31.12.2014 Views

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

Constructions of harmonic maps between Hadamard manifolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 CHAPTER 4. NON-EXISTENCE OF PROPER HARMONIC MAPS<br />

Hence the function<br />

‖u(z 1 ,z 2 ) − (0, 1)‖<br />

‖(z 1 ,z 2 ) − (0, 1)‖<br />

is bounded on B 2 −{(0, 1)}, which implies that u is Lipschitz continuous at (0, 1).<br />

Claim 3. u is not C 1 at (0, 1).<br />

Let v be the second component <strong>of</strong> u, that is,<br />

v(z 1 ,z 2 )= (1 −|z|2 ) 2 − 4|1 − z 2 | 4 +8(Iz 2 ) 2<br />

(1 −|z| 2 +2|1 − z 2 | 2 ) 2 +8(Iz 2 ) 2 .<br />

Then<br />

∂v<br />

v(0, 1) − v(0, 1 − h) 4(2 − h)<br />

(0, 1) = lim<br />

= lim<br />

∂z2 h→+0 h<br />

h→+0 (2 + h) =2. 2<br />

On the other hand, from a straightforward calculation, we obtain<br />

v z 2 ×{(1 −|z| 2 +2|1 − z 2 | 2 ) 2 +8(Iz 2 ) 2 } 2<br />

= 16(Iz 2 ) 2 [ ¯z 2 {2|1 − z 2 | 2 − (1 −|z| 2 ) − (1 −|z| 2 ) 2 } + 2(1 −|z| 2 )]<br />

−32 √ −1Iz 2 |1 − z 2 | 2 {2|1 − z 2 | 2 +1−|z| 2 }<br />

−2(1 −|z| 2 +2|1 − z 2 | 2 ) 2 { ¯z 2 (1 −|z| 2 ) 2 +4|1 − z 2 | 2 (1 − ¯z 2 )}<br />

+2(2 − ¯z 2 ){(1 −|z| 2 ) 2 − 4|1 − z 2 | 4 }(1 −|z| 2 +2|1 − z 2 | 2 ).<br />

Here we have<br />

{(1 −|z| 2 +2|1 − z 2 | 2 ) 2 +8(Iz 2 ) 2 } 2 = {(2θ 3 + r − 2r‖θ‖ 2 ) 2 +8(θ 4 ) 2 }r 4 .<br />

Hence<br />

v z 2(0, 1 − r) = −2r(2 + r){(1 − r)(2 − r)2 +4r} + 2(1 + r){(2 − r) 2 − 4r 2 }<br />

r 4 (r +2) 4<br />

−→ +∞ (r → 0).<br />

Therefore, u is not C 1 at (0, 1).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!