26.11.2014 Views

on carleman estimates for elliptic and parabolic operators ...

on carleman estimates for elliptic and parabolic operators ...

on carleman estimates for elliptic and parabolic operators ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CARLEMAN ESTIMATES 19<br />

where the commutator is a first-order differential operator in x. For all i ∈ I, we thus obtain<br />

(7.4)<br />

‖h 2 e ϕ/h Pu i ‖ 2 L 2 (Q) ≤ C‖h 2 e ϕ/h Pu‖ 2 L 2 (Q) + C‖h 2 e ϕ/h u‖ 2 L 2 (Q) + C‖h 2 e ϕ/h ∇ x u‖ 2 L 2 (Q)<br />

We note that we have<br />

≤ C‖h 2 e ϕ/h Pu‖ 2 L 2 (Q) + C(εT 2 ) 3 ‖h 1 2 e ϕ/h u‖ 2 L 2 (Q) + CεT 2 ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 (Q).<br />

‖h 1 2 e ϕ/h u‖ 2 L 2 (Q) + ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 (Q) ≤C ∑<br />

i∈I<br />

(<br />

)<br />

‖h 1 2 e ϕ/h u i ‖ 2 L 2 (Q) + ‖h 3/2 e ϕ/h ∇ x u i ‖ 2 L 2 (Q)<br />

+ C‖h 1 2 e ϕ/h u‖ 2 L 2 ((0,T)×ω 1 ) + C‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 ((0,T)×ω 1 ),<br />

From (7.4) we then obtain<br />

(<br />

‖h 1 2 e ϕ/h u‖ 2 L 2 (Q) + ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 (Q) ≤ C ‖h 2 e ϕ/h Pu‖ 2 L 2 (Q) + (εT 2 ) 3 ‖h 1 2 e ϕ/h u‖ 2 L 2 (Q) + εT 2 ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 (Q)<br />

)<br />

+ ‖h 1 2 e ϕ/h u‖ 2 L 2 ((0,T)×ω 1 ) + ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 ((0,T)×ω 1 ) .<br />

For εT 2 sufficiently small we have<br />

(<br />

‖h 1 2 e ϕ/h u‖ 2 L 2 (Q) + ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 (Q) ≤ C ‖h 2 e ϕ/h Pu‖ 2 L 2 (Q) + ‖h 1 2 e ϕ/h u‖ 2 L 2 ((0,T)×ω 1 )<br />

)<br />

+ ‖h 3/2 e ϕ/h ∇ x u‖ 2 L 2 ((0,T)×ω 1 ) .<br />

We now aim to remove the last term in the r.h.s. of the previous estimati<strong>on</strong>. Let χ ∈ C ∞<br />

c (ω) be such that<br />

χ = 1 in a neighborhood of ω 1 . If Pu = f , after multiplicati<strong>on</strong> by e 2ϕ/h h 3 χu, <strong>and</strong> integrati<strong>on</strong> over Q, we<br />

obtain<br />

(7.5)<br />

1<br />

2 ∫∫ e 2ϕ/h h 3 χ∂ t |u| 2 dt dx − Re ∫∫ e 2ϕ/h h 3 χu∆u dt dx = Re ∫∫ e 2ϕ/h h 3 χu f dt dx<br />

Q<br />

Q<br />

Q<br />

For the first term I 1 an integrati<strong>on</strong> by parts in t yields<br />

|I 1 | =<br />

∣ 1 2 ∫∫ e 2ϕ/h h 3 χ∂ t |u| 2 dt dx<br />

∣ =<br />

∣ 1 Q<br />

2 ∫∫ Q(3εθ ′ h 2 − 2ϕεθ ′ h)e 2ϕ/h χ|u| 2 dt dx<br />

∣ ≤ C‖h 1 2 e ϕ/h u‖ 2 L ((0,T)×ω),<br />

2<br />

since ε|θ ′ | ≤ CεTis bounded. The third term can be estimated as<br />

|I 3 | = ∣<br />

∣Re ∫∫ e 2ϕ/h h 3 χu f dt dx<br />

∣ ≤ C‖h 2 e ϕ/h f ‖ 2 L 2 (Q) + C‖h 1 2 e ϕ/h u‖ 2 L ((0,T)×ω).<br />

2<br />

Q<br />

For the sec<strong>on</strong>d term, with integrati<strong>on</strong> by parts in x, we have<br />

I 2 = ∫∫ e 2ϕ/h h 3 χ|∇ x u| 2 dt dx + Re ∫∫ h 3 ∇ x (e 2ϕ/h χ)u∇ x u dt dx<br />

Q<br />

Q<br />

≥ ‖h 3 2 e ϕ/h ∇ x u‖ 2 L 2 ((0,T)×ω 1 ) − 1 2 ∫∫ h 3 ∆(e 2ϕ/h χ)|u| 2 dt dx,<br />

Q<br />

<strong>and</strong> ∣ ∣ ∫∫ h 3 ∆(e 2ϕ/h χ)|u| 2 dt dx ∣ 1<br />

∣ ≤ C‖h 2 e ϕ/h u‖ 2 L ((0,T)×ω). The previous <strong>estimates</strong> <strong>and</strong> (7.5) then yield<br />

2<br />

Q<br />

‖h 3 2 e ϕ/h ∇ x u‖ 2 L 2 ((0,T)×ω 1 ) ≤ C‖h 2 e ϕ/h Pu‖ 2 L 2 (Q) + C‖h 1 2 e ϕ/h u‖ 2 L 2 ((0,T)×ω).<br />

The proof is complete.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!