23.11.2014 Views

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong><br />

<strong>Socket</strong> <strong>Workshop</strong><br />

IEEE<br />

March 3-6 , 2002<br />

Hilton Phoenix East/Mesa Hotel<br />

Mesa, Arizona<br />

IEEE<br />

COMPUTER<br />

SOCIETY<br />

Sponsored By The IEEE Computer Society<br />

<strong>Test</strong> Technology Technical Council


COPYRIGHT NOTICE<br />

• The papers <strong>in</strong> this publication comprise the proceed<strong>in</strong>gs of the 2002<br />

<strong>BiTS</strong> <strong>Workshop</strong>. They reflect the authors’ op<strong>in</strong>ions and are reproduced as<br />

presented , without change. Their <strong>in</strong>clusion <strong>in</strong> this publication does not<br />

constitute an endorsement by the <strong>BiTS</strong> <strong>Workshop</strong>, the sponsors, or the<br />

Institute of Electrical and Electronic Eng<strong>in</strong>eers, Inc.<br />

· There is NO copyright protection claimed by this publication. However,<br />

each presentation is the work of the authors and their respective<br />

companies: as such, proper acknowledgement should be made to the<br />

appropriate source. Any questions regard<strong>in</strong>g the use of any materials<br />

presented should be directed to the author/s or their companies.


<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

Technical Program<br />

Session 5<br />

Tuesday 3/05/02 1:00PM<br />

Model<strong>in</strong>g, Analysis and Characterization<br />

“Electrical Model<strong>in</strong>g And Contactor Performance In A RF System”<br />

Jim Adley - Johnstech International Corporation<br />

Eric Leung - Johnstech International Corporation<br />

Jeff Sherry - Johnstech International Corporation<br />

“Leaded 2mm Contactors: Measur<strong>in</strong>g And Model<strong>in</strong>g To 10 GHz”<br />

Tom Strouth - Giga<strong>Test</strong> Labs Orlando Bell - Giga<strong>Test</strong> Labs<br />

Gary Otonari - Giga<strong>Test</strong> Labs Eric Bogat<strong>in</strong> - Giga<strong>Test</strong> Labs<br />

Jeff Sherry - Johnstech International Corporation<br />

“Force Measurement On <strong>Socket</strong>s And Contactors”<br />

Richard Block - Advanced Micro Devices<br />

Rafiq Hussa<strong>in</strong> - Advanced Micro Devices


Electrical Model<strong>in</strong>g and<br />

Contactor Performance <strong>in</strong> a RF<br />

<strong>Test</strong> System<br />

0.5 mm Pitch BGA<br />

Jim Adley, R&D Manager<br />

Eric Leung, R&D Eng<strong>in</strong>eer<br />

Jeff Sherry, R&D Eng<strong>in</strong>eer<br />

Johnstech International<br />

1


Discussion Topics<br />

▼ Modeled Data<br />

▼ Measured Data<br />

▼ Comparative Data<br />

▼ Equivalent Circuit Model<br />

▼ Conclusion<br />

2


Introduction: 0.5 mm Pitch<br />

BGA Contactor<br />

▼ Cross sectional view of a contactor<br />

3


Modeled Data<br />

▼ Model<strong>in</strong>g was done us<strong>in</strong>g Agilent HFSS<br />

software<br />

▼ An AutoCAD draw<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g the actual<br />

structure built by Giga<strong>Test</strong> Labs, was imported<br />

<strong>in</strong>to HFSS<br />

▼ Data obta<strong>in</strong>ed from simulation <strong>in</strong>cludes:<br />

▼ Return Loss S 11<br />

▼ Insertion Loss S 21<br />

4


Modeled Data<br />

▼ 0.5 mm pitch BGA model from an AutoCAD file<br />

5


Modeled Data - S 11<br />

▼ This is data from the HFSS model of return<br />

loss by the actual 0.5 mm BGA structure<br />

tested by Giga<strong>Test</strong> Labs<br />

0<br />

-5<br />

-10<br />

-15<br />

Return Loss (dB)<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

HFSS 0.5mm Pitch Adjacent BGA Contact Model<br />

Optimum Load Board Layout of HFSS 0.5mm Pitch Adjacent<br />

BGA Contact Model<br />

-50<br />

1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

6


Modeled Data - S 21 & S 11<br />

0<br />

-0.25<br />

▼ This is data from the HFSS model of return<br />

loss by the actual .5 mm BGA structure tested<br />

by Giga<strong>Test</strong> Labs<br />

0.5mm Pitch BGA Adjacent Contact HFSS Insertion Loss Models<br />

-1 dB Loss Po<strong>in</strong>t @ 17 GHz<br />

InsertionLoss (dB)<br />

-0.5<br />

-0.75<br />

-1<br />

-1.25<br />

-1 dB Loss Po<strong>in</strong>t @ 13 GHz<br />

-1.5<br />

-1.75<br />

-2<br />

HFSS 0.5mm Pitch Adjacent BGA Contact Model<br />

Optimum Load Board Layout of HFSS 0.5mm Pitch Adjacent BGA<br />

Contact Model<br />

1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

7


Modeled Data<br />

▼ HFSS Capabilities<br />

▼<br />

▼<br />

▼<br />

▼<br />

▼<br />

▼<br />

▼<br />

Contact design parameters<br />

Load board design effects<br />

Device pad <strong>in</strong>teractions<br />

Expected performance<br />

Effects of tolerances<br />

Interaction between components <strong>in</strong> system<br />

(device, contactor, handler, etc.)<br />

Trends<br />

8


Measured Data<br />

▼ Giga<strong>Test</strong> Labs tested a 0.5 mm pitch Ball<br />

Series contactor<br />

▼ Giga<strong>Test</strong> Labs used a surrogate device -<br />

Short, Open, Load, Thru (SOLT) to conduct<br />

test<strong>in</strong>g<br />

▼ Data was measured by Giga<strong>Test</strong> Labs<br />

through prob<strong>in</strong>g from the back side of a<br />

non-optimized load board<br />

9


Measured Data<br />

Surrogate<br />

Circuit<br />

10


Measured Data<br />

▼ Giga<strong>Test</strong> Labs used a micro probe station for<br />

measur<strong>in</strong>g two adjacent contacts S-parameters<br />

11


Measured Data<br />

▼ The 0.5 mm pitch BGA hous<strong>in</strong>g and BGA<br />

surrogate package<br />

12


Comparative Data<br />

0<br />

HFSS Model vs. Measured <strong>Test</strong> Data for 0.5mm BGA Adjacent Contacts<br />

-5<br />

-10<br />

Return Loss (dB)<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

-20 dB Measured Loss Po<strong>in</strong>t @ 2.95 GHz<br />

HFSS 0.5mm Pitch Adjacent BGA Contact Model<br />

Measured <strong>Test</strong> Data from Giga<strong>Test</strong> Labs for 0.5mm Adjacent BGA<br />

Contact (Non-Optimum pads)<br />

-50<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

13


Comparative Data<br />

0<br />

0.5mm Pitch BGA Adjacent Contact Modeled vs. Measured <strong>Test</strong> Data<br />

-0.25<br />

-0.5<br />

Insertion Loss (dB)<br />

-0.75<br />

-1<br />

-1.25<br />

-1.5<br />

-1.75<br />

HFSS 0.5mm Pitch Adjacent BGA Contact Model<br />

-1 dB Measured Loss Po<strong>in</strong>t @ 10.3 GHz<br />

Measured <strong>Test</strong> Data from Giga<strong>Test</strong> Labs for 0.5mm Adjacent BGA Contact (Non-Optimum pads)<br />

-2<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

14


Equivalent Circuit Model<br />

▼ Characterize the parasitic effects<br />

▼ Simulate the contact with an equivalent<br />

circuit for time doma<strong>in</strong> response<br />

▼ Integrate the contactor <strong>in</strong>to a system level<br />

simulation to:<br />

▼<br />

▼<br />

Reduce test cost and time<br />

Optimize system performance<br />

15


Equivalent Circuit Model<br />

▼ Measure the S-parameters for short-, open- and<br />

thru- fixtures from two adjacent contacts<br />

▼ Use measured data and Agilent Advanced<br />

Design System (ADS) for model extraction and<br />

verification<br />

▼ Compare measured and ADS simulated<br />

<strong>in</strong>sertion and return loss<br />

16


Equivalent Circuit Model<br />

▼ This figure shows the Equivalent Circuit Model<br />

for two adjacent 0.5 mm BGA contacts<br />

17


Equivalent Circuit Model<br />

0.5mm Pitch BGA Adjacent Contact ADS Equivalent<br />

Circuit Model vs. Measured <strong>Test</strong> Data<br />

0<br />

-10<br />

Return Loss (dB)<br />

-20<br />

-30<br />

-40<br />

-50<br />

-20 dB Measured Loss Po<strong>in</strong>t @ 2.95 GHz<br />

ADS Return Loss Model for 0.5mm Adjacent BGA Contact From Equivalent<br />

Circuit<br />

Measured <strong>Test</strong> Data from Giga<strong>Test</strong> Labs for 0.5mm Adjacent BGA<br />

Contact (Non-Optimum pads)<br />

-60<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

18


Equivalent Circuit Model<br />

▼ Phase comparison shows that the contact is<br />

l<strong>in</strong>ear over the frequency model<br />

200<br />

S 11 Phase Comparison for ADS 0.5mm Equivalent Circuit Model vs. Measured<br />

<strong>Test</strong> Data<br />

150<br />

Angle (Degrees)<br />

100<br />

50<br />

0<br />

-50<br />

ADS Return Loss Phase Model for 0.5mm Adjacent BGA<br />

Contact From Equivalent Circuit<br />

Return Loss Phase of Measured <strong>Test</strong> Data from Giga<strong>Test</strong> Labs<br />

for 0.5mm Adjacent BGA Contact<br />

-100<br />

-150<br />

-200<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

19


Equivalent Circuit Model<br />

Development<br />

0<br />

0.5mm BGA Adjacent Contact Insertion Loss (S 11 ) ADS Equivalent Circuit<br />

Model vs. Measured <strong>Test</strong> Data<br />

-0.5<br />

Insertion Loss (dB)<br />

-1<br />

-1.5<br />

-1 dB Measured Loss Po<strong>in</strong>t @ 10.3 GHz<br />

ADS Insertion Loss Model for 0.5mm Adjacent BGA Contact From<br />

Equivalent Circuit<br />

Measured <strong>Test</strong> Data from Giga<strong>Test</strong> Labs for 0.5mm Adjacent<br />

BGA Contact (Non-Optimum pads)<br />

-2<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

20


Equivalent Circuit Model<br />

Development<br />

0<br />

S 21 Phase Comparison for ADS 0.5mm BGA Equivalent Circuit Model vs.<br />

Measured <strong>Test</strong> Data<br />

-20<br />

-40<br />

Angle (Degrees)<br />

-60<br />

-80<br />

-100<br />

-120<br />

-140<br />

ADS Insertion Loss Phase Model for 0.5mm Adjacent BGA Contact<br />

From Equivalent Circuit<br />

Insertion Loss Phase of Measured <strong>Test</strong> Data by Giga<strong>Test</strong> Labs for<br />

0.5mm Adjacent BGA Contact<br />

-160<br />

-180<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

21


Conclusion<br />

▼ For lead<strong>in</strong>g edge RF applications such as<br />

0.5 mm pitch, model<strong>in</strong>g is helpful to<br />

achieve optimal system performance<br />

▼ Accurate equivalent circuit models can<br />

represent contact behavior and help <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g complete system response<br />

▼ Model<strong>in</strong>g can help RF eng<strong>in</strong>eers save time<br />

and money <strong>in</strong> development by correctly<br />

predict<strong>in</strong>g system results and elim<strong>in</strong>at<strong>in</strong>g<br />

or reduc<strong>in</strong>g hardware builds and test<br />

iterations<br />

22


Leaded 2 mm Contactors:<br />

Measur<strong>in</strong>g and Model<strong>in</strong>g to 10 GHz<br />

Tom Strouth, Orlando Bell, Gary Otonari, Eric Bogat<strong>in</strong><br />

Giga<strong>Test</strong> Labs, www.Giga<strong>Test</strong>.com<br />

and<br />

Jeff Sherry<br />

Johnstech, www.Johnstech.com


Slide - 2<br />

Outl<strong>in</strong>e<br />

• Contactors<br />

• Fixtur<strong>in</strong>g<br />

• Measurement set up<br />

• Model<strong>in</strong>g process<br />

• Results<br />

• Us<strong>in</strong>g the model for simulation<br />

<strong>BiTS</strong> 2002


Slide - 3<br />

32 lead MLP2 Contactor<br />

<strong>BiTS</strong> 2002


Slide - 4<br />

Analysis<br />

• Goal<br />

Create an equivalent circuit model for two adjacent<br />

leads that predicts the measured S parameters<br />

Use this verified, high bandwidth model for<br />

performance evaluation<br />

• Strategy<br />

Use measurements of open, short, thru topologies<br />

De-embed the fixtur<strong>in</strong>g<br />

Use simplest model for accurate, 10 GHz bandwidth<br />

Use SPICE model of de-embedded contactor for<br />

performance simulation<br />

<strong>BiTS</strong> 2002


Slide - 5<br />

Measurement<br />

Configurations<br />

open short thru<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

<strong>BiTS</strong> 2002


Slide - 6<br />

Surrogate Package:<br />

Enables configur<strong>in</strong>g open, short, thru<br />

connections for edge and corner leads<br />

thru<br />

short<br />

open<br />

<strong>BiTS</strong> 2002


Slide - 7<br />

Instrument Set Up<br />

<strong>BiTS</strong> 2002


Slide - 8<br />

Prob<strong>in</strong>g From the Back Side<br />

Prob<strong>in</strong>g us<strong>in</strong>g microprobes and a<br />

Giga<strong>Test</strong> Probe Station<br />

<strong>BiTS</strong> 2002


Slide - 9<br />

Model<strong>in</strong>g the System with<br />

Agilent ADS<br />

short<br />

open<br />

L cbg<br />

short<br />

VNA<br />

Fixture<br />

board<br />

Pads and<br />

contactor<br />

Surrogate<br />

package<br />

<strong>BiTS</strong> 2002


Slide - 10<br />

Methodology<br />

• Measure S parameters of calibration vias <strong>in</strong> bare fixture<br />

board<br />

• Extract model for just the fixture<br />

• Select two adjacent corner leads (longest leads)<br />

• Measure open, short, thru for the pair of leads<br />

• Extract model of contactor p<strong>in</strong>s and surrogate package<br />

• Use de-embedded contactor circuit model to simulate<br />

performance<br />

<strong>BiTS</strong> 2002


Slide - 11<br />

Corner Leads (worse case):<br />

Open/short Measurements<br />

short<br />

Z<br />

=<br />

1+<br />

50<br />

1−<br />

S<br />

S<br />

open<br />

open<br />

short<br />

<strong>BiTS</strong> 2002


Slide - 12<br />

Optimized Model: Open<br />

Impedance of one trace<br />

Coupl<strong>in</strong>g between traces<br />

Solid L<strong>in</strong>e is Simulated<br />

<strong>BiTS</strong> 2002


Slide - 13<br />

Optimized Model: Open<br />

Reflection<br />

Transmission<br />

Triangles (purple): Measured<br />

Open provides mutual capacitance <strong>in</strong>fo<br />

<strong>BiTS</strong> 2002


Slide - 14<br />

Optimized Model: Short<br />

Impedance of one trace<br />

Coupl<strong>in</strong>g between traces<br />

Solid L<strong>in</strong>e is Simulated<br />

<strong>BiTS</strong> 2002


Slide - 15<br />

Optimized Model: Short<br />

Reflection<br />

Transmission (coupl<strong>in</strong>g)<br />

Triangles (purple): Measured<br />

Short provides mutual <strong>in</strong>ductance <strong>in</strong>fo<br />

<strong>BiTS</strong> 2002


Slide - 16<br />

Optimized Model: Loop-Thru<br />

Reflection<br />

Transmission<br />

Triangles (purple): Measured<br />

Bandwidth of the model > 10 GHz<br />

<strong>BiTS</strong> 2002


Slide - 17<br />

Summary of Extracted<br />

Parameters<br />

23 pH<br />

89 fF<br />

860 pH<br />

151 fF<br />

33 pH<br />

140 fF<br />

23 pH<br />

78 fF<br />

140 fF 89 fF<br />

310 pH<br />

860 pH<br />

133 fF<br />

151 fF<br />

25 fF<br />

33 pH<br />

33 pH<br />

VNA<br />

Fixture<br />

<strong>BiTS</strong> 2002<br />

Contactor<br />

Note: load board was not optimized for performance<br />

Surrogate


Slide - 18<br />

De-Embedded Insertion and<br />

Return Loss of Contactor<br />

Return loss<br />

Insertion loss<br />

Meets specification:<br />

< -20 dB, below 10 GHz<br />

Meets specification:<br />

> -1 dB, below 10 GHz<br />

Note: load board is not optimized for performance,<br />

standard contactor - not enhanced contactor<br />

<strong>BiTS</strong> 2002


Slide - 19<br />

Transient Simulation Us<strong>in</strong>g<br />

De-embedded Contactor Model<br />

Specs:<br />

De-embedded contactor<br />

model<br />

20 psec rise time<br />

50 Ω source, term<strong>in</strong>ation<br />

Differential drive<br />

<strong>BiTS</strong> 2002


Slide - 20<br />

Transient Simulation<br />

with 20 psec Rise Time<br />

• 20 psec <strong>in</strong>put rise time<br />

• 28 psec output rise time<br />

• 20 psec <strong>in</strong>tr<strong>in</strong>sic<br />

<strong>in</strong>terconnect rise time<br />

(> 15 GHz bandwidth)<br />

• 21 psec time delay<br />

Note: load board is not optimized for performance,<br />

standard contactor - not enhanced contactor<br />

<strong>BiTS</strong> 2002


Slide - 21<br />

Conclusions<br />

• A contactor model can be de-embedded<br />

from S-parameter measurements<br />

• A simple model matches measured data up<br />

to at least 10 GHz. (model could have more<br />

bandwidth)<br />

• A model extracted from frequency doma<strong>in</strong><br />

measurements can be used <strong>in</strong> a transient<br />

simulation.<br />

<strong>BiTS</strong> 2002


Force Measurement on<br />

<strong>Socket</strong>s and Contactors<br />

2002 <strong>Burn</strong>-<strong>in</strong> and <strong>Test</strong> <strong>Socket</strong> <strong>Workshop</strong><br />

March 3 - 6, 2002<br />

Presenter: Richard Block<br />

Rafiq Hussa<strong>in</strong>


Agenda<br />

• Force Issues <strong>in</strong> <strong>Test</strong> and <strong>Burn</strong>-In Env.<br />

• Force Measurement Unit<br />

• Experimentation & <strong>Test</strong> Data<br />

• Conclusions<br />

• Look<strong>in</strong>g Forward<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

2


Force Issues <strong>in</strong> <strong>Test</strong> and<br />

<strong>Burn</strong>-In Env.<br />

• Bent P<strong>in</strong>s / Deformed Balls<br />

• Overdriv<strong>in</strong>g of Pogos<br />

• Crack/Chipped Die or Pkg<br />

•Pkg warp<strong>in</strong>g<br />

• Force Distribution<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

3


Force Measurement Unit<br />

• Simple Design<br />

– 1 transducer<br />

– 2 spacers<br />

– 1 digital display (giv<strong>in</strong>g real-time force<br />

readouts to 0.1 lb accuracy)<br />

• Location<br />

– Replaced support under PCB and <strong>Socket</strong><br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

4


DUT<br />

Thermal Head<br />

FMU consists of 3 pcs<br />

2 spacers<br />

1 transducer<br />

PCB<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

5


Board Deflection<br />

• Motherboard deflection was necessary for<br />

transducer to take measurements<br />

– Motherboard was 62 mils thick<br />

– Transducer max deflection was 3 mils for 250lbs<br />

– Deflection did not create any noticeable error <strong>in</strong><br />

force readout<br />

• 2 lb, 5 lb, and 10 lb weights were used for confirmation<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

6


Experimentation<br />

• FMU was used for various validations<br />

– First Experiment<br />

– Actual force (g/p<strong>in</strong>) vs. Vendors Spec (g/p<strong>in</strong>)<br />

• LLCR measurements were taken at various forces<br />

– Pass<strong>in</strong>g tests consisted of “no opens p<strong>in</strong>s”<br />

• Both Shorted and Thermal Vehicle pkgs were used<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

7


Actual Force vs. Vendor Spec<br />

30<br />

28<br />

28<br />

25<br />

Vendor Spec.<br />

Actual<br />

25<br />

25<br />

Force (grams/p<strong>in</strong>)<br />

20<br />

15<br />

10<br />

15<br />

18<br />

12<br />

12<br />

11<br />

17<br />

15<br />

16<br />

18<br />

16<br />

5<br />

0<br />

A B (1) B (2) C D E F<br />

Vendor<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

8


Experimentation cont.<br />

• FMU was used for various validations<br />

– Second Experiment<br />

– Insertion study to f<strong>in</strong>d optimal force vs. Pogo life<br />

•First run:<br />

–100,000 <strong>in</strong>sertions were made at ideal force first<br />

experiment<br />

–LLCR measurements were taken periodically to see if<br />

resistance values <strong>in</strong>creased<br />

•Second run:<br />

–100,000 <strong>in</strong>sertions at different force<br />

–LLCR measurements were compared to first run<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

9


Insertion Life vs. Force<br />

Vendor Insertions ave ohms Vendor Insertions ave ohms<br />

A Low 22.02 D Low 23.37<br />

18 g/p 25 k 22.04 16 g/p 25 k 22.75<br />

50 k 22.10 50 k 22.70<br />

75 k 22.09 75 k 22.57<br />

B (1) Low 23.11 E Low 22.24<br />

12 g/p 25 k 23.27 25 g/p 25k 22.10<br />

50 k 22.93 50k 22.34<br />

75 k 22.68 75k 22.30<br />

96 k 22.14<br />

C Low 22.82 F Low 22.25<br />

17 g/p 40 k 22.04 16 g/p 25 k 22.47<br />

80 k 22.16 50 k 22.30<br />

75 k 22.38<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

10


Insertion Life vs. Force cont.<br />

• Insertions were done at<br />

a greater force then first<br />

series of <strong>in</strong>sertions.<br />

– ~3 to 4 g/p depend<strong>in</strong>g on<br />

<strong>in</strong>itial required force<br />

• Vendor D had p<strong>in</strong><br />

failures at this higher<br />

force<br />

Vendor<br />

Insertions ave ohms<br />

B (1)<br />

Low 23.11<br />

15 g/p 30 k 23.41<br />

50 k 23.21<br />

70 k 23.21<br />

D<br />

Low 22.57<br />

19 g/p 25 k 22.73<br />

40 k 22.40<br />

E<br />

Low 22.24<br />

28 g/p 25k 26.67<br />

75k 26.35<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

11


Conclusions<br />

• Insight <strong>in</strong>to vendors tolerance control and<br />

mach<strong>in</strong><strong>in</strong>g ability<br />

• Confirmation of test forces on DUT with<br />

reaction forces based on complete test<br />

setup, not <strong>in</strong>dividual pieces tested<br />

separately<br />

• More accurate qualification for compression<br />

based sockets<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

12


Look<strong>in</strong>g Forward<br />

• Die size Transducers<br />

• Force variation across die/pkg<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

13


Transducer for Handlers<br />

Example<br />

Plunger<br />

Contactor Alignment Plate<br />

Transducer<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

14


Package/Die Transducer Example<br />

Die Transducer<br />

Thermal Head<br />

DUT<br />

Package Transducer<br />

PCB<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

15


Distribution of Force over Die/Pkg<br />

Example<br />

11<br />

10.8<br />

10.6<br />

10.4<br />

PSI<br />

10.2<br />

10<br />

• Check Force across die surface<br />

– Check flatness of thermal head<br />

– Check that socket is level<br />

Jan 10, 2002<br />

Force Measurement on <strong>Socket</strong>s &<br />

Contactors<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!