04.11.2014 Views

ESD - BiTS Workshop

ESD - BiTS Workshop

ESD - BiTS Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Burn-in & Test<br />

Socket <strong>Workshop</strong><br />

March 6-9, 2005<br />

Hilton Phoenix East / Mesa Hotel<br />

Mesa, Arizona<br />

ARCHIVE<br />

TM


Burn-in & Test Socket<br />

<strong>Workshop</strong><br />

TM<br />

COPYRIGHT NOTICE<br />

• The papers in this publication comprise the proceedings of the 2005<br />

<strong>BiTS</strong> <strong>Workshop</strong>. They reflect the authors’ opinions and are reproduced<br />

as presented , without change. Their inclusion in this publication does<br />

not constitute an endorsement by the <strong>BiTS</strong> <strong>Workshop</strong>, the sponsors,<br />

<strong>BiTS</strong> <strong>Workshop</strong> LLC, or the authors.<br />

• There is NO copyright protection claimed by this publication or the<br />

authors. However, each presentation is the work of the authors and<br />

their respective companies: as such, it is strongly suggested that any<br />

use reflect proper acknowledgement to the appropriate source. Any<br />

questions regarding the use of any materials presented should be<br />

directed to the author/s or their companies.<br />

• The <strong>BiTS</strong> logo and ‘Burn-in & Test Socket <strong>Workshop</strong>’ are trademarks<br />

of <strong>BiTS</strong> <strong>Workshop</strong> LLC.


tm<br />

Burn-in & Test<br />

Socket <strong>Workshop</strong><br />

Hot Topics Session<br />

Tuesday 3/08/05 3:30PM<br />

CONTROLLING <strong>ESD</strong><br />

Technical Program<br />

“Methods Of Preventing <strong>ESD</strong> In Module Testing”<br />

Zen Podpora – IBM Microelectronics<br />

Qifang (Michelle) Qiao – IBM Microelectronics Patrick Rafter – IBM Microelectronics<br />

“New <strong>ESD</strong> Control Polymers”<br />

Naomitsu Nishihata – Kureha Chemical Industry Co., Ltd.


METHODS OF<br />

PREVENTING <strong>ESD</strong> IN<br />

MODULE TESTING<br />

2005 Burn-in and Test Socket <strong>Workshop</strong><br />

Zen Podpora<br />

Michelle Qiao<br />

Patrick Rafter<br />

Contacting Systems Engineering<br />

IBM Microelectronics


Objectives<br />

• <strong>ESD</strong> overview<br />

• Impact of <strong>ESD</strong> on module test<br />

• Methods of <strong>ESD</strong> prevention<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

2


Agenda<br />

• What is static electricity<br />

• Causes of static charge buildup<br />

• Impact of <strong>ESD</strong> on product and test<br />

equipment<br />

• Conventional <strong>ESD</strong> prevention methods and<br />

their deficiencies<br />

• IBM <strong>ESD</strong> socket design<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

3


What is Static Electricity?<br />

• Simply electricity at rest<br />

– No current flowing<br />

• Surface phenomenon<br />

– Static charge is dependent on surface area<br />

• Coulomb's law; F = k (Q 1 X Q 2 ) / d 2<br />

– Electric force between charges at rest<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

4


Static Charge Buildup<br />

• Electric<br />

phenomenon in<br />

which intimate<br />

contact transfers<br />

charged particles<br />

from one body to<br />

another<br />

Rubbing two non conducting materials together<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

5


Static Charge Buildup<br />

• Only insulative materials build up static<br />

charge<br />

– Insulative material surface resistivity<br />

> 10 12 ohms / sq<br />

• Socket components comprise insulative<br />

materials<br />

– Static charge build up from module insertion into<br />

socket<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

6


Static Charge Buildup in Socket<br />

insulator<br />

Electrostatic charge build up during module insertion<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

7


Electrostatic Discharge [<strong>ESD</strong>]<br />

• Common <strong>ESD</strong><br />

events<br />

– Lightning<br />

– Walk across the rug<br />

and reach doorknob<br />

• Module test events<br />

– Charged operator<br />

reaching IC module<br />

– Charged socket<br />

discharging thru the<br />

tester<br />

Discharge of build up<br />

of static electricity<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

8


Common Causes of <strong>ESD</strong> Damage<br />

• Human Body Model (HBM) 99.9%<br />

– <strong>ESD</strong>S transportation<br />

– Air blow-off operations<br />

– IC handling equipment<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

9


Impact of <strong>ESD</strong><br />

• Electrostatic Discharge (<strong>ESD</strong>) destroys<br />

electronic hardware<br />

– Immediate failures - distractive damage<br />

• Direct-current resulting in junction burnout,<br />

shorts, dielectric breakdown, and metallization<br />

melt<br />

– Latent failures (field failures), days, weeks,<br />

months later<br />

• <strong>ESD</strong> creates problems which cost industry<br />

billions of dollars per year<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

10


Conventional <strong>ESD</strong> Prevention<br />

• Grounding<br />

– Personnel<br />

– Equipment<br />

• Ionization<br />

– Ionizing units neutralize charged particles<br />

• Use of resistive materials<br />

– Surface resistivity 10 6 10 9 ohms (carbon mix)<br />

• Humidity control<br />

– Relative humidity greater than 50% will minimize<br />

<strong>ESD</strong> problems<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

11


Problems with Conventional <strong>ESD</strong><br />

Prevention<br />

• Resistive materials<br />

• Non uniform carbon distribution (hot pockets)<br />

• Leakage currents<br />

• Humidity control<br />

• Condensation problem at low temp test<br />

• Grounding<br />

• Operators bypass <strong>ESD</strong> procedures<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

12


IBM <strong>ESD</strong> Socket<br />

conductor<br />

insulator<br />

No static charge buildup at module insertion<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

13


IBM <strong>ESD</strong> Socket<br />

• Alignment plate frame<br />

– Made from<br />

conductive material<br />

[< 10 4 ohms/sq]<br />

– Will not store electric<br />

charge<br />

• Alignment plate grid<br />

– Made from insulative<br />

material<br />

[> 10 12 ohms/sq]<br />

– Will not cause<br />

leakage currents<br />

conductor<br />

insulator<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

14


<strong>ESD</strong> Facts<br />

• CMOS chips damage as little as 50V<br />

• If you feel a ‘shock’ at least 3kV<br />

• Walking across a carpet 1.5kV to 35kV<br />

• Brushing your hair 1.2kV to 27kV<br />

• Not getting ZAPPED priceless<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

15


Reference Materials<br />

• Basics of Static Electricity by Ron Kurtus (revised 28 August 2004<br />

– www.school-for-champions.com<br />

• The Most Common Causes Of <strong>ESD</strong> Damage by Roger J.<br />

Peirce, <strong>ESD</strong> Technical Services<br />

– http://www.evaluationengineering.com/default.asp<br />

• WHAT IS STATIC ELECTRICITY? by SCIENCE MADE SIMPLE<br />

– http://www.sciencemadesimple.com/index.html<br />

• What is <strong>ESD</strong> ? By Research Machines plc<br />

– http://www.rm.com/<br />

• <strong>ESD</strong> Is Shocking Experience for Electronics by Ron Brewer,<br />

Instrument Specialties, P.O. Box 650, Delaware Water Gap, PA 18327, (570) 424-8510.<br />

BITS 2005<br />

Methods of preventing <strong>ESD</strong> in<br />

module testing.<br />

16


New <strong>ESD</strong> Control Polymers<br />

Naomitsu Nishihata<br />

Kureha Chemical Industry Co., Ltd.<br />

Burn-in & Test<br />

Socket <strong>Workshop</strong><br />

TM<br />

2005 Burn-in and Test Socket <strong>Workshop</strong><br />

March 6 - 9, 2005


Agenda<br />

• What is <strong>ESD</strong><br />

• Material for socket<br />

• Technology review<br />

• New technology<br />

• Sample preparation<br />

• Characterization<br />

• Conclusion<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

2


What is <strong>ESD</strong><br />

An <strong>ESD</strong> occurrence requires all three events:<br />

•Charge generation<br />

•Charge accumulation<br />

•Rapid discharge<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

3


What is <strong>ESD</strong><br />

•Human Body Model: Discharged from<br />

operators<br />

•Charged Device Model: Device charged up<br />

and pins contact ground.<br />

•Machine Model: Discharge from machine<br />

members<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

4


Material for socket<br />

• Temperature considerations<br />

– Test: -55 o C to 150 o C?<br />

• Machinability<br />

• Leakage current threshold<br />

• <strong>ESD</strong> control properties<br />

10 6 -10 11 ohms/sq.<br />

Strictly controlled resistance<br />

• Cleanliness<br />

Low out-gassing<br />

Low metal contamination<br />

• Wear properties<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

5


Technology review of materials<br />

Conventional Materials<br />

• Carbon material-filled compound<br />

• Metal filled-compound<br />

• Antistatic agent added polymer<br />

• Antistatic polymer blend<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

6


Technology review of materials<br />

Technology<br />

<strong>ESD</strong> control<br />

Cleanliness<br />

Heat and<br />

properties<br />

chemical<br />

resistance<br />

Carbon<br />

Unstable<br />

Good<br />

Good<br />

Metal<br />

Unstable<br />

Limited use<br />

Good<br />

Antistatic agent<br />

Limited use<br />

Poor<br />

Poor<br />

Antistatic<br />

Limited use<br />

Limited use<br />

Poor<br />

polymer blend<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

7


New Technology<br />

• Combine a special carbon material having<br />

moderately conductive resistance with a<br />

polymer.<br />

• Optimize production process<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

8


Raw Materials<br />

Sample preparation<br />

• Polyetheretherketone resin (PEEK)<br />

• Special carbon with resistivity of 10 7 10 8 and 10 9<br />

ohms/sq.<br />

• PAN-based carbon fiber<br />

Procedure<br />

• Raw material blend<br />

• Extrusion<br />

• Injection molding<br />

• Characterization<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

9


Characterization<br />

• Resistance vs carbon content<br />

• Resistance fluctuation<br />

• Resistance change against applied voltage<br />

• Resistance of inner layer<br />

• Static decay time vs resistance<br />

• Residual peak voltage vs resistance<br />

• Peak current analysis on <strong>ESD</strong><br />

• Leak current analysis of a socket<br />

• Other properties<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

10


Surface resistance (ohms)<br />

Resistance of Composites<br />

1.E+14<br />

1.E+12<br />

1.E+10<br />

PEEK/Special Carbon<br />

1.E+08<br />

1.E+06<br />

1.E+04<br />

1.E+02<br />

PEEK/CF<br />

1.E+00<br />

10 15 20 25 30 35 40<br />

11/12/2002<br />

Carbon content (%)<br />

<strong>BiTS</strong> 2005<br />

11


Resistivity Fluctuation<br />

Diameter of guide electrode : 9mm<br />

Applied voltage : 10V, 100V, 500V<br />

GATE<br />

Current measure part<br />

electrode<br />

electrode<br />

64mm<br />

1 2 3<br />

4 5 6<br />

7 8 9<br />

100mm<br />

3mm<br />

<strong>ESD</strong>-STM11.11<br />

9 mm<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

Small type<br />

12


Resistivity Fluctuation<br />

Surface resistance (ohms)<br />

1.E+13<br />

1.E+11<br />

1.E+09<br />

1.E+07<br />

1.E+05<br />

11/12/2002<br />

Applied voltage: 100V<br />

PEEK/Special Carbon<br />

PEEK/CF<br />

1 2 3 4 5 6 7 8 9<br />

Position<br />

<strong>BiTS</strong> 2005<br />

13


Resistivity vs Voltage<br />

1.E+15<br />

Surface resistance (ohms)<br />

11/12/2002<br />

1.E+13<br />

1.E+11<br />

1.E+09<br />

1.E+07<br />

1.E+05<br />

PEEK/CF<br />

PEEK/Special Carbon<br />

1 10 100 1000<br />

Applied voltage (V)<br />

<strong>BiTS</strong> 2005<br />

14


Surface resistance (ohms)<br />

11/12/2002<br />

Resistivity of Inner Layer<br />

1.E+10<br />

1.E+08<br />

PEEK/Special Carbon<br />

1.E+06<br />

1.E+04<br />

PEEK/CF<br />

1.E+02<br />

1.E+00<br />

0 0.5 1 1.5<br />

Machined amount (mm)<br />

15<br />

<strong>BiTS</strong> 2005


Static decay time<br />

1000V electric source + monitor<br />

clip<br />

ground +<br />

sample<br />

SDT measurement using Charged Plate Monitor<br />

Static decay time<br />

•The static decay time from 1000V to 5V was measured<br />

using charged-plate monitor.<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

16


Resistance vs Voltage<br />

Static Decay Time(ms)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

1000V to 10V<br />

11/12/2002<br />

0<br />

1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13<br />

Surface resistance (ohms)<br />

<strong>BiTS</strong> 2005<br />

17


Hot spot voltage test<br />

+<br />

Surface electrometer<br />

sample<br />

Hot spot voltage<br />

Charged Plate Monitor<br />

• To search insulative spots on the surface<br />

• To evaluate homogeneity by measuring residual<br />

voltage after discharging.<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

18


Hot spot voltage<br />

Residual peak voltage (V)<br />

800<br />

600<br />

400<br />

200<br />

PEEK/CF<br />

PEEK/Special Carbon<br />

11/12/2002<br />

0<br />

1.E+05 1.E+07 1.E+09 1.E+11 1.E+13<br />

Surface resistance (ohms)<br />

<strong>BiTS</strong> 2005<br />

19


Peak current analysis<br />

Oscilloscope<br />

Power supply<br />

1000V<br />

sample<br />

+<br />

Charged Plate Monitor<br />

•Generated current on <strong>ESD</strong> provides a serious damage to<br />

devices.<br />

•Magnitude of peak current on <strong>ESD</strong> is estimated by<br />

monitoring wave form during discharging.<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

20


Peak current analysis<br />

Peak current (mA)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1.E+02 1.E+04 1.E+06 1.E+08 1.E+10<br />

11/12/2002<br />

Surface resistance (ohms)<br />

<strong>BiTS</strong> 2005<br />

21


Leak current analysis<br />

pA<br />

Hi Resistance Meter 4439B<br />

5V<br />

Pin-Probe<br />

Specimen<br />

Insulator<br />

Column number<br />

11/12/2002<br />

3<br />

2<br />

1 2 3<br />

Row number<br />

Schematic of Current analysis<br />

<strong>BiTS</strong> 2005<br />

0.56mm Measurement point<br />

0.8mm<br />

22


Leak current analysis<br />

Leak current(nA)<br />

10<br />

1<br />

0.1<br />

0.01<br />

△ △<br />

× × × ×<br />

△ × △<br />

△<br />

×<br />

△<br />

× × △ ×<br />

×<br />

1 st row<br />

× 10 th row<br />

△ 20 th row<br />

×<br />

△ △ △ △<br />

△<br />

× △<br />

×<br />

△<br />

×<br />

△<br />

×<br />

0.001<br />

1 5 10 15 20 25 30<br />

Column number<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

23


Other properties<br />

Properties<br />

Units<br />

EKH-<br />

EKH-<br />

EKH-<br />

SS07<br />

SS09<br />

SS11<br />

Specific gravity<br />

-<br />

1.33<br />

1.31<br />

1.31<br />

Tensile strength<br />

Mpa<br />

140<br />

135<br />

110<br />

Rockwell hardness<br />

M<br />

scale<br />

125<br />

125<br />

125<br />

Heat deflection temperature<br />

1.82MPa<br />

ºC<br />

305<br />

305<br />

280<br />

Coefficient of linear thermal<br />

expansion 30ºC-140ºC<br />

-<br />

1.5<br />

1.5<br />

1.5<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

24


Other properties<br />

Properties<br />

Units<br />

EKH-<br />

EKH-<br />

EKH-<br />

SS07<br />

SS09<br />

SS11<br />

Continuous service<br />

temperature<br />

ºC<br />

260<br />

260<br />

260<br />

Dielectric strength<br />

kV/mm<br />

-<br />

2<br />

5<br />

Dielectric constant 1MHz<br />

-<br />

7.9<br />

6.6<br />

5.3<br />

Dielectric loss tangent 1MHz<br />

0.22<br />

0.21<br />

0.17<br />

Surface resistance<br />

ohms<br />

10 6-7<br />

10 7-9<br />

10 9-11<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

25


Conclusion<br />

• The <strong>ESD</strong> control materials having the surface resistivity<br />

at specific levels within a range of 10 6 to 10 11 ohms<br />

were obtained by using the technology.<br />

• The surface resistance fluctuation was very small and<br />

the surface resistance change against applied voltage<br />

was small.<br />

• The suitable surface resistance range of <strong>ESD</strong><br />

protection for socket was estimated in the range of 10 8<br />

to 10 11 ohms from various <strong>ESD</strong> characterization.<br />

11/12/2002<br />

<strong>BiTS</strong> 2005<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!