31.12.2014 Views

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

46 CHAPTER 2. EQUIVARIANT HARMONIC MAPS<br />

Consequently, the multiplicity <strong>of</strong> the zero eigenvalue <strong>of</strong> the matrix G(F ) is even. Hence r<br />

must be even.<br />

Define orthogonal multiplications F 1 : R 2 × R 2 → R 2 and F 2 : R 2 × R 2 → R 4 by<br />

⎧<br />

⎪⎨ F 1 (x, y) =(x 1 y 1 + x 2 y 2 ,x 1 y 2 − x 2 y 1 ),<br />

⎪⎩ F 2 (x, y) =(x 1 y 1 ,x 1 y 2 ,x 2 y 1 ,x 2 y 2 ),<br />

respectively, where x =(x 1 ,x 2 ) and y =(y 1 ,y 2 ). Then, they are full and satisfy<br />

‖F 1 (x, y)‖ = ‖F 2 (x, y)‖ = ‖x‖‖y‖.<br />

In the case <strong>of</strong> n =2k, we decompose R n as the direct sum <strong>of</strong> k-copies <strong>of</strong> R 2 , that is,<br />

R n = R 2 ⊕···⊕R 2 . Hence R 2 × R n =(R 2 × R 2 ) ⊕···⊕(R 2 × R 2 ) (direct sum <strong>of</strong> k-copies<br />

<strong>of</strong> R 2 × R 2 ). Then, for i (0 ≤ i ≤ k),<br />

i-copies (k − i)-copies<br />

{ }} { { }} {<br />

F = F 1 ⊕···⊕F 1 ⊕ F 2 ⊕···⊕F 2<br />

defines an orthogonal multiplication F : R 2 × R n → R 2(n−i) . Thus for even r, where n ≤<br />

r ≤ 2n, there exists an orthogonal multiplication R 2 × R 2k → R r .<br />

In the case <strong>of</strong> n =2k +1, we have the direct sum R n<br />

= R 2k ⊕ R. Associated with<br />

the orthogonal multiplication F : R 2 × R 2k → R r , we obtain an orthogonal multiplication<br />

˜F : R 2 × R 2k+1 → R r+2 defined by<br />

˜F ((x 1 ,x 2 ), (y 1 ,... ,y 2k ,y 2k+1 ))=(F ((x 1 ,x 2 ), (y 1 ,... ,y 2k )), (x 1 y 2k+1 ,x 2 y 2k+1 )),<br />

where (x 1 ,x 2 ) ∈ R 2 and (y 1 ,... ,y 2k ,y 2k+1 ) ∈ R 2k+1 . Hence for even r, where n+1 ≤ r ≤ 2n,<br />

there exists an orthogonal multiplication R 2 × R 2k+1 → R r .<br />

Now we introduce a method <strong>of</strong> constructing a new eigenmap <strong>of</strong> degree two from old<br />

known ones.<br />

Let f : S m → S p and g : S n → S q be eigen<strong>maps</strong> <strong>of</strong> degree two, and F : R m+1 × R n+1 →<br />

R r an orthogonal multiplication. Define a map ϕ : R m+1 × R n+1 → R p+q+r+2 by<br />

(2.1.2) ϕ(x, y) :=(f(x),g(y), √ 2F (x, y)).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!