25.11.2014 Views

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

Burn-in & Test Socket Workshop - BiTS Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong><br />

<strong>Socket</strong> <strong>Workshop</strong><br />

March 2 - 5, 2003<br />

Hilton Phoenix East / Mesa Hotel<br />

Mesa, Arizona<br />

Sponsored By The IEEE Computer Society<br />

<strong>Test</strong> Technology Technical Council<br />

tttc


COPYRIGHT NOTICE<br />

• The papers <strong>in</strong> this publication comprise the proceed<strong>in</strong>gs of the 2003<br />

<strong>BiTS</strong> <strong>Workshop</strong>. They reflect the authors’ op<strong>in</strong>ions and are reproduced as<br />

presented , without change. Their <strong>in</strong>clusion <strong>in</strong> this publication does not<br />

constitute an endorsement by the <strong>BiTS</strong> <strong>Workshop</strong>, the sponsors, or the<br />

Institute of Electrical and Electronic Eng<strong>in</strong>eers, Inc.<br />

· There is NO copyright protection claimed by this publication. However,<br />

each presentation is the work of the authors and their respective<br />

companies: as such, proper acknowledgement should be made to the<br />

appropriate source. Any questions regard<strong>in</strong>g the use of any materials<br />

presented should be directed to the author/s or their companies.


<strong>Burn</strong>-<strong>in</strong> & <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

Session 6<br />

Tuesday 3/04/03 4:00PM<br />

Technical Program<br />

<strong>Socket</strong><strong>in</strong>g Lead Free Packages<br />

“Lead Free Area Array Module <strong>Test</strong> And <strong>Burn</strong><strong>in</strong>”<br />

Ethan Gallagher – IBM Microelectronics<br />

Zenon Podpora – IBM Microelectronics<br />

“Lead Free Contact<strong>in</strong>g”<br />

Bert Brost – Johnstech International Corporation<br />

“The Effects Of No Lead Solder Balls On <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design<br />

Decisions”<br />

Mike Noel – Motorola Semiconductor Products<br />

Don VanOverloop – Motorola Semiconductor Products<br />

Daniel Wilcox – Motorola Semiconductor Products<br />

K.Y. Yap – Motorola Semiconductor Products<br />

Tom Lyz<strong>in</strong>ski – Wells-CTI Keith Callahan – Wells-CTI


Lead Free Area Array<br />

Module <strong>Test</strong> and <strong>Burn</strong><strong>in</strong><br />

2003 <strong>Burn</strong>-<strong>in</strong> and <strong>Test</strong> <strong>Socket</strong> <strong>Workshop</strong><br />

Ethan Gallagher / Zen Podpora<br />

Contact<strong>in</strong>g Systems Eng<strong>in</strong>eer<strong>in</strong>g<br />

Microelectronics


Objectives<br />

• Determ<strong>in</strong>e impact of lead free BGA and<br />

CGA on common test and <strong>Burn</strong><strong>in</strong> sockets<br />

(prelim<strong>in</strong>ary f<strong>in</strong>d<strong>in</strong>gs)<br />

– Assess product <strong>in</strong>terconnect lead damage<br />

– Evaluate contact resistance<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

2


Agenda<br />

• Brief history on lead free packag<strong>in</strong>g<br />

• <strong>Test</strong><br />

– Plastic BGA contact resistance<br />

– Ceramic BGA & CGA contact resistance and ball<br />

damage<br />

• <strong>Burn</strong><strong>in</strong><br />

– Plastic BGA contact resistance and ball damage<br />

• Summary of the early learn<strong>in</strong>g evaluations<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

3


Pb free – Background<br />

• Why Pb free microelectronics packages?<br />

– Environmental concerns with Pb disposition<br />

– consumer electronics<br />

– Drivers<br />

• Legislative - RoHS - Restriction of Hazardous<br />

Substances<br />

– Implementation July 2006<br />

– Server exemption till Jan 2010<br />

– Somewhat ambiguous – many items undef<strong>in</strong>ed<br />

• Customer/Market – most urgent ??<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

4


Pb Free – Background<br />

• What materials to replace PbSn?<br />

– SAC - T<strong>in</strong> (Sn) , Silver (Ag) , Copper (Cu)<br />

• What is the challenge?<br />

– Product - Match connection reliability-<br />

• thermal expansion differences-<br />

– <strong>Test</strong> – Ma<strong>in</strong>ta<strong>in</strong> / Improve Yield<br />

• Assess Performance w/POR Hardware<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

5


Typical <strong>Test</strong> Setup<br />

• Pneumatic controlled<br />

sockets<br />

• Thermostream heat<strong>in</strong>g<br />

• Thermocouple sense<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

6


Typical <strong>Test</strong> Setup<br />

DC resistance measurements on<br />

<strong>Socket</strong> Analog Resistance<br />

Analyzer<br />

– “Pseudo” four po<strong>in</strong>t<br />

Pneumatic controls<br />

<strong>Socket</strong> & Board<br />

Data Collection Computer<br />

Relays<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

7


PBGA <strong>Test</strong> <strong>Socket</strong> Resistance at<br />

Cycl<strong>in</strong>g<br />

• <strong>Test</strong> Parameters<br />

– Surface mount pogo socket<br />

– Device temp at test: 120C<br />

– Normalized with golden module at<br />

room temp<br />

– Eutectic BGA device daisy<br />

cha<strong>in</strong>, 35mm, 1mm pitch, 580<br />

I/Os<br />

– Pb free BGA device daisy<br />

cha<strong>in</strong>, 42.5mm, 1.27mm pitch,<br />

1089 I/Os<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

8


PBGA <strong>Test</strong> <strong>Socket</strong><br />

Resistance<br />

Average Resistance<br />

Vs. Cycles<br />

0.6<br />

0.4<br />

Eutectic<br />

PbFree 1<br />

PbFree 2<br />

ohms<br />

0.2<br />

0<br />

0 10k 20k 50k 100k 150k 200k 300k<br />

cycles<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

9


CBGA <strong>Test</strong> <strong>Socket</strong><br />

Resistance<br />

• Daisy-cha<strong>in</strong> substrates<br />

• Temp = ambient<br />

• Surface mount crown<br />

contact on 90/10 balls<br />

• Surface mount crown<br />

contact on lead-free SAC<br />

balls<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

10


CBGA Contact Resistance<br />

2<br />

1.5<br />

Ohms<br />

1<br />

0.5<br />

90/10<br />

Leadfree<br />

0<br />

0 65K<br />

Cycles<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

11


CBGA <strong>Test</strong> Damage<br />

90/10 Leadfree<br />

Witness Marks<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

12


CCGA <strong>Test</strong> Cycl<strong>in</strong>g<br />

• Daisy-cha<strong>in</strong> modules<br />

• Temp = ambient<br />

90/10<br />

• POR contact on 90/10<br />

columns<br />

• Surface mount crown<br />

contact on lead-free<br />

CuCCGA<br />

Leadfree<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

13


CCGA Contact Resistance<br />

Average Resistance<br />

vs. Cycles<br />

Ohms<br />

2<br />

1.5<br />

90/10<br />

CuCGA<br />

1<br />

0 90K<br />

Cycles<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

14


Column Damage<br />

Witness Marks<br />

90/10 Pb Free<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

15


PBGA Contactor Resistance at<br />

<strong>Burn</strong><strong>in</strong> [1mm]<br />

• <strong>Burn</strong>-<strong>in</strong> parameters @140C<br />

– Compression mount BGA socket<br />

– Resistance test at room temp<br />

– BGA device: daisy cha<strong>in</strong> 42.5mm, 1mm pitch<br />

– Setup NOT normalized<br />

– Eutectic data average of 7 modules (~1500<br />

IO/mod)<br />

– Pb free data average of 4 modules (~1500<br />

IO/mod)<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

16


PBGA Contactor Resistance<br />

at <strong>Burn</strong><strong>in</strong> [1mm]<br />

2.5<br />

Average Resistance<br />

at <strong>Burn</strong>-<strong>in</strong><br />

ohms<br />

2<br />

1.5<br />

0 100<br />

<strong>Burn</strong>-<strong>in</strong> hours<br />

PbFree<br />

Eutectic<br />

Lead-free resistance change ~ 130 mohms<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

17


Ball Damage 1.00mm Pitch<br />

Contactor witness mark<br />

Contactor witness mark<br />

• 1.00mm eutectic Hyper BGA<br />

• Compression style contactor<br />

• 162 hrs @ 140C<br />

• 1.00mm Pb Free Hyper BGA<br />

• Compression style contact<br />

• 120 hrs @ 140C<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

18


PBGA Contactor Resistance at<br />

<strong>Burn</strong><strong>in</strong> [1.27mm]<br />

• <strong>Burn</strong>-<strong>in</strong> Parameters<br />

– P<strong>in</strong>ch style BGA socket<br />

– <strong>Burn</strong>-<strong>in</strong> temp: 140C<br />

– Resistance measured at room temperature<br />

– BGA device daisy cha<strong>in</strong> 42.5mm, 1089 I/O<br />

– Setup normalized with 3 daisy cha<strong>in</strong> devices at<br />

room temp<br />

– No control (Eutectic BGA ) module<br />

– Pb free data average of 6 modules (971<br />

IO/mod)<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

19


PBGA Contactor Resistance<br />

at <strong>Burn</strong><strong>in</strong> [1.27mm]<br />

0.4<br />

Average Resistance<br />

at <strong>Burn</strong>-<strong>in</strong><br />

0.3<br />

ohms<br />

0.2<br />

0.1<br />

0<br />

0 100<br />

<strong>Burn</strong>-<strong>in</strong> hours<br />

PbFree<br />

Resistance change 0.065 ohms / 100hrs<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

20


Ball Damage 1.27mm Pitch<br />

Contactor witness mark<br />

Contactor witness mark<br />

• 1.27mm eutectic PBGA<br />

• P<strong>in</strong>ch style contact<br />

• 140 hrs @ 140C<br />

• 1.27mm Pb Free PBGA<br />

• P<strong>in</strong>ch style contact<br />

• 120 hrs @ 140C<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

21


PBGA Contactor Clean<strong>in</strong>g<br />

• Surface mount pogo socket<br />

– Two 1089 I/O Pb free<br />

BGA devices to test on<br />

– Four 1089 I/O Pb free<br />

BGA devices to cycle on<br />

– <strong>Test</strong> temperature: 120C<br />

– Clean<strong>in</strong>g method: soft<br />

brass brush + air blow off<br />

– 10% improvement at<br />

300k<br />

ohms<br />

2<br />

1.5<br />

1<br />

0.5<br />

Average Resistance<br />

Before and After Clean<br />

0k 50k 100k 150k 200k 300k<br />

cycles<br />

PbFree device 1 before clean<br />

PbFree device 1 after clean<br />

PbFree device 2 before clean<br />

PbFree device 2 after clean<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

22


Contactor Clean<strong>in</strong>g<br />

before<br />

Imbedded solder<br />

after<br />

Solder and other debris<br />

• Clean<strong>in</strong>g technique – soft brass brush + air blow off<br />

• Clean<strong>in</strong>g frequency – <strong>in</strong> depth experimentation required<br />

• Pb free solder material transfer seems lesser than SnPb<br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

23


Pb Free Early Learn<strong>in</strong>g Summary<br />

Contact resistance similar or lower than that of eutectic<br />

BGA and 90/10 BGA and CCGA<br />

Ball deformation from burn-<strong>in</strong> sockets less than with<br />

eutectic BGA<br />

Less solder material transfer onto socket contact than<br />

with eutectic solder<br />

Early learn<strong>in</strong>g results <strong>in</strong>dicate no problems with us<strong>in</strong>g<br />

exist<strong>in</strong>g BGA <strong>in</strong>terconnect hardware <strong>in</strong> lead free<br />

module test and burn-<strong>in</strong><br />

<strong>Test</strong><strong>in</strong>g Lead Free Area Array Packages <strong>BiTS</strong> 2003<br />

24


Lead Free Contact<strong>in</strong>g<br />

2003 <strong>Burn</strong>-<strong>in</strong> and <strong>Test</strong> <strong>Socket</strong><br />

<strong>Workshop</strong><br />

March 2-5, 2003<br />

Bert Brost, Johnstech International


Up Front Concerns with Lead-Free<br />

Solder<strong>in</strong>g<br />

• Solder alloys need to be clearly<br />

understood to:<br />

• Meet customer and government health<br />

requirements<br />

• Meet customer quality and reliability<br />

requirements<br />

• Meet company and customer cost<br />

requirements<br />

• Be compatible


Base L<strong>in</strong>e Information<br />

• The phase out of Pb <strong>in</strong> solder is required<br />

to reduce Pb alloys from leach<strong>in</strong>g from<br />

landfills <strong>in</strong>to the air, soil, and dr<strong>in</strong>k<strong>in</strong>g<br />

water<br />

- The move to Pb-free solders creates stimulat<strong>in</strong>g<br />

and <strong>in</strong>terest<strong>in</strong>g tasks with real opportunities for<br />

those that are first with Pb-free product offer<strong>in</strong>gs<br />

- Solder suppliers have solder alloy variations<br />

available that are Pb-free<br />

• Each alloy has its unique properties and<br />

characteristics


Lead-free Alloy Wish List<br />

(Short List)<br />

• Low cost<br />

• Direct replacement for 63/37 or 60/40<br />

Sn/Pb Alloys<br />

• Non-hazardous<br />

• Compatible with current equipment<br />

• Compatible with a variety of lead-bear<strong>in</strong>g<br />

and lead-free surface coat<strong>in</strong>gs<br />

• Mechanically reliable, thermal fatigue<br />

resistance, easily repairable<br />

• Available <strong>in</strong> sufficient supply


The Three Families of Pb-free<br />

Solder<br />

• Most likely, there will be a family of Pbfree<br />

solder alloys that provide the results<br />

required for various applications<br />

• Sn96/Ag4<br />

- Available with a good record of use <strong>in</strong> electronics<br />

with a majority be<strong>in</strong>g hybrid applications<br />

• Sn/Ag/Cu<br />

- <strong>Test</strong>s have shown this family member has the potential to<br />

replace Pb-bear<strong>in</strong>g solders<br />

- Good wett<strong>in</strong>g characteristics & good fatigue resistance<br />

- Cost are higher than traditional Pb-bear<strong>in</strong>g solders<br />

• Sn/Cu Alloys<br />

- Have ga<strong>in</strong>ed some acceptance due to low costs<br />

- Offers poor wett<strong>in</strong>g and poor mechanical strength<br />

of the preced<strong>in</strong>g family member


Undesirable Effects of Other<br />

Elements<br />

• Cadmium: Toxicity<br />

• Indium: Potential for corrosion with rapid<br />

oxide formation dur<strong>in</strong>g melt<strong>in</strong>g<br />

• Gallium: Cost, brittleness<br />

• Bismuth: Becomes brittle, Secondary<br />

eutectic (m<strong>in</strong>imum melt<strong>in</strong>g po<strong>in</strong>t) of 96°C<br />

created if exposed to Pb<br />

• Z<strong>in</strong>c: Not easy to use, oxidation, corrosion


Sett<strong>in</strong>g a Pb-Free Contact<strong>in</strong>g Basel<strong>in</strong>e<br />

• Why<br />

• Lack of <strong>in</strong>formation on electrical and<br />

mechanical <strong>in</strong>terfac<strong>in</strong>g to Pb-free plated<br />

device leads<br />

• Lack of data on device-under-test <strong>in</strong>terfac<strong>in</strong>g<br />

<strong>in</strong> the public doma<strong>in</strong><br />

• What<br />

• Gather<strong>in</strong>g and <strong>in</strong>terpret<strong>in</strong>g data as a start<strong>in</strong>g<br />

po<strong>in</strong>t for Pb-free solder application knowledge<br />

• Where<br />

• Lab and field test<strong>in</strong>g and evaluation<br />

• How<br />

• Generate a report, spread the word


<strong>Test</strong> Objective<br />

• Metallurgical Plat<strong>in</strong>g <strong>Test</strong><br />

• To determ<strong>in</strong>e the elemental content of the t<strong>in</strong>lead<br />

and t<strong>in</strong> plated leads<br />

• Sample(s) <strong>Test</strong>ed<br />

- TSSOP – 90% Sn 10% Pb lead, 3 device samples<br />

- TSSOP – 100% Sn lead 3 device samples<br />

• Contactor Variable Resistance <strong>Test</strong><br />

• Focus on contact resistance variability when<br />

contact<strong>in</strong>g 100% Sn plated contact leads with<br />

eng<strong>in</strong>eer<strong>in</strong>g changes to:<br />

- Contact wipe po<strong>in</strong>t of the device lead<br />

- P<strong>in</strong> surface micro roughness<br />

- Elastomer durometer selection


<strong>Test</strong> Process<br />

• Build several contactors of the same<br />

design populated with three different p<strong>in</strong>s<br />

• Measure metallurgical content of lead plat<strong>in</strong>g<br />

• Our standard p<strong>in</strong><br />

• Standard p<strong>in</strong> with a smoother micro surface<br />

• Standard p<strong>in</strong> with a surface profile that will provide a<br />

nom<strong>in</strong>al po<strong>in</strong>t scrub on the device<br />

• Plot p<strong>in</strong> resistance measurements (Mean, Variance,<br />

Median, Mode, and Range)<br />

• Measure the Kelv<strong>in</strong> contact resistance of the p<strong>in</strong>s and<br />

and its variance at six different temperatures: -40° C,<br />

-20°C, 0°C, controlled ambient (22°C), +80°C,<br />

+125°C when contact<strong>in</strong>g<br />

- 100% Sn device lead plat<strong>in</strong>g<br />

- 10% Pb/90% Sn device lead plat<strong>in</strong>g


Metallurgical Plat<strong>in</strong>g <strong>Test</strong><br />

• <strong>Test</strong> Method(s) Description:<br />

• Scann<strong>in</strong>g electron microscopy (SEM) with a light<br />

element energy dispersive spectrometer (EDS)<br />

was used to provide the data for the plat<strong>in</strong>g<br />

composition of the two types of leads provided<br />

• Three leads <strong>in</strong> a set of fourteen, the third,<br />

seventh, and twelfth leads had three area<br />

analyses performed on each of the samples<br />

• Area analyses rather than spot analyses were<br />

performed due to the non-homogenous nature of<br />

the t<strong>in</strong> lead plat<strong>in</strong>g composition<br />

• The analyses were performed at an accelerat<strong>in</strong>g<br />

voltage of 20 kV, a work<strong>in</strong>g distance of 13.5 mm,<br />

and at a magnification of 600X


90% Sn 10% Pb Plated Lead<br />

SEM micrograph taken at 50X<br />

show<strong>in</strong>g an overview of the<br />

Sn/Pb leads<br />

SEM micrograph taken at 600X<br />

show<strong>in</strong>g the side analyzed on<br />

the Sn/Pb lead<br />

This micrograph shows the nonhomogeneous<br />

nature of the t<strong>in</strong><br />

lead plat<strong>in</strong>g


100 % SN Plated Lead<br />

SEM micrograph taken at<br />

50X show<strong>in</strong>g an overview<br />

of the Sn leads<br />

SEM micrograph taken at<br />

600X show<strong>in</strong>g the side<br />

analyzed on the Sn plat<strong>in</strong>g<br />

on a lead


Plat<strong>in</strong>g Composition Measurement<br />

Matrixes<br />

Elemental Composition TSSOP 90% Sn 10% Pb Plated Samples<br />

Elements<br />

Samples (wt. %)<br />

Statistics<br />

119151 119152 119153 Average STD %RSD<br />

Carbon 9.1 9.4 9.0 9.2 0.52 5.7<br />

Oxygen 0.4 0.5 0.4 0.4 0.24 55.3<br />

Alum<strong>in</strong>um 0.2 0.2 0.3 0.3 0.05 20.8<br />

Lead 7.6 7.9 8.3 8.0 3.63 45.6<br />

T<strong>in</strong> 76.7 76.6 75.7 76.3 3.50 4.6<br />

Copper 5.9 5.4 5.7 5.7 0.53 9.4<br />

Elemental Composition TSSOP Sn Plated Samples<br />

Elements<br />

Samples (wt. %)<br />

Statistics<br />

119157 119158 119159 Average STD %RSD<br />

Carbon 8.6 8.4 8.8 8.6 0.40 4.7<br />

Oxygen 0.7 0.2 0.3 0.4 0.41 102.4<br />

Alum<strong>in</strong>um 0.2 0.2 0.2 0.2 0.05 24.33<br />

T<strong>in</strong> 85.4 86.2 86.0 85.9 0.94 1.1<br />

Copper 5.2 5.0 4.7 5.0 0.69 13.9<br />

Elemental Composition of the Surface of a TSSOP T<strong>in</strong> Lead Plated Sample<br />

Elements<br />

119154<br />

wt. %<br />

Carbon 4.1<br />

Oxygen 1.6<br />

Alum<strong>in</strong>um 0.3<br />

Silicon 3.2<br />

Lead 14.2<br />

T<strong>in</strong> 76.7


Internal Device Resistance Basel<strong>in</strong>e<br />

• Contactor boards built by Johnstech to<br />

measure the Kelv<strong>in</strong> contact resistance of<br />

the p<strong>in</strong>s and and its variance when<br />

contact<strong>in</strong>g both the 10% Pb/90% Sn and<br />

100% Sn device lead plat<strong>in</strong>g<br />

• Internal bond wire average resistance<br />

measure from a sample of twenty (20)<br />

device packages<br />

100% Sn Lead Plat<strong>in</strong>g:<br />

This table illustrates the average <strong>in</strong>ternal resistance from a sample of 10 units<br />

Resistance 0.01888Ω 0.01637Ω 0.01782Ω 0.01826Ω 0.01820Ω 0.01869Ω 0.01863Ω 0.01827Ω<br />

P<strong>in</strong> # P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

90%Sn & 10%Pb Lead Plat<strong>in</strong>g<br />

This table illustrates the average <strong>in</strong>ternal resistance from a sample of 10 units<br />

Resistance 0.02031Ω 0.01784Ω 0.01918Ω 0.01967Ω 0.01924Ω 0.01864Ω 0.01876Ω 0.01958Ω<br />

P<strong>in</strong> # P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14


<strong>Test</strong> Plunge Fixture and<br />

Temperature Chamber<br />

4 Wire Kelv<strong>in</strong> resistance measurement<br />

<strong>in</strong>strument used:<br />

Keithley Multimeter Switch, Model 2750


90% Sn 10%Pb<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

Resistance <strong>in</strong> Ohms<br />

0.02<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

1<br />

4<br />

7<br />

10<br />

7040 Durometer Elastomer<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

13<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

Number of Devices <strong>Test</strong>ed<br />

37<br />

40<br />

43<br />

46<br />

49<br />

•M<strong>in</strong> 0.00862<br />

•Max 0.01751<br />

•Range 0.00889<br />

•Median 0.01418<br />

•Mean 0.01377<br />

•Sample Standard<br />

Deviation<br />

0.00168<br />

•Average Deviation<br />

From Mean 0.00137<br />

•Contact p<strong>in</strong><br />

resistance spread<br />

from p<strong>in</strong> to p<strong>in</strong> 0.009<br />

Ohms<br />

•Spread<br />

approximately 50% of<br />

the mean


90% Sn 10%Pb<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

Resistance <strong>in</strong> Ohms<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1<br />

5<br />

9<br />

7040 Durometer Elastomer<br />

13<br />

17<br />

21<br />

25<br />

29<br />

33<br />

37<br />

41<br />

45<br />

49<br />

Number of Devices <strong>Test</strong>ed<br />

P<strong>in</strong> 1 P<strong>in</strong> 3<br />

P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

•M<strong>in</strong> 0.00097<br />

•Max 0.00571<br />

•Range 0.00774<br />

•Median 0.00361<br />

•Mean 0.00366<br />

•Sample Standard<br />

Deviation<br />

0.00118<br />

•Average Deviation<br />

From Mean 0.00091<br />

•Contact p<strong>in</strong><br />

resistance spread<br />

from p<strong>in</strong> to p<strong>in</strong> less<br />

than at 125°<br />

•Spread<br />

approximately twice<br />

the value of the mean<br />

•Contact stabilized<br />

after 25 <strong>in</strong>sertions


Resistance <strong>in</strong> Ohms<br />

0.02<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

1<br />

4<br />

90% Sn 10% Pb Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

7<br />

10<br />

7070 Durometer Elastomer Set<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

13<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

Number of Devices <strong>Test</strong>ed<br />

37<br />

40<br />

43<br />

46<br />

49<br />

•M<strong>in</strong> 0.00770<br />

•Max 0.01757<br />

• Range 0.00987<br />

•Median 0.01250<br />

•Mean 0.01241<br />

•Sample Standard<br />

Deviation<br />

0.00137<br />

•Average Deviation<br />

From Mean<br />

0.00105<br />

•The harder<br />

elastomer caused<br />

the overall<br />

distribution to be<br />

tighter<br />

•The range<br />

<strong>in</strong>creased by 0.001<br />

Ohm


90% Sn 10% Pb Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

Resistance <strong>in</strong> Ohms<br />

0.01<br />

0.009<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

1<br />

4<br />

7<br />

10<br />

7070 Durometer Elastomer Set<br />

P<strong>in</strong> 1 P<strong>in</strong> 3<br />

P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

13<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

37<br />

40<br />

43<br />

Number of Devices <strong>Test</strong>ed<br />

46<br />

49<br />

•M<strong>in</strong> 0.00097<br />

•Max 0.00871<br />

•Range 0.00774<br />

•Median 0.00361<br />

•Mean 0.00366<br />

•Sample Standard<br />

Deviation 0.00118<br />

•Average Deviation<br />

From Mean<br />

0.00091<br />

•The harder<br />

elastomer caused<br />

a larger p<strong>in</strong> to p<strong>in</strong><br />

distribution<br />

•The range did not<br />

<strong>in</strong>crease


100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

0.03<br />

0.025<br />

7040 Durometer Elastomer Set<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5<br />

P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

•M<strong>in</strong> 0.01030<br />

•Max 0.02577<br />

•Range 0.01547<br />

•Median 0.01368<br />

•Mean 0.013802<br />

Resistance In Ohms<br />

0.02<br />

0.015<br />

0.01<br />

•Sample Standard<br />

Deviation<br />

0.001979<br />

•Average Deviation<br />

From Mean<br />

0.001467<br />

0.005<br />

0<br />

1<br />

4<br />

7<br />

10<br />

13<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

37<br />

Number of Devices <strong>Test</strong>ed<br />

40<br />

43<br />

46<br />

49<br />

•The range doubled<br />

over the 90/10 alloy<br />

•The mean<br />

rema<strong>in</strong>ed almost<br />

the same<br />

•The standard<br />

deviation <strong>in</strong>creased<br />

by 0.0005 Ohms


Resistance <strong>in</strong> Ohms<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

1<br />

4<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed a M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

7<br />

10<br />

13<br />

7040 Durometer Elastomer Set<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

Number of Devices <strong>Test</strong>ed<br />

37<br />

40<br />

43<br />

46<br />

49<br />

•M<strong>in</strong> 0.00609<br />

•Max 0.05041<br />

•Range 0.04432<br />

•Mean 0.019738<br />

•Sample Standard<br />

Deviation<br />

0.009466<br />

•Average Deviation<br />

From Mean 0.007435<br />

•The change from<br />

90/10 alloy test<strong>in</strong>g is<br />

that the p<strong>in</strong>s did not<br />

stabilize to a tighter<br />

range<br />

•The mean and<br />

standard deviation<br />

<strong>in</strong>creased at -40° C<br />

over that of the test<strong>in</strong>g<br />

at 125°


Resistance <strong>in</strong> Ohms<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

1<br />

4<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

7<br />

7070 Durometer Elastomer Set<br />

10<br />

13<br />

P<strong>in</strong> 1 P<strong>in</strong> 3<br />

P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

Number of Devices <strong>Test</strong>ed<br />

37<br />

40<br />

43<br />

46<br />

49<br />

•M<strong>in</strong> 0.00901<br />

•Max 0.04540<br />

•Range 0.03638<br />

•Median 0.01092<br />

•Mean 0.01110<br />

•Sample Standard<br />

Deviation<br />

0.00572<br />

•Average<br />

Deviation From<br />

Mean 0.00341<br />

•The change to a<br />

harder elastomer<br />

caused an<br />

<strong>in</strong>crease <strong>in</strong> the<br />

mean<br />

•The overall<br />

range <strong>in</strong>creased<br />

after 28<br />

<strong>in</strong>sertions


100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s<br />

Resistance <strong>in</strong> Ohms<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

7070 Durometer Elastomer Set<br />

P<strong>in</strong> 1 P<strong>in</strong> 3<br />

P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

•M<strong>in</strong> 0.00323<br />

•Max 0.04945<br />

•Range 0.04945<br />

•Median 0.01218<br />

•Mean 0.01380<br />

•Sample Standard<br />

Deviation<br />

0.00882<br />

•Average Deviation<br />

From Mean 0.00660<br />

0.01<br />

0<br />

1<br />

4<br />

7<br />

10<br />

13<br />

16<br />

19<br />

22<br />

25<br />

28<br />

31<br />

34<br />

Number of Devices <strong>Test</strong>ed<br />

37<br />

40<br />

43<br />

46<br />

49<br />

•The standard<br />

deviation <strong>in</strong>creased<br />

at -40° C over 125°,<br />

same as with the<br />

softer elastomer


90% Sn 10% Pb Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

Polished Surface<br />

Resistance <strong>in</strong> Ohms<br />

0.02<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

1<br />

3<br />

5<br />

7040 Durometer Elastomer<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

7<br />

9<br />

11<br />

13<br />

15<br />

17<br />

19<br />

21<br />

23<br />

Number of Devices <strong>Test</strong>ed<br />

25<br />

•M<strong>in</strong> 0.01181<br />

•Max 0.01766<br />

•Range 0.00585<br />

•Mean 0.01416<br />

•Median 0.01401<br />

•Sample Standard<br />

Deviation<br />

0.00115<br />

•Average Deviation<br />

From Mean<br />

0.00095<br />

•Notable improvement<br />

over the standard p<strong>in</strong>s<br />

•The range decreased<br />

by 0.003 Ohms<br />

•The mean decreased<br />

by 0.001 Ohm<br />

•The standard deviation<br />

decreased by 0.0005<br />

Ohms


Resistance In Ohms<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

1<br />

90% Sn 10%Pb<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40ºC.<br />

Standard 2mm Contact P<strong>in</strong>s with<br />

3<br />

5<br />

7<br />

a Polished Surface<br />

7040 Durometer Elastomer<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5<br />

P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

9<br />

11<br />

13<br />

15<br />

17<br />

Number of Devices <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

25<br />

•M<strong>in</strong> 0.00240<br />

•Max 0.01500<br />

•Range 0.01259<br />

•Mean 0.00545<br />

•Sample Standard<br />

Deviation<br />

0.00164<br />

•Average Deviation<br />

From Mean<br />

0.00121<br />

•There is an <strong>in</strong>crease<br />

<strong>in</strong> the range from the<br />

standard p<strong>in</strong><br />

•The randomness of<br />

the standard p<strong>in</strong><br />

resistance was<br />

significantly reduced<br />

from the standard p<strong>in</strong><br />

at -40 degrees C


Resistenance <strong>in</strong> Ohms<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

Polished Surface<br />

1<br />

3<br />

5<br />

7040 Durometer Elastomer<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5<br />

P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

7<br />

9<br />

11<br />

13<br />

15<br />

17<br />

Number of Unit <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

25<br />

•M<strong>in</strong> 0.01060<br />

•Max 0.03332<br />

•Range 0.02272<br />

•Median 0.01514<br />

•Mean 0.01551<br />

•Sample Standard<br />

Deviation<br />

0.00264<br />

•Average Deviation<br />

From Mean 0.00187<br />

•There is a reduction<br />

<strong>in</strong> the data range<br />

from the standard<br />

p<strong>in</strong>, with the<br />

exception of two<br />

spikes on p<strong>in</strong> 3<br />

•The s<strong>in</strong>usoidal<br />

randomness seen<br />

with standard p<strong>in</strong><br />

resistance was<br />

elim<strong>in</strong>ated


Resistance <strong>in</strong> Ohms<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed a M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s with<br />

a Polished Surface<br />

1<br />

3<br />

5<br />

7040 Durometer Elastomer<br />

7<br />

9<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

11<br />

13<br />

15<br />

17<br />

Number of Devices <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

•M<strong>in</strong> 0.00175<br />

•Max 0.03238<br />

•Range 0.03063<br />

•Median 0.00574<br />

•Mean 0.00676<br />

•Sample Standard<br />

Deviation 0.00402<br />

•Average Deviation<br />

From Mean 0.00271<br />

•The improvements at<br />

-40 over the standard<br />

p<strong>in</strong> are as follows:<br />

•Reduced STD by<br />

0.003 Ohms<br />

•The range did not<br />

decrease due to a p<strong>in</strong><br />

7 spike<br />

•Overall contact p<strong>in</strong><br />

resistance is more<br />

reliable


90% Sn 10%Pb<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

Polished Surface<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

7070 Durometer Elastomer<br />

1<br />

3<br />

5<br />

7<br />

9<br />

11<br />

13<br />

15<br />

17<br />

19<br />

21<br />

23<br />

25<br />

Resistance <strong>in</strong> Ohms<br />

P<strong>in</strong> 1<br />

P<strong>in</strong> 3<br />

P<strong>in</strong> 5<br />

P<strong>in</strong> 7<br />

P<strong>in</strong> 8<br />

P<strong>in</strong> 10<br />

P<strong>in</strong> 12<br />

P<strong>in</strong> 14<br />

•M<strong>in</strong> 0.01062<br />

•Max 0.01605<br />

• Range 0.00543<br />

•Median 0.03235<br />

•Mean 0.01350<br />

•Sample Standard<br />

Deviation 0.00112<br />

•Average Deviation<br />

From Mean 0.00091<br />

•The data spread is<br />

without spikes and is<br />

more predictable<br />

•The mean is greater<br />

than that of a<br />

standard p<strong>in</strong><br />

Number of Devices <strong>Test</strong>ed


90% Sn 10% Pb Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

Resistance <strong>in</strong> Ohms<br />

0.02<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

1<br />

3<br />

5<br />

Polished Surface • M<strong>in</strong> 0.00107<br />

7070 Durometer Elastomer<br />

P<strong>in</strong> 1<br />

P<strong>in</strong> 3<br />

P<strong>in</strong> 5<br />

P<strong>in</strong> 7<br />

P<strong>in</strong> 8<br />

P<strong>in</strong> 10<br />

P<strong>in</strong> 12<br />

P<strong>in</strong> 14<br />

7<br />

9<br />

11<br />

13<br />

15<br />

17<br />

Number of Devices <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

25<br />

• Max 0.01800<br />

• Range 0.01693<br />

• Mean .00584<br />

• Sample Standard<br />

Deviation 0.00394<br />

• Average Deviation<br />

From Mean<br />

0.00292<br />

• Contact p<strong>in</strong><br />

resistance<br />

performance<br />

degraded<br />

• The overall<br />

contact p<strong>in</strong><br />

resistance is less<br />

with a distribution<br />

range <strong>in</strong>crease


Resistance <strong>in</strong> Ohmsa<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at Plus 125º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

1<br />

3<br />

5<br />

7<br />

Polished Surface<br />

7070 Durometer Elastomer<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5 P<strong>in</strong> 7<br />

P<strong>in</strong> 8 P<strong>in</strong> 10 P<strong>in</strong> 12 P<strong>in</strong> 14<br />

9<br />

11<br />

13<br />

15<br />

17<br />

Number of Devices <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

25<br />

•M<strong>in</strong> 0.00996<br />

•Max 0.02693<br />

•Range 0.01698<br />

•Mean 0.01402<br />

•Sample Standard<br />

Deviation 0.00201<br />

•Average Deviation<br />

From Mean 0.00139<br />

•P<strong>in</strong> 7 exhibited<br />

resistance higher<br />

than the rest<br />

•We chose not to<br />

change it for the<br />

purpose of<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g test<br />

group control<br />

•The data is tighter<br />

and reliable with<strong>in</strong><br />

the range


Resistance <strong>in</strong> Ohms<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

100% Sn Lead Plat<strong>in</strong>g<br />

<strong>Test</strong>ed at M<strong>in</strong>us 40º C.<br />

Standard 2mm Contact P<strong>in</strong>s with a<br />

1<br />

3<br />

P<strong>in</strong> 1 P<strong>in</strong> 3 P<strong>in</strong> 5<br />

5<br />

7<br />

Polished Surface<br />

7070 Durometer Elastomer<br />

P<strong>in</strong> 7 P<strong>in</strong> 8 P<strong>in</strong> 10<br />

P<strong>in</strong> 12 P<strong>in</strong> 14<br />

9<br />

11<br />

13<br />

15<br />

17<br />

Number of Devices <strong>Test</strong>ed<br />

19<br />

21<br />

23<br />

25<br />

•M<strong>in</strong> 0.00134<br />

•Max 0.02031<br />

•Range 0.01897<br />

•Median 0.00421<br />

•Mean 0.00452<br />

•Sample Standard<br />

Deviation 0.00196<br />

•Average Deviation<br />

From Mean 0.00112<br />

•P<strong>in</strong> 10 exhibited<br />

<strong>in</strong>creas<strong>in</strong>g resistance<br />

over the life of the test<br />

•We chose not to change<br />

it for the purpose of<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g test group<br />

control<br />

•The data is tighter and<br />

reliable with<strong>in</strong> the range


Conclusion<br />

• Changes made to contact p<strong>in</strong> surface and<br />

elastomer durometer did show an<br />

improvement <strong>in</strong> contact p<strong>in</strong> resistance<br />

variance with high t<strong>in</strong> content solders<br />

• A device lead with a 100% t<strong>in</strong> plat<strong>in</strong>g <strong>in</strong><br />

comb<strong>in</strong>ation with the harder durometer<br />

elastomer and polished p<strong>in</strong> surface<br />

appeared to perform better than standard<br />

p<strong>in</strong>s<br />

• Results show a predictable range of<br />

operation<br />

• Results of this study are prelim<strong>in</strong>ary


Conclusion<br />

• Contactor work with Pb-free is a top priority<br />

- More work is required <strong>in</strong>clud<strong>in</strong>g evaluation of:<br />

- Contact p<strong>in</strong> surface<br />

- Contact p<strong>in</strong> alloy<br />

- Pb-free solder alloy compatibility development work<br />

- Device <strong>in</strong>sertion force/resistance curve analysis<br />

- Live field data is required with future work


The Effects of No Lead Solder Balls on<br />

<strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions<br />

Motorola SPS<br />

Wells-CTI<br />

Mike Noel – Aust<strong>in</strong>, TX<br />

Tom Lyz<strong>in</strong>ski – Phoenix, AZ<br />

Don VanOverloop – Aust<strong>in</strong>, TX Keith Callahan – Phoenix, AZ<br />

Daniel Wilcox – Aust<strong>in</strong>, TX<br />

K.Y. Yap – Kuala Lumpur, Malaysia


Introduction<br />

This paper summarizes the results of<br />

an evaluation to determ<strong>in</strong>e the relative<br />

impact of Pb and No Pb solder balls<br />

on socket performance with various<br />

contact plat<strong>in</strong>gs and contact designs<br />

under simulated burn-<strong>in</strong> conditions.<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 2


What we asked…<br />

Experimental Objectives<br />

How Do These:<br />

Ball Composition<br />

Contact Plat<strong>in</strong>g<br />

Contact Force<br />

Current<br />

Temperature<br />

Time<br />

Contact Types<br />

?<br />

Influence These:<br />

Contact Resistance<br />

Ball Stick<strong>in</strong>g<br />

Witness Marks<br />

Ball Hardness<br />

Solder Transfer /<br />

Migration<br />

Ball Deformation<br />

By exam<strong>in</strong><strong>in</strong>g the performance of different socket<br />

types and plat<strong>in</strong>g on Pb and No Pb solder balls,<br />

what can we learn?<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 3


Experimental Outl<strong>in</strong>e<br />

Experimental Objectives<br />

Solder<br />

Ball<br />

Contact<br />

Type<br />

Plat<strong>in</strong>g<br />

Type<br />

Temp<br />

°C<br />

Force<br />

Current<br />

Time<br />

(Hrs.)<br />

Pb (A)<br />

Spoon (1.0mm) Au 35 100% 0 mA 0<br />

No Pb (B) P<strong>in</strong>ch (0.8mm) PdNi 100 125% 50 mA 24<br />

Spr<strong>in</strong>g (0.5mm)<br />

Crown<br />

Spr<strong>in</strong>g (0.5mm)<br />

V-Groove<br />

NiBn<br />

125<br />

150<br />

72<br />

168<br />

504<br />

(A) Sn62/Pb36/Ag2<br />

(B) Sn95.5/Ag4/Cu0.5<br />

Spoon (1.0mm) P<strong>in</strong>ch (0.8mm) Spr<strong>in</strong>g (0.5mm) Crown<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 4


Evaluation Criteria<br />

Overview of Experiment<br />

‣ Contact Resistance / Device Monitor<strong>in</strong>g<br />

‣ Room temp tests, 2 and 20 ball cha<strong>in</strong>s (16 per socket)<br />

‣ Real time monitor<strong>in</strong>g dur<strong>in</strong>g bias burn-<strong>in</strong> (2 per socket)<br />

‣ Ball Stick<strong>in</strong>g<br />

‣ Instron force measurement of socket actuation<br />

‣ Ball Deformation<br />

‣ RVSI scann<strong>in</strong>g for diameter, coplanarity<br />

‣ Witness Marks<br />

‣ Visual <strong>in</strong>spection, impr<strong>in</strong>t measurement for various contacts<br />

‣ Ball Hardness<br />

‣ Hardness test<strong>in</strong>g of solder balls after experiment<br />

‣ Solder Transfer / Migration<br />

‣ Visual <strong>in</strong>spection, cross section<strong>in</strong>g and analysis of <strong>in</strong>terfaces<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 5


<strong>Test</strong> Methods<br />

‣Packages<br />

‣ 208 BGA 17x17mm 1.0mm<br />

‣ 225 PBGA 13x13mm 0.8mm<br />

‣ 244 PBGA 12x12mm 0.5mm<br />

‣Daisy Cha<strong>in</strong> Structures<br />

‣ 4 cha<strong>in</strong>s 2 ball W/ bias<br />

Overview of Experiment<br />

225 I/O MAP PBGA,<br />

13x13 PKG, 0.8 MM Pitch<br />

JP15<br />

JP16<br />

R16<br />

R15<br />

JP14<br />

R14<br />

JP13<br />

R13<br />

1<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

J<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

R1<br />

JP1<br />

JP2<br />

R2<br />

X<br />

DR1<br />

R3<br />

R4<br />

JP4<br />

JP3<br />

2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

R5<br />

JP5<br />

JP6<br />

R6<br />

R7<br />

R8<br />

JP8<br />

JP7<br />

‣ 4 cha<strong>in</strong>s 2 ball non-biased<br />

‣ 4 cha<strong>in</strong>s 20 ball W/ Bias<br />

JP11<br />

JP12<br />

R12<br />

R11<br />

DR2<br />

X<br />

R10<br />

JP10<br />

JP9<br />

R9<br />

‣ 4 cha<strong>in</strong>s 20 ball non-biased<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 6


Overview of Experiment<br />

<strong>Test</strong> Methods<br />

‣ <strong>Socket</strong>s<br />

‣ Wells-CTI - 8117-208AnE-00, Au, PdNi, NiBn<br />

‣ Spoon Contact<br />

‣ Wells-CTI - 777B1225-n02, Au, PdNi, NiBn<br />

‣ P<strong>in</strong>ch Contact<br />

‣ Wells-CTI - 715-24412-5nn, Au, PdNi, NiBn<br />

‣ Spr<strong>in</strong>g Contact (Crown, V-Groove)<br />

‣ <strong>Test</strong> Cards for each socket type<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 7


Experimental Detail / Analysis<br />

Stage 1 Observations<br />

‣ Contact resistance after 0<br />

cycles and 1000 cycles taken<br />

with same device<br />

‣ Without bias or exposure to<br />

temp, contact resistance<br />

<strong>in</strong>creased <strong>in</strong> most cases after<br />

durability test<strong>in</strong>g<br />

‣ Difference <strong>in</strong> behavior may be<br />

attributed to wipe and depth of<br />

penetration<br />

Log Resistance (mO)<br />

Log Resistance (mO)<br />

Log Resistance (mO)<br />

10000<br />

1000<br />

100<br />

10000<br />

1000<br />

100<br />

10000<br />

1000<br />

100<br />

Contact resistance - 0.5mm<br />

NoPb<br />

NoPb<br />

Pb<br />

0 1000 0 1000<br />

Stress Cycles<br />

Contact resistance - 0.8mm<br />

Pb<br />

0 1000 0 1000<br />

Stress Cycles<br />

Contact resistance – 1.0mm<br />

NoPb<br />

0<br />

Pb<br />

1000 0 1000<br />

Stress Cycles<br />

Au<br />

NiBn<br />

PdNi<br />

Au<br />

NiBn<br />

PdNi<br />

Au<br />

NiBn<br />

PdNi<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 8


Stage 2 Objective<br />

Experimental Detail / Analysis<br />

‣Establish basel<strong>in</strong>es for test conditions<br />

‣Confirm experimental parameters<br />

‣ Current<br />

‣ Temperature<br />

‣ Measurement techniques<br />

Contact<br />

Resistance<br />

Ball Stick<br />

Contact<br />

Resistance<br />

Bias Bake<br />

100C 125C 150C<br />

Witness<br />

Marks<br />

Device<br />

Heat<strong>in</strong>g<br />

Solder Ball<br />

Contact<br />

Type<br />

Plat<strong>in</strong>g<br />

Type<br />

Temp<br />

°C<br />

Force<br />

Current<br />

Time<br />

(Hrs.)<br />

Pb<br />

Spoon (1.0mm)<br />

Au<br />

35<br />

100%<br />

0 mA<br />

0<br />

No Pb<br />

P<strong>in</strong>ch (0.8mm)<br />

PdNi<br />

100<br />

125%<br />

50 mA<br />

24<br />

Spr<strong>in</strong>g (0.5mm) Crown<br />

NiBn<br />

125<br />

72<br />

Spr<strong>in</strong>g (0.5mm) V-Groove<br />

150<br />

168<br />

504<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 9


Stage 2 Summary<br />

‣Contact Resistance<br />

Experimental Detail / Analysis<br />

‣ Initial read<strong>in</strong>gs consistent with<br />

expectations<br />

‣ Stacked up resistances identified<br />

‣ Resistance of 0.5mm spr<strong>in</strong>g contact<br />

significantly higher than 1.0mm and<br />

0.8mm<br />

Device<br />

<strong>Socket</strong><br />

<strong>Test</strong> Card<br />

Internal to<br />

Device<br />

<strong>Socket</strong>/Contact<br />

P<strong>in</strong> to P<strong>in</strong><br />

<strong>Test</strong> Po<strong>in</strong>t<br />

Trace<br />

Stacked Resistance<br />

Resistance (ohms)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1.0mm 0.8mm 0.5mm 1.0mm 0.8mm 0.5mm<br />

2 Ball Cha<strong>in</strong>s 20 Ball Cha<strong>in</strong>s<br />

Sample Type<br />

Internal to Device<br />

<strong>Socket</strong> / Contact<br />

P<strong>in</strong> to P<strong>in</strong> Trace<br />

<strong>Test</strong> Po<strong>in</strong>t Trace<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 10


Experimental Detail / Analysis<br />

Stage 2 Summary<br />

‣ Ball Stick<strong>in</strong>g<br />

‣ Pre and post stress<br />

measurements <strong>in</strong>dicate stick<strong>in</strong>g<br />

is clearly quantifiable<br />

‣ <strong>Socket</strong> actuation force curves<br />

were very consistent across<br />

socket family<br />

Without<br />

Stick<strong>in</strong>g<br />

Device<br />

With<br />

Stick<strong>in</strong>g<br />

Device<br />

‣ Ball Deformation<br />

‣ Metrics established for ball<br />

coplanarity and diameter<br />

‣ Average coplanarity of all<br />

balls on a device<br />

‣ Average diameters of all<br />

balls on a device<br />

Example of force curve<br />

Evidence of<br />

Stick<strong>in</strong>g<br />

Device<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 11


Experimental Detail / Analysis<br />

Stage 2 Summary<br />

‣ Witness Marks<br />

‣ Witness marks clearly visible on all<br />

contact types<br />

‣ Surface area of witness mark used as<br />

criteria<br />

‣ Current Capability, Device<br />

Temperature<br />

‣ Temperature characterization<br />

established operat<strong>in</strong>g parameters for<br />

subsequent stages<br />

‣ 50 mA did not significantly <strong>in</strong>crease<br />

device temperature<br />

0.8mm p<strong>in</strong>ch<br />

witness marks<br />

1.0mm spoon<br />

witness marks<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 12


Experimental Detail / Analysis<br />

Stage 3 Objective<br />

‣ Evaluate time, temperature and bias<br />

<strong>in</strong> a typical qualification / production<br />

burn-<strong>in</strong> environment<br />

Coplanarity<br />

Contact<br />

Resistance<br />

<strong>Burn</strong>-<strong>in</strong><br />

(Contact Resistance read<strong>in</strong>gs at<br />

24,72,168,504 Hrs.)<br />

‣ Parameters<br />

‣ S<strong>in</strong>gle device for entire test duration<br />

<strong>in</strong> each socket sample<br />

‣ Controls ma<strong>in</strong>ta<strong>in</strong>ed (at room temp)<br />

Witness<br />

Marks<br />

Ball Stick<strong>in</strong>g<br />

Ball<br />

Hardness<br />

Ball<br />

Deformation<br />

Solder<br />

Transfer /<br />

Migration<br />

Cross<br />

Section<br />

Solder Ball<br />

Contact<br />

Type<br />

Plat<strong>in</strong>g<br />

Type<br />

Temp<br />

°C<br />

Force<br />

Current<br />

Time<br />

(Hrs.)<br />

Pb<br />

Spoon (1.0mm)<br />

Au<br />

35<br />

100%<br />

0 mA<br />

0<br />

No Pb<br />

P<strong>in</strong>ch (0.8mm)<br />

PdNi<br />

100<br />

125%<br />

50 mA<br />

24<br />

Spr<strong>in</strong>g (0.5mm) Crown<br />

NiBn<br />

125<br />

72<br />

Spr<strong>in</strong>g (0.5mm) V-Groove<br />

150<br />

168<br />

504<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 13


Experimental Detail / Analysis<br />

Stage 3 - Summary<br />

‣ Contact Resistance<br />

‣ Changes clearly identifiable<br />

‣ Trends consistent on long/short<br />

cha<strong>in</strong>s<br />

‣ Increases with and without bias over<br />

time <strong>in</strong> all cases<br />

‣ No significant difference between:<br />

‣ 0.8 mm and 1.0 mm sample trends<br />

‣ Pb and No Pb samples<br />

‣ Bias and No Bias cha<strong>in</strong>s<br />

‣ Au and PdNi<br />

‣ NiBn overall highly variable, high<br />

contact resistance<br />

‣ Resistance <strong>in</strong>creased much quicker for<br />

controls (room temperature)<br />

‣ Scrubb<strong>in</strong>g devices (actuation of socket<br />

or chang<strong>in</strong>g devices) most effective at<br />

reduc<strong>in</strong>g contact resistance for both<br />

Pb and No Pb samples<br />

Log Resistance (O)<br />

Log Resistance (O)<br />

100<br />

100<br />

Contact Resistance (20 ball) - 0.8mm<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 14<br />

10<br />

1<br />

0<br />

10<br />

1<br />

0<br />

Contact Resistance (20 ball) - 1.0 mm<br />

No Pb<br />

0 24 72 168 504 0 24 72 168 504<br />

No Pb<br />

Au<br />

Au W/ Bias<br />

0 24 72 168 504 0 24 72 168 504<br />

Au<br />

Au W/ Bias<br />

Pb<br />

NiBn<br />

NiBn W/ Bias<br />

Pb<br />

NiBn<br />

NiBn W/ Bias<br />

PdNi<br />

PdNi W/ Bias<br />

PdNi<br />

PdNi W/ Bias


Experimental Detail / Analysis<br />

Stage 3 Summary<br />

‣ <strong>Burn</strong>-<strong>in</strong> Monitor<strong>in</strong>g<br />

‣ Two 20 ball cha<strong>in</strong>s monitored real time for duration of test, no<br />

clear pattern with socket type or plat<strong>in</strong>g<br />

‣ High resistance read<strong>in</strong>gs at room temp did not correlate to<br />

opens under <strong>Burn</strong>-<strong>in</strong> conditions<br />

‣ Very small percentage of opens reported overall dur<strong>in</strong>g <strong>Burn</strong><strong>in</strong><br />

monitor<strong>in</strong>g<br />

Open<br />

at<br />

room<br />

temp<br />

Contact Resistance (ohms)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Monitored Failures and Contact<br />

Resistance for Failures by Sample<br />

0<br />

0 5 10 15 20 25 30 35<br />

Sample #<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Failure Time (%)<br />

Contact<br />

Resistance<br />

% Time Fail<strong>in</strong>g<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 15


Experimental Detail / Analysis<br />

Stage 3 Summary (Cont.)<br />

‣ Ball Stick<strong>in</strong>g<br />

‣ Large variation <strong>in</strong> ball stick<strong>in</strong>g <strong>in</strong> all splits, but all appear to have<br />

<strong>in</strong>creased over time<br />

‣ No Pb appears to have higher stick<strong>in</strong>g<br />

‣ Samples exposed to high temperature clearly stuck more than<br />

controls<br />

‣ Au and PdNi contacts stuck more than NiBn<br />

‣ Ball stick<strong>in</strong>g residue visible on both biased and unbiased contacts<br />

Force (grams)<br />

300<br />

200<br />

100<br />

0<br />

Ball Stick<strong>in</strong>g - 1.0mm<br />

No Pb<br />

Pb<br />

Au NiBn PdNi Au NiBn PdNi<br />

Control<br />

504 Hr #1<br />

504 Hr #2<br />

504 Hr #3<br />

504 Hr #4<br />

24 Hr<br />

72 Hr<br />

168 Hr<br />

Solder Ball / Plat<strong>in</strong>g<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 16


Experimental Detail / Analysis<br />

Stage 3 Summary (cont.)<br />

‣ Ball Deformation<br />

‣ No significant difference between<br />

Pb and NoPb for coplanarity and<br />

diameter pre and post stress<br />

‣ All devices well with<strong>in</strong> spec<br />

‣ 200 micron change allowed<br />

for diameter and coplanarity<br />

on 1.0mm<br />

‣ 100 micron change allowed<br />

for diameter and coplanarity<br />

on 0.8mm<br />

‣ Overall: M<strong>in</strong>imal impact after<br />

stress to both ball diameter and<br />

coplanarity<br />

Microns<br />

Microns<br />

200<br />

150<br />

100<br />

50<br />

0<br />

700<br />

600<br />

500<br />

400<br />

300<br />

NoPb<br />

Stress<br />

Average Coplanarity<br />

Pre<br />

Control<br />

Pb<br />

Post Pre Post<br />

Solder Ball / Time<br />

Ball Diameter<br />

Stress<br />

1.0mm<br />

0.8mm<br />

Control<br />

Stress<br />

Control<br />

Stress<br />

Control<br />

NoPb Pb NoPb Pb<br />

Pre Stress Post Stress<br />

0.8mm<br />

1.0mm<br />

Max<br />

M<strong>in</strong><br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 17


Experimental Detail / Analysis<br />

Stage 3 Summary (cont.)<br />

‣ Witness Marks<br />

‣ Witness marks much more<br />

evident on Pb than on No Pb<br />

(nearly 50% larger)<br />

‣ In general, witness marks<br />

covered very small<br />

percentage of surface area<br />

‣ Devices exposed to<br />

temperature had much<br />

larger witness marks for<br />

both Pb and No Pb samples,<br />

<strong>in</strong>creased over time<br />

‣ Controls showed very little<br />

witness marks, similar <strong>in</strong><br />

size between Pb and NoPb<br />

Surface Area<br />

Surface Area<br />

9.0%<br />

8.0%<br />

7.0%<br />

6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

0.0%<br />

9.0%<br />

8.0%<br />

7.0%<br />

6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

0.0%<br />

Ball Indent - 0.8mm<br />

NoPb<br />

Pb<br />

T0 T72 T504 T0 T72 T504<br />

Time<br />

Ball Indent – 1.0mm<br />

NoPb<br />

Pb<br />

T0 T72 T504 T0 T72 T504<br />

Time<br />

Range<br />

Average<br />

Range<br />

Average<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 18


Experimental Detail / Analysis<br />

Stage 3 Summary (cont.)<br />

‣ Ball Hardness (Room Temp)<br />

‣ No significant difference due<br />

to:<br />

‣ Ball diameter (1.0mm and<br />

0.8mm pitch)<br />

‣ Pb and No Pb samples<br />

‣ Solder Transfer / Migration<br />

‣ Solder transfer observed on<br />

several samples.<br />

‣ M<strong>in</strong>imal <strong>in</strong>itial evidence of<br />

migration <strong>in</strong> Au or PdNi<br />

contacts at T504 (Cont<strong>in</strong>u<strong>in</strong>g<br />

analysis of migration at this<br />

time).<br />

Force (grams)<br />

35.00<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

NoPb<br />

0.8mm<br />

Ball Hardness<br />

Pb<br />

1.0mm 0.8mm<br />

Pitch<br />

1.0mm<br />

Examples of Solder transfer to spoon contact<br />

Range<br />

Average<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 19


Stage 4 Objective<br />

Experimental Detail / Analysis<br />

‣ Evaluate 100% and 125% force<br />

‣ Evaluate 0.5mm spr<strong>in</strong>g contacts<br />

(Crown and V-groove)<br />

Coplanarity<br />

Contact<br />

Resistance<br />

<strong>Burn</strong>-<strong>in</strong><br />

(Contact Resistance read<strong>in</strong>gs at<br />

24,72,168,504 Hrs.)<br />

‣ Parameters<br />

‣ Devices changed between read<strong>in</strong>gs<br />

Witness<br />

Marks<br />

Ball Stick<strong>in</strong>g<br />

Ball<br />

Deformation<br />

Cross<br />

Section<br />

‣ Contact resistance read<strong>in</strong>gs before and<br />

after each time <strong>in</strong>terval (with fresh<br />

device)<br />

‣ BI Temperature 125°C<br />

Solder Ball<br />

Contact<br />

Type<br />

Plat<strong>in</strong>g<br />

Type<br />

Temp<br />

°C<br />

Force<br />

Current<br />

Time<br />

(Hrs.)<br />

Pb<br />

Spoon (1.0mm)<br />

Au<br />

35<br />

100%<br />

0 mA<br />

0<br />

No Pb<br />

P<strong>in</strong>ch (0.8mm)<br />

PdNi<br />

100<br />

125%<br />

50 mA<br />

24<br />

Spr<strong>in</strong>g (0.5mm) Crown<br />

NiBn<br />

125<br />

72<br />

Spr<strong>in</strong>g (0.5mm) V-Groove<br />

150<br />

168<br />

504<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 20


Experimental Detail / Analysis<br />

Stage 4 Summary<br />

‣ Contact Resistance (1.0mm)<br />

‣ Increases <strong>in</strong> contact<br />

resistance with and without<br />

bias over time <strong>in</strong> all cases<br />

‣ No significant difference<br />

between:<br />

‣ Pb and No Pb samples<br />

‣ Bias and No Bias cha<strong>in</strong>s<br />

‣ PdNi worse <strong>in</strong> all cases than<br />

Au<br />

‣ Difference between Au<br />

and PdNi visible,<br />

possibly because of<br />

fresh devices at each<br />

read<strong>in</strong>g?<br />

‣ 125% force appears to lower<br />

overall contact resistance<br />

rate of <strong>in</strong>crease over time on<br />

both plat<strong>in</strong>g types<br />

Log Resistance (O)<br />

100<br />

10<br />

1<br />

0<br />

No Pb<br />

Contact Resistance - 1.0mm<br />

Pb<br />

0 24 72 168 504 0 24 72 168 504<br />

Au – 100% W/ Bias PdNi – 100% W/ Bias<br />

Au – 125% W/ Bias PdNi - 125% W/ Bias<br />

Au - 100% PdNi - 100%<br />

Au - 125% PdNi - 125%<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 21


Experimental Detail / Analysis<br />

Stage 4 Summary<br />

‣ Contact Resistance (0.5 mm)<br />

‣ Overall resistance much<br />

higher with spr<strong>in</strong>g contact<br />

(both Crown and V-groove)<br />

‣ PdNi and Au very similar <strong>in</strong><br />

all cases<br />

‣ Overall resistance much less<br />

variable than other contact<br />

types<br />

‣ Crown contact slightly more<br />

variable on NoPb samples<br />

Log Resistance (O)<br />

100<br />

10<br />

1<br />

0<br />

Contact resistance - 0.5mm<br />

No Pb<br />

Pb<br />

0 24 72 168 504 0 24 72 168 504<br />

Au Crown - W/ Bias Au Crown<br />

Au V-groove - W/ Bias Au V-groove<br />

PdNi Crown- W/ Bias PdNi Crown<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 22


Experimental Detail / Analysis<br />

Stage 4 Summary<br />

‣ Witness Marks<br />

‣ Differences between Pb<br />

and No Pb were<br />

significant<br />

‣ Multiple <strong>in</strong>sertions had<br />

largest impact on total<br />

deformations<br />

0.5mm Crown<br />

witness marks<br />

Surface Area<br />

9.0%<br />

8.0%<br />

7.0%<br />

6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

0.0%<br />

Ball Indent - 0.5mm<br />

0.5mm<br />

Crown<br />

0.5mm<br />

V-groove<br />

No Pb<br />

Pb<br />

‣ Witness marks across all<br />

balls of each sample<br />

device were very<br />

consistent<br />

‣ Wide variation <strong>in</strong> witness<br />

marks between samples<br />

‣ Ball Stick<strong>in</strong>g<br />

0.5mm Crown<br />

witness marks<br />

Force (grams)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Ball Stick<strong>in</strong>g - 0.5mm<br />

Au-Crown<br />

Au-V-groove<br />

PdNi-Crown<br />

‣ Crown contact with Pb<br />

worst stick<strong>in</strong>g<br />

0.5mm V<br />

Groove witness<br />

marks<br />

0<br />

No Pb<br />

Pb<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 23


General Observations<br />

Summary of Observations<br />

‣ Contact resistance for Pb and No Pb similar at room<br />

‣ Contact resistance for Au and PdNi similar for Pb and No Pb<br />

‣ Contact resistance for 125% force appears to decrease over<br />

time on Au and PdNi<br />

‣ Ball stick<strong>in</strong>g worse on No Pb than on Pb for 1.0mm and 0.8mm<br />

‣ Ball stick<strong>in</strong>g on 0.5mm with Au worst on Pb (also largest<br />

witness marks)<br />

‣ Ball stick<strong>in</strong>g <strong>in</strong>creases over time at temperature<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 24


• General Observations<br />

Summary of Observations<br />

‣ Ball deformation (coplanarity and diameter) were not<br />

impacted <strong>in</strong> this experiment<br />

‣ Ball hardness similar for Pb and No Pb at room<br />

temperature<br />

‣ Witness marks on Pb larger than on No Pb (Pb balls<br />

soften at temperature)<br />

‣ Witness marks largest on 0.5mm contacts, followed by<br />

1.0mm, then 0.8mm<br />

‣ Solder transfer evident on Pb and No Pb samples on all<br />

Au and PdNi contact types<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 25


Summary of Observations<br />

• Further Study<br />

‣ Extend cycles to simulate longer “life” use of<br />

typical socket <strong>in</strong> production<br />

‣ Extend evaluation of 125% force on NoPb<br />

‣ Additional ball stick<strong>in</strong>g tests<br />

‣ Ball hardness at temperature<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 26


Conclusions<br />

• Overall performance of exist<strong>in</strong>g socket contact<br />

and plat<strong>in</strong>g for No Pb solder is similar enough to<br />

performance with Pb solder that we do not<br />

believe dramatic changes <strong>in</strong> burn-<strong>in</strong> socket<br />

technology are necessary. Increased stick<strong>in</strong>g of<br />

No Pb solder balls and long term performance<br />

both need further <strong>in</strong>vestigation.<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 27


Special Thanks<br />

• Roy Arldt – Motorola<br />

‣ Cross-sectional analysis<br />

• Chuck Miller – Motorola<br />

‣ Surface analysis<br />

• Darrel Frear, Ph.D., Jerry White - Motorola<br />

‣ Ball hardness test<strong>in</strong>g<br />

The Effects of No Lead Solder Balls on <strong>Burn</strong>-<strong>in</strong> <strong>Socket</strong> Design Decisions Page 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!