02.01.2015 Views

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong><br />

<strong>Socket</strong> <strong>Workshop</strong><br />

IEEE<br />

March 3-6 , 2002<br />

Hilton Phoenix East/Mesa Hotel<br />

Mesa, Arizona<br />

IEEE<br />

COMPUTER<br />

SOCIETY<br />

Sponsored By The IEEE Computer Society<br />

<strong>Test</strong> Technology Technical Council


COPYRIGHT NOTICE<br />

• The papers <strong>in</strong> this publication comprise the proceed<strong>in</strong>gs of the 2002<br />

<strong>BiTS</strong> <strong>Workshop</strong>. They reflect the authors’ op<strong>in</strong>ions and are reproduced as<br />

presented , without change. Their <strong>in</strong>clusion <strong>in</strong> this publication does not<br />

constitute an endorsement by the <strong>BiTS</strong> <strong>Workshop</strong>, the sponsors, or the<br />

Institute of Electrical and Electronic Eng<strong>in</strong>eers, Inc.<br />

· There is NO copyright protection claimed by this publication. However,<br />

each presentation is the work of the authors and their respective<br />

companies: as such, proper acknowledgement should be made to the<br />

appropriate source. Any questions regard<strong>in</strong>g the use of any materials<br />

presented should be directed to the author/s or their companies.


<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

Technical Program<br />

Session 2<br />

Monday 3/04/02 10:30AM<br />

Manag<strong>in</strong>g High Frequency Requirements<br />

“Optimiz<strong>in</strong>g Load Board Design And Model<strong>in</strong>g For High Frequency<br />

Contactors”<br />

Jeff Sherry - Johnstech International Corporation<br />

“The New YieldPro Array Series Contactor”<br />

Julius Botka - Agilent Technologies<br />

“Electrical And Mechanical Performance Characterization Of High Frequency<br />

<strong>Test</strong> <strong>Socket</strong>s”<br />

Lisa Steckley - IBM Microelectronics<br />

Dr. Hanyi D<strong>in</strong>g - IBM Microelectronics


Optimiz<strong>in</strong>g Load Board<br />

Design and Model<strong>in</strong>g<br />

for<br />

High Frequency<br />

Contactors<br />

Jeff Sherry, RF Eng<strong>in</strong>eer<br />

Johnstech International<br />

1


Discussion Topics<br />

▼ Model<strong>in</strong>g & its importance<br />

▼ Design<strong>in</strong>g load boards for optimal<br />

performance<br />

▼ Load board effects<br />

▼ Ground<strong>in</strong>g schemes<br />

▼ Crosstalk improvements<br />

▼ Load board pad size and placement<br />

▼ Model validation & performance examples<br />

2


Model<strong>in</strong>g & Its Importance<br />

▼ Determ<strong>in</strong>e potential problems before<br />

build<strong>in</strong>g hardware<br />

▼ Determ<strong>in</strong>e expected performance<br />

▼ Determ<strong>in</strong>e trends and sensitivity of circuits<br />

▼ Determ<strong>in</strong>e effects of tolerances<br />

▼ Determ<strong>in</strong>e <strong>in</strong>teraction between components<br />

<strong>in</strong> system (device, contactor, handler, etc.)<br />

▼ Design for the device, form, fit, and<br />

function of the end application<br />

3


Design<strong>in</strong>g Load Boards for<br />

Optimal Performance<br />

Microstrip and Coplanar Effects<br />

▼ Substrate thickness ↓ Impedance ↓<br />

▼ Trace width ↓ Impedance ↑<br />

▼ Permittivity (ε<br />

(ε r ) ↓ Impedance ↑<br />

▼ Trace thickness ↓ Impedance ↑<br />

Coplanar Waveguide Effects<br />

▼ Spac<strong>in</strong>g (pitch) ↓ Impedance ↓<br />

▼ Add<strong>in</strong>g ground plane Impedance ↓<br />

4


Load Board Effects<br />

▼ Loss tangent affects <strong>in</strong>sertion loss more at higher<br />

frequencies<br />

▼ Uniformity of ε r and loss tangent vs. frequency<br />

▼ Substrate thickness affects <strong>in</strong>ductance to ground<br />

▼ Increased frequency means th<strong>in</strong>ner substrates<br />

▼ Substrate thickness and dielectric constant (ε r ),<br />

along with l<strong>in</strong>e width, are major parameters <strong>in</strong><br />

controll<strong>in</strong>g impedance<br />

▼ Plat<strong>in</strong>g thickness has the biggest effect on load<br />

board life<br />

5


Load Board Effects<br />

▼ Th<strong>in</strong>gs to improve load board design<br />

▼ Elim<strong>in</strong>ate right angles<br />

▼ Elim<strong>in</strong>ate changes <strong>in</strong> l<strong>in</strong>e width<br />

▼ Separate high frequency traces with ground<br />

▼ Move clock traces away from other signal<br />

l<strong>in</strong>es<br />

▼ Place decoupl<strong>in</strong>g components close to the<br />

device<br />

▼ Use matched impedance traces up to the<br />

device or test contactor<br />

6


Ground<strong>in</strong>g Schemes<br />

▼ Length and area of the ground path is very<br />

important<br />

▼ Ground <strong>in</strong>ductance should be m<strong>in</strong>imized<br />

▼ Resistance of ground should be low (to<br />

m<strong>in</strong>imize power supply voltage drop)<br />

▼ Ground<strong>in</strong>g controls crosstalk between signals<br />

7


Crosstalk Improvements<br />

▼ Increase the spac<strong>in</strong>g (S) between traces<br />

▼ M<strong>in</strong>imize substrate height (H) while achiev<strong>in</strong>g<br />

matched impedance<br />

▼ Route signals orthogonally between layers<br />

▼ M<strong>in</strong>imize parallel run<br />

lengths between signals<br />

▼ Use differential rout<strong>in</strong>g<br />

for clock or critical nets<br />

8


Load Board Pad Size and<br />

Placement<br />

9


Load Board Pad Size and<br />

Placement<br />

10


Model Validation &<br />

Performance Examples<br />

▼ Validat<strong>in</strong>g the Model<br />

▼ Expla<strong>in</strong> test results<br />

▼ Confirm if contactor will meet customer needs<br />

▼ Identify improvements to contactor<br />

▼ Identify improvements to load board (i.e. pad<br />

sizes)<br />

▼ Determ<strong>in</strong>e equivalent circuits<br />

▼ Investigate changes to contactors to meet<br />

customer specific needs<br />

11


Return Loss (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

Model Validation &<br />

Performance Examples<br />

Leaded Series Return Loss (S 11 ) Data<br />

Measured <strong>Test</strong> Data Taken by Giga<strong>Test</strong> Labs for<br />

.010" Thick Contact<br />

Equivalent Circuit Modeled Data for .010" Thick<br />

Contact<br />

Optimum Load Board Layout Match Us<strong>in</strong>g HFSS<br />

-20 dB Po<strong>in</strong>t 10.6 GHz from Measured Data<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

12


0<br />

-0.25<br />

Model Validation &<br />

Performance Examples<br />

Leaded Series Insertion Loss (S 21 ) Data<br />

Insertion Loss (dB)<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

-1.5<br />

Measured <strong>Test</strong> Data Taken by Giga<strong>Test</strong> Labs for<br />

.010" Thick Contact<br />

Equivalent Circuit Modeled Data for .010" Thick<br />

Contact<br />

Optimum Load Board Layout Match Us<strong>in</strong>g HFSS<br />

-1.75<br />

-2<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

13


Model Validation &<br />

Performance Examples<br />

10GBit/s BGA Non-Optimized Load Board Layout<br />

14


Model Validation &<br />

Performance Examples<br />

10GBit/s BGA Optimized Load Board Layout<br />

15


Model Validation &<br />

Performance Examples<br />

10GBit/s BGA With Non-Optimized Load Board<br />

Layout<br />

16


Model Validation &<br />

Performance Examples<br />

10GBit/s BGA With Optimized Load Board Layout<br />

17


Return Loss (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

Model Validation &<br />

Performance Examples<br />

Return Loss (S 11 ) of Enhanced Pad Series Contact with<br />

Previous Standard Pad and Optimal Load Board Pad<br />

Previously Standard Pad with Optimum Contact<br />

Optimum Load Board Pad and Contact<br />

-35<br />

-40<br />

1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

18


Model Validation &<br />

Performance Examples<br />

Insertion Loss (S 21 ) of Enhanced Pad Series Contact With<br />

Previous Standard Pad and Optimum Load Board Pad<br />

0<br />

-0.1<br />

-0.2<br />

Insertion Loss (dB)<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

-0.7<br />

-0.8<br />

-0.9<br />

-1<br />

Previously Standard Pad with Optimum Contact<br />

Optimum Load Board Pad and Contact<br />

All data modeled <strong>in</strong> HFSS<br />

-1 dB po<strong>in</strong>t @ 20+ GHz<br />

1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

19


Conclusion<br />

▼ Model<strong>in</strong>g trends can determ<strong>in</strong>e how to<br />

improve load board layout<br />

▼ Load board layout can greatly affect test data<br />

▼ Good microwave design pr<strong>in</strong>ciples apply to<br />

load board design<br />

▼ Model<strong>in</strong>g and test data have shown that<br />

significant improvement can be atta<strong>in</strong>ed by<br />

better match<strong>in</strong>g load board and contactor<br />

impedance to the Device Under <strong>Test</strong> (DUT)<br />

▼ Ball Series contributions from Quake<br />

Technologies <strong>in</strong>dicated with the Quake logo<br />

20


The New YieldPro Array Series Contactor<br />

Patent USP# 6,299,459<br />

Julius Botka, Master Scientist<br />

julius_botka@agilent.com


Brief History<br />

• Semiconductor manufacturers and<br />

test houses are required to test<br />

devices with multiple functions<br />

• Packages vary <strong>in</strong> type, size and pitch<br />

• Contactors provide the f<strong>in</strong>al crucial<br />

l<strong>in</strong>k to testers<br />

• First YieldPro contactor patented <strong>in</strong><br />

1997<br />

• Lowest parasitics with<br />

<strong>in</strong>dependently<br />

compliant wip<strong>in</strong>g contacts<br />

Frame and<br />

Slider<br />

mounted on<br />

elastomer<br />

Frame with<br />

slider<br />

<strong>in</strong>serted<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

• Path length is 0.037”,<br />

performance up to 18GHz<br />

Simple<br />

SOIC-8<br />

Hous<strong>in</strong>g<br />

Page 2


Orig<strong>in</strong>al YieldPro Contactor for Leaded<br />

Components<br />

Patent USP# 5,609,489<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 3


Today’s evolution of the<br />

bus<strong>in</strong>ess:<br />

• Size and pitch keep gett<strong>in</strong>g smaller, number of<br />

contacts <strong>in</strong>creas<strong>in</strong>g<br />

• Move from leaded to leadless BGA/LCC packages (Ball<br />

Grid Array and Leadless Chip Carrier)<br />

Leaded YieldPro Contactor<br />

YieldPro Array Contactor<br />

USP#6,299,459<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 4


The New YieldPro Array Contactor<br />

• A new solution is needed for<br />

contact<strong>in</strong>g new chip scale<br />

packages, such as BGA and<br />

LCC<br />

• Agilent’s new YieldPro Array<br />

design addresses<br />

technologies, Bluetooth®,<br />

Wireless LAN and high<br />

speed digital components<br />

• All are head<strong>in</strong>g toward<br />

higher frequencies and<br />

require good performance <strong>in</strong><br />

high speed digital, and at the<br />

3rd harmonic of the RF<br />

fundamental<br />

Patent USP# 6,299,459<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 5


Design Considerations<br />

Problem:<br />

Lack of reliable/repeatable contact between tester and<br />

component to be tested<br />

Solution:<br />

Slider<br />

• Two parallel contact<br />

paths from solder<br />

ball/contact pad to DUT<br />

board<br />

• Contacts do not wear the<br />

DUT board<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 6


Problem:<br />

Unwanted and unmanageable <strong>in</strong>ductive or capacitance<br />

parasitics<br />

Solution:<br />

• Parasitic <strong>in</strong>ductance<br />

and capacitance are<br />

reduced by<br />

controll<strong>in</strong>g<br />

impedance to be<br />

closer to 50Ω<br />

• Parasitics are further<br />

reduced by<br />

m<strong>in</strong>imiz<strong>in</strong>g height of<br />

the contactor<br />

• If <strong>in</strong>creased<br />

impedance is<br />

required, adjacent<br />

ground contacts can<br />

be removed<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

CSP<br />

SLIDER<br />

BGA<br />

SLIDER<br />

Page 7


Problem:<br />

Excessive and<br />

undef<strong>in</strong>ed contact<br />

resistance sensitive to<br />

contam<strong>in</strong>ants<br />

Top View<br />

Contact at one<br />

po<strong>in</strong>t/l<strong>in</strong>e only or<br />

through the spr<strong>in</strong>g<br />

*<br />

Breakaway<br />

Side View<br />

Initial Agilent Design<br />

Consideration<br />

Solution:<br />

• Resistance is lowered by<br />

hav<strong>in</strong>g two parallel<br />

contact paths<br />

• The slider can follow the<br />

ball, always ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

two contacts to pad or<br />

the sides of the ball<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 8


Problem:<br />

No wip<strong>in</strong>g contact to ball/pad<br />

Solution:<br />

• Slider wipes the sides of<br />

the ball, while barbs<br />

pierce through the oxide<br />

layer without goug<strong>in</strong>g<br />

either the ball or the pad<br />

• CSP Head contacts flex<br />

and wipe contact pad<br />

toward each other<br />

Flexible<br />

heads<br />

provide<br />

wip<strong>in</strong>g<br />

action<br />

Slider wipes the<br />

sides of the ball,<br />

barbs pierce the<br />

oxide layer<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 9


Problem:<br />

Damage to the bottom of the solder ball/pad due to<br />

direct hit and excessive pressure from contact<br />

Solution:<br />

• No sharp po<strong>in</strong>ts<br />

associated with the top<br />

of the contact.<br />

Therefore, no goug<strong>in</strong>g<br />

or re-shap<strong>in</strong>g can<br />

occur. The ball/pad is<br />

not damaged by the<br />

YieldPro Array<br />

contactor.<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 10


Problem:<br />

Given there is always contam<strong>in</strong>ation <strong>in</strong> a test operation,<br />

it becomes very difficult to clean the contactor due to<br />

narrow open spaces on the top surface where<br />

contam<strong>in</strong>ation can lodge<br />

Solution:<br />

• Hous<strong>in</strong>g designed for easy<br />

removal of contam<strong>in</strong>ates<br />

us<strong>in</strong>g low pressure<br />

compressed air<br />

• Complete contactor can be<br />

thoroughly cleaned<br />

ultrasonically<br />

Large gaps<br />

<strong>in</strong> between<br />

contacts<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 11


Problem:<br />

After 100,000 plunges, excessive wear requires costly and<br />

frustrat<strong>in</strong>g contactor component ma<strong>in</strong>tenance or replacement<br />

Solution:<br />

• New design<br />

supports<br />

operation without<br />

replacement of<br />

parts through<br />

hundreds of<br />

thousands of<br />

cycles<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

LCC Contact<br />

One of two wipe and<br />

pierce contacts to ball<br />

Slider<br />

Elastomer<br />

Solder ball on bottom of<br />

DUT (Device under <strong>Test</strong>)<br />

Frame<br />

One of two contact<br />

l<strong>in</strong>es to PC Board<br />

pad<br />

Torlon<br />

Hous<strong>in</strong>g<br />

One of two<br />

wip<strong>in</strong>g<br />

contact<br />

<strong>in</strong>teractions<br />

of frame and<br />

slider<br />

Page 12


Problem:<br />

Life of some contactors is limited to a few tens of<br />

thousands plunges, offsett<strong>in</strong>g the <strong>in</strong>itial lower price<br />

Solution:<br />

• Typical life of a new<br />

YieldPro Array<br />

contactor is well over<br />

a million cycles<br />

• Contacts can be<br />

easily replaced on<br />

site<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 13


Problem:<br />

Plat<strong>in</strong>g will wear away, oxidation may occur<br />

Solution:<br />

• Metal contact<br />

components of the<br />

YieldPro Array<br />

contactors are made<br />

of solid precious and<br />

semi-precious metals<br />

• No <strong>in</strong>crease <strong>in</strong> contact<br />

resistance with wear<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 14


Problem:<br />

Part handler alignment is difficult.<br />

Solution:<br />

• Generous <strong>in</strong>dividual<br />

<strong>in</strong>dependent contact<br />

compliance, up to<br />

0.011”<br />

• With the contactor<br />

attached to the DUT<br />

board, there is no<br />

force between the<br />

bottom of the<br />

hous<strong>in</strong>g and the<br />

DUT board. This<br />

elim<strong>in</strong>ates hous<strong>in</strong>g<br />

distortion over time<br />

CSP<br />

SLIDER<br />

• Sliders shown <strong>in</strong> fully compressed<br />

position<br />

BGA SLIDER<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 15


Problem:<br />

Usability issues revolv<strong>in</strong>g<br />

around scaled down versions of<br />

large designs, first developed<br />

for lower frequency applications<br />

Solution:<br />

Initial Agilent design<br />

consideration<br />

Scaled down spr<strong>in</strong>g<br />

uncoils with use, and can<br />

split the hous<strong>in</strong>g sleeve<br />

reta<strong>in</strong><strong>in</strong>g contam<strong>in</strong>ants<br />

and los<strong>in</strong>g compliance<br />

• The YieldPro Array design<br />

concept is not subject to<br />

problems associated with<br />

scaled down designs<br />

• Performs at high RF and<br />

microwave frequencies <strong>in</strong><br />

demand<strong>in</strong>g applications<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 16


Fixture for Contactor Evaluation<br />

The two oppos<strong>in</strong>g<br />

coplanar waveguide l<strong>in</strong>es<br />

overlap for the length of<br />

the contacts<br />

0.275” wide and 0.010”<br />

thick alum<strong>in</strong>a coplanar<br />

waveguide l<strong>in</strong>e with<br />

0.015” air gap under the<br />

mid 0.230” of width<br />

FR4 support<br />

board<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 17


Coplanar waveguide substrate with gated short at contactor plane.<br />

Measurement yields 2 x loss and dispersion. (Shift phase 180° before sav<strong>in</strong>g)<br />

Frequency<br />

Doma<strong>in</strong><br />

data<br />

Time<br />

Doma<strong>in</strong><br />

data<br />

Gate<br />

Markers<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 18


Fixture S-parameters measured<br />

MARKER 1<br />

3 GHz<br />

MARKER 2<br />

6 GHz<br />

MARKER 3<br />

12 GHz<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 19


Fixture time doma<strong>in</strong> is computed from S-Parameters<br />

Hous<strong>in</strong>g and contacts gated<br />

Gate<br />

Markers<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 20


S-Parameter of fixture with gates “on”<br />

MARKER 3<br />

(Return Loss)<br />

MARKER 1<br />

3 GHz<br />

MARKER 2<br />

6 GHz<br />

MARKER 3<br />

12 GHz<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 21


S 11 Gated, coplanar substrate electrical length is<br />

removed with port extension, no loss or dispersion<br />

correction<br />

Port Extension = 348 ps, 104.33 mm, 125.196 degrees<br />

S(1,1)<br />

m3<br />

m2<br />

m1<br />

m1<br />

freq=1.000GHz<br />

S(1,1)=0.041 / -102.526<br />

impedance = Z0 * (0.979 - j0.079)<br />

m2<br />

freq=3.090GHz<br />

S(1,1)=0.110 / -115.386<br />

impedance = Z0 * (0.893 - j0.180)<br />

m3<br />

freq=11.67GHz<br />

S(1,1)=0.073 / -166.014<br />

impedance = Z0 * (0.868 - j0.031)<br />

Scale = 0.25<br />

freq (1.000GHz to 12.00GHz)<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 22


S 11 gated of contacts and hous<strong>in</strong>g with 2x loss and<br />

dispersion removed by vectorially divid<strong>in</strong>g measured<br />

and gated S 11 by<br />

stored data from Page 18, thereby correct<strong>in</strong>g for loss<br />

and dispersion<br />

Data_m<strong>in</strong>us_loss<br />

m1<br />

m3<br />

m2<br />

m1<br />

freq=1.000GHz<br />

Data_m<strong>in</strong>us_loss=0.044 / -98.862<br />

impedance = Z0 *(0.983 - j0.085)<br />

m2<br />

freq=3.090GHz<br />

Data_m<strong>in</strong>us_loss=0.121 / -104.742<br />

impedance = Z0 *(0.916 - j0.217)<br />

m3<br />

freq=11.78GHz<br />

Data_m<strong>in</strong>us_loss=0.087 / -124.213<br />

impedance = Z0 *(0.898 - j0.130)<br />

freq (1.000GHz to 12.00GHz)<br />

Scale = 0.25<br />

Use this data to<br />

generate model<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 23


Model of Contacts with Effects of Hous<strong>in</strong>g Overlay<br />

CSP 0.5 mm<br />

TLIN<br />

TL4<br />

Z=48.5497 Ohm opt{ 40 Ohm to 50 Ohm }<br />

E=7.11405 opt{ 6 to 13 }<br />

F=1 GHz<br />

TLIN<br />

TL5<br />

Z=43.0871 Ohm opt{ 40 Ohm to 50 Ohm }<br />

E=9.38041 opt{ 8 to 11 }<br />

F=1 GHz<br />

Term<br />

Term5<br />

Num=5<br />

Z=50 Ohm<br />

TLIN<br />

TL3<br />

Z=50.0 Ohm<br />

E=-9.18889 opt{ -13 to -7.5 }<br />

F=1 GHz<br />

TLIN<br />

TL2<br />

Z=34.5 Ohm opt{ 32 Ohm to 36 Ohm }<br />

E=2.2 noopt{ 1.4 to 2 }<br />

F=1 GHz<br />

Term<br />

Term6<br />

Num=6<br />

Z=50 Ohm<br />

GOAL<br />

Goal<br />

OptimGoal1<br />

Expr="mag(Data_m<strong>in</strong>us_loss-S55)"<br />

SimInstanceName="SP1"<br />

M<strong>in</strong>=<br />

Max=.000001<br />

Weight=<br />

RangeVar[1]=<br />

RangeM<strong>in</strong>[1]=<br />

RangeMax[1]=<br />

OPTIM<br />

Optim<br />

Optim1<br />

OptimType=Gradient<br />

ErrorForm=L2<br />

Ma xIters =25<br />

P=2<br />

DesiredError=0.0<br />

StatusLevel=4<br />

SetBestValues=yes<br />

Seed=<br />

Sa ve Solns=ye s<br />

Sa ve Goa ls=ye s<br />

SaveOptimVars=no<br />

UpdateDataset=yes<br />

SaveAllIterations=no<br />

Us e AllOptVa rs =ye s<br />

Us e AllGoa ls =yes<br />

TL3: Its negative electrical length<br />

resets the phase to zero from<br />

the contacts to the edge of<br />

hous<strong>in</strong>g.<br />

TL4 and TL5: Represent lower<br />

impedance of coplanar<br />

waveguide l<strong>in</strong>es under<br />

hous<strong>in</strong>g to contacts.<br />

TL2: Is the transmission l<strong>in</strong>e<br />

represent<strong>in</strong>g the contacts,<br />

one signal and two grounds<br />

on either side<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 24


Measured S 11 of gated hous<strong>in</strong>g and contacts<br />

and computed S 11 (S 55 ) from model is shown.<br />

CSP 0.5mm<br />

-14<br />

-16<br />

Data_m<strong>in</strong>us_loss<br />

S(5,5)<br />

Measured Data<br />

Model<br />

dB(Data_m<strong>in</strong>us_loss)<br />

dB(S(5,5))<br />

-18<br />

-20<br />

-22<br />

-24<br />

-26<br />

-28<br />

0 2 4 6 8 10 12<br />

freq, GHz<br />

Scale = 0.2<br />

freq (1.000GHz to 12.00GHz)<br />

Data to 1 GHz and above 12 GHz is discarded due to expected <strong>in</strong>accuracies of time doma<strong>in</strong> conversion.<br />

Good agreement is shown over 3.5 octaves. Evidence of a “good” model!<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 25


S 11 of contact region from model<br />

CSP 0.5 mm Contactor<br />

Z1 = 34.5 Ohms<br />

Electrical Length @ 10 GHz = 22 degrees<br />

C (distributed over the contact length) = 0.177 pF<br />

L (distributed over the contact length) = 0.211 nH<br />

Max Current = 1A<br />

-10<br />

-15<br />

S11<br />

dB S11<br />

-20<br />

-25<br />

-30<br />

-35<br />

freq (1.000GHz to 18.00GHz)<br />

Scale = 0.25<br />

-40<br />

Use this data to<br />

set specs with<br />

guardband<br />

0 2 4 6 8 10 12 14 16 18<br />

freq, GHz<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 26


Best DUT Board Practices at High Frequencies<br />

• Coplanar waveguide to contactor is best transmission<br />

type, use on top surface of the board above 6 GHz<br />

• In microstrip, m<strong>in</strong>imize lengths of vias to pads under<br />

contactor<br />

• Use bl<strong>in</strong>d vias, not to have the signal via extend down<br />

to or through the ground plane<br />

• Control impedance between pads under contactor<br />

• Compensate signal path extend<strong>in</strong>g below contactor<br />

hous<strong>in</strong>g, to achieve desired impedance/compensation<br />

for best contactor match<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 27


Account<strong>in</strong>g for hous<strong>in</strong>g effects<br />

*<br />

*<br />

• This transmission l<strong>in</strong>e represents a reduced impedance segment of the<br />

Zo transmission l<strong>in</strong>e due to the overlay of the hous<strong>in</strong>g from the edge to<br />

the contacts<br />

• A reduction from 50 Ohms to ~ 40 Ohms was seen due to the overlay of<br />

the hous<strong>in</strong>g on a coplanar waveguide transmission l<strong>in</strong>e on the top layer<br />

of the DUT board; Less reduction is expected for microstrip l<strong>in</strong>es<br />

• The effect of the hous<strong>in</strong>g overlay can be mitigated by account<strong>in</strong>g for the<br />

higher effective overall permitivity under the hous<strong>in</strong>g material<br />

• Adjust<strong>in</strong>g the dimensions of the transmission l<strong>in</strong>e accord<strong>in</strong>gly can<br />

ma<strong>in</strong>ta<strong>in</strong> Zo to the contacts<br />

• This same region’s impedance Z2 can be adjusted to values other than<br />

Zo to transform/improve the contact’s specified impedance over the<br />

desired frequency range<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 28


Values <strong>in</strong> this table perta<strong>in</strong> to center contact with ground contacts on two sides<br />

Contact<br />

Pressure<br />

Contact Width<br />

Recommended<br />

Ball Sizes<br />

Recommended<br />

Size Pad M<strong>in</strong>.<br />

Contact<br />

Compliance<br />

DC Resistance<br />

Leakage<br />

Return Loss<br />

Impedance<br />

Zo<br />

Electrical<br />

Length<br />

Max. Current<br />

Carry<strong>in</strong>g<br />

Capacity<br />

Capacitance<br />

Inductance<br />

Physical<br />

Length<br />

Effective<br />

Dielectric<br />

Constant,<br />

ε eef<br />

Contactor<br />

Type & Pitch<br />

3 GHz 10 GHz 18GHz<br />

Along the<br />

Length of<br />

Contacts<br />

@ 10 GHz<br />

<strong>in</strong> Degrees<br />

Center<br />

Contact to<br />

Ground<br />

For leaded packages/LCC<br />

Note 1 Note 2 Note 3 Note 4 Note 5<br />

Note 6<br />

YieldPro 1.25 mm 40 gr 0.020" 0.007" 12 dB >8 dB 26.3 Ohm 18 3 A 0.190 pF 0.131 nH 0.927 mm / 0.0365" 2.65<br />

Note 7 70 gr max<br />

YieldPro 0.8 mm 25 gr, 0.015" 0.007" 9.5 dB >5.9 dB 22 Ohm 18 2 A 0.227 pF 0.11 nH 0.927 mm / 0.0365" 2.65<br />

Note 7 40 gr max<br />

YieldPro 0.5mm 20 gr, 0.010" 0.007" 7.25 dB >4.5 dB 17.6 Ohm 18 1 A 0.284 pF 0.088 nH 0.927 mm / 0.0365" 2.65<br />

Note7 28 gr max<br />

YieldPro 0.4mm 15 gr, 0.007" 0.007" 9.45 dB >6.15 dB 21 Ohm 18 0.75 A 0.238 pF 0.105 nH 0.927 mm / 0.0365" 2.65<br />

20 gr max<br />

For CSP: BGA/LGA Packages<br />

YieldPro Ultra 30 gr, 0.6-0.762 0.5 x 0.5 0.011" 17.8 dB >14 dB 38.5 Ohm 22 2 A 0.159 pF 0.235 nH 1.438 mm / 0.0566" 1.65<br />

BGA/LGA 1.0mm 50 gr max mm mm<br />

YieldPro Ultra 25 gr, 0.48-0.54 0.35x0.35 0.011" 11.5 dB >8 dB 28.6 Ohm 22 2 A 0.213 pF 0.175 nH 1.438 mm / 0.0566" 1.65<br />

BGA/LGA 0.8mm 40 gr max mm mm<br />

YieldPro Ultra 20 gr, 0.3-0.42 0.2 x 0.2 0.007" 15 dB >11.2 dB 34.5 Ohm 22 1 A 0.177 pF 0.211 nH 1.438 mm / 0.0566" 1.65<br />

BGA/LGA 0.5mm 28 gr max mm mm<br />

Note 1: Resistance measured on a clean contactor.<br />

Note 2: Leakage current measured w ith 10V applied to signal contact.<br />

Note 3: Assumes 50 Ohm environment.<br />

Note 4: Apply current only after mak<strong>in</strong>g contact.<br />

Note 5: Capacitance and Inductance are distributed over the contact length.<br />

Note 6: Physical length is show n fully compressed.<br />

Note 7: Agilent YieldPro contactors for leaded/LCC packages support: SOT, SOIC, SSOP,<br />

TSSOP, MSOP, QFN, TQFP, MLF, and MLP device package requirements.<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 29


Economic Benefits:<br />

• Increase the yield by not<br />

reject<strong>in</strong>g good parts. Smaller<br />

guard bands can be used<br />

because of less uncerta<strong>in</strong>ty <strong>in</strong><br />

the measurement<br />

• Contacts are made of precious<br />

metal and will not oxidize.<br />

Good performance is<br />

ma<strong>in</strong>ta<strong>in</strong>ed due to lack of<br />

corrosion<br />

• The longer life of the contactor<br />

reduces cost per parts tested<br />

Julius Botka<br />

BITS.ppt 10/31/01<br />

Page 30


Electrical and Mechanical<br />

Performance<br />

Characterization of High<br />

Frequency <strong>Test</strong> <strong>Socket</strong>s<br />

Authors: Dr. Hanyi D<strong>in</strong>g<br />

and Lisa Steckley,<br />

IBM Microelectronics<br />

Presented by: Lisa Steckley


Introduction<br />

This presentation summarizes the ongo<strong>in</strong>g<br />

work at IBM to understand the factors<br />

affect<strong>in</strong>g both the electrical performance and<br />

mechanical durability of several commercial<br />

RF test sockets.<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 2


Objective<br />

Purchase from a s<strong>in</strong>gle source to reduce<br />

COST<br />

Choose best socket for specific application;<br />

PERFORMANCE<br />

Deliver ROBUST manufactur<strong>in</strong>g solution<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 3


<strong>Socket</strong> Requirements for <strong>Test</strong><strong>in</strong>g RF<br />

Modules<br />

High frequency – to 12 GHz<br />

Low <strong>in</strong>ductance<br />

Repeatability<br />

High manufactur<strong>in</strong>g precision – f<strong>in</strong>e pitch<br />

High volume test – ease of ma<strong>in</strong>tenance<br />

Heat dissipation<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 4


<strong>Socket</strong> Qualification Process<br />

Determ<strong>in</strong>e<br />

package<br />

Collect multiple socket<br />

contactor technologies<br />

<strong>Test</strong> sockets<br />

mechanically<br />

<strong>Test</strong> electrical<br />

cont<strong>in</strong>uity<br />

Perform RF<br />

analyses<br />

Compare with<br />

electrical<br />

simulations<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 5


Qualification Process:<br />

Determ<strong>in</strong>e package<br />

Leadless Plastic Chip Carrier (LPCC) 20<br />

lead-t<strong>in</strong> leads, 4x4mm, 0.5mm pitch, exposed<br />

paddle ground<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 6


Qualification Process:<br />

Contactor technologies studied<br />

Pogo-style<br />

Spr<strong>in</strong>g loaded, gold plated, BeCu pogo, torlon hous<strong>in</strong>g<br />

S-geometry<br />

Gold plated, BeCu contact, torlon and elastomer hous<strong>in</strong>g<br />

Low-profile <strong>in</strong>terconnect<br />

Conductive <strong>in</strong>terconnect simulat<strong>in</strong>g plunge-to-board, torlon<br />

hous<strong>in</strong>g<br />

Conductive elastomer<br />

Gold plated contact set plus conductive elastomer, torlon<br />

hous<strong>in</strong>g<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 7


Qualification Process:<br />

<strong>Test</strong> <strong>Socket</strong>s Mechanically<br />

Build packages with shorted die<br />

Build board for cont<strong>in</strong>uity test<br />

Inspect packages, contacts, and board<br />

Cycle packages through handler, test<strong>in</strong>g for<br />

DC contact<br />

Re-<strong>in</strong>spect for contact and board wear<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 8


Mechanical Analysis:<br />

Pogo-style socket before test<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 9


Mechanical Analysis:<br />

Pogo-style socket after test<br />

(picture after 5000, 10000 parts cycled)<br />

Lead-t<strong>in</strong> from package collects on gold pogo<br />

Inexpensive ma<strong>in</strong>tenance<br />

Further test<strong>in</strong>g required to determ<strong>in</strong>e<br />

clean<strong>in</strong>g frequency<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 10


Mechanical Analysis:<br />

S-contact socket before test<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 11


Mechanical Analysis:<br />

S-contact socket after test<br />

(picture after 5000, 10000 parts cycled)<br />

Lead-t<strong>in</strong> debris on elastomer; potential for<br />

short<strong>in</strong>g<br />

Little to no damage on contacts<br />

Inexpensive ma<strong>in</strong>tenance<br />

Further test<strong>in</strong>g required to determ<strong>in</strong>e<br />

clean<strong>in</strong>g frequency<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 12


Mechanical Analysis:<br />

Low-profile <strong>in</strong>terconnect socket before test<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 13


Mechanical Analysis:<br />

Low-profile <strong>in</strong>terconnect socket after test<br />

(picture after 5000, 10000 parts cycled)<br />

Lead-t<strong>in</strong> debris visible<br />

Contact scrubb<strong>in</strong>g po<strong>in</strong>ts show little wear<br />

Expensive ma<strong>in</strong>tenance; further test<strong>in</strong>g to<br />

determ<strong>in</strong>e mechanical life<br />

Further test<strong>in</strong>g required to determ<strong>in</strong>e<br />

clean<strong>in</strong>g frequency<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 14


Mechanical Analysis:<br />

Conductive elastomer socket before test<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 15


Mechanical Analysis:<br />

Conductive elastomer socket after test<br />

(picture after 5000, 10000 parts cycled)<br />

Lead-t<strong>in</strong> collects on gold contact set<br />

Expensive ma<strong>in</strong>tenance; further test<strong>in</strong>g to<br />

determ<strong>in</strong>e mechanical life<br />

Further test<strong>in</strong>g required to determ<strong>in</strong>e<br />

clean<strong>in</strong>g frequency<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 16


Mechanical Analysis:<br />

Board wear after test<br />

Pogo-style socket<br />

Little wear on board; consistent witness marks<br />

S-contact socket<br />

Evident wear from wip<strong>in</strong>g action<br />

Low-profile <strong>in</strong>terconnect socket<br />

Visible wear on board; can be improved by us<strong>in</strong>g<br />

elastomer added for compliance<br />

Conductive elastomer socket<br />

Little wear on board<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 17


Qualification Process:<br />

<strong>Test</strong> socket cont<strong>in</strong>uity<br />

Yield us<strong>in</strong>g pogo socket:<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 18


Qualification Process:<br />

<strong>Test</strong> socket cont<strong>in</strong>uity<br />

Yield us<strong>in</strong>g s-contact socket:<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 19


Qualification Process:<br />

<strong>Test</strong> socket cont<strong>in</strong>uity<br />

Yield us<strong>in</strong>g low-profile <strong>in</strong>terconnect socket:<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 20


Qualification Process:<br />

<strong>Test</strong> socket cont<strong>in</strong>uity<br />

Yield us<strong>in</strong>g conductive elastomer socket:<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 21


Electrical Performance Simulations<br />

<strong>Socket</strong> companies typically provide<br />

characterization reports based on a very<br />

simple equivalent circuit.<br />

Our goal is to verify the performance<br />

parameters they claim us<strong>in</strong>g:<br />

Momentum, a 2.5D electromagnetic simulator<br />

Ansoft HFSS, a 3D modeler and simulator<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 22


Electrical Performance Simulations<br />

Equivalent circuit for socket p<strong>in</strong>s<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 23


Electrical Performance Simulations<br />

Structure setup for pogo p<strong>in</strong> type socket model<strong>in</strong>g us<strong>in</strong>g Momentum<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 24


Electrical Performance Simulations<br />

Structure setup for pogo p<strong>in</strong> type socket model<strong>in</strong>g us<strong>in</strong>g HFSS<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 25


Recognition of Support<br />

John Blond<strong>in</strong> – IBM, Front-End-Hardware<br />

Ronald Clarke – IBM, <strong>Test</strong> Applications Eng.<br />

Dr. Hanyi D<strong>in</strong>g – IBM, RF Board Design<br />

John Ferrario – IBM, Manager RF <strong>Test</strong><br />

Development<br />

Gene Patrick – IBM, Front-End Hardware<br />

Kev<strong>in</strong> Potasiewicz – IBM, RF <strong>Test</strong> Eng<strong>in</strong>eer<br />

Randy Wolf – IBM, RF Board Design<br />

March 3-6, 2002 <strong>BiTS</strong> <strong>Workshop</strong> 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!