30.10.2014 Views

Analysis of Cartesian Stiffness And Compliance With ... - helix

Analysis of Cartesian Stiffness And Compliance With ... - helix

Analysis of Cartesian Stiffness And Compliance With ... - helix

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Analysis</strong> <strong>of</strong> <strong>Cartesian</strong> <strong>Stiffness</strong><br />

<strong>And</strong> <strong>Compliance</strong> <strong>With</strong> Applications<br />

by<br />

NAMIK CIBLAK<br />

George W. Woodruff School <strong>of</strong> Mechanical Engineering<br />

G e o r g i a I n s t i t u t e <strong>of</strong> T e c h n o l o g y<br />

May 1998


What is <strong>Stiffness</strong> and <strong>Compliance</strong> ?<br />

∆(configuration)<br />

<strong>Stiffness</strong><br />

∆(load)<br />

∆(load)<br />

<strong>Compliance</strong><br />

∆(configuration)<br />

1


Elastically Suspended Rigid Body Model<br />

P´<br />

loads<br />

rigid<br />

body<br />

P´<br />

loads<br />

elastic system<br />

elastic<br />

connection<br />

2


Robotic Examples<br />

Cooperating robots, assembly robots<br />

z<br />

x<br />

Insertion tasks<br />

Grasp problems:<br />

• stability<br />

• shifting contacts<br />

• object manipulation<br />

3


Why is <strong>Stiffness</strong> Important ?<br />

high<br />

stiffness<br />

→<br />

greater<br />

accuracy<br />

low<br />

stiffness<br />

→<br />

better interaction<br />

with environment<br />

4


Examples <strong>of</strong> High and Low <strong>Stiffness</strong> Devices<br />

Actuators<br />

Deformable<br />

beams<br />

RCC center<br />

Base<br />

Geometric center<br />

A generic Stewart Platform device.<br />

An example <strong>of</strong> high stiffness<br />

parallel mechanism. Good<br />

positional accuracy due to high<br />

stiffness.<br />

A Remote-Center-<strong>of</strong>-<strong>Compliance</strong><br />

(RCC) device. An example <strong>of</strong> a<br />

compliant parallel mechanism. Low<br />

stiffness facilitates insertion and<br />

assembly tasks.<br />

5


•<br />

P<br />

Screws: Twist<br />

v P<br />

: linear velocity : angular velocity<br />

•<br />

hω<br />

Q<br />

≡<br />

ω PQ<br />

v P<br />

ω<br />

•<br />

P<br />

ω<br />

• Q<br />

Chasle’s Theorem: The instantaneous velocity can be given as a<br />

rotation about a certain axis plus a translation parallel to the axis.<br />

T<br />

^<br />

P =<br />

v P<br />

ω<br />

6


Screws: Wrench<br />

f<br />

m P<br />

f<br />

•<br />

P<br />

PQ<br />

Q<br />

≡<br />

Poinsot’s Theorem: Any load on a body can be represented by a force along a<br />

certain axis plus a moment parallel to the axis.<br />

^<br />

W P<br />

=<br />

h f<br />

• Q<br />

•<br />

P<br />

f<br />

m P<br />

7


Screw Axis and Pitch<br />

ha<br />

h: pitch<br />

b P<br />

a<br />

a<br />

•<br />

P<br />

•<br />

screw axis<br />

On the screw axis,<br />

• displacements and velocities are similar to the kinematics <strong>of</strong> a simple screw.<br />

• loads are similar to the force and torque relation for a simple screw.<br />

8


n-Systems <strong>of</strong> Screws<br />

All screws in an n-system can be given as linear<br />

combinations <strong>of</strong> n basis elements.<br />

A 2-system<br />

9


Principal Screws & Center <strong>of</strong> 3-Systems<br />

There exists a special basis for 3-systems whose elements<br />

are called the principal screws (Ball).<br />

A 3-system<br />

10


Free-Vectors (Infinite Pitch Screws)<br />

Infinite pitch screw<br />

Pure translation<br />

Infinite pitch screw<br />

Pure moment<br />

11


Line-Vectors (Zero Pitch Screws)<br />

line <strong>of</strong> action<br />

ω<br />

ω<br />

zero pitch screw<br />

Pure rotation<br />

f<br />

f<br />

zero pitch screw<br />

Pure force<br />

12


Line-Vector Subspaces<br />

pencil<br />

bundle<br />

❂ Examples <strong>of</strong> bundles: Set <strong>of</strong> all rotations or forces through a point.<br />

❂ 3-D case is not unique. Every point in space generates a bundle.<br />

13


Spatial Cross Product<br />

Screw space admits a vector multiplication called the<br />

spatial cross product operation.<br />

^<br />

S 1<br />

a<br />

× 1<br />

S ^ a ×<br />

1<br />

2 = × =<br />

b 2<br />

b 1<br />

a 2<br />

b 1<br />

0<br />

× a 1 ×<br />

a 2<br />

b 2<br />

14


Definitions <strong>of</strong> <strong>Stiffness</strong> and <strong>Compliance</strong><br />

^<br />

δq : infinitesimal spatial displacement (twist).<br />

^<br />

dW: infinitesimal spatial force (wrench).<br />

stiffness<br />

^ ^ ^<br />

dW = K δq<br />

6x1 6x6 6x1<br />

compliance<br />

^ ^ ^<br />

dq = C δW<br />

6x1 6x6 6x1<br />

The 3x3 submatrices <strong>of</strong> stiffness and compliance<br />

^<br />

K =<br />

A<br />

B T<br />

B<br />

C<br />

^<br />

C =<br />

D<br />

E<br />

E T<br />

C<br />

15


Eigenvalue (EV) Problems<br />

❂ Complicated physical phenomena may be explained in terms that make sense<br />

to human mind.<br />

❂ Geometric and constitutive contents are separated.<br />

^ a<br />

K = λ<br />

b<br />

twist<br />

wrench<br />

a<br />

b<br />

twist<br />

not meaningful<br />

16


Free-Vector EV Problems (Lipkin and Patterson)<br />

^ f<br />

C =<br />

τ<br />

wrench<br />

a f<br />

f<br />

0<br />

parallel<br />

translation<br />

^ δ 0<br />

K = k γ<br />

γ γ<br />

twist<br />

parallel<br />

couple<br />

eigenwrench<br />

^<br />

W fi<br />

^<br />

T γi<br />

eigentwist<br />

parallel<br />

translation<br />

f i<br />

γ i<br />

parallel<br />

couple<br />

(Dimentberg’s problem)<br />

(Correct dualization)<br />

• There exist three eigentwists and three eigenwrenches.<br />

• Eigenvalues are the stationary values.<br />

17


Free-Vector Decompositions<br />

K^ =<br />

f<br />

τ<br />

k f<br />

0<br />

γ 0<br />

0<br />

k γ<br />

f<br />

τ<br />

0<br />

γ<br />

T<br />

a f<br />

f δ<br />

C^ =<br />

0 γ 0<br />

0<br />

a γ<br />

f δ<br />

0 γ<br />

T<br />

geometric<br />

constitutive<br />

geometric<br />

18


Center <strong>of</strong> Elasticity<br />

The centers <strong>of</strong> the eigentwist and eigenwrench 3-systems<br />

coincide (Lipkin and Patterson).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

19


Coplanar Perpendicular Vectors<br />

f 2<br />

f 3<br />

r f2<br />

E<br />

r f3<br />

E<br />

E<br />

r f1<br />

E<br />

f 1<br />

Lipkin and Patterson:<br />

Σ r E<br />

fi<br />

=<br />

Σ r E<br />

γ i<br />

=<br />

0<br />

20


Location <strong>of</strong> Center <strong>of</strong> Elasticity<br />

f i<br />

r fi<br />

E<br />

E<br />

r fi<br />

r E<br />

O<br />

r E<br />

= 1 Σ 2 r ( fi r E<br />

= 1 Σ 2 r ) γ i<br />

21


Centers <strong>of</strong> <strong>Stiffness</strong> <strong>And</strong> <strong>Compliance</strong><br />

Loncaric:<br />

B T = B<br />

B T ≠ B<br />

O<br />

S<br />

(Center <strong>of</strong> <strong>Stiffness</strong>)<br />

E T ≠ E<br />

C<br />

E T = E<br />

(Center <strong>of</strong> <strong>Compliance</strong>)<br />

^<br />

K =<br />

A<br />

B T<br />

B<br />

C<br />

^<br />

C =<br />

D<br />

E<br />

E T<br />

C<br />

22


Constitutive Character <strong>of</strong> the Centers <strong>of</strong><br />

<strong>Stiffness</strong> and <strong>Compliance</strong><br />

Σ k r S fi fi = 0<br />

Σk r C γ i γ i = 0<br />

23


Line-Vector EV Problems<br />

^ n<br />

C =<br />

m<br />

wrench<br />

a m<br />

0<br />

m<br />

parallel<br />

rotation<br />

^ t<br />

K =<br />

w<br />

twist<br />

t<br />

k t 0<br />

parallel<br />

force<br />

co-eigenwrench at G<br />

co-eigentwist at G<br />

force<br />

G<br />

couple<br />

at G<br />

parallel<br />

rotation<br />

at G<br />

parallel<br />

force<br />

at G<br />

rotation<br />

G<br />

translation<br />

at G<br />

• Every point G in space generates a distinct second EV problem.<br />

• There exist three co-eigentwists and three co-eigenwrenches for every G.<br />

24


Line-Vector Decompositions<br />

^<br />

K G =<br />

n<br />

m<br />

k m<br />

t<br />

0 0<br />

0<br />

k t<br />

n<br />

m<br />

t<br />

0<br />

T<br />

^<br />

C G =<br />

0<br />

m<br />

t a m 0 0<br />

w 0 a t m<br />

t<br />

w<br />

T<br />

geometric<br />

constitutive<br />

geometric<br />

Every generator G yields a distinct decomposition.<br />

25


Co-Center <strong>of</strong> Elasticity<br />

Symmetric A -1 B (E T F -1 ) ⇔ Center <strong>of</strong> Elasticity<br />

Symmetric C -1 B T (ED -1 ) ⇔ Co-center <strong>of</strong> Elasticity<br />

^<br />

K =<br />

A<br />

B T<br />

B<br />

C<br />

^<br />

C =<br />

D<br />

E<br />

E T<br />

C<br />

26


Co-Centers <strong>of</strong> Elasticity<br />

C a<br />

C b<br />

G b<br />

G d<br />

C c<br />

G a<br />

G c<br />

G e<br />

C e<br />

C d<br />

C=G ⇒ E c<br />

• There exists at least one co-center for every stiffness (compliance).<br />

• There may be more than one co-centers.<br />

27


Distribution <strong>of</strong> Co-centers<br />

General case<br />

E<br />

Special cases<br />

E<br />

28


Compliant Axes<br />

^<br />

W fi<br />

pure force<br />

^<br />

T γ i<br />

pure rotation<br />

h fi<br />

=0 h γi<br />

=0<br />

f i<br />

γ i<br />

parallel<br />

translation<br />

parallel<br />

couple<br />

29


Relations Between Centers<br />

^<br />

W fi<br />

^<br />

( T γi<br />

)<br />

^<br />

W fi<br />

^<br />

( T γi<br />

)<br />

E (E c )<br />

⇔<br />

S (C)<br />

S<br />

E<br />

E c<br />

C<br />

a compliant axis<br />

Two or three<br />

compliant axes exist<br />

⇒<br />

E<br />

E c<br />

C<br />

S<br />

30


Generalization <strong>of</strong> <strong>Compliance</strong> Axes<br />

G<br />

t<br />

f<br />

generalized<br />

force-translation<br />

axis<br />

⇔<br />

G<br />

γ<br />

m<br />

generalized<br />

rotation-couple<br />

axis<br />

G<br />

f<br />

i<br />

t<br />

i<br />

force-translation<br />

axis<br />

⇔<br />

G<br />

γ<br />

i<br />

m<br />

i<br />

rotation-couple<br />

axis<br />

31


A New Pair <strong>of</strong> Special Axes<br />

pure force<br />

(E*<br />

cW/B )<br />

h f = 0<br />

f<br />

force-rotation<br />

axis<br />

w<br />

pure rotation<br />

(E cT/A )<br />

h w = 0<br />

rotation-force<br />

axis<br />

32


Asymmetric <strong>Stiffness</strong>: Parallel Line-Springs<br />

Model:<br />

P<br />

W<br />

^<br />

P ’<br />

F’<br />

B’ i B’ n<br />

B’ 1<br />

s i<br />

l i<br />

, k i<br />

A 1<br />

A i A n<br />

O F<br />

F’<br />

F<br />

Finite displacements are considered.<br />

33


<strong>Stiffness</strong> Matrix <strong>of</strong> Line Springs<br />

^ ^ ^<br />

K = Σ<br />

T ^<br />

k i [ ρ i S i S i + (1-ρ i )M i ]<br />

ρ i = l 0i<br />

l i<br />

For all springs are unextended (ρ i = 1):<br />

^<br />

^ ^<br />

K = Σ k i S i S i<br />

T<br />

34


Skew-symmetric Property<br />

^ ^ 1 ^<br />

2<br />

K = K sym - W ×<br />

W^<br />

net<br />

external<br />

load<br />

35


Unloaded Equilibrium<br />

The stiffness matrix <strong>of</strong> parallel line springs is symmetric<br />

if and only if<br />

the system is in an unloaded equilibrium<br />

36


Model:<br />

Asymmetric <strong>Stiffness</strong>: Parallel Torsional Springs<br />

B’ 1<br />

s i<br />

F’ P’<br />

B’ i B’ n<br />

W<br />

^<br />

P’<br />

cylindrical<br />

joint<br />

torsional<br />

spring<br />

A 1 l i , k i ,<br />

A i<br />

A n<br />

F<br />

θ i<br />

Hook’s joint<br />

O<br />

• <strong>Stiffness</strong> matrix is determined in closed form.<br />

• Skew-symmetric part is not a simple function <strong>of</strong> the applied wrench.<br />

• Symmetry theorem does not apply.<br />

• If all springs are unextended then<br />

^<br />

^ ^<br />

K = Σ k i S i S i<br />

T<br />

37


Isotropic Vector Problem<br />

Eigenvalue<br />

problem<br />

<br />

<br />

λ<br />

<br />

Isotropic vector<br />

problem<br />

<br />

<br />

<br />

Au = w u T w = 0<br />

38


Orthonormal Basis <strong>of</strong> Isotropic Vectors<br />

U T AU =<br />

0 x x<br />

x 0 x<br />

x x 0<br />

...<br />

...<br />

...<br />

...<br />

...<br />

...<br />

A has a complete orthonormal set <strong>of</strong> isotropic vectors<br />

if and only if<br />

trace(A) = 0<br />

3D Example:<br />

c<br />

a<br />

a<br />

b b<br />

c<br />

shear stress<br />

σ 3<br />

σ 2<br />

σ 1<br />

normal<br />

stress<br />

Pure shear state for deviatoric stress case<br />

39


Synthesis <strong>of</strong> <strong>Stiffness</strong> by Springs<br />

^<br />

r = rank(K )<br />

^<br />

K = PP T<br />

synthesis by<br />

r springs<br />

find an orthonormal set <strong>of</strong> r<br />

isotropic vectors <strong>of</strong> P T ∆P<br />

A pos. def. rank r stiffness can be realized by r springs<br />

if and only if<br />

the <strong>of</strong>f-diagonals <strong>of</strong> the stiffness have zero trace<br />

40


Results for the Synthesis Problem<br />

❂ An algorithm is developed for synthesis by r springs.<br />

❂ A method is developed for synthesis by n > r springs.<br />

❂ Free-vector decomposition is applied. In general, 3 line and 3<br />

torsional springs result. (free-vector synthesis)<br />

❂ Line-vector decomposition is applied. In general, 6 line<br />

springs result. (line-vector synthesis)<br />

❂ Numerical results support the theory.<br />

41


Remote Center <strong>of</strong> <strong>Compliance</strong> (RCC) Device<br />

Deformable<br />

beams<br />

parallel<br />

translation<br />

parallel<br />

rotation<br />

RCC center<br />

contact<br />

force<br />

contact<br />

couple<br />

Geometric center<br />

Three compliant axis through RCC center. Combined centers case.<br />

42


Design Equations for RCC Device<br />

Earlier attempts at solving the RCC location and stiffness were not very<br />

successful due to approximations (Whitney and co-workers).<br />

Conical symmetry<br />

Using conical symmetry and centers, the location <strong>of</strong> RCC and stiffnesses<br />

are determined without approximations.<br />

25<br />

σ = 250<br />

projection<br />

ratio<br />

20<br />

15<br />

10<br />

5<br />

σ = 50<br />

0<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

cone angle<br />

43


Rotational Symmetry Devices<br />

E 3<br />

S 3 S 2<br />

connection<br />

Serial or parallel<br />

E 1<br />

E 2<br />

• The centers <strong>of</strong> elasticity, stiffness, compliance coalesce on the vertical axis.<br />

• A co-center coincides with the combined center.<br />

• Leads to generalized RCC definitions and classification.<br />

44


All possible RCC Devices<br />

<br />

→ ∞<br />

<br />

Conical RCC (parallel)<br />

Cylindrical RCC (parallel)<br />

Planar RCC (parallel)<br />

<br />

→ ∞<br />

<br />

Conical RCC (serial)<br />

Cylindrical RCC (serial)<br />

Planar RCC (serial)<br />

45


An RCC Construction Proposal<br />

Generalization <strong>of</strong> Loncaric’s proposal:<br />

RCC<br />

center<br />

A Theoretical Confirmation<br />

<br />

<br />

generator<br />

Exact stiffness is recovered by using<br />

infinitely many beams<br />

<br />

θ<br />

<br />

<br />

k axial =<br />

G r 4<br />

4 R 3<br />

46


<strong>Analysis</strong> <strong>of</strong> Spatial Mass <strong>of</strong> a Rigid Body<br />

For impact problems:<br />

^ ^ ^<br />

W = M A<br />

wrench<br />

mass<br />

matrix<br />

spatial<br />

acceleration<br />

(twist)<br />

^<br />

M =<br />

mI 0<br />

0 J<br />

6x6<br />

at center <strong>of</strong> mass<br />

• All the results <strong>of</strong> this study also applies to the mass matrix.<br />

• Mass matrix is analogous to stiffness matrix.<br />

• Center <strong>of</strong> mass is analogous to the combined centers case.<br />

47


Eigenscrew Structure at Center <strong>of</strong> Mass<br />

eigenwrench<br />

<br />

a pure force<br />

in any<br />

direction<br />

<br />

co-eigentwist<br />

at <br />

a pure<br />

translation<br />

in any<br />

direction<br />

eigentwist<br />

<br />

a pure rotation<br />

in a principal<br />

direction<br />

<strong>of</strong> inertia<br />

<br />

co-eigenwrench<br />

at <br />

a pure couple<br />

in a principal<br />

direction <strong>of</strong><br />

inertia<br />

48


Eigenscrew Structure away from Center <strong>of</strong> Mass<br />

<br />

pure<br />

rotation<br />

<br />

<br />

pure<br />

translation<br />

<br />

<br />

pure<br />

rotation<br />

<br />

<br />

pure<br />

rotation<br />

<br />

<br />

pure<br />

translation<br />

<br />

pure<br />

rotation<br />

principal inertia directions<br />

<br />

<br />

<br />

pure<br />

force<br />

<br />

<br />

<br />

pure<br />

couple<br />

<br />

pure<br />

forces<br />

<br />

pure<br />

force<br />

principal inertia directions<br />

49


Center <strong>of</strong> Percussion<br />

pure force<br />

through CP<br />

due to impact<br />

pure translation<br />

due to force<br />

through CM<br />

pure rotation<br />

due to couple<br />

at CM<br />

resulting<br />

pure rotation<br />

through CG<br />

center <strong>of</strong> grip<br />

center<br />

<strong>of</strong><br />

mass<br />

center <strong>of</strong><br />

percussion<br />

CP<br />

Pure force through the CP results in a pure rotation: a force-rotation axis<br />

50


Axes and Joints <strong>of</strong> Percussion<br />

pure<br />

force<br />

<br />

<br />

a zero pitch<br />

co-eigentwist<br />

direction<br />

pure<br />

rotation<br />

Similar procedure applies for the co-eigenwrench case<br />

51


A Better Design Possibility for Golf Clubs<br />

two revolute joints<br />

minimum sting<br />

for forces in the plane<br />

plane <strong>of</strong> double principal inertia<br />

52


Principal Contributions - Theory<br />

❂ Closed form equations for the elastic center location are found.<br />

❂ Physical and geometrical meanings <strong>of</strong> the centers <strong>of</strong> stiffness and<br />

compliance are explained.<br />

❂ Geometric relations between the centers are established using compliant<br />

axes.<br />

❂ A new set <strong>of</strong> eigenvalue problems for stiffness is proposed and solved.<br />

❂ New decompositions <strong>of</strong> stiffness and compliance are determined.<br />

❂ The free- and line-vector EV problems lead to generalized compliant axes<br />

and a better classification <strong>of</strong> stiffnesses.<br />

❂ Previously unknown special axes are predicted.<br />

❂ <strong>Stiffness</strong> matrices <strong>of</strong> line- and torsional spring systems are found in closed<br />

form. The asymmetry observed in other studies is explained.<br />

❂ The skew-symmetric part <strong>of</strong> line-spring stiffness is equal to minus onehalf<br />

the applied load in spatial cross-product form.<br />

53


Principal Contributions - Applications<br />

❂ The isotropic vector problem is proposed and solved. An algorithm is<br />

developed to construct orthonormal sets <strong>of</strong> isotropic vectors.<br />

❂ Using isotropic vectors, the stiffness synthesis by springs problem is fully<br />

solved.<br />

❂ Free-vector and line-vector decompositions are applied to the synthesis<br />

problem leading to minimum syntheses.<br />

❂ Design equations for RCC devices are determined.<br />

❂ Rotational symmetry devices are proposed as generalized RCCs. Design<br />

equations are found.<br />

❂ The theory <strong>of</strong> stiffness is applied to the spatial mass matrix. The eigenand<br />

co-eigenscrew structure is fully determined.<br />

❂ The mass matrix results explains and generalizes the concept <strong>of</strong><br />

percussion center.<br />

❂ Combining the stiffness and mass matrix results, the necessary and<br />

sufficient condition for special free-vibration modes are found.<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!