31.12.2014 Views

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

74 CHAPTER 4. NON-EXISTENCE OF PROPER HARMONIC MAPS<br />

ural smooth structure inherited from C m (resp. R n ), and regard it as a submanifold with<br />

boundary in C m (resp. R n ). With these understood, we have the following<br />

Lemma 4.1.1. (1) Let g i¯j , Γ i<br />

j k and ∆ B m<br />

be the components, the Christ<strong>of</strong>fel symbols and<br />

the Laplace-Beltrami operator <strong>of</strong> Bergman metric g, respectively. Then we have<br />

⎧<br />

g i¯j =(1−|z| 2 ) −2 {(1 −|z| 2 )δ ij +¯z i z j },<br />

⎪⎨<br />

Γ i<br />

j k =(1−|z|2 ) −1 (¯z j δ ik +¯z k δ ij ),<br />

⎪⎩<br />

∆ B m =(1−|z| 2 )<br />

m∑<br />

(δ ij − z i¯z j ∂ 2<br />

)<br />

∂z i ∂¯z . j<br />

i,j=1<br />

(2) Let g αβ ′ , α ˜Γ β γ and ∆ D n be the components, the Christ<strong>of</strong>fel symbols and the Laplace-<br />

Beltrami operator <strong>of</strong> Poincaré metric g ′ , respectively. Then we have<br />

⎧<br />

g αβ ′ = 1<br />

(1 −|x| 2 ) δ αβ,<br />

2<br />

⎪⎨<br />

˜Γ α<br />

β γ = 2<br />

(1 −|x| 2 ) (xβ δ αγ + x γ δ αβ − x α δ βγ ),<br />

⎪⎩ ∆ D n =(1−|x| 2 ) 2<br />

n∑<br />

α=1<br />

∂ 2<br />

∂x α ∂x α +2(n − 2)(1 −|x|2 )<br />

n∑<br />

α=1<br />

x α<br />

∂<br />

∂x . α<br />

Following [24], we define a family <strong>of</strong> global vector fields N and X j , 1 ≤ j ≤ m, on C m<br />

in the following manner:<br />

⎧<br />

N = ⎪⎨<br />

⎪⎩ X j =<br />

m∑<br />

i=1<br />

m∑<br />

i=1<br />

z i<br />

∂<br />

∂z , i<br />

(δ ij − z i¯z j ) ∂<br />

∂z i =<br />

∂<br />

∂z −〈 ∂<br />

j ∂z ,N〉N,<br />

j<br />

where 〈·, ·〉 denotes the standard Hermitian inner product on C m . Then we get<br />

Lemma 4.1.2 ([24]). (1) N + ¯N is the outer normal vector field on ∂B m .<br />

(2) {X j + ¯X j , √ −1(X j − ¯X j ), √ −1(N − ¯N)} m j=1 is a basis <strong>of</strong> the tangent space T p∂B m at<br />

each p ∈ ∂B m .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!