31.03.2014 Views

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong><br />

<strong>Socket</strong> <strong>Workshop</strong><br />

IEEE<br />

March 3-6 , 2002<br />

Hilton Phoenix East/Mesa Hotel<br />

Mesa, Arizona<br />

IEEE<br />

COMPUTER<br />

SOCIETY<br />

Sponsored By The IEEE Computer Society<br />

<strong>Test</strong> Technology Technical Council


COPYRIGHT NOTICE<br />

• The papers <strong>in</strong> this publication comprise the proceed<strong>in</strong>gs of the 2002<br />

<strong>BiTS</strong> <strong>Workshop</strong>. They reflect the authors’ op<strong>in</strong>ions and are reproduced as<br />

presented , without change. Their <strong>in</strong>clusion <strong>in</strong> this publication does not<br />

constitute an endorsement by the <strong>BiTS</strong> <strong>Workshop</strong>, the sponsors, or the<br />

Institute of Electrical and Electronic Eng<strong>in</strong>eers, Inc.<br />

· There is NO copyright protection claimed by this publication. However,<br />

each presentation is the work of the authors and their respective<br />

companies: as such, proper acknowledgement should be made to the<br />

appropriate source. Any questions regard<strong>in</strong>g the use of any materials<br />

presented should be directed to the author/s or their companies.


<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

Technical Program<br />

Session 7<br />

Wednesday 3/06/02 8:00AM<br />

<strong>Burn</strong>-<strong>in</strong> Board Design<br />

“<strong>Burn</strong>-<strong>in</strong> Board Over-current Protection – What Are The Options?”<br />

KW Low - Intel Corporation<br />

Zamel Jaafar - Intel Corporation<br />

“Protect<strong>in</strong>g Conductor Pads On <strong>Burn</strong>-<strong>in</strong> Boards From Oxidation And<br />

Corrosion”<br />

Alfred Sugarman - Loranger International Corporation<br />

Al Loranger - Loranger International Corporation<br />

“Power Decoupl<strong>in</strong>g Optimizer – A Systematic Frequency Doma<strong>in</strong> Approach To<br />

BiB Noise Decoupl<strong>in</strong>g Simulation”<br />

Isaac Chang - Intel Corporation


<strong>Burn</strong>-<strong>in</strong> Board<br />

Over-current Circuit Protection<br />

- What Are The Options?<br />

KW Low/Zamel Jaafar<br />

Intel Malaysia<br />

2002 <strong>Burn</strong>-<strong>in</strong> and <strong>Test</strong> <strong>Socket</strong> <strong>Workshop</strong><br />

March 3 - 6, 2002


Agenda<br />

• Introduction<br />

• UUT Switch<strong>in</strong>g Characteristics<br />

• BIB Over-current Circuit Protective Devices<br />

• Manufactur<strong>in</strong>g Issues & Concerns<br />

• Solutions Investigated<br />

• Technology Challenges<br />

• Conclusion<br />

• Acknowledgement<br />

KWLow/Zamel <strong>BiTS</strong> 2002 2


Introduction<br />

• BIB over-current protection prevents premature<br />

component failures, short circuits and fire hazards.<br />

• In dynamic burn-<strong>in</strong>, current spikes occur at oven power<br />

supplies sequenc<strong>in</strong>g and auto signal checks.<br />

• Common phenomenon for high current, high speed units<br />

under test.<br />

• Fuses are effectively be<strong>in</strong>g utilized for overload or shortcircuit<br />

protection.<br />

• Incidences of nuisance fuse blow<strong>in</strong>g is disruptive to<br />

production.<br />

• Fuse replacement is an expensive & <strong>in</strong>convenient task.<br />

• Number of fuses on a burn-<strong>in</strong> board vary with each design.<br />

• Other better alternatives (technology) are be<strong>in</strong>g reviewed.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 3


UUT Switch<strong>in</strong>g Characteristics(1)<br />

Power-up<br />

current spike<br />

• Dur<strong>in</strong>g oven power sequenc<strong>in</strong>g there are current spikes on the BIB.<br />

• These transients are harmful to the electronic circuit on the BIB and UUT.<br />

• They last for tens of milliseconds and can reach hundreds of millivolts.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 4


UUT Switch<strong>in</strong>g Characteristics(.2)<br />

Fuse limit @ 25C<br />

I max<br />

Nom<strong>in</strong>al fuse rat<strong>in</strong>g<br />

15A<br />

Signal check<br />

pattern start-up<br />

current spike<br />

Average current<br />

Ref<br />

Duration<br />

• Dur<strong>in</strong>g signal check pattern test<strong>in</strong>g current spikes are observed.<br />

• Repetitive high current <strong>in</strong> amperes; hundreds of microseconds <strong>in</strong><br />

duration.<br />

• These current spikes can breach limit of the fuse rat<strong>in</strong>g.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 5


UUT Switch<strong>in</strong>g Characteristics(.3)<br />

Trigger<br />

BI monitor for full pattern length<br />

Current spikes<br />

<strong>in</strong>crease dur<strong>in</strong>g<br />

BIST & Reset<br />

Icc<br />

Idd<br />

• Dur<strong>in</strong>g logic switch<strong>in</strong>g more current spikes are further evident.<br />

• The magnitude and occurrence depends on number of power supplies &<br />

complexity of the stress pattern.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 6


BIB Over-current Protective Device (1)<br />

• Fuses are commonly used to isolate and protect the UUT on BIB.<br />

• Us<strong>in</strong>g correct fuse current rat<strong>in</strong>g, type (fast or slow-act<strong>in</strong>g) and derat<strong>in</strong>g<br />

factor is important to avoid circuit electrical over-stress.<br />

Fuse rat<strong>in</strong>g = Normal Operat<strong>in</strong>g Current/0.75 x % rat<strong>in</strong>g<br />

<strong>Burn</strong>t Trace<br />

Operat<strong>in</strong>g Temp vs Fuse Rat<strong>in</strong>g<br />

% Rat<strong>in</strong>g<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Slow-Act<strong>in</strong>g<br />

Fast-Act<strong>in</strong>g<br />

PPTC<br />

Lack of protection causes die EOS<br />

-60C<br />

-40C<br />

-20C<br />

0C<br />

20C<br />

25C<br />

40C<br />

60C<br />

Operat<strong>in</strong>g Temp<br />

80C<br />

100C<br />

120C<br />

Fuse value is derated with elevated operat<strong>in</strong>g temperature<br />

• They are current sensitive devices serv<strong>in</strong>g as a weak l<strong>in</strong>k <strong>in</strong> BIB circuit.<br />

• Fuse characteristic is determ<strong>in</strong>ed by respond to various current overload.<br />

• Slow-act<strong>in</strong>g fuse has more thermal <strong>in</strong>ertia that tolerates <strong>in</strong>itial overload<br />

current.<br />

• Fast-act<strong>in</strong>g or very fast-act<strong>in</strong>g fuse is good for sensitive, critical circuits.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 7


BIB Over-current Protective Device (.2)<br />

• Selection of circuit protective devices depends on<br />

- match<strong>in</strong>g circuit characteristic to device specification<br />

- operat<strong>in</strong>g current, voltage and temperature<br />

- required protection device response time<br />

- <strong>in</strong>terrupt rat<strong>in</strong>g<br />

- fault current and<br />

- circuit resistance<br />

• <strong>Burn</strong>-<strong>in</strong> board circuit protection choice.<br />

- Wire Fuse<br />

low power consumption<br />

no leakage current<br />

suitable for high voltage & high current circuits<br />

one time use only<br />

consumable item<br />

high ma<strong>in</strong>tenance cost<br />

Subm<strong>in</strong>iature fuse mounted <strong>in</strong>to turrets<br />

Subm<strong>in</strong>iature fuse soldered onto fork connectors<br />

Subm<strong>in</strong>iature SMD fuses <strong>in</strong> receptacles<br />

KWLow/Zamel <strong>BiTS</strong> 2002 8


Manufactur<strong>in</strong>g Issues & Concern<br />

• Resources are needed to detect, identify and repair burn-<strong>in</strong> boards<br />

with blown fuses.<br />

Short circuit on BIB<br />

- F<strong>in</strong>ance (money)<br />

- Headcount (labour)<br />

- Facility (equipment set-up)<br />

• <strong>Burn</strong>-<strong>in</strong> board ma<strong>in</strong>tenance cost has escalated.<br />

- Labour and component <strong>in</strong>crease<br />

Components & BIB <strong>Burn</strong>t<br />

- Need to manage component <strong>in</strong>ventory<br />

• Extra capacity baked <strong>in</strong>to build plan to offset burn-<strong>in</strong> boards<br />

temporarily taken out of service.<br />

- More burn-<strong>in</strong> board <strong>in</strong>ventory (spares buffer)<br />

- Long through-put-time for product builds (bottleneck)<br />

- Output yields are affected (need to build more <strong>in</strong> advance)<br />

• Good UUTs could be scrapped when they are processed on a burn<strong>in</strong><br />

board with blown fuses.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 9


Solutions Investigated<br />

• Polymer-based Positive Temperature Coefficient (PPTC)<br />

fuse.<br />

resettable<br />

low power consumption<br />

small footpr<strong>in</strong>t<br />

resistance is higher than wire fuse<br />

max operat<strong>in</strong>g temperature ~85 deg C<br />

max operat<strong>in</strong>g current ~11A<br />

PPTC Resettable fuse<br />

• Current-limit<strong>in</strong>g IC.<br />

resettable<br />

feedback signal for closed loop control<br />

fast response<br />

high cost<br />

sensitive to voltage fluctuation<br />

susceptible to program <strong>in</strong>terference<br />

Custom Current-limit<strong>in</strong>g IC<br />

KWLow/Zamel <strong>BiTS</strong> 2002 10


Technology Challenges<br />

• BIB application of resettable fuse depends on:<br />

- Ability to operate at 125 deg C; 45 to 95 deg C typical range<br />

- Little or no leakage current<br />

- Voltage rat<strong>in</strong>g < 5 volts; current rat<strong>in</strong>g 5A, 10A, 15A & 20A<br />

- Small footpr<strong>in</strong>t, preferably SMD<br />

- Low cold resistance<br />

- Improved time-current characteristic (speed of response) better<br />

than for slow blow fuse<br />

• Other solution of us<strong>in</strong>g ICs are still be<strong>in</strong>g reviewed.<br />

- Requires additional circuit to sense and switch<br />

- Software has to be developed to complement circuit function<br />

- Takes up space and reduces socket density on BIB<br />

- More trace rout<strong>in</strong>g makes BIB design complex<br />

- Initial cost is higher<br />

KWLow/Zamel <strong>BiTS</strong> 2002 11


Conclusion<br />

• <strong>Burn</strong>-<strong>in</strong> board is designed with different fuse configuration.<br />

– Fuse per burn-<strong>in</strong> board<br />

- Fuse per socket<br />

- Fuse per socket cluster<br />

- Fuse per socket row<br />

• Need for more user friendly circuit protective devices.<br />

- A better option to wire fuse<br />

- Someth<strong>in</strong>g simple with m<strong>in</strong>imum board re-design<br />

- It has to be a cost effective solution<br />

- Ideally ma<strong>in</strong>tenance free<br />

• As burn-<strong>in</strong> ambient temperature is decreas<strong>in</strong>g, resettable<br />

fuse provides an attractive alternative.<br />

• <strong>Burn</strong>-<strong>in</strong> board is a multimillion $$$ bus<strong>in</strong>ess, any viable<br />

option has a ready market.<br />

KWLow/Zamel <strong>BiTS</strong> 2002 12


Acknowledgement<br />

The authors would like to acknowledge the support<br />

provided by colleagues for their comments &<br />

suggestions <strong>in</strong> the preparation of this presentation:<br />

Anthony Wong, CS Low, HL Kon, KH Lee, KS Yeoh<br />

&<br />

P Schubr<strong>in</strong>g<br />

Thank You<br />

KWLow/Zamel <strong>BiTS</strong> 2002 13


PROTECTING CONDUCTOR<br />

PADS ON BURN-IN BOARDS<br />

FROM OXIDATION AND<br />

CORROSION<br />

by Alfred Sugarman, Al Loranger<br />

Presented at<br />

<strong>BiTS</strong> <strong>Burn</strong>-In & <strong>Test</strong> <strong>Socket</strong> <strong>Workshop</strong><br />

March 3-6, 2002<br />

Mesa, AZ


PURPOSE<br />

Evaluate different conductor pad coat<strong>in</strong>gs<br />

on burn-<strong>in</strong> boards for contact stability and<br />

resistance.<br />

Slide 2


PROCEDURE<br />

• Pr<strong>in</strong>ted circuit assemblies (PCAs) for test<strong>in</strong>g a Loranger LGA<br />

375SQ312L6617 socket were fabricated with the follow<strong>in</strong>g conductor<br />

pad coat<strong>in</strong>gs.<br />

COATING THICKNESSES ON TESTED BOARDS<br />

- 20 µ<strong>in</strong> Electroplated Gold - bare copper<br />

- 50 µ<strong>in</strong> Electroplated Gold - 100 µ<strong>in</strong> Electroplated Nickel<br />

- 300 µ<strong>in</strong> Solder<br />

• Coat<strong>in</strong>g thicknesses on conductor pads of the PCAs were<br />

<strong>in</strong>dependently measured to confirm the nom<strong>in</strong>al values above.<br />

• Electrical resistances and average contact deflections were measured<br />

<strong>in</strong> the sockets at 0 hours and at <strong>in</strong>crements of time throughout the<br />

burn-<strong>in</strong> process. Resistances were measured by us<strong>in</strong>g a gold plated<br />

mock device. The mock device nulled any effect of plat<strong>in</strong>g and/or<br />

coat<strong>in</strong>gs on the package to isolate the data to the burn-<strong>in</strong> board<br />

conductor pad plat<strong>in</strong>g only.<br />

Slide 3


Procedure Cont<strong>in</strong>ued<br />

• PCAs were assembled with sockets and heated to 125ºC for<br />

<strong>in</strong>crements of time up to 1,000 hours to simulate burn-<strong>in</strong><br />

process.<br />

• Periodically the PCAs were removed from the oven to measure<br />

contact resistances and exam<strong>in</strong>e the conductor pads.<br />

• Gold coated boards were cleaned after 1,000 hours burn-<strong>in</strong> by<br />

first swabb<strong>in</strong>g conduct<strong>in</strong>g pads with isopropyl alcohol and then<br />

clean<strong>in</strong>g them <strong>in</strong> a dishwasher with ord<strong>in</strong>arily dishwasher<br />

detergent.<br />

• Contact resistance with contact deflection was evaluated by<br />

stack<strong>in</strong>g.0038” paper shims on top of the mock device and<br />

clos<strong>in</strong>g the cover.<br />

Slide 4


Figure 1. Typical MAP6 board on which sockets were burned <strong>in</strong> and resistances<br />

measured.<br />

Slide 5


Resistance Change, Ohms<br />

Contact Resistance For Gold Plated Conductor<br />

Pads<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

-0.25<br />

50µ<strong>in</strong> Gold<br />

20µ<strong>in</strong> Gold<br />

1 10 100 1,000<br />

Hours <strong>Burn</strong>ed In<br />

Slide 6


Contact Resistance For Solder Coated Conductor Pads<br />

1.40<br />

Resistance Change, Ohms<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

-0.20<br />

1 10 100 1,000<br />

Hours <strong>Burn</strong>ed In<br />

Slide 7


Resistance Change, Ohms<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

Contact Resistance For Bare Copper<br />

Conductor Pads<br />

1 10 100 1,000<br />

Hours <strong>Burn</strong>ed In<br />

Slide 8


Resistance Change, Ohms<br />

Contact Resistance For All Conductor Pads<br />

8.00<br />

7.00<br />

50µ<strong>in</strong> Gold<br />

20µ<strong>in</strong> Gold<br />

6.00<br />

Bare Copper<br />

5.00<br />

100 µ<strong>in</strong> Nickel<br />

4.00<br />

300 µ<strong>in</strong> Solder<br />

Bare Copper<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00 1 10 100 1,000<br />

Hours <strong>Burn</strong>ed In<br />

Slide 9


0.000<br />

Reduction In Contact Resistance With<br />

Deflection<br />

-0.050<br />

0.000 0.005 0.010 0.015 0.020 0.025 0.030<br />

Reduction In Contact<br />

Resistance (Ohms)<br />

-0.100<br />

-0.150<br />

-0.200<br />

-0.250<br />

-0.300<br />

-0.350<br />

50µ<strong>in</strong> Gold<br />

20µ<strong>in</strong> Gold<br />

Contact Deflection (<strong>in</strong>ches)<br />

Improv<strong>in</strong>g<br />

Slide 10


TABLE 1. NUMBER OF OPEN CONTACTS AFTER<br />

BURN-IN AT 125ºC<br />

Hours <strong>Burn</strong>-In 1 6 12 24 48 100 250 500 1,000<br />

50µ<strong>in</strong> Gold 0 0 0 0 0 0 0 0 0<br />

20µ<strong>in</strong> Gold 0 0 0 0 0 0 0 0 0<br />

300 µ<strong>in</strong> Solder 0 0 0 0 0 0 0 4 24<br />

100 µ<strong>in</strong> Nickel 0 1 2 0 0 0 0 0 0<br />

Bare Copper 0 2 0 0 6 3 15 27 65<br />

Slide 11


Figure 2. 50 µ<strong>in</strong> thick gold plated<br />

conductor pads after 500 hrs at 125<br />

ºC. This is typical of appearance of<br />

similar conductor pads.<br />

Figure 3. 50 µ<strong>in</strong> thick gold plated<br />

conductor pads after 1,000 hrs at<br />

125 ºC. Note good uniform<br />

appearance.<br />

Figure 4. 20 µ<strong>in</strong> thick electroless gold<br />

plated conductor pads after 1,000 hrs at<br />

125 ºC. Note blister<strong>in</strong>g.<br />

Slide 12


Figure 5. 300 µ<strong>in</strong> thick solder<br />

plated conductor pads after 1,000<br />

hrs at 125 ºC. Note 5 mil deep<br />

witness marks left <strong>in</strong> the solder.<br />

Figure 6. 100 µ<strong>in</strong> nickel plated<br />

conductor pad after 1,000 hours at<br />

125ºC.<br />

Figure 7. Bare copper conductor pad<br />

after 1,000 hours at 125 ºC.<br />

Slide 13


REVIEW OF GOLD COATING THICKNESS<br />

REQUIREMENTS<br />

• IPC-6012A, “Qualification and Performance Specification for Rigid<br />

Pr<strong>in</strong>ted Boards”, Table 3-2<br />

Table 3-2 (partial) F<strong>in</strong>al F<strong>in</strong>ish, Surface Plat<strong>in</strong>g Coat<strong>in</strong>g Requirements<br />

F<strong>in</strong>ish<br />

Class 1 (General<br />

Electronic Products)<br />

Class 2 (Dedicated<br />

Electronic<br />

Products)<br />

Class 3 (High<br />

Reliability<br />

Electronic<br />

Products)<br />

Gold (m<strong>in</strong>) for edge-board<br />

connectors and area not<br />

to be soldered<br />

0.8 µm (30 µ<strong>in</strong>) 0.8 µm (30 µ<strong>in</strong>) 1.25 µm (49 µ<strong>in</strong>)<br />

Slide 14


Gold Coat<strong>in</strong>g Thickness Requirement (cont<strong>in</strong>ued)<br />

•EIA – 540 GAAA, “Detail Specification for <strong>Burn</strong>-In<br />

<strong>Socket</strong>s for Chip Carrier Packages with Molded Carrier<br />

R<strong>in</strong>gs for Use <strong>in</strong> Electronic Equipment”, October 1993.<br />

Paragraph 2.2.9 says .......<br />

2.2.9 CONTACT FINISH AT TERMINATION AREA<br />

Contact f<strong>in</strong>ish at the term<strong>in</strong>ation area shall be designated<br />

by one letter as follows:<br />

K:Gold over Nickel<br />

0.76 micron (30µ”) m<strong>in</strong>. gold over<br />

1.27 microns (50µ”) m<strong>in</strong>. to 3.81<br />

microns (150µ”) max. nickel.<br />

Slide 15


DISCUSSION<br />

• Gold coated conductor pads particularly those with 50 µ<strong>in</strong> gold<br />

had 0 opens and the conductor pads had best appearance.<br />

• Initial resistance and resistance <strong>in</strong>crease with burn-<strong>in</strong> time was<br />

smallest with gold coated conductor pads compared with pads<br />

coated with nickel, solder and bare copper conductor pads.<br />

• Conductor pad coat<strong>in</strong>gs of nickel and solder had larger<br />

<strong>in</strong>creases <strong>in</strong> resistance. Bare copper conductor pads had<br />

largest resistance <strong>in</strong>crease with burn-<strong>in</strong> time<br />

Slide 16


Discussion (cont<strong>in</strong>ued)<br />

• Conductor pads coated with 100 µ<strong>in</strong> nickel and 300 µ<strong>in</strong> solder<br />

and with bare copper had poor electrical stability compared with<br />

gold coated conductor pads.<br />

• Increas<strong>in</strong>g deflection of contacts significantly reduces contact<br />

resistance by <strong>in</strong>creas<strong>in</strong>g contact force and can more than<br />

compensate for <strong>in</strong>creas<strong>in</strong>g resistance with burn-<strong>in</strong> time.<br />

Slide 17


(Discussion Cont<strong>in</strong>ued)<br />

• Reasons for high resistances and low stability <strong>in</strong> other than<br />

gold coated conductor<br />

pads are ...<br />

- Copper and nickel Relatively hard oxide coat<strong>in</strong>g on<br />

coated pads surface of pads<br />

- Solder coated pads Creep of contact through solder<br />

until it touches parent conductor<br />

pad metal.<br />

Slide 18


CONCLUSIONS<br />

• Gold coated conductor pads performed better than all others<br />

to achieve lowest contact resistance and most stability<br />

• Increas<strong>in</strong>g contact deflection (equivalent to <strong>in</strong>creas<strong>in</strong>g force)<br />

made significant reductions <strong>in</strong> contact resistance more than<br />

compensat<strong>in</strong>g for the <strong>in</strong>crease <strong>in</strong> resistance with burn-<strong>in</strong><br />

time<br />

Slide 19


Power Decoupl<strong>in</strong>g<br />

Optimizer – A Systematic<br />

Frequency Doma<strong>in</strong><br />

Approach to BIB Noise<br />

Decoupl<strong>in</strong>g Simulation<br />

Isaac Chang<br />

Intel Corporation<br />

2002 <strong>Burn</strong>-<strong>in</strong> and <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

March 3 - 6, 2002


Agenda<br />

– Understand BIB Power Decoupl<strong>in</strong>g(PD)<br />

– Introduction<br />

– Exist<strong>in</strong>g PD Approach & Drawbacks<br />

– New PD Optimization(PDO) BKM(Best Known Method)<br />

– PDO Uses Ztarget<br />

– Cres Effect <strong>in</strong> Optimization<br />

– PDO – Cbulk/Clocal Optimization Steps<br />

– Capacitor Selection for Cbulk/local<br />

– Example: BIB Capacitor Optimization<br />

– Key Results<br />

– Conclusion<br />

– Acknowledgement<br />

02/01/2002 <strong>BiTS</strong> 2002 2


Understand BIB PD<br />

Instant Supply<br />

PS<br />

Bulk<br />

Local<br />

<strong>Socket</strong><br />

Short Cold Shower<br />

Die<br />

Cold For A While<br />

– When the die consumes a large current <strong>in</strong> a very short<br />

period dur<strong>in</strong>g the output state transition, it will cause<br />

unwanted voltage drop(spikes/transient) along the<br />

power path.<br />

– Thus, the decoupl<strong>in</strong>g capacitors(bulk/local) are placed<br />

near to the die to lower the ground bounce/transient<br />

noise on the power supply(PS) for the device.<br />

• They will charge up dur<strong>in</strong>g the less stressful period and then<br />

provide additional charges dur<strong>in</strong>g the transient <strong>in</strong>stead of the<br />

PS, thus reduc<strong>in</strong>g the spike magnitude along the power path.<br />

02/01/2002 <strong>BiTS</strong> 2002 3


Introduction<br />

• Exist<strong>in</strong>g Time Doma<strong>in</strong>(TD) methodology of<br />

power noise decoupl<strong>in</strong>g is critical for<br />

ensur<strong>in</strong>g stable/consistent power delivery for<br />

<strong>Burn</strong>-In Board(BIB) operation.<br />

– Utilizes a full system power delivery model and<br />

simulated us<strong>in</strong>g PSPICE software <strong>in</strong> TD us<strong>in</strong>g trial-<br />

&-error approach.<br />

– Requires numerous tedious iterations to<br />

determ<strong>in</strong>e the optimized decoupl<strong>in</strong>g capacitance.<br />

– Several major drawbacks <strong>in</strong> predict<strong>in</strong>g the<br />

decoupl<strong>in</strong>g requirements with the<br />

selective/appropriate capacitors <strong>in</strong> term of types<br />

and quantities effectively/accurately.<br />

02/01/2002 <strong>BiTS</strong> 2002 4


Exist<strong>in</strong>g PD Approach & Drawbacks<br />

Start<br />

Customer Request<br />

Model Setup<br />

Simulation<br />

Vdroop<br />

Documentation<br />

• Non systematic approach<br />

– It’s merely trial-&-error TD<br />

approach decoupl<strong>in</strong>g optimization<br />

• Time consum<strong>in</strong>g<br />

– Many steps taken for optimization<br />

• Unable to understand <strong>in</strong>dividual<br />

capacitor performance/<br />

effectiveness<br />

– Each capacitor is only effective<br />

before its resonant frequency<br />

region<br />

• Thus, it needs a systematic<br />

/effective methodology for a<br />

more comprehensive<br />

optimization solution<br />

02/01/2002 <strong>BiTS</strong> 2002 5<br />

End<br />

Pass<br />

Cap Placement<br />

Check thru design?<br />

Pass<br />

Fail<br />

Optimize<br />

Decoupl<strong>in</strong>g<br />

Fail


New PD Optimization(PDO) BKM<br />

Start<br />

Start<br />

Customer Request<br />

Customer Request<br />

Model Setup<br />

Model Setup<br />

Simulation<br />

Vdroop<br />

Pass<br />

Fail<br />

Optimize<br />

Decoupl<strong>in</strong>g<br />

PDO<br />

Cap Placement<br />

Check thru design?<br />

Pass<br />

Documentation<br />

Fail<br />

Documentation<br />

End<br />

02/01/2002 <strong>BiTS</strong> 2002 6<br />

End


PDO Uses Ztarget(roll<strong>in</strong>g down!)<br />

Year<br />

Voltage<br />

(V)<br />

Power<br />

Dissipated<br />

(W)<br />

Current<br />

(A)<br />

Ztarget<br />

(mΩ)<br />

Ripple –<br />

noise<br />

(mV)<br />

Frequency<br />

(MHz)<br />

1990<br />

5.0<br />

5<br />

1<br />

250<br />

250<br />

16<br />

1993<br />

3.3<br />

10<br />

3<br />

54<br />

165<br />

66<br />

1996<br />

2.5<br />

30<br />

12<br />

10<br />

125<br />

200<br />

1999<br />

1.8<br />

90<br />

50<br />

1.8<br />

90<br />

600<br />

2002<br />

1.2<br />

180<br />

150<br />

0.4<br />

60<br />

1200<br />

• PDO Concept is based on reduc<strong>in</strong>g the overall<br />

system impedance(Zsystem) to be


Ztarget Def<strong>in</strong>ition & Relationship<br />

With V<br />

FD(AC<br />

Analysis)<br />

Ztarget<br />

=<br />

dV<br />

Imax<br />

TD<br />

(Transient<br />

Analysis)<br />

• Ztarget is the impedance that the test tool<strong>in</strong>g<br />

system has to be optimized to which it will<br />

ensure that noise droop <strong>in</strong> the system will be<br />

able to meet the noise droop<br />

tolerance(allowed ripple) at the highest<br />

current ramp.<br />

02/01/2002 <strong>BiTS</strong> 2002 8


Z (Ω)<br />

Ztarget<br />

PDO Concept uses Ztarget <strong>in</strong> FD<br />

PS<br />

Sense+<br />

Vout+<br />

Gnd<br />

Sense-<br />

Zsystem<br />

PWL<br />

. . . . . . Soc Pkg+Die 1A<br />

Bulk<br />

Local<br />

Reduc<strong>in</strong>g<br />

Zsystem<br />

1A AC is forced at<br />

here that Vmeasured<br />

is Z <strong>in</strong> Ω.<br />

1 *Switch<strong>in</strong>g power 1K *Bulk capacitors 1M 1G<br />

supply (eg. VRM)<br />

(eg. Tantalum)<br />

*Local<br />

capacitor<br />

(eg. MLCC)<br />

Package<br />

capacitor<br />

(eg MLCC)<br />

*PCB power<br />

planes<br />

Frequency(Hz)<br />

Note: impedance response is not drawn to actual technical performance. * Reference taken from “Power Distribution System<br />

Design Methodology & Capacitor Selection for Modern CMOS Technology.” by Larry Smith<br />

• Zsystem can be reduced(


Cres Effect <strong>in</strong> Optimization<br />

Z (Ω)<br />

Ztarget<br />

ESRreq<br />

Note: impedance response is not drawn to<br />

actual technical performance<br />

Before optimization<br />

Cres<br />

Cres<br />

Normal optimization without <strong>Socket</strong>+Pkg: It<br />

doesn’t consider the Cres major contribution.<br />

Hence, the decoupl<strong>in</strong>g optimization will have<br />

Z at this freq above the Ztarget and it needs a<br />

2 nd optimization for Zsystem< Ztarget.<br />

Right optimization: It does consider Cres effect.<br />

Thus, the decoupl<strong>in</strong>g optimization that will have<br />

impedance at this freq meets the Ztarget.<br />

1 1K 1M 1G<br />

Frequency(Hz)<br />

– Hence, for 1-time optimization <strong>in</strong>stead of twice, it needs<br />

to consider the highest resistive element, ie the socket<br />

Cres effect s<strong>in</strong>ce it <strong>in</strong>creases the Zsystem.<br />

– Use Cres effect as reference for estimat<strong>in</strong>g capacitor<br />

quantity by reduc<strong>in</strong>g Ztarget by Cres to give the<br />

required ESR for each cap type.<br />

– By hav<strong>in</strong>g total cap ESR of a cap type(all parallel)<br />

meet<strong>in</strong>g ESRreq(cap optimization) will br<strong>in</strong>g Zsystem to<br />

02/01/2002 below


PDO – Cbulk Optimization Steps<br />

Start<br />

Cbulk<br />

Clocal<br />

Ztarget, Vdroop<br />

Pass<br />

Fail<br />

• Calculate<br />

• Ztarget = dV/Imax<br />

• Cbulk = I.dt/dV<br />

• Select caps to meet Cbulk.<br />

• Check Cbulk whether<br />

meet<strong>in</strong>g Ztarget.<br />

Fail<br />

DUT Area<br />

Pass<br />

End<br />

02/01/2002 <strong>BiTS</strong> 2002 11


PDO – Clocal Optimization Steps<br />

Fail<br />

Start<br />

Cbulk<br />

Clocal<br />

Ztarget, Vdroop<br />

End<br />

Pass<br />

DUT Area<br />

Pass<br />

Fail<br />

• Calculate<br />

• Cres = Soc Cres/#Pwr p<strong>in</strong> + Soc<br />

Cres/#Gnd p<strong>in</strong>.<br />

• ESRreq=Ztarget-Cres<br />

(ESRreq:total ESR required from a<br />

comb<strong>in</strong>ation of caps)<br />

• Compute effective freq cap<br />

quantity(start with low freq<br />

cap) by ESR that meets<br />

ESRreq.<br />

• Go to next higher effective<br />

freq cap(provided with a<br />

standard cap list <strong>in</strong> place)<br />

02/01/2002 <strong>BiTS</strong> 2002 12


Impedance<br />

10Ω<br />

1Ω<br />

Capacitor Selection for Cbulk/local<br />

47uF@521.195K<br />

68uF@433.511K<br />

47uF@521.195K<br />

4.7uF@1.648M<br />

100mΩ<br />

100uF@357.273K<br />

10mΩ<br />

220uF@226.464K<br />

1000uF@96.605K<br />

1000uF@96.605K<br />

0.1uF@14.622M<br />

0.1uF@14.622M<br />

1uF@4.581M<br />

1uF@4.581M<br />

Frequency(Hz)<br />

1mΩ<br />

1K 10K 100K 1M 10M 100M 1G 10G<br />

• A proper selection of capacitors must cover well<br />

the frequency spectrum for Zsystem reduction<br />

effectiveness to


Impedance(mΩ)<br />

4x<br />

3x<br />

2x<br />

Example: BIB Cap Optimization<br />

FD<br />

47uF@600K<br />

100uF@390K<br />

0.1uF@20M<br />

1uF@8M<br />

4.7uF@2M<br />

Low Imax before FD<br />

optimization<br />

• Total Cap quantity = 20<br />

• Cbulk=18000uF<br />

• Clocal=0uF<br />

26.546MHz<br />

Ztarget<br />

1x<br />

470uF@165K<br />

1000uF@107K<br />

Basel<strong>in</strong>e:<br />

• High Imax after TD<br />

optimization<br />

• Total Cap quantity = 77<br />

• Cbulk=18000uF<br />

• Clocal=4734uF<br />

V<br />

TD<br />

Vout<br />

3rd Droop<br />

Frequency(Hz)<br />

0<br />

1K 10K 100K 1M 10M 100M 1G 10G<br />

Low Imax after PDO (FD optimization)<br />

• Note, the cap resonance that crosses with<br />

Zsystem is 47uF and use ESRreq to determ<strong>in</strong>e<br />

its quantity<br />

• Total Cap quantity = 25<br />

• Cbulk=18000uF, Clocal=188uF<br />

2nd Droop<br />

– TD confirms PDO capacitor<br />

Vnoise spec<br />

reduction scheme.<br />

Spike<br />

Time<br />

0<br />

– PDO(FD) uses less<br />

02/01/2002 <strong>BiTS</strong> 2002 capacitor than TD. 14


Key Results<br />

• Proven more systematic as compared to the merely trial-<br />

&-error TD approach decoupl<strong>in</strong>g optimization<br />

• Better understand<strong>in</strong>g of <strong>in</strong>dividual capacitor<br />

performance/effectiveness before plac<strong>in</strong>g any capacitor<br />

for decoupl<strong>in</strong>g.<br />

• Shown FD effectiveness <strong>in</strong> Z reduction through proper<br />

capacitor selection.<br />

• Less time consum<strong>in</strong>g because it uses less iterations to<br />

achieve decoupl<strong>in</strong>g optimization as compared to TD<br />

Simulation<br />

10<br />

Time<br />

(work<strong>in</strong>g day)<br />

5<br />

TD<br />

0<br />

BIB Complexity<br />

Complicated Normal PDO – Both<br />

(High Current) (Low Current) Complicated/Normal<br />

02/01/2002 <strong>BiTS</strong> 2002 Note: This is based on estimation 15<br />

FD<br />

~0.5Day


Conclusion<br />

• PDO is a more systematic and speedy<br />

BKM for noise decoupl<strong>in</strong>g by proper<br />

capacitor selection to reduce Zsystem to<br />

>Ztarget.<br />

• PDO can be used <strong>in</strong> any test tool<strong>in</strong>g<br />

platform.<br />

• The capacitors used today may have a big<br />

challenge to meet Ztarget below 10mΩ.<br />

Hence, it needs to path f<strong>in</strong>d ultra low ESR<br />

cap to cater future low Z system.<br />

02/01/2002 <strong>BiTS</strong> 2002 16


Acknowledgement<br />

• The author would like to acknowledge his<br />

supervisor Tan, Chun Chiat and his<br />

colleagues(Lim, Chu Aun; Chan, Kok<br />

Hong; Peter Ngaa and Kev<strong>in</strong> Zhu) for their<br />

valuable support and motivations.<br />

02/01/2002 <strong>BiTS</strong> 2002 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!