Glucose muscle uptake by FPG<br />

HbA1c<br />

production muscle<br />

FPG<br />

by by liver Glucose<br />

FPG<br />

production Glucose<br />

Untreated<br />

by production liver<br />

FPG<br />

Glucose insulin level<br />

Care<br />

liver<br />

insulin level<br />

processes<br />

Metformin<br />

Normal liver by production<br />

liver Unexplained<br />

Family<br />

Insulin<br />

OGT<br />

OGTT test<br />

Gliburide<br />

Insulin level<br />

variance<br />

GlucoseUntreated<br />

in<br />

history<br />

treatment<br />

glucose<br />

OGT<br />

production productionby production<br />

liver insulin Untreated level<br />

Random<br />

Random<br />

Diabetes<br />

plasma<br />

plasma<br />

Sex<br />

diagnosis<br />

Normal liver<br />

Fractional<br />

Type 1<br />

glucose<br />

glucose test<br />

Insulin<br />

Diabetes<br />

production<br />

insulin level<br />

feature Joint (Pancreas) Glucose<br />

glucose Normal liver by liver Untreated change in<br />

Race/<br />

Random<br />

FPG test<br />

Diabetes<br />

uptake by<br />

ethnicity<br />

error and<br />

Type 2 feature<br />

muscle<br />

Insulin<br />

variation<br />

Insulin<br />

Diabetes<br />

efficiency production FPG<br />

glucose<br />

insulin level<br />

feature<br />

(Muscle)<br />

Glucose<br />

HbA1c test<br />

Age<br />

Normal production liver<br />

Untreated<br />

Insulin<br />

by liver<br />

efficiency<br />

Untreated<br />

Care<br />

Urine<br />

Diet and<br />

Age, sex,<br />

(Liver) glucose insulin level<br />

processes insulin ketone test level<br />

BMI<br />

race/<br />

Normal liver<br />

To<br />

exercise<br />

FPG<br />

ethnicity<br />

glucose<br />

treatment<br />

production<br />

Normal liver Fractional<br />

Ketoacidosis<br />

models<br />

Metformin<br />

change in<br />

UKPDS<br />

Insulin<br />

data<br />

glucose<br />

Height Weight<br />

Diet and<br />

Hypoglycemia<br />

FPG<br />

exercise<br />

LDL<br />

production Diabetes Propensity<br />

HDL<br />

Triglyceride<br />

Patient<br />

Diabetes<br />

takes action<br />

LDL<br />

cholesterol cholesterol s<br />

Smoking Diabetes Propensity<br />

blood<br />

HDL<br />

Triglyceride<br />

cardiac risk<br />

Blurred<br />

to blurred<br />

Smoking cardiac risk to blurred<br />

pressure cholesterol cholesterol s<br />

vision<br />

factor<br />

vision<br />

factor<br />

factor vision<br />

Mean<br />

arterial<br />

pressure<br />

Peripheral<br />

resistance<br />

Mean<br />

arterial<br />

pressure<br />

Arterial<br />

compliance<br />

Systolic<br />

blood<br />

pressure<br />

Pulse \<br />

pressure<br />

To the<br />

Retinopathy<br />

model<br />

Coronary<br />

artery<br />

stenosis<br />

Coronary<br />

To the To the<br />

Nephropath artery Neuropathy<br />

y model model<br />

stenosis<br />

FPG<br />

To the<br />

Coronary<br />

artery<br />

disease<br />

model<br />

Propensity<br />

to polyuria<br />

Propensity<br />

to fatigue<br />

Propensity<br />

to thirst<br />

Polyuria<br />

Fatigue<br />

Thirst<br />

Memory<br />

Perception<br />

Propensity<br />

to polyuria<br />

Propensity<br />

to fatigue<br />

OGTT test<br />

Random<br />

plasma<br />

glucose test<br />

FPG test<br />

HbA1c test<br />

Urine<br />

ketone test<br />

Hypoglycemia<br />

Blurred<br />

vision<br />

Polyuria<br />

Fatigue<br />

Diabetes<br />

diagnosis<br />

To<br />

treatment<br />

models<br />

Patient<br />

takes action<br />

Memory<br />

Perception<br />

To the<br />

Retinopathy<br />

model<br />

To the<br />

Nephropath<br />

y model<br />

To the<br />

Neuropathy<br />

model<br />

To the CAD<br />

model<br />

Propensity<br />

to thirst<br />

Thirst


Type 1<br />

10<br />

The Model is comprehensive<br />

Family<br />

history<br />

Sex<br />

Race/<br />

ethnicity<br />

Age<br />

BMI<br />

Height<br />

Diabetes<br />

feature<br />

Type 2<br />

Diabetes<br />

feature<br />

Age, sex,<br />

race/<br />

ethnicity<br />

Weight<br />

Diabetes<br />

blood<br />

pressure<br />

factor<br />

Insulin<br />

Gliburide<br />

Insulin level<br />

treatment<br />

Insulin<br />

production<br />

Joint (Pancreas) Glucose<br />

Diabetes<br />

uptake by<br />

feature<br />

muscle<br />

Insulin<br />

efficiency<br />

(Muscle)<br />

Glucose<br />

production<br />

Insulin<br />

by liver<br />

efficiency<br />

(Liver)<br />

Normal liver<br />

glucose<br />

production<br />

Metformin<br />

UKPDS<br />

data<br />

Diet and<br />

exercise<br />

HDL<br />

LDL Triglyceride<br />

cholesterol cholesterol s<br />

Unexplained<br />

variance in<br />

OGT<br />

FPG<br />

Untreated<br />

insulin level<br />

Diabetes<br />

Smoking cardiac risk<br />

factor<br />

Mean Systolic Coronary<br />

Peripheral<br />

arterial blood artery<br />

resistance<br />

pressure pressure stenosis<br />

FPG<br />

OGT<br />

Random<br />

plasma<br />

glucose<br />

Random<br />

error and<br />

variation<br />

Care<br />

processes<br />

Fractional<br />

change in<br />

Insulin<br />

FPG<br />

Propensity<br />

to blurred<br />

vision<br />

Propensity<br />

to polyuria<br />

OGTT test<br />

Random<br />

Diabetes<br />

plasma<br />

diagnosis<br />

glucose test<br />

FPG test<br />

HbA1c test<br />

Urine<br />

ketone test<br />

To<br />

treatment<br />

Ketoacidosis<br />

models<br />

Hypoglycemia<br />

Patient<br />

takes action<br />

Blurred<br />

vision<br />

Memory<br />

Polyuria<br />

Perception<br />

Behaviors<br />

Symptoms<br />

Signs<br />

Diseases<br />

Outcomes<br />

Cardiac<br />

output<br />

Arterial<br />

compliance<br />

Pulse \<br />

pressure<br />

Propensity<br />

to fatigue<br />

Fatigue<br />

To the<br />

To the To the To the Coronary<br />

Retinopathy Nephropath Neuropathy artery<br />

model y model model disease<br />

model<br />

Propensity<br />

to thirst<br />

Thirst


11<br />

The Model is clinically and administratively detailed,<br />

enabling detailed costing and economic analysis<br />

Patient:<br />

• Has chest pain and presents to the ER<br />

• Receives EKG, chest x-ray, and blood tests<br />

• Is diagnosed <strong>with</strong> MI, admitted to the hospital, and given an angioplasty <strong>with</strong> drug-eluting stent<br />

• Remains in the hospital for 2.1 days and is discharged<br />

Who is reimbursed Service performed Codes<br />

Cardiologist<br />

Reimbursement<br />

MS-DRG 247: Percutaneous<br />

Cardiovascular Procedure <strong>with</strong><br />

Consultation<br />

Read EKG<br />

Perform cardiac catheterization<br />

Drug-Eluting Stent<br />

Perform angioplasty <strong>with</strong> drug-eluting stent<br />

•2008 Medicare base payment:<br />

$10,365<br />

CPT<br />

CPT (pr<strong>of</strong>essional component only)<br />

CPT<br />

CPT<br />

Radiologist Read x-ray CPT (pr<strong>of</strong>essional component only)<br />

Anesthesiologist Provide anesthesia during angioplasty RVG code and time patient is anesthetized<br />

(can be converted to a CPT)<br />

•Medicare average length <strong>of</strong> stay:<br />

2.1 days<br />

Other physicians Inpatient consultations CPT<br />

Hospital All services performed during stay DRG


The Model spans several diseases<br />

• Coronary artery disease<br />

• Stroke<br />

• Diabetes and complications<br />

• Obesity<br />

• Metabolic syndrome<br />

• Hypertension<br />

• Dyslipidemia<br />

• Congestive heart failure<br />

• Atrial fibrillation<br />

• Asthma<br />

• Lung cancer<br />

• Breast cancer<br />

• Colon cancer<br />

Includes a model <strong>of</strong> family pedigrees,<br />

enabling studies <strong>of</strong> risk-prediction,<br />

genetic and genomic testing,<br />

and cost-effectiveness <strong>of</strong> screening<br />

strategies.<br />

12


Over 50 trials have been used to validate<br />

the Model<br />

4S DCCT Lifetime Risk <strong>of</strong> Diabetes SEATTLE<br />

ADVANCE DPP Look-AHEAD SHEP<br />

AGE DREAM MERIT SOLVD<br />

ALLHAT<br />

ANBP2<br />

European Orlistat<br />

Obesity Study<br />

FHS<br />

MicroHOPE<br />

Minnesota FOBT<br />

Screening Trial<br />

ARIC Flechtner-Mors National Polyp Study TNT<br />

STENO-2<br />

SYSTEUR<br />

ASCOTT LLA GLAI PPP TRACE<br />

ATBC HOPE PROactive UKPDS 33<br />

CAPRICORN HPS PROSPER UKPDS 34<br />

CARDS IDEAL RENAAL UKPDS 45<br />

CARE IDNT RIO-Europe UKPDS 74<br />

CPS-II Breast<br />

Lieberman Colonoscopy<br />

Screening<br />

RIO-Lipids UKPDS 80<br />

CPS-II Colon LIFE all RIO-North America VALUE<br />

CPS-II Lung LIFE diabetes SAVE WESDR<br />

13


The Model can reveal health and economic effects <strong>of</strong><br />

multiple interventions under different scenarios<br />

• Can include active comparators <strong>of</strong> interest, e.g.<br />

– Multiple drugs (diagnostics, devices)<br />

– Different regimens, schedules, frequencies<br />

– Different care protocols and guidelines<br />

• Can create and tailor specific relevant populations,<br />

settings and costs<br />

– Populations<br />

• Demographics, behaviors, test results, symptoms, past medical histories,<br />

current conditions, current treatments<br />

• All at individual level<br />

– Protocols and practice patterns<br />

– Costs<br />

• Tests, treatments, visits, hospitalizations, procedures<br />

14


The Model can enhance trial design,<br />

CER, and product strategy<br />

• <strong>Clinical</strong> Trial Design<br />

– Appropriate powering (<strong>with</strong> knowledge <strong>of</strong> baseline/control arm event<br />

rates)<br />

– Observations on primary and secondary endpoint responses<br />

– Patient population segmenting<br />

– Examination <strong>of</strong> different permutations <strong>of</strong> I/E criteria, trial size, timelines,<br />

treatment effects<br />

• Comparative Effectiveness<br />

– Comparison on health outcomes<br />

– Comparison on costs<br />

– Examination <strong>of</strong> different permutations <strong>of</strong> patient subsets, practice<br />

guidelines, treatment compliance, clinical guideline adherence, costs<br />

• Product Strategy (Indication statement, Positioning, Pricing, etc.)<br />

15


Topics<br />

• Rationale, mechanisms, and challenges <strong>of</strong> simulating<br />

clinical trials<br />

• Archimedes Model<br />

– Overview<br />

– Validation<br />

– Capabilities and applications<br />

• Case Studies<br />

– DPP expansion and extension<br />

– A-L-L<br />

– Results <strong>of</strong> 20 simulated trials <strong>of</strong> interventions for<br />

cardiometabolic risk<br />

16


Only simulation modeling could have enabled<br />

expansion and extension <strong>of</strong> the DPP trial<br />

Situation<br />

• American Diabetes Association (ADA) sought to<br />

understand cost-effectiveness <strong>of</strong> screening and<br />

management guidelines to prevent/delay<br />

development <strong>of</strong> T2DM in high-risk individuals<br />

• Three-year DPP (Diabetes Prevention Program) trial<br />

comparing current care, metformin, and lifestyle<br />

modification was nearly complete<br />

• However, ADA and Department <strong>of</strong> Health and Human<br />

Services (HHS) were interested in long-term health<br />

and economic outcomes <strong>of</strong> different strategies, as<br />

well as several questions outside scope <strong>of</strong> DPP trial<br />

• Existing trial had already cost over $300M<br />

17


The approach involved matching populations &<br />

protocols, adding an arm, and extending duration<br />

Approach<br />

• Created a simulated population matching DPP<br />

inclusion/exclusion criteria and patient baseline<br />

characteristics<br />

• Conducted prospective simulation <strong>of</strong> DPP trial (same<br />

duration, interventions) to validate Model’s ability to<br />

reproduce population, interventions, and outcomes<br />

• Added intervention arm (lifestyle intervention<br />

initiated after diagnosis – FPG >125)<br />

• Extended duration <strong>of</strong> simulated trial to 30 years<br />

18


19<br />

This enabled generation <strong>of</strong> longitudinal health<br />

data on a larger population<br />

Results<br />

Actual Trial<br />

Simulated Trial<br />

Size N=3,234 N=10,000<br />

Mean trial duration 3.2 years 30 years<br />

Rates <strong>of</strong> diabetes • Current care: 28.9%<br />

• Metformin: 21.7%<br />

• Lifestyle: 14.4%<br />

30-year data<br />

27.4%<br />

21.9%<br />

13.2%<br />

Risk <strong>of</strong> DM 72%<br />

Benefits <strong>of</strong> Lifestyle Program (over entire period)<br />

Risk reduction<br />

Risk <strong>of</strong> serious complication<br />

(high-risk group)<br />

Risk <strong>of</strong> death from DM<br />

complication<br />

Cost per QALY (vs. no<br />

intervention)<br />

Down 15% (relative)<br />

38% to 30%<br />

13% to 11%<br />

$143K


Cumulative Incidence <strong>of</strong> Diabetes<br />

20<br />

The simulation was prospectively validated<br />

against the original trial<br />

0.5<br />

DPP: Diabetes Progression<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Current<br />

28.9% 27.4%<br />

0 0.5 1 1.5 2 2.5 3 care 3.5 4<br />

Time (years)<br />

3-Yr<br />

Timepoint<br />

Actual<br />

control<br />

metformin<br />

lifestyle<br />

Simulated<br />

Metformin 21.7% 21.9%<br />

Lifestyle 14.4% 13.2%


In simulation, the DPP trial was simultaneously<br />

expanded (fourth arm) and extended (30 yrs)<br />

Fraction developing diabetes<br />

0.8<br />

0.7<br />

Effect <strong>of</strong> Four Programs on Progression to Diabetes<br />

Postpone one decade<br />

Prevent 11%<br />

0.6<br />

0.5<br />

0.4<br />

21<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Baseline<br />

LifeStyle<br />

Metformin<br />

Lifestyle when FPG>125<br />

0 5 10 15 20 25 30<br />

Time (years)<br />

21


Estimating longitudinal health outcomes<br />

generated CE insight (Baseline vs. Lifestyle)<br />

Without Lifestyle (baseline)<br />

Difference <strong>with</strong> Lifestyle<br />

Years <strong>of</strong> follow-up 10 20 30 10 20 30<br />

Diabetes 56.9% 68.6% 72.2% -14.3% -11.6% -10.8%<br />

CAD//CHF<br />

Have an MI 4.0% 8.5% 12.0% -0.4% -1.1% -1.7%<br />

Develop CHF (systolic or diastolic) 0.2% 0.7% 1.2% -0.1% -0.1% -0.1%<br />

Stroke (ischemic or hemorrhagic) 2.9% 7.0% 11.6% -0.5% -1.0% -1.4%<br />

Some serious complication 11.2% 26.1% 38.2% -3% -6.6% -8.4%<br />

Deaths<br />

22% 17% decrease<br />

CHD 2.2% 6.6% 11.9% -0.6% -1.1% -2.0%<br />

Stroke 0.4% 0.9% 1.5% -0.1% -0.3% -0.3%<br />

Renal disease 0.00% 0.02% 0.1% 0.00% -0.01% -0.04%<br />

Death from any complication 2.6% 7.6% 13.5% -0.7% -1.3% -2.3%<br />

Life Years 24.032 0.288<br />

22<br />

22


Estimating longitudinal cost outcomes also<br />

generated CE insight (Baseline vs. Lifestyle)<br />

Expected Costs in a Health Plan <strong>with</strong> 100,000 Members<br />

$Millions<br />

23<br />

Without Lifestyle<br />

(Baseline)<br />

Difference <strong>with</strong> Lifestyle<br />

Years <strong>of</strong><br />

follow-up 5 10 20 30 5 10 20 30<br />

Admissions $10 $23 $58 $96 $0.8 $0.7 $1.5 $2.2<br />

Visits $8.3 $16 $33 $48 -$0.4 -$11 -$1.7 -$2<br />

Procedures $7.4 $16 $38 $57 -$0.8 -$2 -$4 -$5.5<br />

Interventions $3.4 $6.6 $16 $26 $14 $26 $48 $64<br />

Total $29 $62 $144 $227 $14 $24 $44 $59<br />

PMPM for<br />

high-risk $57 $50 $46 $41<br />

PMPM for all<br />

members $2.29 $2.00 $1.83 $1.64<br />

23


30-year QALY/person<br />

The cost effectiveness <strong>of</strong> each arm<br />

over 30 years was revealed<br />

11.50<br />

QALY vs Cost for Four Programs<br />

11.48<br />

11.46<br />

$201,800<br />

11.44<br />

11.42<br />

11.40<br />

11.38<br />

11.36<br />

11.34<br />

11.32<br />

$24,523 $35,523<br />

$62,600<br />

No Program<br />

Lifestyle when FPG>125<br />

DPP Lifestyle<br />

Metformin<br />

24<br />

11.30<br />

$37,000 $39,000 $41,000 $43,000 $45,000 $47,000 $49,000<br />

30-year Cost/person<br />

24


<strong>Simulation</strong> enabled trial expansion and<br />

extension at a fraction <strong>of</strong> the cost <strong>of</strong> a real trial<br />

25<br />

Results<br />

Actual Trial<br />

Simulated Trial<br />

Size N=3,234 N=10,000<br />

Trial arms 3 3 + 1<br />

Mean trial duration 3.2 years 30 years<br />

Rates <strong>of</strong> diabetes • Current care: 28.9%<br />

• Metformin: 21.7%<br />

• Lifestyle: 14.4%<br />

27.4%<br />

21.9%<br />

13.2%<br />

Trial cost >$300M


Topics<br />

• Rationale, mechanisms, and challenges <strong>of</strong> simulating<br />

clinical trials<br />

• Archimedes Model<br />

– Overview<br />

– Validation<br />

– Capabilities and applications<br />

• Case Studies<br />

– DPP expansion and extension<br />

– A-L-L<br />

– Results <strong>of</strong> 20 simulated trials <strong>of</strong> interventions for<br />

cardiometabolic risk<br />

26


A-L-L: <strong>Clinical</strong> trial simulation enabled testing<br />

<strong>of</strong> a novel hypothesis<br />

Situation<br />

• A group <strong>of</strong> physicians at Kaiser Permanente<br />

suggested that a combination <strong>of</strong> aspirin, lovastatin,<br />

and lisinopril would reduce complications <strong>of</strong><br />

diabetes<br />

• However, there was no direct evidence and no way<br />

to determine effects on health outcomes and costs<br />

• Yet, data would be needed to support adoption<br />

27


The approach involved matching populations, care<br />

protocols, and costs<br />

Approach<br />

• Created a simulated population representing all<br />

diabetics over 55 years in Kaiser Permanente (CA)<br />

• Constructed trial <strong>with</strong> three groups:<br />

– Current care (based on national guidelines and realistic<br />

performance and compliance)<br />

– A-L-L regimen on top <strong>of</strong> Current Care<br />

– Reference group: 1% HbA1c reduction<br />

• Used KP’s costs for drugs, lab tests, <strong>of</strong>fice visits, and<br />

admissions for MIs and strokes<br />

• Set duration <strong>of</strong> simulated trial at 30 years<br />

********<br />

• KP’s Care Management Institute conducted an<br />

independent real trial (2 years) to evaluate A-L-L<br />

28


29<br />

A-L-L has a bigger effect than 1%<br />

HbA1c reduction<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

Average annual risk <strong>of</strong> various events<br />

Nothing<br />

HbA1c control<br />

ALL<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

MI Stroke ESRD Blind Dying


30<br />

The effect begins immediately<br />

0.12<br />

Annual risk <strong>of</strong> four complications or death<br />

0.1<br />

0.08<br />

Nothing<br />

ALL<br />

HbA1c<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 5 10 15 20 25<br />

Time since start <strong>of</strong> program


31<br />

CMI Independent Evaluation (2007)<br />

• In 2004-2005 28% <strong>of</strong> KP’s eligible study population in northern +<br />

southern CA (n=170,024) had received A-L-L at low exposure, 13%<br />

at high exposure (59% no exposure)<br />

• Modeled results consistent <strong>with</strong> actual findings by CMI:<br />

– By 2006, heart attacks and strokes decreased by 15 per 1000<br />

members for the low exposure group (p


Topics<br />

• Rationale, mechanisms, and challenges <strong>of</strong> simulating<br />

clinical trials<br />

• Archimedes Model<br />

– Overview<br />

– Validation<br />

– Capabilities and applications<br />

• Case Studies<br />

– DPP expansion and extension<br />

– A-L-L<br />

– Results <strong>of</strong> 20 simulated trials <strong>of</strong> interventions for<br />

cardiometabolic risk<br />

32


A population dataset <strong>with</strong> pre-run interventions serves as a reference tool<br />

for development and implementation <strong>of</strong> novel approaches/medications<br />

Alternate <strong>Simulation</strong> Tool for CE: Cardio-Metabolic Risk Dataset<br />

Population<br />

Cardiometabolic<br />

interventions<br />

Treatment<br />

scenarios<br />

Settings<br />

• 100,000 individuals<br />

• Drawn from NHANES data 1999-2006<br />

• Subpopulations by age, gender, risk factors (e.g., CAD, DM)<br />

• Weight management<br />

• BP management<br />

• Cholesterol management<br />

• Medications (e.g., aspirin)<br />

• Glycemia management<br />

• Smoking cessation<br />

• Guidelines followed perfectly<br />

• Medications initiated at study start <strong>with</strong> no future adjustments<br />

• “Magic pills” - Medications that maintain outcome goal (e.g., LDL


The results <strong>of</strong> a variety <strong>of</strong> interventions can be<br />

captured<br />

Interventions<br />

Target Populations<br />

Weight Management<br />

Lower BMI to 30 BMI > 30<br />

Lower BMI to 25 BMI > 25<br />

Lower BMI by 5% not to go below 25 BMI > 25<br />

Take weight loss intervention<br />

As per guidelines<br />

Blood pressure management<br />

Lower BP to 130/80 SBP > 130 or DBP > 80<br />

Take BPC meds (ACE-I/ARB, diuretic, beta blocker, CCB) As per guidelines<br />

Cholesterol management<br />

Lower LDL to 100 LDL > 100<br />

Lower LDL to 130 LDL > 130<br />

Lower LDL to 160 LDL > 160<br />

Take statin<br />

As per guidelines<br />

Take medication<br />

Take polypill<br />

Is diagnosed <strong>with</strong> diabetes or CAD<br />

Take ASA<br />

Has had MI or ischemic stroke<br />

Glycemia management<br />

Lower FPG to 125 mg/dL<br />

FPG > 125 mg/dL<br />

Lower HbA1c to 9% Is diagnosed <strong>with</strong> diabetes and HbA1c > 9%<br />

Lower HbA1c to 8% Is diagnosed <strong>with</strong> diabetes and HbA1c > 8%<br />

Lower HbA1c to 7% Is diagnosed <strong>with</strong> diabetes and HbA1c > 7%<br />

Take diabetes medication (metformin, glitazone,<br />

As per guidelines<br />

sulfonylurea, insulin)<br />

Lower FPG by 10% not to go below 100%<br />

FPG between 100 and 125 mg/dL<br />

Lower FPG <strong>with</strong> Metformin<br />

FPG between 100 and 125 mg/dL<br />

Smoking Cessation<br />

Stop smoking<br />

Smokers<br />

34


Health and cost outcomes can be captured<br />

Outcomes in Dataset<br />

Biomarkers<br />

Health<br />

CE<br />

• Proportion smokers, BMI, weight, SBP, DBP, LDL, HDL, total cholesterol,<br />

triglycerides, FPG, HbA1c, serum creatinine<br />

• MI, stroke, MACE, revascularization, diabetes, diabetic proliferative<br />

retinopathy, bilateral blindness, ESRD, diabetic foot ulcer, diabetic foot<br />

amputation.<br />

• Total deaths, CHD deaths, stroke deaths<br />

• Medication usage: aspirin, antihypertensives, ACE-inhibitor, beta blocker,<br />

CCB, diuretics, dyslipidemia medications, oral DM agents, metformin,<br />

sulfonylurea, TZD, insulin, weight loss interventions, polypills<br />

• Life years<br />

• Medical costs<br />

• QALYs, Discounted QALYs<br />

• Cost/QALY<br />

• Cost per averted event<br />

35


<strong>Clinical</strong> Trial <strong>Simulation</strong> modeling is an essential<br />

component <strong>of</strong> comparative effectiveness analysis<br />

• Overcomes cost, time, and<br />

recruiting/operational challenges <strong>of</strong> real<br />

trials<br />

• Improves trial design<br />

• Generates data quickly<br />

• Provides preview <strong>of</strong> real trial outcomes<br />

• Facilitates testing <strong>of</strong> unlimited scenarios<br />

• With integration <strong>of</strong> physiology/disease<br />

<strong>with</strong> healthcare processes and costs, can<br />

provide CE insights and evidence<br />

Meaningful<br />

component <strong>of</strong><br />

CE Toolkit,<br />

but not a<br />

substitute for<br />

real trials<br />

36


Appendix<br />

www.archimedesmodel.com<br />

... a KAISER PERMANENTE Innovation<br />

37


Archimedes is a health care modeling<br />

company<br />

• Healthcare Modeling Company<br />

• HQ in San Francisco<br />

• Core technology - Archimedes Model<br />

– <strong>Mathematical</strong> model <strong>of</strong> human physiology,<br />

diseases, interventions and healthcare<br />

systems<br />

• Highly detailed<br />

• Carefully validated<br />

– In development since 1993<br />

• David Eddy MD, PhD<br />

• Len Schlessinger PhD<br />

– Owned by Kaiser Permanente<br />

• Spun out as independent organization 2006<br />

38


Publications<br />

• Age at initiation and frequency <strong>of</strong> screening to detect type 2<br />

diabetes: a cost-effectiveness analysis<br />

[»The Lancet, 3/30/2010 ]<br />

• Preventing Myocardial Infarction and Stroke <strong>with</strong> a Simplified<br />

Bundle <strong>of</strong> Cardioprotective Medications<br />

[ »Am. Journal <strong>of</strong> Managed Care, 10/1/2009]<br />

• Effect <strong>of</strong> Smoking Cessation Advice on Cardiovascular Disease<br />

[ »Am. Journal <strong>of</strong> Medical Quality, Vol. 24, No. 3, (2009)]<br />

• The Relationship between Insulin Resistance and Related<br />

Metabolic Variables to Coronary Artery Disease: A<br />

<strong>Mathematical</strong> Analysis<br />

[ »Diabetes Care Publish Ahead <strong>of</strong> Print, 11/18/2008 ]<br />

• The potential effects <strong>of</strong> HEDIS performance measures on the<br />

quality <strong>of</strong> care<br />

[ »Health Affairs, 9/15/2008 ]<br />

• The Impact <strong>of</strong> Prevention on Reducing the Burden <strong>of</strong><br />

Cardiovascular Disease<br />

[ »Circulation, 7/29/2008 ]<br />

• Validation <strong>of</strong> Prediction <strong>of</strong> Diabetes by Archimedes and<br />

Comparison <strong>with</strong> Other Predicting <strong>Models</strong>.<br />

[ »Diabetes Care, 5/28/2008 ]<br />

• The Metabolic Syndrome and Cardiovascular Risk: Implications<br />

for <strong>Clinical</strong> Practice.<br />

[ »International Journal <strong>of</strong> Obesity, 5/1/2008 ]<br />

• Diabetes Risk Calculator: A Simple Tool for Detecting<br />

Undiagnosed Diabetes and Prediabetes.<br />

[ »Diabetes Care, 5/1/2008 ]<br />

39<br />

• Cure, Care, and Commitment: What Can We Look Forward To?<br />

[ »Diabetes Care, 4/15/2008 ]<br />

• Reflections on science, judgment, and value in evidence-based<br />

decision making: a conversation <strong>with</strong> David Eddy<br />

[ »Health Affairs, 6/19/2007 ]<br />

• Medical Decision-making: Why it must, and how it can, be<br />

improved<br />

[ »Expert Voices, 5/15/2007 ]<br />

• Linking Electronic Medical Records To Large-Scale <strong>Simulation</strong><br />

<strong>Models</strong>: Can We Put Rapid Learning On Turbo?<br />

[ »Health Affairs, 1/26/2007 ]<br />

• Accuracy versus transparency in Pharmacoeconomic<br />

modeling: finding the right balance.<br />

[ »Pharmacoeconomics, 6/6/2006 ]<br />

• Bringing health economic modeling to the 21st century.<br />

[ »Value in Health, 5/30/2006 ]<br />

• <strong>Clinical</strong> outcomes and cost-effectiveness <strong>of</strong> strategies for<br />

managing people at high risk for diabetes.<br />

[ »Annals <strong>of</strong> Internal Medicine, 8/16/2005 ]<br />

• Earlier intervention in type 2 diabetes: The case for achieving<br />

early and sustained glycaemic control.<br />

[ »International Journal <strong>of</strong> <strong>Clinical</strong> Practice, 11/28/2005 ]<br />

• Evidence-based medicine: a unified approach.<br />

[ »Health Affairs, 02/15/2005 ]<br />

• Validation <strong>of</strong> the Archimedes diabetes model.<br />

[ »Diabetes Care, 11/15/2003 ]<br />

• Archimedes: a trial-validated model <strong>of</strong> diabetes.<br />

[ »Diabetes Care, 11/15/2003 ]


The Model is clinically and administratively<br />

detailed in following care processes<br />

40<br />

Modeling health care processes and clinical practice guidelines (e.g. ATP III)


41<br />

The validation approach is rigorous<br />

People<br />

Treatments<br />

Randomized<br />

Controlled<br />

<strong>Trials</strong><br />

Real<br />

Outcomes<br />

Same<br />

(Virtual)<br />

People<br />

Same<br />

(Virtual)<br />

Treatments<br />

Same?<br />

Virtual<br />

Outcomes


Fraction <strong>of</strong> patients<br />

42<br />

The Model has undergone external,<br />

independent validation<br />

0.14<br />

0.12<br />

Major Coronary Events in Heart Protection Study<br />

Solid lines are the trial results<br />

0.1<br />

0.08<br />

Placebo<br />

0.06<br />

0.04<br />

0.02<br />

Treated <strong>with</strong> Simvastatin<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Years


Fraction <strong>of</strong> patients<br />

43<br />

The Model yielded a reasonable<br />

approximation <strong>of</strong> the HPS Study<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

Major Coronary Events in Heart Protection Study<br />

Solid lines are the trial results<br />

Dotted lines are the Model’s results<br />

Placebo<br />

0.06<br />

0.04<br />

0.02<br />

Treated <strong>with</strong> Simvastatin<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Years


Fraction<br />

44<br />

It has also prospectively predicted CARDS<br />

Trial results<br />

CARDS Trial: Major Coronary Events<br />

0.14<br />

0.12<br />

0.1<br />

CARDS Integrated Hazard: control<br />

Archimedes Integrated Hazard: control<br />

CARDS Integrated Hazard: treated<br />

Archimedes Integrated Hazard: treated<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 1 2 3 4<br />

Years


In the DPP simulation, populations and interventions<br />

were matched, and identical outcomes were set up<br />

45<br />

• The people: “high risk <strong>of</strong> diabetes”<br />

– BMI >24<br />

– FPG 5.3 – 6.9 mmol/L = 95 – 125 mg/dL<br />

– OGTT 7.8 – 11 mmol/L = 140 – 199 mg/dL<br />

• The interventions<br />

– Metformin (originally $742/year, now $260/year)<br />

• Reduces FPG<br />

• Reduces LDL and TG<br />

• Retards weight gain<br />

– DPP Lifestyle ($1356 in 1 st year, then $672/year thereafter)<br />

• Reduces weight<br />

• Reduces FPG, BP, LDL, Total Cholesterol<br />

• Raises HDL<br />

– Add Lifestyle after diagnosis <strong>of</strong> diabetes<br />

• Outcomes<br />

– Progression to diabetes<br />

• FPG > 7 mmol/L (125 mg/dl) or OGTT > 11 mmol/L (199 mg/dl)<br />

– Myocardial infarction and stroke<br />

– End stage renal disease, retinopathy<br />

– Quality <strong>of</strong> life<br />

– Costs<br />

45


Net 30-year Cost<br />

(Discounted) to Health<br />

Plan<br />

DPP simulation revealed net<br />

cost <strong>of</strong> intervention<br />

Net Cost to Health Plan (Discounted) <strong>of</strong> two<br />

Programs, as Function <strong>of</strong> Annual Cost <strong>of</strong> Lifestyle<br />

Program<br />

5000<br />

4000<br />

3000<br />

2000<br />

DPP Lifestyle vs No<br />

Program<br />

DPP Lifestyle<br />

is cost neutral<br />

at $100/year<br />

Lifestyle after<br />

diabetes diagnosis<br />

is cost neutral at<br />

Lifestyle after FPG+125<br />

vs. No Program $240/year<br />

1000<br />

0<br />

-1000<br />

0 200 400 600<br />

46<br />

-2000<br />

Annual Cost <strong>of</strong> Lifestyle Program<br />

46


Cost/ QALY<br />

DPP simulation also enables Cost/QALY<br />

calculation over 30 years<br />

Cost/QALY <strong>of</strong> Three Comparisons as Function <strong>of</strong><br />

Cost <strong>of</strong> Lifestyle Program<br />

$250,000<br />

DPP Lifestyle vs. No Program<br />

$200,000<br />

$150,000<br />

Lifestyle after FPG=125 vs. No<br />

Program<br />

DPP Lifestyle vs. Lifestyle after<br />

FPG+125<br />

$100,000<br />

$50,000<br />

47<br />

$0<br />

-$50,000<br />

0 200 400 600<br />

Annual Cost <strong>of</strong> Lifestyle Program<br />

47


48<br />

A-L-L regimen saves more money<br />

$5,000<br />

Average annual cost per person<br />

$4,500<br />

$4,000<br />

$3,500<br />

Nothing<br />

HbA1c control<br />

ALL<br />

$3,000<br />

$2,500<br />

$2,000<br />

$1,500<br />

$1,000<br />

$500<br />

$0<br />

Cost


A-L-L: The savings begin immediately<br />

$6,000<br />

Annual cost per person<br />

$5,000<br />

$4,000<br />

$3,000<br />

$2,000<br />

$1,000<br />

$0<br />

Nothing<br />

ALL<br />

HbA1c<br />

0 5 10 15 20 25<br />

Years after start <strong>of</strong> program<br />

49


Summary <strong>of</strong> Dataset <strong>with</strong> Pre-Run<br />

Interventions<br />

• Community <strong>of</strong> 100,000k<br />

• 8 subpopulations<br />

• 20 intervention arms<br />

• 15 control arms<br />

• 20 time points for following outcomes<br />

– 12 biomarker outcomes<br />

– 51 health outcomes<br />

– 1 lifeyears outcome<br />

– 19 cost effectiveness outcomes<br />

– 83 differences, 83 ratios<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!