02.01.2015 Views

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Annals</strong><br />

<strong>Warsaw</strong><br />

<strong>University</strong><br />

<strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong><br />

Forestry and Wood Technology No 76<br />

<strong>Warsaw</strong> 2011<br />

Contents:<br />

SEDLIAČIKOVÁ MARIANA, MICHALKOVÁ MIROSLAVA<br />

“Analysis <strong>of</strong> competitiveness <strong>of</strong> the chosen company”...................................................... 7<br />

SEDLIAČIKOVÁ MARIANA, SOPKOVÁ EVA<br />

“Taxation <strong>of</strong> general consumption in SR and (ir)responsible behavior <strong>of</strong> taxpayers”........ 12<br />

SEDLIAČIKOVÁ MARIANA, SUJOVÁ ANDREA<br />

“Possibilities <strong>of</strong> optimizing <strong>of</strong> Slovak regional policy in Slovakia”................................... 17<br />

ШАРАБУРЯК АЛЁНА<br />

“Перспективы отделки порошковыми лакокрасочными материалами”...................... 22<br />

SLABEJOVÁ GABRIELA<br />

“An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness treated with<br />

water based coatings – Methodology work”....................................................................... 25<br />

1


SLABEJOVÁ GABRIELA<br />

“An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness treated<br />

with water based coatings – Experiment results”................................................................ 29<br />

GOGOLIN MAREK R.<br />

“Slenderness <strong>of</strong> free sections <strong>of</strong> rafter and the shape <strong>of</strong> its cross-section as features<br />

characterizing the structures <strong>of</strong> historic ro<strong>of</strong>-frames” ........................................................ 34<br />

ŠMIDRIAKOVÁ MÁRIA, SEDLIAČIK JÁN,<br />

JURKOVIČ PETER, MELUS PAVOL<br />

“Leather waste hydrolysate as a partial substitute <strong>of</strong> UF adhesive for plywood<br />

production” ......................................................................................................................... 38<br />

ŠMIDRIAKOVÁ MÁRIA, SEDLIAČIK JÁN,<br />

MATYAŠOVSKÝ JÁN, DUCHOVIČ PETER<br />

“Reduction <strong>of</strong> formaldehyde emission from plywood bonded with modified UF<br />

adhesive”............................................................................................................................. 44<br />

ŠMIDRIAKOVÁ MÁRIA, LAUROVÁ MARTA<br />

“ATR-FTIR spectral analysis <strong>of</strong> modified UF adhesive”................................................... 49<br />

STACHOWIAK-WENCEK AGATA, PRĄDZYŃSKI WŁODZIMIERZ,<br />

KRZYWOSIŃSKA PAULINA<br />

“VOC emissions from melamine films and finish foils”..................................................... 54<br />

STACHOWIAK-WENCEK AGATA, PRĄDZYŃSKI WŁODZIMIERZ,<br />

KRZYWOSIŃSKA PAULINA<br />

“Investigations on volatile organic compounds (VOC) emissions from wood-based<br />

materials”............................................................................................................................. 59<br />

SUDOŁ EWA, POLICIŃSKA−SERWA ANNA<br />

“Tests <strong>of</strong> shock absorption and vertical deformation in sports floors on wooden<br />

structure”............................................................................................................................. 64<br />

SUDOŁ EWA, SULIK PAWEŁ<br />

“Water resistance <strong>of</strong> glue lines in windows made <strong>of</strong> selected exotic wood species”.......... 70<br />

SURMA-ŚLUSARSKA BARBARA, DOBROWOLSKA EWA<br />

“Archiv–ein Rohst<strong>of</strong>f für die Papiermaché und Papier Fabrikation”.................................. 78<br />

SWACZYNA IRENA, KĘDZIERSKI ANDRZEJ, TOMUSIAK ANDRZEJ,<br />

CICHY ANDRZEJ, RÓŻAŃSKA ANNA, POLICIŃSKA-SERWA ANNA<br />

“ Hardness and wear resistance tests <strong>of</strong> the wood species most frequently used in<br />

flooring panels ”.................................................................................................................. 82<br />

ŚWIETLIK ANNA, SZYMONA KAROLINA, MAMIŃSKI MARIUSZ<br />

“Lignin-based hexamine-hardened thermosetting wood adhesive –<br />

preliminary results”............................................................................................................. 88<br />

SZCZAWIŃSKI MIECZYSŁAW, OLKOWICZ MAGDALENA<br />

„Analysis <strong>of</strong> the impact <strong>of</strong> the production assortment structure on the economic performance<br />

in a furniture factory”.......................................................................................................... 92<br />

2


ZIELIŃSKA-SZWAJKA JOANNA, GÓRSKI JAROSŁAW,<br />

SZWAJKA KRZYSZTOF<br />

“Einfluss der Vorschub und Schnittgeschwindigkeit auf die Standzeit beim<br />

Bohren Spanplatten”............................................................................................................ 96<br />

ZIELIŃSKA-SZWAJKA JOANNA, GÓRSKI JAROSŁAW,<br />

SZWAJKA KRZYSZTOF<br />

“Einfluss von Werkzeugverschleiß auf die Oberflächenqualität bearbeitet beim Bohren<br />

Spanplatten”........................................................................................................................ 103<br />

SZWAJKA KRZYSZTOF<br />

“Torque and thrust force in drilling”................................................................................... 108<br />

SZYMANOWSKI KAROL, GÓRSKI JAROSŁAW<br />

“Relationship between cutting speed and tool life observed for MDF milling process”.... 116<br />

SZYMANOWSKI KAROL, GÓRSKI JAROSŁAW<br />

“Relative machinability index <strong>of</strong> chipboard based on tool life testing”.............................. 120<br />

SZYMAŃSKI WALDEMAR, GILEWICZ ADAM,<br />

PINKOWSKI GRZEGORZ, CZYŻNIEWSKI ANDRZEJ<br />

“Comparative wear analysis <strong>of</strong> modified cutters during processing <strong>of</strong> milling <strong>of</strong><br />

selected wood-based materials”.......................................................................................... 124<br />

SZYMONA KAROLINA, CICHY ANDRZEJ, BORYSIUK PIOTR,<br />

SAN H’NG PAIK, MAMIŃSKI MARIUSZ<br />

“Selcted physical properties <strong>of</strong> furfurylated oil palm wood (Elaeis guineensis Jacq.)”..... 129<br />

ТЕПНАДЗЕ МАРИНА<br />

“ОЦЕНКА ВЛИЯНИЯ ТЕРМОВЛАГОПРОВОДНОСТИ НА ОБЩИЙ<br />

ВЛАГОПЕРЕНОС В ДРЕВЕСИНЕ ПРИ ОСЦИЛИРУЮЩЕЙ СУШКЕ”................. 134<br />

TESAŘOVÁ DANIELA, ČECH PETR<br />

“The ecological aspect <strong>of</strong> used nature wood”..................................................................... 139<br />

TOMCZAK ARKADIUSZ, JELONEK TOMASZ, JAKUBOWSKI MARCIN<br />

“Wood density <strong>of</strong> Scots pine (Pinus sylvestris L.) trees broken by wind”.......................... 144<br />

TOMCZAK ARKADIUSZ, JELONEK TOMASZ, JAKUBOWSKI MARCIN<br />

“Modulus <strong>of</strong> elasticity <strong>of</strong> twin samples (wet and absolute dry) origin from Scots pine<br />

(Pinus sylvestris L.) trees broken by wind”......................................................................... 149<br />

TOMUSIAK ANDRZEJ, CICHY ANDRZEJ<br />

“State <strong>of</strong> preservation analysis <strong>of</strong> the wooden construction <strong>of</strong> the Holiest Sacrament<br />

altar in the right wing <strong>of</strong> the transept in the Holy Cross Church in <strong>Warsaw</strong>”..................... 154<br />

WALISZEWSKA BOGUSŁAWA, SZENTNER KINGA,<br />

SPEK-DŹWIGAŁA AGNIESZKA<br />

“Basic chemical composition <strong>of</strong> selected species <strong>of</strong> bush willows”…...................…….... 160<br />

WALISZEWSKA BOGUSŁAWA, PRĄDZYŃSKI WŁODZIMIERZ,<br />

SIERADZKA AGNIESZKA<br />

“Extractive substances in selected species <strong>of</strong> shrub willows”............................................. 164<br />

3


WARMBIER KRZYSZTOF, WILCZYŃSKI ARNOLD,<br />

DANECKI LESZEK, MROZEK MIROSŁAWA<br />

“Effect <strong>of</strong> the press closing speed on mechanical properties <strong>of</strong> particleboards with<br />

the core layer made from willow (Salix viminalis)”........................................................... 168<br />

WASIELEWSKI ROMAN<br />

“Productivity <strong>of</strong> wood cutting process”.............................................................................. 172<br />

WASIELEWSKI ROMAN<br />

“Examination <strong>of</strong> influence <strong>of</strong> fixing circular saw on its stiffness”..................................... 176<br />

WIELOCH GRZEGORZ, MOSTOWSKI RAFAŁ<br />

“The new construction the exhaust fan for woodworking machine dedusting”.................. 180<br />

WIERUSZEWSKI MAREK, GOTYCH VIKTOR<br />

“Prefabrication for production purposes <strong>of</strong> skeleton furniture”.......................................... 184<br />

WIERUSZEWSKI MAREK, GOTYCH VIKTOR, HRUZIK GINTER J.,<br />

GOŁUŃSKI GRZEGORZ, MARCINKOWSKA AGNIESZKA<br />

„Research qualitative <strong>of</strong> coniferous assortments solid wood for wood construction”........ 189<br />

WILCZYŃSKI ARNOLD, WARMBIER KRZYSZTOF,<br />

DANECKI LESZEK, MROZEK MIROSŁAWA<br />

“Properties <strong>of</strong> experimental particleboards with the core layer made from willow<br />

(Salix viminalis)”................................................................................................................. 194<br />

WILKOWSKI JACEK, GRZEŚKIEWICZ MAREK,<br />

CZARNIAK PAWEŁ, WOJTOŃ MICHAŁ<br />

“Cutting forces during drilling <strong>of</strong> thermally modified ash wood”...................................... 199<br />

WILKOWSKI JACEK, GRZEŚKIEWICZ MAREK, CZARNIAK PAWEŁ,<br />

SIWEK IRENEUSZ, JAVOREK LUBOMIR, PAULINY DUSAN<br />

“Influence <strong>of</strong> thermal modification <strong>of</strong> oak wood on cutting forces during milling”........... 203<br />

WILKOWSKI JACEK, GRZEŚKIEWICZ MAREK,<br />

CZARNIAK PAWEŁ, KLECZKOWSKI PIOTR<br />

“Surface roughness after sanding <strong>of</strong> thermally modified oak wood”.................................. 208<br />

WYSOCKA-ROBAK AGNIESZKA, OLEJNIK KONRAD<br />

“The effect <strong>of</strong> chemicals addition on improvement <strong>of</strong> sack paper strength properties”..... 212<br />

ZEMIAR JAN, ZBONČÁK RÓBERT, GAFF MILAN<br />

“Thickness changes <strong>of</strong> cyclical pressed veneer”................................................................. 218<br />

ZIELEWICZ WALDEMAR, KOZŁOWSKI STANISŁAW, FABISIAK EWA<br />

“Variation <strong>of</strong> anatomical properties <strong>of</strong> shoots tall wheatgrass in the aspect <strong>of</strong><br />

their utilization as a substitute <strong>of</strong> wood biomass”............................................................... 223<br />

ЗРАЖВА СЕРГЕЙ, КОСТЕНКО МАРИЯ<br />

“Технологическая оценка древесины дуба Одесской области для виноделия”.......... 229<br />

SUDOŁ EWA, POLICIŃSKA−SERWA ANNA<br />

“Ageing resistance <strong>of</strong> paint coats applied on eucalyptus wood”......................................... 234<br />

4


Board <strong>of</strong> reviewers:<br />

Bogusław Bajkowski<br />

Piotr Beer<br />

Ewa Dobrowolska<br />

Jarosław Górski<br />

Adam Krajewski<br />

Krzyszt<strong>of</strong> Krajewski<br />

Donata Krutul<br />

Sławomir Krzosek<br />

Hanna Pachelska<br />

Jerzy Smardzewski<br />

Wacław Szymanowski<br />

Piotr Witomski<br />

Janusz Zawadzki<br />

Scientific council :<br />

Arnold Wilczyński (Poland)<br />

Kazimierz Orłowski (Poland)<br />

Ladislav Dzurenda (Slovakia)<br />

Miroslav Rousek (Czech Republic)<br />

Nencho Deliiski (Bulgaria)<br />

Olena Pinchewska (Ukraine)<br />

Włodzimierz Prądzyński (Poland)<br />

D<strong>of</strong>inansowano ze środków Ministra Nauki i Szkolnictwa Wyższego<br />

Polska Akademia Nauk Komitet Technologii Drewna<br />

<strong>Warsaw</strong> <strong>University</strong><br />

<strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> Press<br />

e-mail: wydawnictwo@sggw.pl<br />

SERIES EDITOR<br />

Ewa Dobrowolska ISSN 1898-5912<br />

Marcin Zbieć<br />

PRINT: ZPW POZKAL<br />

5


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 7-11<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Analysis <strong>of</strong> competitiveness <strong>of</strong> the chosen company<br />

MARIANA SEDLIAČIKOVÁ – MIROSLAVA MICHALKOVÁ<br />

Department <strong>of</strong> Business Economics, Technical <strong>University</strong>, Zvolen, Slovakia<br />

Faculty <strong>of</strong> Media, Pan Europian <strong>University</strong>, Bratislava, Slovakia<br />

Abstract: During the period, in which the world economy is today, companies, which want to be successful in<br />

hard competitive struggle, have to analyze not only their internal but also external environment. Therefore<br />

companies identify, who are their competitors, what are their objectives and strategy, also their strengths and<br />

weaknesses. They analyze all their steps from preparing <strong>of</strong> production to distribution and providing <strong>of</strong> services.<br />

The determination <strong>of</strong> competitive strategy and effort to build a competitive advantage, on which the company<br />

will then build, should be results <strong>of</strong> these analyses. If the company wants to be prosperous and competitive, it<br />

has to <strong>of</strong>fer its products and services under the most favorable conditions, with optimal functional properties,<br />

which faster meet the needs, desires, perceptions and consumer requirements. The aim <strong>of</strong> presented paper is<br />

analysis <strong>of</strong> competitiveness <strong>of</strong> the selected company by Porter five competitive forces model and formulation <strong>of</strong><br />

proposals for the future period, not only to maintain the enterprise on the market, but also even to increase its<br />

competitive potential.<br />

Keywords: competitiveness, competition, Porter model, analysis, company, economical crises<br />

INTRODUCTION<br />

The existence <strong>of</strong> competition is necessary for the effective functioning <strong>of</strong> market<br />

mechanism. There is no single definition <strong>of</strong> concepts <strong>of</strong> competition and competitiveness in<br />

economic theory. The competition means the process by which market players and their<br />

different interests and objectives meets together. Market competition affects companies<br />

through competitive forces and also companies affect their competitors. Competitiveness is a<br />

feature that allows the trader to succeed in competition with other businesses; and its<br />

evaluation is therefore related to the character and conditions <strong>of</strong> this competition (Pitra,<br />

2001).The winner is the one, who knows to apply any (competitive) advantage in the<br />

competition and get the dominance over their competitors.<br />

To be consistently competitive, for the company it means to create tomorrow's<br />

competitive advantages faster than its opponent is able to copy its today’s competitive<br />

benefits. The aim <strong>of</strong> presented paper is analyze <strong>of</strong> competitiveness <strong>of</strong> the selected company<br />

by Porter five competitive forces model and formulation <strong>of</strong> proposals for the future period;<br />

not only to maintain the enterprise on the market, but also even to increase its competitive<br />

potential.<br />

MATERIAL AND METHODS<br />

The most commonly used methods and models <strong>of</strong> competitiveness screening on the<br />

market are: analysis <strong>of</strong> the business portfolio, the analysis <strong>of</strong> experiential effect, life cycle<br />

analysis <strong>of</strong> products, analysis <strong>of</strong> the structure <strong>of</strong> the production program and Porter<br />

five forces model (Mlákay, 2009). For the competitiveness analysis <strong>of</strong> the selected company,<br />

the method Porter model <strong>of</strong> five competitive forces was chosen. The method is considered as<br />

a method <strong>of</strong> branch analyses and it is also known as the Porter analyses.<br />

Porter five forces model (Fig. 1) is primarily aimed at addressing <strong>of</strong> issues, how the<br />

competitive environment affects the attractiveness <strong>of</strong> a market. The presented model and the<br />

7


analysis done on its base are one <strong>of</strong> the benchmarks for determination <strong>of</strong> the specific<br />

competitive advantages (benefits <strong>of</strong> higher skills <strong>of</strong> competition) and specifications, it means<br />

generic strategies. The model defines five forces that significantly affect the attractiveness <strong>of</strong><br />

the market (given by the market segment) and in relation to them five groups <strong>of</strong> threats.<br />

Entry <strong>of</strong> new<br />

businesses<br />

Threat <strong>of</strong> new<br />

businesses<br />

Suppliers<br />

Bargaining<br />

power <strong>of</strong><br />

suppliers<br />

Competitors in the<br />

branch<br />

and<br />

rivalry between them<br />

Bargaining<br />

power <strong>of</strong><br />

customers<br />

Customers<br />

Threat <strong>of</strong> new<br />

substitutes<br />

Pressure <strong>of</strong> substitutes<br />

Fig. 1 Five competitive forces by Porter (Source: Kassay, 2006)<br />

RESULTS AND DISCUSSION<br />

Analyzed company engaged in production <strong>of</strong> steel, steel pipes, reparation <strong>of</strong> machines,<br />

equipments, and spare parts for metallurgical and engineering industry. The company covers<br />

fifteen subsidiaries operating in several European countries with diversified focus (trade,<br />

distribution, services). The company with its wide product range appertains to the leaders in<br />

the European markets in the branch. The dominant market segment in which the company has<br />

the strongest position is the countries <strong>of</strong> the European Union: Czech Republic, Germany,<br />

Poland, Italy and Hungary.<br />

Impact and importance <strong>of</strong> the particular forces <strong>of</strong> Porter model was evaluated on the scale<br />

from 1 to 5 (1 – the weakest effect, 5 - the strongest effect) for individual company products.<br />

The general impact <strong>of</strong> competitive forces is given by the average value; and on this base we<br />

assessed the situation and took the recommendations.<br />

We came to the following results from the Porter analysis:<br />

A. Internal rivalry between suppliers operating on the market<br />

The company has a dominant position on the Slovak market due to precision seamless<br />

pipes, precision welded steel pipes, and hot-rolled pipes. In Slovakia, there are small<br />

businesses that produce lower-quality pipes and focus on different customers. Within Europe,<br />

there are number <strong>of</strong> steel companies producing large steel pipes: Benteler, Vallourec &<br />

Mannesmann, Arcella Mittal Ostrava, Marcegaglia, Jakl Karvina and others. Each <strong>of</strong> the<br />

mentioned companies has diversified product range, what leads to a reduction in the intensity<br />

<strong>of</strong> rivalry. The intensity <strong>of</strong> rivalry <strong>of</strong> the analyzed company on the European market <strong>of</strong> steel<br />

pipes is various for each product.<br />

B. Threat <strong>of</strong> entry <strong>of</strong> new producers on the market<br />

We don’t assume an emergence <strong>of</strong> creation <strong>of</strong> new large enterprises in this industry due to<br />

the lack <strong>of</strong> market capacity on the Slovak market. Slovak government creates a favourable<br />

environment for the entry <strong>of</strong> new investors, what may mean a potential threat for the analyzed<br />

8


company. However, we expect only a small probability <strong>of</strong> building <strong>of</strong> world companies<br />

branch stores, because steel companies have tendencies to expand into Asian countries, China<br />

or South American countries. There are barriers for entry <strong>of</strong> new competitors on the market;<br />

because <strong>of</strong> it the threat <strong>of</strong> entry <strong>of</strong> a new steel company on the market is slight. The entry <strong>of</strong><br />

new business into the branch is very demanding for capital, equipment, etc. Established<br />

companies use effect <strong>of</strong> learning process, experience, scale, what brings reduction <strong>of</strong> costs;<br />

they have established distribution channels, own distribution companies, what brings increase<br />

<strong>of</strong> barriers for the entry on the market.<br />

C. Pressure <strong>of</strong> substitutes<br />

Pipes from other material can be a potential substitute for steel pipes. Steel pipes are<br />

extruded by plastic pipes in the gas industry; for medium and low pressure distribution.<br />

Another possibility <strong>of</strong> modification <strong>of</strong> steel pipes is stainless pipes, aluminium or copper<br />

pipes, but their rate <strong>of</strong> substitution is questionable because <strong>of</strong> their prices. Due to the excellent<br />

properties such as hardness, strength, cutting properties, wear resistance, and heat resistance,<br />

steel is considered to be the best material which is 100% recyclable. The threat from the side<br />

<strong>of</strong> substitutes is rather presented by different brand or type <strong>of</strong> pipe. We can conclude that the<br />

threat, it means power <strong>of</strong> substitutes, is low.<br />

D. Bargaining power <strong>of</strong> customers<br />

The bargaining power <strong>of</strong> customers is proportional to the size <strong>of</strong> purchased volumes <strong>of</strong><br />

production. Customers put pressure to improve quality, reduce errors, improve the properties<br />

<strong>of</strong> used material, to shorten delivery terms and prolong maturity <strong>of</strong> the invoice. Manufacturers<br />

<strong>of</strong> cars, who buy precision welded pipes with small diameters, require mandatory<br />

certification. They have substantial bargaining power and push to ensure more flexibility in<br />

prices, quotation and more favourable terms <strong>of</strong> delivery. The analyzed company customers<br />

are mostly small but also large firms, which purchasing power is medium.<br />

E. Bargaining power <strong>of</strong> suppliers<br />

Suppliers <strong>of</strong> the main input (steel scrap) have stronger bargaining power than other<br />

suppliers. Suppliers have moderate bargaining power, because there are no substitute products<br />

<strong>of</strong> steel scrap; and the steel scrap is the strategic material, which is only in a limited amount.<br />

The Porter analysis results in determination <strong>of</strong> the competitiveness order <strong>of</strong> the production<br />

programme’s individual groups in the sector. As we can see from the Figure 1, the seamless<br />

pipes can be recommended as the most favourable for further development. Split pipes and<br />

precision welded pipes are rated as the least attractive.<br />

Rolled pipes<br />

Precision<br />

seamless pipes<br />

Welded pipes<br />

Split pipes<br />

Large<br />

welded pipes<br />

Precision<br />

welded pipes<br />

Internal rivalry in the branch 3,5 1,5 3 4 4 3,5<br />

Entry <strong>of</strong> nex businesses 1,5 2 2,5 3 3 3<br />

Possibility <strong>of</strong> substitutes 3,5 2 3 3,5 2,5 2,5<br />

Bargaining power <strong>of</strong> suppliers 2 2 3,5 3 4 4<br />

Bargaining power <strong>of</strong> customenrs 2,5 1,5 4 3,5 3 4<br />

∑ 2,6 1,8 3,2 3,4 3,3 3,4<br />

Order <strong>of</strong> the competitiveness 2. 1. 4.–5. 3. 4.-5.<br />

Fig. 1 The Porter analyses <strong>of</strong> the selected company<br />

9


On the base <strong>of</strong> the analysis, we suggest several ways how to increase the<br />

competitiveness <strong>of</strong> products, and thus the company as a whole.<br />

Measures to increase the competitiveness <strong>of</strong> products<br />

Precision seamless pipes<br />

Production capacity slowly comes into full utilization, as it was before the crisis. To<br />

improve the situation, we propose to consider the possibility <strong>of</strong> extending the product range<br />

from the view <strong>of</strong> <strong>of</strong>fered sizes and formats.<br />

Rolled pipes<br />

Increase the share <strong>of</strong> groups <strong>of</strong> pipes with the highest pr<strong>of</strong>itability (boiler pipes,<br />

standard pipes) and look for product innovation.<br />

Welded pipes<br />

The products are located in the middle <strong>of</strong> the evaluation scale according to Porter. The<br />

situation is caused by not just the most modern technology used in production (call for<br />

innovation).<br />

Large welded pipes<br />

Sales <strong>of</strong> large diameter welded tubes has long downward trend, which is mainly due to<br />

obsolete technology level, but nevertheless it is pr<strong>of</strong>itable. We recommend looking for<br />

specific opportunities <strong>of</strong> their application, without investing in the production program. In the<br />

case <strong>of</strong> production unpr<strong>of</strong>itability, we suggest to suppress the production segment completely<br />

and delete it from the product portfolio, because it is not a strategic product line.<br />

Split pipes<br />

The company lags behind other suppliers in price level <strong>of</strong> split pipes, in length <strong>of</strong><br />

delivery dates as well as in the technological possibilities <strong>of</strong> production. The situation is<br />

similar to that <strong>of</strong> welded pipes <strong>of</strong> large dimensions (it is a complementary product line). We<br />

propose to review the pricing policy <strong>of</strong> this segment that makes the product line<br />

uncompetitive.<br />

Precision welded tubes<br />

The evaluation <strong>of</strong> this relatively new product is quite negative. It is due to the fact that<br />

our company is a newcomer as a manufacturer <strong>of</strong> welded pipes and due to a small range <strong>of</strong><br />

products in this line. Pipes have two main application areas: automobile industry and<br />

energetic. Production <strong>of</strong> these precision welded pipes is unpr<strong>of</strong>itable because <strong>of</strong> high costs <strong>of</strong><br />

purchase <strong>of</strong> steel scrap. Company can resolve this situation by purchasing <strong>of</strong> a machine for<br />

cutting <strong>of</strong> steel scrap. The motor industry represents a great opportunity, and therefore the<br />

company should further invest to expanding <strong>of</strong> product line for this sector. The analyzed<br />

company obtains more bargaining power, greater opportunity to cover a single supply by one<br />

delivery and so more customers and a relatively stable sale <strong>of</strong> products by building an overall<br />

product portfolio for automobile industry.<br />

CONCLUSION<br />

The monitoring <strong>of</strong> competition should be one <strong>of</strong> the key activities <strong>of</strong> any enterprise. It<br />

showed us from the conducted analyses <strong>of</strong> the competitiveness by Porter model, that the<br />

company must generally pay attention to raise the level <strong>of</strong> customers` satisfaction (it means to<br />

ensure the fulfillment <strong>of</strong> their quantitative and qualitative requirements on products inter alia),<br />

reduce the number <strong>of</strong> complaints, find possibilities how to eliminate causes <strong>of</strong> rejection <strong>of</strong><br />

demands, improve quality and expand its product portfolio.<br />

10


Acknowledgement<br />

This paper was processed in the frame <strong>of</strong> the project No. 1/0517/09 as the result <strong>of</strong> author’s<br />

research at significant help <strong>of</strong> VEGA agency, Slovakia.<br />

REFERENCES:<br />

1. BIERNACKA J. 2009. The competitiveness <strong>of</strong> Polish stock-listed companies during the<br />

global economic crisis (B). In: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Forestry and Wood Technology. ISSN 028-5704.<br />

2. ELEXA, Ľ. 2004. Integrácia a zmeny konkurencieschopnosti firiem v SR. In: Malé<br />

a střední podniky na prahu Evropské unie. Opava: Slezská univerzita, 2004. s. 96-103.<br />

ISBN 80-7248-237-8.<br />

3. HITKA, M. et. al. 2010. Podniková kultúra v riadení ľudských zdrojov. Vedecká<br />

monografia. Zvolen: Vydavateľstvo TU vo Zvolene, 2010. 140 s. ISBN 978-80-228-2151-<br />

3.<br />

4. KASSAY, Š. 2006. Podnik a podnikanie: Podnikateľské prostredie. 1. vyd. Bratislava :<br />

VEDA, 2006. 671 s. ISBN 80-224-0775-5<br />

5. PITRA, Z. 2001. Zvyšování podnikatelské výkonnosti firmy. Praha : Ekopress, 2001. 305<br />

6. s. ISBN 80-86119-64-5<br />

7. PORTER, M. 1994. Konkurenční strategie. Praha: Victoria Publishing, 1994. 403 s. ISBN<br />

80-85605-11-2.<br />

8. POTKÁNY, M. 2010. Outsourcing v podnikoch drevospracujúceho priemyslu na<br />

Slovensku. Vedecká monografia. Technická univerzita vo Zvolene, 2010. 79 s. ISBN 978-<br />

80-228-2194-0.<br />

9. SOPKOVÁ, E., KOSTIVIAROVÁ, S. 2009. The importance <strong>of</strong> business incubators in<br />

the world and in Slovakia. In: Studia Universitatis Vasile Goldis Arad. Seria Stiinte<br />

Economice. Anul 19/2009 Partea a III – a. Arad: 2009. s. 1 – 12. ISSN 1584-2339.<br />

10. SUJOVÁ, A. 2010. Manažment reštrukturalizácie podniku na procesnom prístupe.<br />

Vedecká monografia. Zvolen: Vydavateľstvo TU vo Zvolene, 2010. 63 s. ISBN 978-80-<br />

228-2178-0.<br />

Streszczenie: Analiza konkurencyjności wybranej firmy. W obecnych czasach światowej<br />

ekonomii firmy chcące wygrywaćw warunkach trudnej konkurencji, muszą analizować nie<br />

tylko swoje ewnętrzne, ale także i zenętrzne środowisko. Przedsiębiorstwa identyfikują<br />

swoich konkurentów, ich cele i strategie oraz zalety i słabości. Analizują wszystkie kroki<br />

począwszy od produkcji do dystrybucji produktów. Efektem tych analiz powinno być<br />

ustalenie strategii konkurencyjności oraz wysiłki w zbudowanu bardziej konkurencyjnego<br />

przedsiębiorstwa. Artykuł skupia się na analizie konkurencyjności wybranego przedsiębiorsta<br />

w modelu pięciu sił Portera i ustalenie zaleceń do działań przyszłości, pozwalających nie<br />

tylko utrzymaćfirmę na rynku, ale także zwiększyć jej potencjał konkurencyjny.<br />

Corresponding authors:<br />

Ing. Mariana Sedliačiková, PhD.<br />

Mgr. Miroslava Michalková<br />

Department <strong>of</strong> Business Economics Faculty <strong>of</strong> Media<br />

Faculty <strong>of</strong> Wood Science and Technology Pan Europian <strong>University</strong><br />

Technical <strong>University</strong> in Zvolen Tomášikova 50/C<br />

T. G. Masaryka 24 831 04 Bratislava<br />

960 53 Zvolen Slovakia<br />

Slovakia<br />

mail: miroslava.michalkova@europers.sk<br />

mail: sedliacikova@vsld.tuzvo.sk<br />

Slovakia<br />

phone: 00421-045-5206420<br />

11


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 12-16<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Taxation <strong>of</strong> general consumption in SR and (ir)responsible behavior <strong>of</strong><br />

taxpayers<br />

MARIANA SEDLIAČIKOVÁ – EVA SOPKOVÁ<br />

Department <strong>of</strong> Business Economics, Technical <strong>University</strong>, Zvolen, Slovakia<br />

Department <strong>of</strong> Corporate Economics and Management, UMB Banská Bystrica, Slovakia<br />

Abstract: An irresponsible behavior <strong>of</strong> taxpayers is a seriously long-lasting economic problem, that all the<br />

countries in the world try to solve. Struggle with various forms <strong>of</strong> tax evasion is not easy, because skill <strong>of</strong> the<br />

mandatory participants knows no boundaries. The aim <strong>of</strong> this scientific analysis are selected issues <strong>of</strong> general<br />

indirect taxation, forms, consequences <strong>of</strong> tax evasion and the importance <strong>of</strong> international cooperation in the<br />

elimination <strong>of</strong> tax evasion. By problem solving <strong>of</strong> discharging <strong>of</strong> tax duties, we focused on value added tax,<br />

which is one <strong>of</strong> the most important income items <strong>of</strong> the state budget <strong>of</strong> the Slovak Republic.<br />

Keywords: tax, value added tax, the irresponsible behavior <strong>of</strong> taxpayers, tax evasion<br />

INTRODUCTION<br />

The value added tax is an European instrument for the taxation <strong>of</strong> final consumption.<br />

Addressing the scientific activities on the value added tax is mainly important from two<br />

perspectives. The first reason for the attention is its substitutability in the process <strong>of</strong> filling <strong>of</strong><br />

the state budget <strong>of</strong> the Slovak Republic. The second reason is that it is a general consumption<br />

tax, which applies to all business activities including production, distribution <strong>of</strong> goods and<br />

services. Value added tax has also its international context in the fact that the introduction <strong>of</strong><br />

this tax is a precondition for engaging <strong>of</strong> countries in the European Community and the<br />

contributions <strong>of</strong> individual countries from its levying are sources <strong>of</strong> financing <strong>of</strong> the European<br />

Union.<br />

The aim <strong>of</strong> the presented paper is an analyses <strong>of</strong> (not) responsible behavior payers <strong>of</strong><br />

value added tax in the Slovak Republic, through the identification <strong>of</strong> crime and tax evasion<br />

on VAT and international exchange <strong>of</strong> tax information.<br />

MATERIAL AND METHODS<br />

The existence <strong>of</strong> tax evasion is based on the conflict between state interests and business.<br />

States try to regulate, through the legislation, the conditions for eligibility, collection <strong>of</strong> taxes,<br />

rights, obligations and penalties for taxpayers. Conversely businesses try to minimize the tax<br />

burden, while there are many subjective approaches in the mode <strong>of</strong> taxation. Clearly we can<br />

say that to quantify the tax evasion is extremely challenging and difficult, because this<br />

economic category contains in itself elements <strong>of</strong> hidden and murky processes. It is possible to<br />

proceed for the definition <strong>of</strong> evasion in the field <strong>of</strong> value added tax in terms <strong>of</strong> tax theory and<br />

in terms <strong>of</strong> legislation. It is possible for the tax evasion to consider such behaviour <strong>of</strong><br />

taxpayers, which is in conflict with actual valid laws; it means that the taxpayer deliberately<br />

refrains from fulfilling <strong>of</strong> his tax obligations in the hope that his behaviour will remain<br />

confidential. We subscribe to the view that we know the following types <strong>of</strong> tax evasion<br />

(Sopková, 2009): legal and illegal tax evasion. Legal tax evasions are consistent with the<br />

intent <strong>of</strong> the creator <strong>of</strong> the law. It is possible to call them as how to use the <strong>of</strong>fered<br />

alternatives. Illegal tax evasion (illegal reduction <strong>of</strong> tax liability) is process against the<br />

intentions <strong>of</strong> the creator <strong>of</strong> the law, but it is difficult to legally punishable. In the strict sense it<br />

12


means „laundering” <strong>of</strong> money. A general definition <strong>of</strong> tax evasion in the Slovak legislation is<br />

not given.<br />

The analysis <strong>of</strong> value added tax evasion was conducted on base <strong>of</strong> secondary data<br />

obtained in cooperation with the Tax and Customs Directorate <strong>of</strong> the Slovak Republic during<br />

years 2004 - 2009 and on the base <strong>of</strong> analysis <strong>of</strong> primary data obtained from questionnaire<br />

research carried out in cooperation with businesses in Slovakia. The year 2004 was chosen as<br />

the starting year <strong>of</strong> our investigation, because our tax system has undergone several changes<br />

in that year in connection to the entry <strong>of</strong> Slovak Republic to the European Union. By<br />

processing <strong>of</strong> secondary data, we used the scientific method as: analysis, synthesis, induction,<br />

deduction, comparison, and graphical display<br />

and mathematical methods.<br />

RESULTS AND DISCUSSION<br />

In accordance with the subject <strong>of</strong> the investigation, we will focus on the identification <strong>of</strong><br />

such forms <strong>of</strong> tax evasion, which are linked to the general indirect taxation, value added tax.<br />

The most frequently used form <strong>of</strong> evasion that the tax administration gives special attention<br />

are: cut items increasing the tax base, the increase <strong>of</strong> items declining the tax base, accounting<br />

manipulation based on two accounting processes, paper and bulk stores that have an<br />

international character.<br />

Those forms <strong>of</strong> tax evasion on value added tax raised from the results <strong>of</strong> questionnaire<br />

research in condition <strong>of</strong> Slovak Republic: the unauthorized deduction <strong>of</strong> so-called input tax,<br />

the denial <strong>of</strong> so-called output tax, the shift <strong>of</strong> tax liability to another tax period, abuse <strong>of</strong> rules<br />

<strong>of</strong> tax deduction, artificially lowering <strong>of</strong> the tax base, intra-community tax evasion (the socalled<br />

payers disappearance), carousel tax evasion, tax evasion in the trade <strong>of</strong> motor vehicles,<br />

tax evasions on markets and market places, non-use, respectively influence <strong>of</strong> the outcomes <strong>of</strong><br />

electronic cash registers and tax evasion associated with selective consumption taxes. It<br />

occurs to the biggest tax evasion exactly by the value added tax because it allows direct cash<br />

<strong>of</strong> finance sources from the state budget through the excess deductions.<br />

The consequences <strong>of</strong> tax evasion can be considered from the criminal and law view. Tax<br />

crime is any action or inaction <strong>of</strong> the taxpayer, which constitute the elements <strong>of</strong> <strong>of</strong>fenses<br />

according the Criminal Code No. 140/1961 (valid until 31 st October 2005) and according the<br />

Criminal Code No. 300/2005 which is currently in force. Table 1 shows paragraphs that are<br />

linked in the Penal Code to the crimes with tax issues in year 2009.<br />

Tab. 1 Tax crimes in year 2009<br />

Numbers <strong>of</strong> paragraphs Tax crimes Defendants Sentenced<br />

148 a 276 Shortening the taxes and insurance premiums 137 81<br />

148a) a 277 Curtailment <strong>of</strong> taxes and insurance premiums 98 57<br />

148b) a 278 Non-payment <strong>of</strong> taxes and insurance premiums 71 30<br />

(Source: www.genpro.gov.sk)<br />

It was found the highest frequency <strong>of</strong> <strong>of</strong>fenders in the first group in the year 2009, where<br />

it was accused accompanied by both criminal laws 137 subjects, but only more than 59% <strong>of</strong><br />

them were convicted. Success in the second category <strong>of</strong> crimes was more than 58% and in the<br />

third category it was sentenced just over 42% <strong>of</strong> defendants. It is evident from this valuation,<br />

that the effectiveness <strong>of</strong> the legal system in the Slovak Republic is problematic. One can then<br />

assume that on this fact also rely all those who have made tax evasion and are not punished.<br />

Tax evasion are very difficult measurable, but the amount <strong>of</strong> tax arrears is pursued, quantified<br />

13


and analyzed on the level <strong>of</strong> tax administration. Trend <strong>of</strong> all tax arrears as a form <strong>of</strong> tax<br />

evasion broken down by type<br />

<strong>of</strong> tax is presented in the table 2.<br />

Tab. 2 Trend <strong>of</strong> all tax arrears according to the type <strong>of</strong> tax in years 2004 – 2009<br />

Tax arrears according to the type<br />

<strong>of</strong> tax (in thousand €)<br />

31. 12.<br />

004<br />

31. 12.<br />

2005<br />

31. 12.<br />

2006<br />

31. 12.<br />

2007<br />

31. 12.<br />

2008<br />

31. 12.<br />

2009<br />

Arrears in the old tax system (valid till<br />

1992)<br />

173 339 105 258 90 918 83 284 63 400 54 169<br />

Tax on personal income 311 293 241 619 209 719 211 810 211 777 210 531<br />

Tax on corporate income 452 035 383 423 374 427 402 941 484001 463 212<br />

Value added tax 1 084 711 1 135 000 1 111 299 1 302 463 1 398 759 1 541 592<br />

Selective Excise 95 300 99 549 46 405 72 296 60 247 49 900<br />

Property tax, road tax and motor<br />

vehicle tax<br />

115 482 110 603 109 606 83 748 68 147 63 603<br />

Other (withholding tax, penalties from<br />

tax audits)<br />

6 141 5 477 4 879 4 846 4 216 3 901<br />

Total 2 238 301 2 080 929 1 947 253 2 161 388 2 290 547 2 386 908<br />

(Source: Slovak Tax Directorate)<br />

The value <strong>of</strong> tax arrears on the value added tax in year 2009 compared to base year (2004)<br />

increased by more than 42%. The proportion <strong>of</strong> value added tax arrears on all tax arrears were<br />

more than 48% in 2004. If we compare this trend with a share <strong>of</strong> value added tax on total tax<br />

arrears, we record negative trend, because the share <strong>of</strong> value added tax increased to more than<br />

64% in 2009. According to the trend <strong>of</strong> kinds <strong>of</strong> tax arrears in the Slovak Republic, all arrears<br />

have sinking tendency (when we compare years 2009 and 2004). Only the value added tax<br />

increases in the total amount <strong>of</strong> arrears in proportion to all arrears. Therefore in economic<br />

analysis, it is necessary to deal separately with the collection and paying <strong>of</strong> this tax.<br />

In no area, such large losses are permitted as in the area <strong>of</strong> value added tax. The main<br />

reason <strong>of</strong> this problem is the system <strong>of</strong> value added tax itself, especially the principle <strong>of</strong><br />

taxation at each stage <strong>of</strong> products and services processing. Authors Minářová (2007) and<br />

Sujová and Sedliačiková (2010) indicate the tax system as one <strong>of</strong> the key factors that affect<br />

the performance <strong>of</strong> the Slovak economy in the future. Multiple counting system itself,<br />

clearing, payment and settlement between the payer and recipient and between the two<br />

entities and the treasury enable various frauds <strong>of</strong> payers. Free movement <strong>of</strong> goods, services,<br />

people and capital means that EU Member States are increasingly less able to fight alone<br />

against tax evasion. Manifestations <strong>of</strong> globalization worse this problem in the internationally<br />

measure (Mura, 2010).<br />

In the year 2008, the European Parliament approved a Report about coordinated strategy<br />

which aim was to improve the fight against tax frauds. The European Parliament challenged<br />

the European Commission to take effective measures to deter, prevent and reduce the number<br />

<strong>of</strong> tax frauds with an emphasis on value added tax. Member states have developed a control<br />

mechanism <strong>of</strong> taxation <strong>of</strong> good <strong>of</strong> value added tax through summary statement. Tax <strong>of</strong>fices <strong>of</strong><br />

member states use the data referred in the summary statement to check that buyers <strong>of</strong> goods<br />

from another member state (exempt from value added tax), said the goods in their tax<br />

statement and taxed it by domestic tax. Data from the quarterly statements, which supply the<br />

taxpayers <strong>of</strong> value added, give away tax administrations <strong>of</strong> the member state to the European<br />

database <strong>of</strong> summary statements (VIES), which collected the information from all member<br />

states <strong>of</strong> the European Union.<br />

Since 2004, when Slovakia has become a member <strong>of</strong> the European Union, it has increased<br />

its cooperation with EU countries in the field <strong>of</strong> international exchange <strong>of</strong> information. It<br />

14


esults from the table 3 that the Slovak Republic has started involve in the high rate to<br />

international exchange <strong>of</strong> information, particularly in the area <strong>of</strong> value added tax (since 2004).<br />

For the comparison, we present the number <strong>of</strong> requests for information exchange in the field<br />

<strong>of</strong> direct<br />

taxation, too.<br />

Tab. 4 International exchange <strong>of</strong> tax information during years 2004 - 2009<br />

Number <strong>of</strong> cases / Year 2004 2005 2006 2007 2008 2009<br />

Value added tax 50 917 1712 2015 2641 3196<br />

Direct taxes 384 273 245 301 206 297<br />

(Source: Slovak Tax Directorate)<br />

The growth <strong>of</strong> international exchange <strong>of</strong> information presents the increase 64 times from<br />

2004 to 2009. We see an uneven development in statistics <strong>of</strong> the exchange <strong>of</strong> information in<br />

the field <strong>of</strong> direct taxation. There was also a rise in the exchange <strong>of</strong> tax information in the year<br />

2004, but in the next years there was the decline in these requests. It was registered 297<br />

applications in the filed <strong>of</strong> the exchange <strong>of</strong> direct tax information in 2009, what are 10, 8<br />

times less than the requests for information about value added tax. The following table<br />

illustrates the international exchange <strong>of</strong> information about value added tax according to the<br />

source <strong>of</strong> requests<br />

Tab. 4 International exchange <strong>of</strong> information about value added tax according to the source <strong>of</strong><br />

requests<br />

Number <strong>of</strong> cases / Year 2004 2005 2006 2007 2008 2009<br />

Applicacion from abroad 25 454 701 746 1255 1393<br />

Abroad applications 25 463 1011 1269 1386 1803<br />

(Source: Slovak Tax Directorate)<br />

Slovak Republic cooperate the best according to the evidence <strong>of</strong> the Tax Directorate in<br />

2009 with: Hungary (1112 cases), the Czech Republic (953 cases), Germany (312 cases) and<br />

Poland (269 cases). These are neighboring countries, in which is suspected more intense<br />

business activity and cooperation. The most important effect <strong>of</strong> this international exchange <strong>of</strong><br />

information is its preventive effect and support <strong>of</strong> voluntary admission <strong>of</strong> tax charges. It is<br />

necessary to change the thinking <strong>of</strong> business and draw their attention to socially responsible<br />

business with all its positive<br />

effects on society (Musová, 2008).<br />

CONCLUSION<br />

It is not possible to completely avoid the tax evasion, but it is real efforts to minimize<br />

them. Success <strong>of</strong> minimizing <strong>of</strong> tax evasion is derived from many assumptions, <strong>of</strong> which we<br />

consider as most important: clear, simple, and functional tax administration, relatively low<br />

taxation progression, bearable tax burden, transparency and efficiency allocation <strong>of</strong> public<br />

resources <strong>of</strong> the state on the one hand, and fair declaration and payment <strong>of</strong> taxes by taxpayers<br />

on the other. However, far more significant is to change the thinking <strong>of</strong> businesses and to<br />

implement innovative approaches to the concept <strong>of</strong> social responsibility business in condition<br />

<strong>of</strong> taxation <strong>of</strong> final consumption in Slovak Republic.<br />

Acknowledgement<br />

This paper was processed in the frame <strong>of</strong> the project No. 1/0517/09 as the result <strong>of</strong> author’s<br />

research at significant help <strong>of</strong> VEGA agency, Slovakia.<br />

15


REFERENCES:<br />

1. Daňové trestné činy. Dostupné na internete dňa 15. 03. 2011: < http:<br />

//www.genpro.gov.sk/>.<br />

2. MINÁROVÁ, M. 2007. Konkurenčné spravodajstvo ako zdroj konkurenčnej výhody<br />

podnikov na trhu. In: Marketing v teórií, výskume a praxi. Zborník z vedeckej konferencie<br />

s medzinárodnou účasťou. Podkylova : 2007, s. 244 – 247, ISBN 978-80-8069-957-4.<br />

3. MUSOVÁ, Z. Spoločensky zodpovedné podnikanie – základ budovania vzťahov<br />

so záujmovými skupinami. In: Vzťahový marketing ako nástroj konkurencieschopnosti<br />

podniku. Bratislava : OF EU, 2008. ISBN 978-80225-2624-1.<br />

4. MURA, L. 2010. Faktory internacionalizácie malého a stredného podnikania. In: Forum<br />

Statisticum Slovacum. Vedecký časopis Slovenskej štatistickej a demografickej<br />

spoločnosti, č. 2/2010, Bratislava. SŠDS s. 111-116. ISBN 1336-7420.<br />

5. SEDLIAČIKOVÁ, M. 2010. Daňová kontrola a jej uplatnenie v praxi. In: Aktuální trendy<br />

pro rozvoj ekonomiky a podnikání v EU, Sborník příspěvků z medzinárodní vědecké<br />

konference. Opava : Obchodně podnikatelská fakulta v Karviné, Slezská univerzita, 2010,<br />

s. 207 - 213. ISBN 978-80-7248-631-1.<br />

6. SOPKOVÁ, E. 2009. Cost Effectiveness <strong>of</strong> Paying Value Added Tax from the Viewpoint<br />

<strong>of</strong> Businesses. In: International Journal <strong>of</strong> Economic <strong>Sciences</strong> and Applied Research,<br />

Volume 2. Greece : Kavala Institute <strong>of</strong> Technology, 2009, ISSN 1791-5120.<br />

7. SUJOVÁ, A. 2010. Manažment reštrukturalizácie podniku na procesnom princípe.<br />

Zvolen: TU, 2010, ISBN 978-80-228-2178-0.<br />

8. Zákon č. 140/1961 Zb. – Trestný zákon v znení neskorších predpisov.<br />

9. Zákon č. 511/1992 Zb. o správe daní a poplatkov a o zmenách v sústave územných<br />

finančných orgánov v znení neskorších predpisov.<br />

10. Zákon č. 300/2005 Z. z. – Trestný zákon v znení neskorších predpisov.<br />

Streszczenie: Opodatkowanie konsumpcji na Słowacji i nieodpowiedzialne zachowania<br />

podatników. Nieodpowiedzialne zachowanie podatników jest poważnym problemem, który<br />

wszystkie kraje świata usiłują rozwiązać. Walka z różnymi formami omijania opodatkowania<br />

nie jest łatwa, ze względu na nieograniczoną pomysłowość płacących. Celem powyższej<br />

analizy jest określenie form opodatkowania pośredniego, konsekwencji omijania<br />

opodatkowania i znazenie współpracy międzynarodowej w walce z tym procederem.<br />

Soncentrowano się na podatku od wartości dodanej, będącym jednym z ważniejszych źródeł<br />

dochodu Słowacji.<br />

Corresponding authors:<br />

Ing. Mariana Sedliačiková, PhD.<br />

Ing. Eva Sopková, PhD.<br />

Department <strong>of</strong> Business Economics Department <strong>of</strong> Corporate Economics and Management<br />

Faculty <strong>of</strong> Wood Science and Technology Faculty <strong>of</strong> Economics<br />

Technical <strong>University</strong> in Zvolen<br />

Univerzita Mateja Bela<br />

T. G. Masaryka 24 Tajovského 10<br />

960 53 Zvolen 975 90 Banská Bystrica<br />

Slovakia<br />

Slovakia<br />

mail: sedliacikova@vsld.tuzvo.sk<br />

e-mail: eva.sopkova@umb.sk;<br />

phone: 00421-045-5206420 phone: 00421484462713<br />

16


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 17-21<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Possibilities <strong>of</strong> optimizing <strong>of</strong> Slovak regional policy in Slovakia<br />

MARIANA SEDLIAČIKOVÁ - ANDREA SUJOVÁ<br />

Department <strong>of</strong> Business Economics, Technical <strong>University</strong> in Zvolen, Slovakia<br />

Abstract: The main aim <strong>of</strong> regional policy is a balanced trend <strong>of</strong> population in regions which is conditioned <strong>of</strong><br />

equal economic and social level in all regions <strong>of</strong> the state. The regional disparities are a problem in most <strong>of</strong><br />

states. Regional disparities bring social, economic, political and ecological problems and thereby a public<br />

dissatisfaction. That is the reason, why it is important for the state government to monitor the development on<br />

the regional and on the state level. The paper deals with analysis <strong>of</strong> Slovak regions on the level NUTS 3 and with<br />

evaluation <strong>of</strong> regional disparities. The aim <strong>of</strong> the presented paper is proposal <strong>of</strong> possibilities for optimizing <strong>of</strong><br />

Slovak regional and economic structure and thereby to reduce the regional disparities. Proposed suggestions are<br />

focused on investments, infrastructure, education and sources for financing the structural changes.<br />

Keywords: regional disparities, regional policy, macroeconomic indicators, regional structure optimizing<br />

INTRODUCTION<br />

Slovak Republic (SR) is characterized by significant and ever-deepening regional<br />

disparities that are given by geographically, partly historically, by native economical<br />

development, degree <strong>of</strong> urbanization and industrialization and now they can be seen in<br />

economic performance, level <strong>of</strong> social and educational structure. Existing differences in<br />

particular regions <strong>of</strong> the Slovak Republic, which arose in the past and were reinforced by<br />

structural changes in the key sectors <strong>of</strong> the economy, should be systematically solved in order<br />

<strong>of</strong> regional disparities reduction. Support and strengthen <strong>of</strong> the less developed or <strong>of</strong> the<br />

structural changes most affected regions fall between the priorities <strong>of</strong> regional policy <strong>of</strong> the<br />

government. The paper deals with analysis <strong>of</strong> Slovak regions on NUTS 3 level and with<br />

evaluation <strong>of</strong> regional disparities. The aim <strong>of</strong> the presented paper is proposal <strong>of</strong> possibilities<br />

for optimizing <strong>of</strong> Slovak regional and economic structure and thereby to reduce the regional<br />

disparities. Proposed suggestions are focused on investments, infrastructure, education and<br />

sources for financing the structural changes. Propose <strong>of</strong> regional structure optimizing <strong>of</strong><br />

Slovakia's economy requires an analysis <strong>of</strong> the economic level <strong>of</strong> the single regions and<br />

subsequent identification <strong>of</strong> regional disparities and regional policy tools.<br />

MATERIAL AND METHODS<br />

For the purpose and needs <strong>of</strong> identification <strong>of</strong> regional disparities it is necessary to<br />

define the administrative-governing regions, which are represented in Slovakia at the level <strong>of</strong><br />

NUTS 3 by the municipalities, it means the higher territorial units. The number <strong>of</strong> regions at<br />

NUTS 3 is eight: Bratislavský, Trnavský, Trenčiansky, Žilinský, Nitriansky, Banskobystrický,<br />

Košický a Prešovský. Further, it is necessary to classify the factors affecting the regional<br />

development, which include: natural resources, demographic structure <strong>of</strong> population,<br />

economic activities <strong>of</strong> regions and other qualitative and quantitative factors <strong>of</strong> internal and<br />

external environment. We have solved a fundamental issue by using the methods <strong>of</strong><br />

17


description, selection and systematization <strong>of</strong> information and data. By investigation <strong>of</strong> the<br />

particular regions we used the method <strong>of</strong> analysis <strong>of</strong> individual regions and regional<br />

disparities, the method <strong>of</strong> comparison <strong>of</strong> NUTS 3 regions in the Slovak Republic, the method<br />

<strong>of</strong> selection <strong>of</strong> appropriate macro-economic indicators as well as the mathematical and<br />

statistical methods used mainly by processing <strong>of</strong> statistical data from a database <strong>of</strong> regional<br />

statistics.<br />

Interregional disparities in the Slovak Republic were expressed and quantified by<br />

using <strong>of</strong> regional macroeconomic indicators: the regional GDP and GDP per capita, regional<br />

employment and unemployment, number <strong>of</strong> population and average monthly wage in the<br />

regions and volume <strong>of</strong> foreign direct investment. Those indicators were analyzed for the<br />

period 2005 - 2009. To give proposals <strong>of</strong> the regional economic structure optimization, we<br />

used the methods <strong>of</strong> summarizing, deduction and synthesis <strong>of</strong> data and information found on<br />

the basis <strong>of</strong> the realized analysis.<br />

RESULTS AND DISCUSSION<br />

Regional disparities in the Slovak Republic are monitored at regional level NUTS 3.<br />

They are characterized by certain special features that persist for longer period Indicator <strong>of</strong><br />

gross domestic product (GDP) is most commonly used in the frame <strong>of</strong> assessment, analysis<br />

and evaluation <strong>of</strong> the overall development <strong>of</strong> regional disparities. This indicator is one <strong>of</strong> the<br />

key criteria used in determination <strong>of</strong> the legitimacy <strong>of</strong> structural aid pump <strong>of</strong> the European<br />

Union (KOŽIAK, 2008). The regional GDP per capita in current prices in the years from 2005<br />

to 2009 is presented in the following table.<br />

Tab. 1 Regional GDP per capita in current prices (€ millions) in the years 2005 - 2009<br />

Region / Year 2005 2006 2007 2008 2009<br />

Bratislavský 16 967 18 937 22 261 23 809 27 015<br />

Trnavský 7 868 8 846 9 888 12 438 13 810<br />

Trenčiansky 6 941 7 765 8 076 9 553 10 560<br />

Nitriansky 6 541 7 409 8 119 8 758 9 548<br />

Žilinský 6 031 6 785 7 531 8 268 9 552<br />

Banskobystrický 6 480 6 906 6 560 7 545 8 385<br />

Prešovský 4 574 5 017 5 379 5 585 6 225<br />

Košický 6 703 7 390 7 716 8 605 9 333<br />

(Source: http://px-web.statistics.sk/PXWebSlovak, own processing)<br />

Regional structure <strong>of</strong> GDP per capita confirms the dominance <strong>of</strong> the Bratislava region,<br />

not just the level <strong>of</strong> GDP, but also it’s dynamic <strong>of</strong> growth. Other seven regions recorded<br />

(except Banskobystrický region in the years from 2004 to 2005) continuous moderate growth<br />

<strong>of</strong> this indicator, but with lower dynamic <strong>of</strong> growth compared with the Bratislava region.<br />

Trnavský region (the second best in the order) achieves only half the level <strong>of</strong> GDP per capita<br />

and Prešovský region (the worst in the order) only a quarter level.<br />

Unemployment rate and employment rate in the national economy are another group<br />

<strong>of</strong> indicators that are monitored in the evaluation <strong>of</strong> regional disparities (KOŽIAK, 2008). The<br />

following table reflects the regional unemployment rate in the years from 2005 to 2009.<br />

18


Tab. 2 Regional unemployment rate (in %) in the years 2005 – 2009<br />

Region / Year 2005 2006 2007 2008 2009<br />

Bratislavský 5,2 4,3 4,2 3,6 4,7<br />

Trnavský 10,4 8,8 6,5 6,2 9,1<br />

Trenčiansky 8,1 7,1 5,7 4,7 7,3<br />

Nitriansky 17,8 13,2 10,7 8,8 13,0<br />

Žilinský 15,2 11,8 10,1 7,7 10,6<br />

Banskobystrický 23,8 21,1 20,0 18,2 18,8<br />

Prešovský 21,5 18,1 13,8 13,0 16,2<br />

Košický 24,7 20,3 15,9 13,5 15,5<br />

(Source: http://px-web.statistics.sk/PXWebSlovak/, own processing)<br />

It results from the above statistical data a downward trend in unemployment in all<br />

regions <strong>of</strong> Slovakia continuously from 2005 to 2008, while in 2009 it occurred in every region<br />

<strong>of</strong> the SR its growth due to the economic crisis. Least job opportunities are in<br />

Banskobystrický, Košický and Prešovský region.<br />

The average monthly wage per employee is one <strong>of</strong> the most important economic and<br />

social indicators, which are monitored not only at the level <strong>of</strong> the economic as a whole, but<br />

also at level <strong>of</strong> single regions (KOŽIAK, 2008). The following table shows the regional<br />

average nominal monthly wage in the years from 2005 to 2009.<br />

Tab. 3 Regional average nominal monthly wage (in €) in the years 2005 - 2009<br />

Region / Year 2005 2006 2007 2008 2009<br />

Bratislavský 812,54 893,25 957,35 1 045,58 1 103,14<br />

Trnavský 604,71 618,64 700,69 734,75 761,82<br />

Trenčiansky 551,24 603,93 647,31 696,61 711,94<br />

Nitriansky 529,69 579,03 636,33 690,23 704,32<br />

Žilinský 556,52 588,30 638,78 695,31 718,00<br />

Banskobystrický 537,19 565,92 624,91 675,30 685,56<br />

Prešovský 484,62 539,50 597,29 634,87 659,90<br />

Košický 595,77 662,25 713,37 755,76 772,32<br />

(Source: http://px-web.statistics.sk/PXWebSlovak/, own processing)<br />

The table presents that in Slovakia there are significant wage differences that grow<br />

over time. Again, it confirms the dominance <strong>of</strong> the Bratislava region. The lowest nominal<br />

monthly wage is in Prešovský region.<br />

When we evaluate the development <strong>of</strong> foreign direct investment (FDI), the regional<br />

differences are showed most markedly in comparison with all other indicators. The following<br />

table presents regional foreign direct investment in the years from 2005 to 2009.<br />

19


Tab. 4 Regional foreign direct investment (in thousand. €) in the years 2005 – 2009<br />

Region / Year 2005 2006 2007 2008 2009<br />

Bratislavský 13 524 248 14 496 772 18 386 927 19 979 994 23 879 092<br />

Trnavský 1 861 529 4 445 116 3 218 428 3 302 559 3 251 024<br />

Trenčiansky 956 128 1 141 431 1 217 314 1 562 993 1 628 475<br />

Nitriansky 614 979 675 297 1 176 425 1 299 717 1 399 116<br />

Žilinský 939 190 1 292 007 1 645 264 2 221 821 2 195 419<br />

Banskobystrický 503 617 512 454 596 410 843 552 876 524<br />

Prešovský 296 840 298 949 282 361 249 094 363 904<br />

Košický 1 996 065 2 224 649 2 760 900 2 951 992 2 632 893<br />

(Source: http://px-web.statistics.sk/PXWebSlovak/, own processing)<br />

We can state that investments flow only to the Bratislavský region and the rest <strong>of</strong><br />

Slovakia has no chance to compete with them during the monitored period. Inflow <strong>of</strong> FDI out<br />

<strong>of</strong> the Bratislavský region is always associated with investments to the companies or<br />

industrial parks. Regions Prešovský and Banskobystrický are unrivaled the worst.<br />

It is still a phenomenon <strong>of</strong> rich, respectively richer, West and poorer East according to<br />

the latest statistical surveys in Slovakia. It is <strong>of</strong>ten cited so called „golden“ triangle Bratislava<br />

- Nitra - Trnava in western Slovakia.<br />

It is possible to propose the basic options <strong>of</strong> regional disparities reducing on the base<br />

<strong>of</strong> the findings regional economic disparities in SR:<br />

• Investment stimulus and guarantees for investors: to pull domestic and foreign<br />

investors to the less attractive regions <strong>of</strong> the SR through investment stimulus and<br />

guarantees <strong>of</strong> return the percentage <strong>of</strong> investment.<br />

• Support from structural funds <strong>of</strong> EU: to use the European aid in favor <strong>of</strong> less<br />

developed regions that reach a low socio-economic level.<br />

• Infrastructure: to obtain finance sources from the European Regional Development<br />

Fund (ERDF) to strengthen the development <strong>of</strong> transport infrastructure in undeveloped<br />

regions, or use the concession company. In the event that the funds provided from the<br />

ERDF for the planned construction <strong>of</strong> highways and expressways would be<br />

insufficient, we would suggest the possibility <strong>of</strong> introduction <strong>of</strong> a toll highways model,<br />

so called concession companies.<br />

• The structure <strong>of</strong> educational institutions: in regions to provide an orientation <strong>of</strong><br />

secondary schools and universities to the existing structure <strong>of</strong> the economy and to the<br />

possibility <strong>of</strong> the future carrier <strong>of</strong> the graduates in the regions.<br />

• Structure <strong>of</strong> Regions: partially eliminate a wide diversity <strong>of</strong> Prešovský and<br />

Banskobystrický regions, through the combination <strong>of</strong> regional units under the level<br />

LAU 2 to the level <strong>of</strong> village.<br />

CONCLUSION<br />

Analysis results confirmed the existence <strong>of</strong> significant spatial differentiation <strong>of</strong><br />

economic and social levels in the Slovak Republic on the monitor level NUTS 3. Balanced,<br />

territorial harmonious and sustainable development on the base <strong>of</strong> proposed solution is an<br />

20


alternative that the Slovak Republic should choose in an effort to dynamically increase the<br />

social and economic level and to near to the advanced European economics.<br />

Acknowledgement<br />

This paper was processed in the frame <strong>of</strong> the projects No. 1/0151/10 and No. 1/0517/09 as the<br />

result <strong>of</strong> author’s research at significant help <strong>of</strong> VEGA agency, Slovakia.<br />

REFERENCES<br />

1. BIERNACKA J. 2009. Economic crisis and its influence on condition <strong>of</strong> Forte SA and<br />

Paged SA – polish wood sector companies listed on <strong>Warsaw</strong> Stock Exchange. In: <strong>Annals</strong><br />

<strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology. ISSN<br />

1898-5912.<br />

2. KOŽIAK, Radoslav. 2008. Zmierňovanie regionálnych disparít prostredníctvom<br />

regionálnej politiky. In: Studia oeconomica, No. 34. Banská Bystrica: UMB v Banskej<br />

Bystrici, 2008. 135 s.. ISBN 978-80-8083-573-6.<br />

3. KOSTIVIAROVÁ, S., SOPKOVÁ, E. 2009. The importance <strong>of</strong> business incubators in the<br />

world and in Slovakia. In: Studia Universitatis „Vasile Goldis“ Arad – Economic<br />

<strong>Sciences</strong>, issue 1-3/2009, on www.ceeol.com. p. 1-12. ISSN 1584-2339.<br />

4. MAIER, G., TODTLING, F. 1998. Regionálna a urbanistická ekonomika - Regionálny<br />

rozvoj a regionálna politika. 1. vyd. Bratislava : ELITA, 1998. 313 s. ISBN 80-8044-049-<br />

2.<br />

5. http://portal.statistics.sk , http://www.skregions.eu/index.phpID=26<br />

Streszczenie: Możliwości optymalizacji polityki regionalnej na Słowacji. Głównym celem<br />

polityki regionalnej jest zbalansowanie trendu populacji w celu utrzymania równego<br />

ekonomicznie i socjalnie poziomu poszczególnych regionów w kraju. Nierówności regionalne<br />

są problemem w większości krajów Słowacji. Przynoszą one problemy socjalne,<br />

ekonomiczne, polityczne i ekologiczne, a więc też i niezadowolenie społeczne. Z tego<br />

powodu rząd musi monitorować rozwój regionalny. Praca dotyczy analizy regionów Słowacji<br />

na poziomie NUTS 3 wraz z oceną nierówności regionalnych. Celem pracy jest propozycja<br />

sposobu optymalizacji struktury regionalnej i ekonomicznej Słowacji oraz redukcji<br />

nierówności regionalnych. Sugestie skupiają się na infrastrukturze, inwestycjach, edukacji i<br />

źródłach finansowania zmian strukturalnych.<br />

Corresponding authors:<br />

Ing. Mariana Sedliačiková, PhD.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen, Slovakia<br />

mail: sedliacikova@vsld.tuzvo.sk<br />

phone: 00421-045-5206420<br />

Ing. Andrea Sujová, PhD.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen, Slovakia<br />

mail: asujova@vsld.tuzvo.sk<br />

phone: 00421-045-5206438<br />

21


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 22-24<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Перспективы отделки порошковыми лакокрасочными материалами<br />

АЛЁНА ШАРАБУРЯК<br />

Кафедра технологии деревообработки Национального университета биоресурсов и природопользования<br />

Украины – НУБиП Украины<br />

Abstract: Results over <strong>of</strong> experimental researches <strong>of</strong> decorative coverage by powder lacquer materials on<br />

surface chip boards are shown.<br />

Keywords: Lacquer materials, adhesion, heat resistance, protective-decorative properties, powder lacquer<br />

materials, volatile organic compounds<br />

Современные методы создания защитно-декоративных покрытий - это<br />

качественные, стойкие и долговечные пленки, экологические материалы и технологии.<br />

Существует большой ассортимент выбора защитно-декоративных покрытий для<br />

древесины и древесных материалов. В зависимости от условий эксплуатации изделия<br />

(материала) подбирается лакокрасочный материал (ЛКМ).<br />

На сегодняшний день лакокрасочные материалы, которые состоят из<br />

высококачественной пленки с декоративными и эксплуатационными показателями и<br />

материалов, которые удовлетворяют экологические показателям, - это сложные<br />

многокомпонентные системы. Некоторые из них имеют ряд обязательных<br />

компонентов, которые вызывают негативное влияние на окружающую среду. К ним<br />

можно отнести - органические растворители, содержимое которых колеблется в<br />

пределах 50-70% и модификаторы (красители, катализаторы, отвердители). Наиболее<br />

активным компонентом ЛКМ, который негативно влияет на окружающую среду,<br />

является растворитель.<br />

В составе ЛКМ наибольшую опасность для организма человека содержат летучие<br />

органические соединения (ЛОС), которые выделяются в атмосферу при нанесении и<br />

сушке покрытия. Они образуют тяжелые металлы и соединения, которые в свою<br />

очередь загрязняют окружающую среду. В случае уменьшения объемов использования<br />

растворителей, уменьшатся и объемы выбросов ЛОС в атмосферу во время отделки.<br />

Выбор растворителя, его количество и рабочая вязкость готового лакокрасочного<br />

материала зависят от природы полимера и метода нанесения.<br />

Согласно существующих норм, концентрация ЛОС в воздухе при нанесении и<br />

сушке ЛКМ должна находиться в рамках предельно допустимой концентрации для<br />

данного растворителя, а при эксплуатации покрытия не превышать 40,65 мг/м 3 . Однако,<br />

практика показала, что при использовании ЛКМ выбросы ЛОС в воздух не отвечают<br />

требованиям экологии [1]. В Европе уже с 2004 года действуют «Постановления об<br />

ограничении выбросов в окружающую среду летучих органических соединений из<br />

лакокрасочных материалов», в которых отмечается, что необходимо указывать<br />

максимальное содержимое летучих органических соединений в лакокрасочных<br />

материалах [2].<br />

Самые жесткие нормы выбросов ЛОС имеет Калифорния, их предельно<br />

допустимая концентрация представляет 2,5 мг/м 3 . В Германии по нормам содержимого<br />

органических растворителей в газообразных выбросах их уровень не должен<br />

превышать 150 мг/м 3 , в Швеции 15 мг/м 3 и в Великобритании - 5 мг/м 3 [3] .<br />

22


В Украине действует Закон Украины "Об охране атмосферного воздуха",<br />

согласно которому, нормативы из содержимого ЛОС и других вредных веществ,<br />

пересматриваются каждые пять лет, следовательно, проблема экологичности и<br />

вредности ЛКМ достаточно остро стоит и у нас.<br />

Опасность наиболее распространенных ЛКМ характеризуется следующими<br />

показателями:<br />

- содержимое ЛОС в воздухе при нанесении и сушке;<br />

- содержимое ЛОС в воздухе при эксплуатации изделия;<br />

- содержимое тяжелых металлов в ЛКМ.<br />

Для достижения безопасности окружающей среды и обеспечения высокого<br />

качества покрытий следует применять материалы и технологии нового поколения, а<br />

именно водорастворимые и порошковые материалы. При сравнении жидких и<br />

порошковых ЛКМ вытекают преимущества последних с точки зрения экологии и<br />

экономики. Отсутствие растворителей способствует экономии средств и времени на<br />

подготовку ЛКМ к использованию. Во время окрашивания достаточно лишь<br />

одноразового нанесения, при этом потери порошкового материала не превышают 5%.<br />

Краска, которая не попала на изделие, может использоваться повторно. Потеря жидких<br />

ЛКМ находится в пределах 50 - 70%, к тому же их необходимо наносить трижды на<br />

поверхность для образования стойкого защитно-декоративного слоя.<br />

Порошковые ЛКМ начали активно развиваться с 1999 года в Великобритании на<br />

предприятиях, производящих древесноволокнистые плиты MDF. В июле 2002 года в<br />

Германии была запущена первая промышленная установка для отделки порошковым<br />

покрытием мебельных деталей из древесноволокнистых плит средней плотности. В<br />

дальнейшие годы промышленные установки аналогичного назначения были запущены<br />

на разных предприятиях мебельной промышленности Италии, Франции, Бельгии и<br />

Германии .<br />

Сегодня отмечается большой потенциал порошковых покрытий для древесных<br />

плит MDF, которые благодаря своей однородной структуре создают хорошие условия<br />

для порошкового покрытия. Важным является подбор необходимого материала, а также<br />

соответствующий технологический процесс, который обеспечит необходимые<br />

качественные показатели покрытия и их малые расходы, в частности, отделку<br />

профильных поверхностей.<br />

Предварительные исследования, проведенных на образцах из плиты ДСП,<br />

которые обрабатывались порошковыми ЛКМ, показали следующие результаты. При<br />

однократном нанесении наблюдалось неровность поверхности, а при двукратном<br />

поверхность была гладкой. Расходы краски измерялась по изменению веса образцов.<br />

Также были произведены опыты по исследованию адгезии и теплостойкости,<br />

результаты приведены в таблице 1.<br />

Таблица 1<br />

Количество<br />

нанесенных<br />

слоев<br />

до<br />

нанесения<br />

Вес, г.<br />

после<br />

нанесения<br />

Оценка адгезии* в баллах<br />

по методу<br />

решетчатых<br />

надрезываний<br />

по методу<br />

параллельных<br />

надрезываний<br />

№<br />

образца<br />

Теплостойкость<br />

при<br />

температуре<br />

± 60°С<br />

1 1 616 623 1 1 +**<br />

2 1 614 622 1 1 +<br />

3 1 647 654 1 1 +<br />

4 2 612 623 2 2 +<br />

* - оценка адгезии проводиться за ГОСТ 15140-69 «Методы определения адгезии»<br />

;<br />

** - позитивный результат, испытание покрытия на «отлипание» при повышенной<br />

температуре.<br />

23


Опытные образцы прошли данные испытания с успешными результатами,<br />

поскольку видимых повреждений на покрытиях не выявлено. Первые три образца<br />

прошли на «отлично», четвертый образец имел незначительные отслаивания.<br />

Проведенные эксперименты показывают, что у порошковых ЛКМ есть будущее для<br />

отделки плит ДСП. Для разработки оптимального технологического процесса<br />

необходимо провести ряд исследований режимов отделки.<br />

REFERENCES:<br />

1. Яремчук Л.А.,2010: Методи контролю екологічної безпеки лакофарбових матеріалів.<br />

– Л.: Науковий вісник; 134 с.<br />

2. Семешек Э., 2003: Производство и рынок лакокрасочных изделий на Украине и в<br />

Европе Ж. Покраска профессиональная №2; 32 – 34.<br />

3. Серди И.В. , 2001: Токсиколого-гигиенисеская оценка красок.- К.: Тезисов. докл.<br />

науч. конф. «Актуальные проблемы токсикологи»;79 с.<br />

4. http://zakon.rada.gov.ua/cgi-bin/laws/main.cginreg=2707-12<br />

Streszczenie: Artykuł prezentuje eksperyment z lakierowaniem proszkowym nakładanym na<br />

powierzchnie płyt wiórowych.<br />

Corresponding author:<br />

Aliona Sharaburiak<br />

Department od Wood Processing<br />

National <strong>University</strong> <strong>of</strong> <strong>Life</strong> and Environmental <strong>Sciences</strong> <strong>of</strong> Ukraine,<br />

Kyiv,vul.Geroiv Oborony 15,03041, Ukraine<br />

alenaogn@ukr.net<br />

24


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 25-28<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness<br />

treated with water based coatings – Methodology work<br />

GABRIELA SLABEJOVÁ<br />

Department <strong>of</strong> Furniture and Wood Products, Faculty <strong>of</strong> Wood <strong>Sciences</strong> and Technology, Technical <strong>University</strong><br />

in Zvolen<br />

Abstract: An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness treated with water based<br />

coatings. This article discusses the influence <strong>of</strong> selected factors on surface roughness <strong>of</strong> aspen wood treated with<br />

water based coatings. Selected factors are: mechanically worked surface <strong>of</strong> the wood, wood fiber direction, type<br />

<strong>of</strong> water based coating and thickness <strong>of</strong> the paint coating film.<br />

Key words: mechanical working <strong>of</strong> the surface wood, surface finishing , surface roughness, water based coatings<br />

INTRODUCTION<br />

Surface finishing is a technological process which adds to the aesthetic and quality<br />

value <strong>of</strong> the final product. There are various possibilities as to the wood product surface<br />

finishing: wood staining, bleaching, painting or applying impregnated paper and foil.<br />

In order to achieve a high quality surface finish, it is necessary to choose suitable<br />

coating paints and to reduce the surface roughness <strong>of</strong> the wood product to maximum. Surface<br />

roughness, corrugation and a deviation from the general geometric shape <strong>of</strong> the wood product<br />

are defined as a deviation <strong>of</strong> surface geometry. The surface geometry stands for the sum <strong>of</strong> all<br />

macroscopic, microscopic as well as sub-microscopic irregularities.<br />

The wood surface roughness is a result <strong>of</strong> wood morphology and the type <strong>of</strong> wood<br />

surface processing. It influences to a great extent the choice, application and durability <strong>of</strong> the<br />

surface finishing (Dornyak 2003).<br />

The problematic <strong>of</strong> the surface characteristics <strong>of</strong> beech wood processed mechanically<br />

in several different ways is closely looked at in the work <strong>of</strong> Kúdela et al. (2004), Liptáková,<br />

Kúdela (2000). Surface roughness <strong>of</strong> beech and aspen wood processed by various mechanic<br />

and thermal mechanic technologies (rotational molding) was analyzed by Gáborík, Žitný<br />

(2007). The authors Fujiwara et al. (2004), Gáborík, Žitný (2007), Gurau et al. (2005),<br />

Hendarto et al. (2006) focus especially on the surface roughness analysis <strong>of</strong> the sanded wood.<br />

Coelho (2008) has worked out an analysis <strong>of</strong> the surface finishing and surface roughness <strong>of</strong><br />

beech and pine wood. His work presents both objective and subjective assessment <strong>of</strong> wood<br />

surfaces treated with solvent and water based coatings. However, the studies <strong>of</strong> the influence<br />

<strong>of</strong> the thermal mechanic processing <strong>of</strong> wood on its final surface roughness are relatively<br />

scarce.<br />

The aim <strong>of</strong> this study was to monitor the influence <strong>of</strong> water based coatings on the<br />

final surface roughness <strong>of</strong> wood processed by various mechanic and thermal mechanic<br />

technologies. The assessed parameters were the type <strong>of</strong> wood processing and two different<br />

coating paints applied in two different layer thicknesses and their influence on the total wood<br />

surface roughness.<br />

25


EXPERIMENTAL PART<br />

The experimental part <strong>of</strong> the study was carried out on aspen samples (Populus alba<br />

L.) <strong>of</strong> two sizes -100 mm x 150 mm x 22 mm and 50 mm x 150 mm x 22 mm, with humidity<br />

<strong>of</strong> 8 % ± 2 % and average density by zero humidity <strong>of</strong> ρ 0 = 420 kg/m 3 .<br />

Surface roughness was assessed on radial-tangent surfaces and tangent surfaces both<br />

along and across the direction <strong>of</strong> growth <strong>of</strong> wood fibres.<br />

Several characteristics are used to express wood surface roughness (e.g. Ra, Rz, Rp,<br />

Rm, Ry). According to the latest norm STN EN ISO 4287 for the assessment <strong>of</strong> roughness, the<br />

main evaluation criterion would be the characteristics Ra, which is also recommended to be<br />

backed up with some <strong>of</strong> the above mentioned criteria.<br />

In the experiment, mean arithmetic deviation <strong>of</strong> the assessed pr<strong>of</strong>ile Ra [μm] was<br />

measured. According to the norm STN EN ISO 4287, Ra, the mean arithmetic deviation <strong>of</strong> a<br />

pr<strong>of</strong>ile is defined as the mean distance between the points <strong>of</strong> the pr<strong>of</strong>ile and the middle line<br />

over a given distance on the surface for which the roughness is being determined, Figure 1).<br />

Fig. 1 Mean arithmetic deviation <strong>of</strong> a pr<strong>of</strong>ile<br />

L = base length (x axis placement is identical with placement <strong>of</strong> the pr<strong>of</strong>ile mean line referring to the measured<br />

pr<strong>of</strong>ile section/length L)<br />

y = pr<strong>of</strong>ile height in a given point on the x axis<br />

Plank surfaces have been worked applying the following methods:<br />

Wood milling – using panel planer and pull machine<br />

Sanding – using a band sander with sandpaper grit 60, subsequently sandpaper grit 120<br />

Thermo-mechanic pressing – wooden planks have been processed in a heated press<br />

(Table 1):<br />

Table 1 : Pressing regimes<br />

Pressing regime Time Temperature Compression [mm]<br />

L1 2 min. 140 °C 1 ± 0,05<br />

L2 6 min. 140 °C 1 ± 0,05<br />

L3 10 min. 140 °C 1 ± 0,05<br />

Table 2: Paint - coatings used for surface finishing<br />

Thickness<br />

Sign Paint - coating Sign 1.<br />

coating [µm]<br />

2.<br />

coating [µm]<br />

P1<br />

ADLER Aqua Primer thix + ADLER H1 40 40 + 40 = 80<br />

Aquakristall pluss H2 120 120 + 120 = 240<br />

P2 2x ADLER Aquas<strong>of</strong>t CFB<br />

H1 50 50 + 60 = 110<br />

H2 110 110 + 110 = 220<br />

26


Trial samples were painted on one side with one <strong>of</strong> the following water based coating<br />

materials:<br />

Aqua Primer thix (33,3% non-volatile substances) – basic water soluble, thixotrope,<br />

single-component wood varnish based on polyacrylate dispersions;<br />

Aquakristall plus CFB (31,4% non-volatile substances) – transparent, water soluble<br />

varnish based on polymerising polyurethane-acrylate dispersions;<br />

Aquas<strong>of</strong>t CFB (29,7% non-volatile substances) – transparent, water soluble wood<br />

varnish based on polyurethane – acrylate co-polymer dispersions.<br />

Coating materials were applied by pneumatic spraying on radial-tangent and tangent<br />

surfaces <strong>of</strong> the trial samples in two different coat thicknesses.<br />

First group samples were processed according to the system P1 which comprises a<br />

base coat (base varnish) and a top coat (coating varnish).<br />

Second group samples were surface-processed with a single coating material which<br />

was used both as a base coat and a top coat. This group was labelled P2.<br />

Exact trade names <strong>of</strong> the coating materials and products <strong>of</strong> the Adler company and<br />

the thicknesses <strong>of</strong> dry coats are shown in the table no. 2.<br />

Surface roughness prior to mechanic processing, prior to surface finishing (due 24<br />

hours after mechanic processing) and eventually after application <strong>of</strong> a paint coat was<br />

measured with a contact pr<strong>of</strong>ilometer POCKET SURF with an irregularity sensor radius r <strong>of</strong><br />

0.005 mm. A standard arithmetic deviation <strong>of</strong> the assessed pr<strong>of</strong>ile - Ra [μm] was measured.<br />

Each sample was measured 5 times along and 5 times across wood fibres direction in<br />

defined points distributed over a measuring distance <strong>of</strong> 5 mm. Measured values were<br />

automatically recorded in a computer using a s<strong>of</strong>tware application DRSNOSŤ<br />

(ROUGHNESS) and analyzed by the mathematical – statistical s<strong>of</strong>tware programme<br />

STATISTICA.<br />

LITERATURE<br />

1. COELHO, C. L., CARVALHO, L. M. H., MARTINS, J. M., COSTA, C. A. V., MASSON, D.,<br />

MÉAUSOONE, P. - J. 2008. Method for evaluating the influence <strong>of</strong> wood machining<br />

conditions on the objective characterization and subjective perception <strong>of</strong> a finished<br />

surface. In Wood Science and Technology [online]. 2008, roč. 42, č. 3, s. 181 – 195.<br />

Dostupné na internete: http://springerlink.metapress.com/link.aspid=102511.<br />

2. DORNYAK, O. R. 2003. Modeling <strong>of</strong> the rheological behavior <strong>of</strong> wood in compression<br />

processes. In Journal <strong>of</strong> Engineering Physics and Thermophysics [online]. 2003, roč.<br />

76, č. 3, s. 648 – 654. Dostupné na internete:<br />

http://www.itmo.by/jepter/762003e/conte76.html.<br />

3. FUJIWARA, Y., FUJII, Y., SAWADA, Y., OKUMURA, S. 2004. Assessment <strong>of</strong> wood<br />

surface roughness: comparison <strong>of</strong> tactile roughness and three-dimensional parameters<br />

derived using a robust Gaussian regression filter. In J Wood Sci [online]. 2004, roč.<br />

50, č. 1, s. 35–40. Dostupné na internete:<br />

http://springerlink.metapress.com/link.aspid=110257.<br />

4. GÁBORÍK, J., ŽITNÝ, M. 2007. The influence <strong>of</strong> rotary smoothing on the quality <strong>of</strong><br />

wood surface. In <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>. Forestry and Wood<br />

Technology. No 61. <strong>Warsaw</strong>a, 2007, s. 230 – 232. ISSN 0208-5704.<br />

5. GURAU, L., MANSFIELD – WILLIAMS, H., IRLE, M. 2005. Processing roughness <strong>of</strong><br />

sanded wood surfaces. In Holz Roh- Werkst [online]. 2005, roč. 63, č. 1, s. 43 – 52.<br />

Dostupné na internete: http://springerlink.metapress.com/link.aspid=102503.<br />

27


6. HENDARTO, B., SHAYAN, E., OZARSKA, B., CARR, R. 2006. Analysis <strong>of</strong> roughness <strong>of</strong> a<br />

sanded wood surface. In The International Journal <strong>of</strong> Advanced Manufacturing<br />

Technology [online]. 2006, roč. 28, č. 7 – 8, s. 775 – 780. Dostupné na internete:<br />

http://springerlink.metapress.com/link.aspid=102823.<br />

7. LIPTÁKOVÁ, E., KÚDELA, J. 2000. Vlastnosti povrchu bukového dreva pri rôznom<br />

spôsobe mechanického opracovania. In.: Trieskové a beztrieskové obrábanie dreva<br />

2000. Starý Smokovec – Tatry, Technická univerzita vo Zvolene 2000, s. 107–116.<br />

ISBN 80-228-0952-7.<br />

This contribution was supported by the Scientific Grant Agency <strong>of</strong> the Ministry <strong>of</strong><br />

Education SR and the Slovak Academy <strong>of</strong> <strong>Sciences</strong> (Grant No. 1/0329/09, Grant No.<br />

1/0565/10).<br />

Streszczenie: Wpływ wybranych czynników na jakość powierzchni osiki wykańczanej<br />

wyrobami wodorozcieńczalnymi. Praca dotyczy chropowatości powierzchni drewna osiki<br />

pokrywanej wyrobami wodorozcieńczalnymi, brano pod uwagę: jakość powierzchni przed<br />

wykończeniem, kierunek włókien, typ wyrobu lakierniczego, grubość filmu substancji<br />

lakierniczej.<br />

Corresponding author:<br />

Gabriela SLABEJOVÁ<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Faculty <strong>of</strong> Wood <strong>Sciences</strong> Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T.G. Masaryka 2117/24<br />

960 53 Zvolen, Slovak Republic<br />

slabejova@vsld.tuzvo.sk<br />

28


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 29-33<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness<br />

treated with water based coatings – Experiment results<br />

GABRIELA SLABEJOVÁ<br />

Department <strong>of</strong> Furniture and Wood Products, Faculty <strong>of</strong> Wood <strong>Sciences</strong> and Technology, Technical <strong>University</strong><br />

in Zvolen<br />

Abstract: An influence <strong>of</strong> selected factors on the aspen wood surfaced roughness treated with water based<br />

coatings. When evaluating the quality <strong>of</strong> surface treatment it is vital to get familiar with the wood geometry,<br />

namely its roughness. In the experiment was evaluated arithmetic deviation <strong>of</strong> the pr<strong>of</strong>ile - the Ra parameter for<br />

surfaces milled, grinded and pressed. These surfaces were modified with water based coatings.<br />

Keywords: mechanical working <strong>of</strong> the surface wood, surface finishing , surface roughness, water based coatings<br />

RESULTS AND DISCUSSION<br />

Obtained values <strong>of</strong> the mean arithmetic deviation Ra were evaluated by a 4 – factor<br />

analysis in the statistical s<strong>of</strong>tware programme STATISTICA. Influence <strong>of</strong> the following<br />

factors on final wood surface roughness was observed: wood surface processing, coating<br />

material, thickness <strong>of</strong> coating layer, direction <strong>of</strong> wood fibres, and eventually interaction <strong>of</strong> all<br />

the above mentioned factors.<br />

Influence <strong>of</strong> the mechanic and thermo-mechanic processing on roughness <strong>of</strong> wood<br />

surface prior to and after mechanic processing and after surface processing is shown in graphs<br />

in Fig. no. 2 and 3. The graphs clearly show that the influence <strong>of</strong> mechanical processing <strong>of</strong><br />

wood on its surface roughness along as well as across wood fibres is statistically important.<br />

The lowest Ra values were obtained for the pressed wood samples, the highest values for<br />

milled surfaces.<br />

Application <strong>of</strong> water soluble coating materials significantly decreased the average<br />

roughness along wood fibres on milled and sanded surfaces (Fig. no. 2). The average<br />

roughness <strong>of</strong> the L1 and L2 pressed surfaces slightly increased after surface processing, and<br />

slightly decreased for the L3 pressed pr<strong>of</strong>iles.<br />

29


Fiber direction - longitudinal<br />

Ra before mechanical w orking<br />

Ra after Finishing treatment<br />

Ra after mechanical w orking<br />

3<br />

2,5<br />

Ra [μm]<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

Wood milling Sanding L1 - Thermomechanic<br />

pressing<br />

m echanical w orking<br />

L2 - Thermomechanic<br />

pressing<br />

L3 - Thermomechanic<br />

pressing<br />

Fig.2: Mean arithmetic deviation <strong>of</strong> the pr<strong>of</strong>ile Ra, by different mechanical surface treatment <strong>of</strong> wood<br />

Surface roughness measured across wood fibres after surface processing decreased in<br />

all assessed pr<strong>of</strong>iles but L2.<br />

Influence <strong>of</strong> the type <strong>of</strong> coating material and thickness <strong>of</strong> the coating layer on the<br />

final wood surface roughness can be seen if Fig. no. 4 and 5. Fig. no. 4 shows average surface<br />

roughness values for the P1 and P2 surfaces for layer thickness H1. Fig. no. 5 shows average<br />

roughness values for the P1 and P2 surfaces for the layer thickness H2. The graph in Fig. no.<br />

4 proves that the average surface roughness <strong>of</strong> H1 aspen pr<strong>of</strong>iles (coating layer <strong>of</strong> 80 – 110<br />

μm) processed in several different ways is much lower for the coating material P1 (base coat<br />

+ top coat) than for P2. Difference between P1 and P2 average surface roughness is less<br />

distinct for the H2 layer thickness (220 – 240 μm, Fig. no. 5). Milled surfaces show similar<br />

average surface roughness for both P1 and P2 coating material. Surface roughness <strong>of</strong> sanded<br />

surfaces is lower for P2 coating material; pressed surfaces show lower surface roughness<br />

when treated with P1 coating material.<br />

Figures no. 4 and 5 prove that all tested coating materials closely contour the surface<br />

<strong>of</strong> all mechanically and thermo-mechanically processed aspen samples. Surface roughness<br />

decreases with growing thickness <strong>of</strong> the coating layer, but no statistically significant<br />

difference in surface roughness elimination has been observed among individual samples<br />

surface-processed in different ways<br />

30


6<br />

5<br />

4<br />

Fiber direction - cross<br />

Ra before mechanical w orking<br />

Ra after Finishing treatment<br />

Ra after mechanical w orking<br />

Ra [μm]<br />

3<br />

2<br />

1<br />

0<br />

Wood milling Sanding L1 - Thermomechanic<br />

pressing<br />

m echanical w orking<br />

L2 - Thermomechanic<br />

pressing<br />

L3 - Thermomechanic<br />

pressing<br />

Fig.3: Mean arithmetic deviation <strong>of</strong> the pr<strong>of</strong>ile Ra, by different mechanical surface treatment <strong>of</strong> wood<br />

The 4-factor statistical scatter analysis <strong>of</strong> the measured Ra characteristics supports<br />

the theories <strong>of</strong> Gáborík, Žitný (2007), Jourdain et al. (1999), Kúdela et al. (2004), Liptáková,<br />

Kúdela (2000), Móza (2007) which claim that the anatomical direction influences quality <strong>of</strong><br />

wood surface (i.e. its roughness, too) to a great extent. The analysis also supported the theory<br />

<strong>of</strong> Liptáková, Kúdela (2000) which compares milled, sanded, microtome- and hydroknifeprocessed<br />

wood surfaces and proves that different surface processing has a significant impact<br />

on the wood surface roughness. To broaden the spectrum, our study has focused on<br />

comparison <strong>of</strong> milled, sanded and pressed surfaces.<br />

From results <strong>of</strong> statistic evaluation it results, that on resultant roughness surface<br />

making- up by water the diluting texture cloth has a very statistically prominent influence:<br />

- interaction between the mechanical wrought and the direction <strong>of</strong> libriforming fibre,<br />

- interaction between the mechanical wrought, type <strong>of</strong> the texture cloth and the<br />

thickness texture film,<br />

- interaction between the mechanical wrought <strong>of</strong> the surface wood, the texture cloth, the<br />

thickness <strong>of</strong> texture film and the direction <strong>of</strong> wood fibres.<br />

Thickness <strong>of</strong> the paint coating film H1<br />

Coating P1<br />

Coating P2<br />

4<br />

3,5<br />

3<br />

Ra [μm]<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

Wood milling Sanding L1 - Thermomechanic<br />

pressing<br />

L2 - Thermomechanic<br />

pressing<br />

L3 - Thermomechanic<br />

pressing<br />

m echanical w orking<br />

Fig.4: Mean arithmetic deviation <strong>of</strong> the pr<strong>of</strong>ile Ra (measured after finishing treatment), by different mechanical<br />

surface treatment <strong>of</strong> wood for selected types <strong>of</strong> coating materials<br />

31


Thickness <strong>of</strong> the paint coating film H2<br />

Coating P1<br />

Coating P2<br />

Ra [μm]<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Wood milling Sanding L1 - Thermomechanic<br />

pressing<br />

m echanical w orking<br />

L2 - Thermomechanic<br />

pressing<br />

L3 - Thermomechanic<br />

pressing<br />

Fig.5: Mean arithmetic deviation <strong>of</strong> the pr<strong>of</strong>ile Ra (measured after finishing treatment), by different mechanical<br />

surface treatment <strong>of</strong> wood for selected types <strong>of</strong> coating materials<br />

The roughness can be characterized as a central arithmetic variance Ra, which we<br />

definited as a factor <strong>of</strong> the quality assurance <strong>of</strong> surface modification. The surface modification<br />

quality is evaluated by many facilities: aspecting, mechanical, chemical and resistance.<br />

On base summarily reviews <strong>of</strong> this facilities, the producer can characterize texture<br />

matters and give recommendation for their using in concrete conditions.<br />

From results <strong>of</strong> measuring the roughness it results, that surfaces with texture system<br />

P1had low<br />

The low roughness surface is achieved by the first ground coat, onto which has been<br />

applied texture stuff Aqua Primer thix, which has good fullness.<br />

CONCLUSION<br />

The aim <strong>of</strong> work has been study <strong>of</strong> the influence texture stuff by water fluxing on<br />

the roughness <strong>of</strong> the surface aspen wood. We analyzed changes <strong>of</strong> the roughness aspen<br />

surface wood by tangent -radial surfaces depending on: kind <strong>of</strong> mechanical and<br />

thermo/mechanical wood working, the type <strong>of</strong> texture stuff and two different thickness<br />

texture coat.<br />

On base choosing experiment and the statistical evaluation measured values we<br />

found out the next conclusion:<br />

- from the choosing ways <strong>of</strong> the mechanical and thermo/mechanical treatment <strong>of</strong> the surface<br />

aspen wood, the low average avalues Ra has been achieved the pressed surfaces.<br />

- the low average avalues Ra after surfaced treatment by the long way we achieved grinding<br />

and pressed surfaces and by the cross way there were grinding surfaces<br />

- near high thickness texture film values RA has been falling down at all texture stuff. Ratio<br />

between the accruing thickness <strong>of</strong> texture film and the decreasing rough is not possible to<br />

generalize for all kind <strong>of</strong> surfaces treatments.<br />

- statistically important differences on the roughness surface between different treatmented<br />

surfaces <strong>of</strong> aspen wood do not eliminate surfaces treatment has been made by the<br />

choosen water diluting texture stuff with the thickness texture stuff into 240 um.<br />

32


LITERATURE<br />

1. GÁBORÍK, J., ŽITNÝ, M. 2007. The influence <strong>of</strong> rotary smoothing on the quality <strong>of</strong><br />

wood surface. In <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>. Forestry and Wood<br />

Technology. No 61. <strong>Warsaw</strong>a, 2007, s. 230 – 232. ISSN 0208-5704.<br />

2. JOURDAIN, CH., DWYER, J., KERSELL, K., MALL, D., MCCLELLAND, K., SPRINGATE,<br />

R., WILLIAMS, S. 1999. Changing nature <strong>of</strong> wood products – what does it mean for<br />

coatings and finish performance. In Journal <strong>of</strong> Coatings Technology [online]. 1999,<br />

roč. 71, č. 3, s. 61 – 66. Dostupné na internete: http://www.highbeam.com/doc/1G1-<br />

54546330.html.<br />

3. KÚDELA, J., LIPTÁKOVÁ, E., GINDL, M. 2004. On the Wetting Behaviour <strong>of</strong> Different<br />

Treated Beech Wood Surfaces. In Proceedings <strong>of</strong> the 2 nd International Symposium on<br />

Wood Machining, 2004, s. 467 – 473. ISBN 3-9501315-2-3.<br />

4. LIPTÁKOVÁ, E., KÚDELA, J. 2000. Vlastnosti povrchu bukového dreva pri rôznom<br />

spôsobe mechanického opracovania. In.: Trieskové a beztrieskové obrábanie dreva<br />

2000. Starý Smokovec – Tatry, Technická univerzita vo Zvolene 2000, s. 107–116.<br />

ISBN 80-228-0952-7.<br />

5. MÓZA, M. 2007. Štúdium povrchu dreva a kvality povrchovej úpravy po aplikácii<br />

vybraných náterových látok. Diplomová práca, DF TU vo Zvolene, 2007, 97s.<br />

This contribution was supported by the Scientific Grant Agency <strong>of</strong> the Ministry <strong>of</strong><br />

Education SR and the Slovak Academy <strong>of</strong> <strong>Sciences</strong> (Grant No. 1/0329/09, Grant No.<br />

1/0565/10).<br />

Streszczenie: Wpływ wybranych czynników na jakość powierzchni osiki wykańczanej<br />

wyrobami wodorozcieńczalnymi. Jakość powierzchni drewna określano za pomocą<br />

parametrów chropowatości. Brano pod uwagę średnie odchylenie pr<strong>of</strong>ile od wartości średniej<br />

Ra, dla powierzchni struganych, szlifowanych oraz prasowanych. Takie też powierzchnie<br />

były pokrywane wyrobami wodorozcieńczalnymi.<br />

Corresponding author:<br />

Gabriela SLABEJOVÁ<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Faculty <strong>of</strong> Wood <strong>Sciences</strong> Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T.G. Masaryka 2117/24<br />

960 53 Zvolen, Slovak Republic<br />

slabejova@vsld.tuzvo.sk<br />

33


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 34-37<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Slenderness <strong>of</strong> free sections <strong>of</strong> rafter and the shape <strong>of</strong> its cross-section as<br />

features characterizing the structures <strong>of</strong> historic ro<strong>of</strong>-frames.<br />

MAREK R. GOGOLIN<br />

Institute <strong>of</strong> Technology, Kazimierz Wielki <strong>University</strong> in Bydgoszcz<br />

Abstract: Slenderness <strong>of</strong> free sections <strong>of</strong> rafter and the shape <strong>of</strong> its cross-section as features characterizing the<br />

structures <strong>of</strong> historic ro<strong>of</strong>-frames. The paper presents the results <strong>of</strong> research on the selected parameters<br />

characterizing structured <strong>of</strong> ro<strong>of</strong>-frames executed in the period from 13 th to 19 th century. Indicators such as the<br />

slenderness <strong>of</strong> the longest free sections <strong>of</strong> rafters and the proportions <strong>of</strong> dimensions <strong>of</strong> their cross-sections were<br />

taken into consideration and confronted with the guidelines published in old construction handbooks. It was<br />

assumed, that the analysis <strong>of</strong> those parameters will allow for defining the characteristic features <strong>of</strong> the<br />

carpenters’ workshop in the discussed period.<br />

Keywords: old ro<strong>of</strong> frames, rules <strong>of</strong> calculations<br />

This is to consider geometric properties <strong>of</strong> rafters as the most weight-bearing members<br />

<strong>of</strong> every ro<strong>of</strong>-frame. The proper performance <strong>of</strong> those elements is determined by such<br />

parameters as the biggest free length as well as the shape and magnitude <strong>of</strong> their crosssections.<br />

Old-times builders obviously did not know the precise rules <strong>of</strong> static calculations<br />

applied today, however they obeyed certain rules, the reminiscences <strong>of</strong> which can e found in<br />

19 th -century construction manuals. The Menzel manual <strong>of</strong> the year 1842 1 gives simple<br />

methods <strong>of</strong> calculating the dimensions <strong>of</strong> wooden structures. It appears from the text, that for<br />

the rafter-type members the ratio between their free length to the height <strong>of</strong> cross-section – that<br />

is the slenderness <strong>of</strong> the free section – should be comprised between 18 and 20, and the ratio<br />

between the height and width <strong>of</strong> the cross-section should be from ca. 1,14 to 1,25. In another<br />

19 th -century manual, by A. Zabierzowski 2 the rules <strong>of</strong> making such calculations have been<br />

described in more detail. Their analysis leads to a conclusion, that their starting point was the<br />

free length <strong>of</strong> a given member, and basing on that by simple calculation the height and then<br />

the width <strong>of</strong> its cross-section were reckoned. The resulting values <strong>of</strong> the discussed parameters<br />

are similar to those in Menzel’s work, equalling 16 – 20 and 1,12 – 1,17 respectively. Such<br />

differences, however small could be – which <strong>of</strong> course requires evidencing in course <strong>of</strong><br />

separate research – a pro<strong>of</strong> <strong>of</strong> slightly different approach <strong>of</strong> Polish and German builders to<br />

construction calculations. However, without going deeper into this issue, one can assume, that<br />

considering such parameters, as the ratio between the free length <strong>of</strong> a rafter section and the<br />

height <strong>of</strong> its cross-section, that is the slenderness L/h as well as the ration between the height<br />

and width <strong>of</strong> that cross-section h/b could have considerable cognitive value, giving an idea <strong>of</strong><br />

applying defined dimensional proportions <strong>of</strong> ro<strong>of</strong>-frame members by the builders. Graphic<br />

presentation <strong>of</strong> the character <strong>of</strong> variability <strong>of</strong> those parameters over the years is given in<br />

Fig. 1, in which the first diagram (a) refers to the ratio between the height and width <strong>of</strong> the<br />

cross-section <strong>of</strong> rafters, the second one (b) to the slenderness <strong>of</strong> their free sections. One can<br />

1 Menzel C.A, Die Hölzernen Dachverbindungen in ihrem ganzen Umfange. Halle, 1842, p. 177 and further.<br />

2 Zabierzowski A., Przewodnik praktyczny dla budujących. Warszawa, 1857, p. 269 and further.<br />

34


notice, that over the subsequent years and centuries the b/h indicator was contained is<br />

relatively close limits 1 – 1,3 exceeding the latter value only in two cases.<br />

Fig. 1: The values <strong>of</strong> selected geometric parameters <strong>of</strong> rafters: a – h/b <strong>of</strong> cross-sections,<br />

b – slenderness <strong>of</strong> rafters<br />

The slenderness parameter changed in different way. From the late 13 th to the late 16 th<br />

century it oscillated within the 7 – 13 limit (with scarce exceptions) keeping over that period<br />

the average value <strong>of</strong> ca.10. From the mid-17 th century the range <strong>of</strong> variability <strong>of</strong> that indicator<br />

35


ises, together with its value, that in mid-19 th century reaches the average <strong>of</strong> ca. 17. The above<br />

remarks give only a general outlook <strong>of</strong> the discussed issue, since the necessity <strong>of</strong> its more<br />

thorough consideration.<br />

In two analysed 13 th -century ro<strong>of</strong> frames the attitude <strong>of</strong> carpenters towards defining<br />

the cross-sections <strong>of</strong> timbers was – as the two frames were built over two parts <strong>of</strong> the same<br />

edifice – the same. In spite <strong>of</strong> different structural types <strong>of</strong> principals/trusses the proportions <strong>of</strong><br />

dimensions <strong>of</strong> cross-sections are identical and measure 1,25, thus approaching the upper limit<br />

<strong>of</strong> that parameter value known in the literature 3 . In both structures, there are very similar,<br />

equalling ca. 10, quotients <strong>of</strong> free length <strong>of</strong> rafters and height <strong>of</strong> cross-section, the parameter<br />

that defines slenderness <strong>of</strong> the free section <strong>of</strong> a rafter.<br />

Rafters <strong>of</strong> the 14 th -century trusses are also characterised by small variability <strong>of</strong> the<br />

discussed parameters. In majority <strong>of</strong> analysed ro<strong>of</strong>-frames the quotients <strong>of</strong> free length <strong>of</strong><br />

rafters and height <strong>of</strong> cross-section are similar and oscillate within close limits (+/- 14%)<br />

around 10, that is the same value as for the 13 th -century structures. Proportions <strong>of</strong> dimensions<br />

<strong>of</strong> rafter cross-section for those structures vary from 1,2 (which is the value lowest than<br />

defined for 13 th -century structures) to 1,3 (which is close to values for the structures <strong>of</strong> the<br />

previous century). Only one structure characterises with distinctly different features, since this<br />

indicator equals 1,6. In the same ro<strong>of</strong>-frame also the other indicator differed from the values<br />

characteristic <strong>of</strong> the majority <strong>of</strong> 14 th -century structures.<br />

In 15 th century the slenderness <strong>of</strong> free sections <strong>of</strong> rafters undergo further<br />

differentiation. In king-post ro<strong>of</strong>-frames, that were almost the only ones built, for rafters <strong>of</strong><br />

full principals/trusses in lengthwise-reduced structures it oscillates within the 6,3 – 10,5<br />

limits, while for rafters <strong>of</strong> non-full trusses 9,3 – 14,1. For unreduced ro<strong>of</strong>-frames this<br />

parameter is comprised within the 7,0 – 13,2. In the only described rafter-frame <strong>of</strong> that time it<br />

equals 6,5. The cross-sections <strong>of</strong> almost all 15 th -century ro<strong>of</strong>-frames are close to square. In<br />

half <strong>of</strong> the structures the parameters defining the shape <strong>of</strong> cross-section equals 1,0, which<br />

matches the square, in subsequent four <strong>of</strong> them in equals 1,2 and reaches higher values only in<br />

two cases.<br />

In 16 th -century king-post ro<strong>of</strong>-frames both discussed indicators defining the rafter<br />

properties are considerably different. It is worth noticing, that in one <strong>of</strong> the analysed<br />

structures (in the non-full truss <strong>of</strong> a mixed ro<strong>of</strong>-frame) the indicator defining slenderness <strong>of</strong> a<br />

free section <strong>of</strong> the rafter in the principal/truss reaches the value <strong>of</strong> 18,0, that is it rises much<br />

above the values encountered in the ro<strong>of</strong>-frames built in the previous century. One can also<br />

notice a tendency towards using rectangular cross-sections, which is expressed by a respective<br />

parameter oscillating within the 1,1 – 1,3 limits.<br />

In 17 th century, when the principal/truss structures undergo much differentiation, the values <strong>of</strong><br />

parameter defining slenderness <strong>of</strong> free sections <strong>of</strong> rafters are also comprised within broad<br />

limits. For king-post principals/trusses they oscillate within the 8,0 – 10,0 limits in free ro<strong>of</strong>frames<br />

and 7,0 – 10,2 for ro<strong>of</strong>-frames with closed trusses. Similar value (10,4) characterises<br />

rafters <strong>of</strong> a principal/truss in a purlin and queen-post structure. This indicator assumes higher<br />

values for rafters <strong>of</strong> non-full truss <strong>of</strong> a free king-post, lengthwise-reduced ro<strong>of</strong>-frame (11,5) as<br />

well as for rafters <strong>of</strong> a rafter-and-collar ro<strong>of</strong>-frame, two queen-post structures and one queenand-king-post<br />

ro<strong>of</strong>-frame, for which it is close to 14. Parameter describing the shape <strong>of</strong><br />

rafters’ cross-section is diverse, with prevailing square or <strong>of</strong>f-square ones (8 from 11<br />

structures), which is expressed by the parameter’s value h/b equaling 1,0 or 1,1. Such is the<br />

situation in rafters <strong>of</strong> all but one king-post ro<strong>of</strong>-frames, in two mixed structures and one<br />

queen-post ro<strong>of</strong>-frame. In the remaining three structures the cross-section <strong>of</strong> rafters is<br />

rectangular, expressed by the parameter’s value contained within the 1,25 – 1,4 limits.<br />

3 Menzel C.A, op. cit.<br />

36


The 18 th -century ro<strong>of</strong> frames are with no exception the queen-post structures. Rafters<br />

<strong>of</strong> their principals/trusses characterize with indicators <strong>of</strong> slenderness <strong>of</strong> free sections<br />

comprised within 13,5 – 21,6 limits. In ro<strong>of</strong>-frames <strong>of</strong> standing queen-posts that parameter<br />

oscillates within 13,5 – 17,0 limits, thus the average value is higher, then in 17 th -century ro<strong>of</strong>frames.<br />

In structures <strong>of</strong> reclining queen-posts the free section <strong>of</strong> rafters are still more slender,<br />

which is expressed by the indicator close to 21. Rafters <strong>of</strong> all ro<strong>of</strong>-frames <strong>of</strong> standing queenposts<br />

have rectangular cross-sections expressed by the h/b indicator comprised within the 1,25<br />

– 1,3 limits. Thus they are distinctively different from rafters <strong>of</strong> ro<strong>of</strong>-frames <strong>of</strong> reclining<br />

queen-posts, that have square cross-sections.<br />

Queen-post and purlin ro<strong>of</strong>-frames executed in 19 th century include rafters <strong>of</strong> diverse<br />

slenderness <strong>of</strong> free sections and diverse shape <strong>of</strong> cross-section. In two structures <strong>of</strong> standing<br />

queen-posts the first <strong>of</strong> those parameters assumes values 13,0 and 18,5, that is similar to<br />

rafters <strong>of</strong> the 18 th -century ro<strong>of</strong>-frames. In structures <strong>of</strong> reclining queen-posts the situation is<br />

opposite, the slenderness indicator is low, equaling 9,6, that is comparable with values<br />

common in Medieval structures.<br />

REFERENCES:<br />

1. MENZEL C.A, Die Hölzernen Dachverbindungen in ihrem ganzen Umfange. Halle,<br />

1842, p. 177 and further<br />

2. ZABIERZOWSKI A., Przewodnik praktyczny dla budujących. Warszawa, 1857, p.<br />

269 and further.<br />

3. GOGOLIN M. R.: Więźby dachowe kościołów pomorskich od XIII do połowy XIX<br />

wieku. Bydgoszcz, 2008<br />

Streszczenie: Smukłość swobodnych odcinków krokwi i kształt jej przekroju poprzecznego<br />

jako cechy charakteryzujące konstrukcje historycznych więźb dachowych. W artykule<br />

przedstawiono wyniki badań nad wybranymi parametrami, charakteryzującymi konstrukcje<br />

więźb dachowych powstałych w okresie XIII – XIX w. Wzięto pod uwagę takie wskaźniki,<br />

jak smukłość najdłuższych odcinków swobodnych krokwi oraz proporcje wymiarowe ich<br />

przekroju poprzecznego i skonfrontowano je z zaleceniami zamieszczanymi w dawnych<br />

podręcznikach budowlanych. Uznano, że analiza tych parametrów pozwoli na zdefiniowanie<br />

charakterystycznych cech warsztatu wykonawczego cieśli w rozpatrywanym okresie.<br />

Corresponding author:<br />

Uniwersytet Kazimierza Wielkiego w Bydgoszczy,<br />

Instytut Techniki, Katedra Konstrukcji Drewnianych;<br />

ul. Chodkiewicza 30, 85-064 Bydgoszcz<br />

e-mail: argus@ukw.edu.pl<br />

37


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 38-43<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Leather waste hydrolysate as a partial substitute <strong>of</strong> UF adhesive for<br />

plywood production<br />

MÁRIA ŠMIDRIAKOVÁ – JÁN SEDLIAČIK – PETER JURKOVIČ – PAVOL MELUS<br />

Technical <strong>University</strong>, Zvolen, Slovakia<br />

VIPO a.s. Partizanske, Slovakia<br />

Abstract: Chemical stability, water resistance and the strength <strong>of</strong> glued joint <strong>of</strong> plywood are the important<br />

properties <strong>of</strong> any adhesive. This paper deals with UF adhesives modified with glutaraldehyde (GA) and collagen.<br />

GA was added to the UF adhesive to increase its structural stability. Collagen was added in the form <strong>of</strong> acid<br />

hydrolysate. The hydrolysate is chrome tanned leather waste; we searched the possibility to use the waste as a<br />

partial substitute <strong>of</strong> the adhesive. Shear strength was measured according to the EN 314-1,2: 1993 standard. The<br />

obtained results showed that simultaneous presence <strong>of</strong> collagen and GA in the UF adhesive mixture increased<br />

the shear strength <strong>of</strong> glued joints. The leather hydrolysate can be used as the additive to UF adhesives.<br />

Utilisation <strong>of</strong> leather hydrolysate as the secondary industrial raw material in UF adhesive production can be the<br />

positive contribution to the environment.<br />

Keywords: UF adhesive, collagen, leather hydrolysate, glutaraldehyde, plywood, shear strength<br />

INTRODUCTION<br />

Modifying the adhesive we can improve physical-chemical properties <strong>of</strong> the adhesives<br />

and the quality <strong>of</strong> glued joints – from the view point <strong>of</strong> the strength <strong>of</strong> joints, water resistance,<br />

and content and emission <strong>of</strong> formaldehyde. We searched a possibility to use a natural<br />

polymer–collagen at adhesive modification. Chrome tanned leather waste is a dumping and<br />

the form, which is produced in, is a ballast in the environment (Cr 3+ compounds). Protein<br />

hydrolysates from chrome tanned leather waste can be used as the secondary raw material in<br />

modification <strong>of</strong> adhesives. As UF adhesives are widely used, using hydrolysates in adhesives<br />

production can positive affect the environment and give positive economically outcome.<br />

LANGMAIER et al. (2004, 2005) researched hydrolysate <strong>of</strong> chrome tanned leather waste<br />

obtained through enzymatic hydrolysis. Non-isothermal thermogravimetry was applied to<br />

study condensation kinetics <strong>of</strong> dimethylol-urea and its mixtures with various mass contents <strong>of</strong><br />

urea, hydrolysate, or acid curing agent.<br />

Waste utilized as the secondary raw material was tested by DUKARSKA and LECKA<br />

(2008). PUR foam waste was added into MUPF and PF adhesives. Authors searched a<br />

possibility to make exterior plywood glued with modified melamine adhesive.<br />

Glutaraldehyde is a chemical substance <strong>of</strong>ten researched; it is assumed that GA is<br />

completely inbuilt into the structure <strong>of</strong> hardened adhesive. MAMINSKI et al. (2007)<br />

researched MUF adhesive, GA was added into hardener as 50 % water solution. Shear<br />

strength <strong>of</strong> birch specimens glued with modified adhesive was markedly higher when<br />

compared with reference sample. There was pointed at the fact, that GA form direct chemical<br />

bonding with chemical compounds <strong>of</strong> wood; that can significantly influence the strength <strong>of</strong><br />

glued joint. It was confirmed by increased percentage <strong>of</strong> cohesively fractured samples,<br />

modified adhesive exhibited much stronger interaction adhesive–wood.<br />

Wood is a hydroscopic material due to hydrophilic character <strong>of</strong> cellulose,<br />

hemicelluloses and lignin. Proteins are able to bond cellulose; this is employed at purification<br />

and separation <strong>of</strong> various protein types onto cellulose (SHPIGEL et al. 2000). POLUS-<br />

RATAJZAK et al. (2003) researched chemical changes <strong>of</strong> proteins in interaction with<br />

cellulose and lignin with infrared spectroscopy. Changes in spectra showed the chemical<br />

interaction between peptide chain and reactive groups on cellulose and lignin chains. Very<br />

38


interesting is the research on the proteins that have a role in underwater adhesion produced by<br />

marine mussels. Research efforts have focused on identifying the genes responsible for the<br />

adhesive proteins and strategies for producing natural adhesives similar to the native mussel<br />

adhesive proteins (SILVERMAN 2007). The adhesives are known for their superior strength<br />

and durability compared with man–made materials. They are ecological and can bind various<br />

materials.<br />

In our experiments, we researched influence <strong>of</strong> chosen modifying agents (hydrolysed<br />

collagen (HC) in combination with activator AG based on glutaraldehyde) on network<br />

formation and the structure <strong>of</strong> cured UF adhesive. We expect modified adhesives to be<br />

stronger and more reactive due to large number <strong>of</strong> –NH 2 groups involved into reactive<br />

mixture by HC. Glutaraldehyde can strengthen the cured adhesive structure, mechanical<br />

strength, elasticity, water resistance and chemical stability.<br />

RESULTS AND DISCUSSION<br />

In experimental work we tested UF and MUF adhesives and hardener R-60. Natural<br />

polymers were added into adhesives in form <strong>of</strong> skin collagen hydrolysate. The hydrolysate<br />

was a liquid: collagen content 26 %, solid content 43 %, and pH = 5.2. Hardener was<br />

modified with activator (AG) based on glutaraldehyde (VIPO a.s.). AG was added into<br />

hardener R-60 in amount 1 % (Hr1), 3 % (Hr3), or 5 % (Hr5).<br />

Plywood was prepared from beech or birch veneers; adhesive spread 160 g.m -2 ,<br />

temperature 105 °C (UF), 130 °C (MUF), specific pressure 1.8 MPa, pressing time 5 minutes.<br />

Shear strength was measured according to EN 314-1,2 standard. Measured values <strong>of</strong> shear<br />

strength were evaluated by one-factor statistical analysis ANOVA on the level α = 0.05.<br />

UF adhesive with activator AG<br />

Firstly, we evaluated influence <strong>of</strong> added hardener on strength and stability <strong>of</strong> glued<br />

joints. Results <strong>of</strong> shear strength for plywood specimens conditioned for adhesive class Nr.1<br />

are given in table 1.<br />

Tab. 1 Shear strength according to EN 314-1,2 standard for adhesive class Nr.1<br />

Adhesive<br />

mixture<br />

Average<br />

Shear<br />

strength<br />

[MPa]<br />

Standard<br />

deviation<br />

[MPa]<br />

Coefficient<br />

<strong>of</strong><br />

variation<br />

[%]<br />

Measured<br />

value min.<br />

[MPa]<br />

Measured<br />

value max.<br />

[MPa]<br />

number<br />

[pcs]<br />

UF+HrR 1.78 0.39 22.08 1.01 2.87 18<br />

UF+Hr1 1.93 0.42 21.71 1.12 2.62 20<br />

UF+Hr3 1.93 0.29 15.05 1.42 2.40 20<br />

UF+Hr5 2.05 0.45 21.78 1.17 2.70 19<br />

Shear strength <strong>of</strong> all tested specimens in adhesive class Nr.1 reached required shear<br />

strength 1.0 MPa. Shear strength <strong>of</strong> joints glued with UF adhesive with modified hardener<br />

was a little higher in comparison with shear strength <strong>of</strong> joint glued with standard adhesive.<br />

AG in adhesive mixture positively influenced shear strength – shear strength <strong>of</strong> joints glued<br />

with mixture with the highest content <strong>of</strong> AG was the highest. Based on one-factor analysis,<br />

we can say that factor “adhesive mixture”, does not influence plywood shear strength statistic<br />

significantly. Adding AG into adhesive mixture shear strength was raised, but not statistic<br />

significantly (fig. 1).<br />

Specimens conditioned for adhesive class Nr.2 collapsed when boiled. UF adhesive<br />

joints with AG stay being classified in adhesive class Nr.1. Expected possibility to classify<br />

modified adhesive joints in adhesive class Nr.2 was not confirmed.<br />

39


Similar experiments were carried by MAMINSKI et al. (2007). Authors found out that<br />

shear strength increased with increasing amount <strong>of</strong> added GA up to 9 wt. %, GA addition<br />

above that value resulted in decrease <strong>of</strong> shear strength by the plasticization effect.<br />

UF adhesive with AG and HC<br />

Proteins are the base <strong>of</strong> some adhesives, so in the second step, we tested influence <strong>of</strong><br />

collagen hydrolysate (HC) on shear strength and water resistance <strong>of</strong> glued joints. Hydrolysate<br />

added is partial substitute <strong>of</strong> some part <strong>of</strong> the adhesive, and at the same time, it is an additive<br />

that can markedly influence physical-chemical properties <strong>of</strong> the adhesive and adhesive joint.<br />

HC was added into the adhesive with Hr3 in amount <strong>of</strong> 3 %, 5 % or 8 %. Shear strength after<br />

conditioning for adhesive class Nr.1 are given in tab. 2.<br />

Tab. 2 Shear strength according to EN 314-1,2 standard for adhesive class Nr.1<br />

Adhesive mixture Average<br />

Shear<br />

strength<br />

[MPa]<br />

Standard<br />

deviation<br />

[MPa]<br />

Coefficie<br />

nt <strong>of</strong><br />

variation<br />

[%]<br />

Measured<br />

value min.<br />

[MPa]<br />

Measured<br />

value<br />

max.<br />

[MPa]<br />

number<br />

[pcs]<br />

UF+Hr3 2.48 0.34 13.84 1.95 3.08 23<br />

UF+ Hr3+ 3%HC 2.12 0.44 20.73 1.45 2.74 21<br />

UF+ Hr3+ 5% HC 2.28 0.49 21.70 1.52 3.04 21<br />

UF+ Hr3+ 8% HC 1.86 0.37 19.72 1.19 2.41 21<br />

Shear strength <strong>of</strong> all tested specimens, in adhesive class Nr.1, met the standard and<br />

exceeded required value <strong>of</strong> 1.0 MPa. HC added in three tested levels little decreased shear<br />

strength when compared with reference sample. The highest value <strong>of</strong> shear strength reached<br />

adhesive mixture with 5 % HC. The influence <strong>of</strong> HC on shear strength was evaluated by onefactor<br />

statistical analysis; factor “adhesive mixture” influenced plywood shear strength<br />

statistics significantly. In fig.2 we can see that highest value <strong>of</strong> shear strength was measured<br />

at sample without HC and lowest value at sample containing 8 % HC. According to Duncan<br />

test, the influence <strong>of</strong> adhesive mixture containing 8 % HC onto shear strength <strong>of</strong> glued joint is<br />

different statistical significantly when compared with others mixtures (containing HC in<br />

amount <strong>of</strong> 0 %, 3 % and 5 %, as well).<br />

As specimens conditioned for adhesive class Nr.2 collapsed at boiling test, reference<br />

sample, and samples glued with adhesive mixture with Hr3 and HC have to be classified as<br />

adhesive class Nr.1. Expected possibility to classify the adhesive mixtures with AG and HC in<br />

class Nr.2 was not confirmed.<br />

40


2,4<br />

Ver tic alba rs den ote 0,9 5 c o nf iden c e inter v al s<br />

2,3<br />

2,2<br />

2,1<br />

šmyk<br />

2,0<br />

1,9<br />

1,8<br />

1,7<br />

1,6<br />

1,5<br />

UFTvR UFTv1 UFTv3 UFTv5<br />

lz<br />

Fig.1 Hardener with activator AG<br />

šmyk<br />

2,8<br />

2,7<br />

2,6<br />

2,5<br />

2,4<br />

2,3<br />

2,2<br />

2,1<br />

2,0<br />

1,9<br />

1,8<br />

1,7<br />

1,6<br />

1,5<br />

Vertical bars denote 0,95 confidence intervals<br />

UFTv3R UF3HKTv3 UF5HKTv3 UF8HKTv3<br />

lz<br />

Fig.2 UF adhesive with AG and HC<br />

41


CONCLUSION<br />

Based on the evaluation <strong>of</strong> shear strength <strong>of</strong> adhesive joints glued with modified UF<br />

adhesive, we can conclude that activator based on glutaraldehyde influences – improves shear<br />

strength <strong>of</strong> adhesive joints.<br />

Although shear strength <strong>of</strong> adhesive joint glued with modified UF adhesive with<br />

activator and collagen hydrolysate was lowered when compared with standard UF adhesive,<br />

all adhesive joints met the standard <strong>of</strong> 1.0 MPa. Strength <strong>of</strong> adhesive joint with 8 % HC was<br />

markedly lower, but still we can think over this addition, measured strength met the standard.<br />

More experiments should be done on research <strong>of</strong> the adhesive mixture. Adding 8 % <strong>of</strong><br />

collagen hydrolysate into the UF adhesive we added relatively large volume <strong>of</strong> water. It is<br />

important to adapt viscosity <strong>of</strong> the adhesive in gluing technology to supply sufficient adhesive<br />

spread.<br />

Acknowledgement: This work has been supported by the Slovak Scientific Grant Agency<br />

under the contract No. VEGA 1/0517/09, project APVV-VMSP-P-0044-07 and SK-RO-0022-<br />

10.<br />

This publication was prepared as a part <strong>of</strong> the project „Application <strong>of</strong> Knowledge-based<br />

Methods in Designing Manufacturing Systems and Materials” co-funded by the Ministry <strong>of</strong><br />

Education, Research and Sport <strong>of</strong> the Republic within the granted stimuli for Research and<br />

development from the State Budget <strong>of</strong> the Slovak Republic pursuant to Stimuli for Research<br />

and Development Act. No. 185/2009 Coll. And the amendment <strong>of</strong> Income Tax Act No.<br />

595/2003 Coll. in the wording <strong>of</strong> subsequent in the wording <strong>of</strong> Act. No. 40/2011Coll.<br />

REFERENCES<br />

1. LANGMAIER, F. et al. 2005. Curing urea-formaldehyde adhesives with hydrolysates <strong>of</strong><br />

chrome-tanned leather waste from leather production. In International Journal <strong>of</strong><br />

Adhesion and Adhesives. 2005, 25, p. 101-108.<br />

2. DUKARSKA, D., LECKA J. 2008. Polyurethane foam scrap as MUPF and PF filler in the<br />

manufacture <strong>of</strong> exterior plywood. In <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>. No.<br />

65. <strong>SGGW</strong> Warszawa. 2008. ISSN 1898-5912, p. 14– 19.<br />

3. MAMINSKI, M.L. et al. 2007. Glutaraldehyde-modified MUF adhesive system -<br />

Improved hot water resistance. In Holz Roh Werkst. 2007, 65, p. 251-253.<br />

4. SHPIGEL. E., et al. 2000. Expression purification and applications <strong>of</strong> staph. Protein<br />

A fused to cellulose-binding domain. In Biotechnol. Appl. Biochem. 2000, 31, p. 197-203.<br />

5. POLUS-RATAJCZAK, I., MAZELA, B., GOLINSKI P. 2003. The chemical interaction<br />

<strong>of</strong> animal origin proteins with cellulose and lignin in wood preservation. In <strong>Annals</strong> <strong>of</strong><br />

<strong>Warsaw</strong> Agricultural <strong>University</strong>. No. 53. <strong>SGGW</strong> Warszawa, 2003, p. 296– 299.<br />

6. SILLVERMAN, H.G., ROBERTO, F.F. 2007. Understanding Marine Mussel Adhesion.<br />

In Springer Science + Business Media, LLC 2007, 9, p. 661-681.<br />

42


Streszczenie: Hydrolizat odpadów skórnych jako częściowy zamiennik kleju mocznikowego w<br />

produkcji sklejki. Stabilność chemiczna, odporność na wodę I wytrzymałość połączenia<br />

sąesencjonalnymi własnosciami każdego kleju. Artykuł dotyczy kleju mocznikowego<br />

modyfikowanego aldehydem glutarowym (GA) i kolagenem. Dodatek GA zwiększa<br />

stabilnośćstrukturalną kleju mocznikowego. Kolagen dodano w formie hydrolizatu<br />

kwasowego. Do sporządzenia hydrolizatu użyto garbowanych związkami chromu odpadów<br />

skórnych, szukano możliwości użycia odpadów jako częściowego substytutu kleju.<br />

Wytrzymałość na ścinanie mierzono zgodnie z normą EN 314-1,2: 1993. Wykiki badań<br />

wskazują że jednoczesna obecność hydrolizatu i GA w kleju mocznikowym zwiększa<br />

wytrzymałość na ścinanie połączeń. Utylizacja hydrolizatu skórnego w kleju UF może mieć<br />

pozytywne skutki dla środowiska.<br />

Corresponding authors:<br />

Ing. Mária Šmidriaková<br />

Doc. Ing. Ján Sedliačik, PhD.<br />

Technical <strong>University</strong><br />

T.G. Masaryka, 24<br />

960 53 Zvolen<br />

Slovakia<br />

e-mail: smidriak@vsld.tuzvo.sk<br />

janos@vsld.tuzvo.sk<br />

Ing. Peter Jurkovič, PhD.<br />

Ing. Pavol Meluš, PhD.<br />

VIPO a.s<br />

Ul. Gen Svobodu 1069/4<br />

958 01 Partizánske<br />

Slovakia<br />

e-mail: pjurkovic@vipo.sk<br />

pmeluš@vipo.sk<br />

43


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 44-48<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Reduction <strong>of</strong> formaldehyde emission from plywood bonded with modified<br />

UF adhesive<br />

MÁRIA ŠMIDRIAKOVÁ – JÁN SEDLIAČIK – JÁN MATYAŠOVSKÝ<br />

– PETER DUCHOVIČ<br />

Technical <strong>University</strong>, Zvolen, Slovakia<br />

VIPO a.s. Partizanske, Slovakia<br />

Abstract: Chemical stability <strong>of</strong> UF adhesives is an important hygienic property. This paper deals with chemical<br />

stability <strong>of</strong> UF adhesives modified with glutaraldehyde (GA) and collagen. GA was added to the adhesive to<br />

increase the structural stability <strong>of</strong> the adhesive. Collagen was added in the form <strong>of</strong> acid hydrolysate; the<br />

hydrolysate is chrome tanned leather waste. Formaldehyde content in plywood was measured through FESYP<br />

method; and formaldehyde emission from cured UF adhesive film was measured through “chamber method”<br />

according to the STN 49 0030 and STN EN 717-1 standards. The results showed that simultaneous presence <strong>of</strong><br />

collagen and GA in the UF adhesive mixture reduced the amount <strong>of</strong> formaldehyde in plywood, and reduced the<br />

formaldehyde emission from cured UF adhesive film, as well.<br />

Keywords: UF adhesive, formaldehyde emission, collagen, hydrolysate, glutaraldehyde, plywood<br />

INTRODUCTION<br />

The world research on aminoplastic adhesives is mainly aimed at the problem <strong>of</strong><br />

formaldehyde and emissions from glued materials. At hardening <strong>of</strong> adhesives, acid hardeners<br />

accelerate formation <strong>of</strong> both types <strong>of</strong> internal cross links in the structure <strong>of</strong> the adhesive (less<br />

stable dimethylene-ether links and more stable methylene links), but at the same time they<br />

influence transformation <strong>of</strong> dimethylene-ether links to the methylene ones. Lowering the<br />

number <strong>of</strong> dimethylene-ether links in cured adhesive film <strong>of</strong> aminoplastic we can lower the<br />

formaldehyde emission.<br />

One <strong>of</strong> researched chemical substances for modification <strong>of</strong> adhesives is<br />

glutaraldehyde. There is assumed that glutaraldehyde is inbuilt into the structure <strong>of</strong> hardened<br />

adhesive and so its emission becomes negligible. In recent years, research on modification <strong>of</strong><br />

adhesives has been also aimed at utilization <strong>of</strong> products that are easy to get and using them<br />

the costs in adhesive production can be reduced at sustainable quality <strong>of</strong> joints. Chrome<br />

tanned leather waste contain collagen hydrolysate; it bears a number <strong>of</strong> amino-groups known<br />

for their reactivity with formaldehyde.<br />

ZHANG et al. (2010) find out that low molar ratio urea-formaldehyde (UF) resins<br />

modified by various modifiers showed lower free formaldehyde content and higher water<br />

resistance. TOHMURA et al. (2001) investigated six melamine-urea-formaldehyde (MUF)<br />

adhesives synthesized with different F/ (M+U) and M/U molar ratios. The formaldehyde<br />

emission from plywood decreased as the F/ (M+U) molar ratio decreased and the M/U molar<br />

ratio increased. The lower formaldehyde emission from cured MUF resins with higher M/U<br />

molar ratio might be ascribed to the stronger linkages between triazine carbons <strong>of</strong> melamine<br />

than those <strong>of</strong> urea carbons. The melamine contributed to strong cross-linking linkages in the<br />

cured resin structures, leading to lower formaldehyde emission and better bond performance.<br />

RINGENA et al. (2006) and PARK et al. (2009) tested hydrolytic durability <strong>of</strong> cured<br />

UF, MUF, and MUPF adhesives by gravimetric analysis; they measured hydrolytically<br />

induced mass loss and the amount <strong>of</strong> liberated formaldehyde. Authors pointed at the fact that<br />

hydrolytic stability <strong>of</strong> cured adhesive (in vitro) is different from the stability <strong>of</strong> the adhesive<br />

in wood composites (in situ). Hydrolytic degradation <strong>of</strong> the resin can cause cleavage linkages<br />

44


within the adhesive network It is assumed that in the first grade <strong>of</strong> degradation N-methylol<br />

groups are dissociated at the end <strong>of</strong> the chain, and later formaldehyde is released from inside<br />

<strong>of</strong> the structure <strong>of</strong> macromolecule.<br />

Perforator method is most <strong>of</strong>ten used laboratory method for determination <strong>of</strong> released<br />

formaldehyde. ROFFAEL et al. (2010) tested samples glued with UF adhesive after<br />

conditioning in the environment with different values humidity. Systematic investigations into<br />

the influence <strong>of</strong> moisture content on the perforator value showed that the relation between<br />

moisture content and perforator values can be represented by a straight line. The emission in<br />

the chamber rose with increasing (measured uncorrected) perforator value.<br />

MATERIAL AND METHODS<br />

In experimental work we tested UF and MUF adhesives and hardener R-60. Natural<br />

polymers were added into adhesives in the form <strong>of</strong> skin collagen hydrolysate (HC). The<br />

hydrolysate was a liquid: collagen amount 26 %, solid content 43 %, pH = 5.2. Hardener was<br />

modified with activator (AG) based on glutaraldehyde (VIPO a.s.). Activator was added into<br />

hardener in amount 1 %, 3 %, or 5 %.<br />

Plywood was pressed from beech or birch veneers; adhesive spread 160 g.m -2 ,<br />

temperature 105 °C (UF), 130 °C (MUF), specific pressure 1.8 MPa, pressing time 5 minutes.<br />

Formaldehyde content determined by FESYP method according to STN EN 120 standard, dry<br />

mater content according to STN EN 322 standard, formaldehyde emission from glued boards<br />

by chamber method according to STN 49 0030 and EN 717-1.<br />

RESULTS AND DISCUSSION<br />

Formaldehyde content in plywood glued with UF and MUF adhesives with modified<br />

hardener (Hr1 and Hr3) are presented in table 1.<br />

Tab. 1 Formaldehyde content in plywood glued with UF and MUF adhesives with AG<br />

Adhesive mixture Requirement <strong>of</strong> the<br />

standard [mg/100g a.d.]<br />

fd content<br />

[mg/100g a.d.]<br />

fd content<br />

relative value [%]<br />

UF + HrR 2.08 100<br />

UF + Hr1 1.90 91<br />

UF + Hr3 8,0<br />

1.98 95<br />

MUF + Hr1 3.14 -<br />

MUF + Hr3<br />

3.89 -<br />

From the obtained results, we can see that AG influences the quality <strong>of</strong> glued joint.<br />

Addition <strong>of</strong> 1 % AG resulted in decrease <strong>of</strong> formaldehyde content by 9 %, the addition 3 %<br />

AG in decrease by 5 %. The situation <strong>of</strong> MUF adhesives is very similar to UF adhesives;<br />

lower content <strong>of</strong> AG caused the lower content <strong>of</strong> formaldehyde.<br />

Further experiments were aimed at research on the influence <strong>of</strong> collagen hydrolysate<br />

on the formaldehyde content in plywood. HC was added into adhesive mixture in the amount<br />

<strong>of</strong> 5 %. The results are given in table 2.<br />

Tab. 2 Formaldehyde content in plywood glued with UF adhesive with AG and HC<br />

Adhesive<br />

mixture<br />

Requirement <strong>of</strong> the<br />

standard [mg/100g a.d.]<br />

fd content<br />

[mg/100g a.d.]<br />

fd content –<br />

relative value [%]<br />

UF+ HrR 2.08 100<br />

UF +Hr1 + 5% HC 1.78 85<br />

UF +Hr3 + 5% HC 8,0<br />

1.54 74<br />

UF +Hr5 + 5% HC<br />

1.89 91<br />

45


We can say that HC included in adhesive mixture markedly reduced formaldehyde<br />

content in glued material. While the board glued with UF adhesive with hardener Hr1 showed<br />

the reduction <strong>of</strong> formaldehyde by 9 %, HC added into the adhesive caused the lowering <strong>of</strong><br />

formaldehyde content by 15 %. As for the adhesive mixture with Hr3, the mentioned values<br />

were 5 % and 26 %. The interesting is the fact that lower AG content results in stronger<br />

decrease <strong>of</strong> formaldehyde in the adhesive mixture without protein (without HC). In adhesive<br />

mixture with protein, it is better if the AG content is higher. We can see this tendency only<br />

when compare Hr1 to Hr3. The sample glued with adhesive with HC and Hr5 showed higher<br />

formaldehyde content.<br />

Based on our experiments examining also other properties <strong>of</strong> adhesive joints, we<br />

continued the experiments with UF adhesive and Hr3. We measured formaldehyde emission<br />

from boards glued with the adhesive containing HC in the amount 3 %, 5 %, or 8 % (fig. 1).<br />

fd emission<br />

(%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

UF-R UF+3%HC UF+5%HC UF+8%HC<br />

Adhesive mixture<br />

Fig. 1 Emission <strong>of</strong> formaldehyde dependent on the amount <strong>of</strong> added HC<br />

As we can see, addition <strong>of</strong> HC in researched range (3–8 %) results in reduction <strong>of</strong><br />

formaldehyde emissions when compared with reference sample (R with no additive). The<br />

adhesive mixture with highest content <strong>of</strong> HC (8 %) reached the lowest value <strong>of</strong> formaldehyde<br />

emission. All boards met the standard, they reached the emission value E < 0.124 mg/m 3 and<br />

all <strong>of</strong> them can be classified in emission class E1.<br />

We assume that between the adhesive and the chains <strong>of</strong> natural polymer (HC present<br />

in the adhesive mixture) direct chemical bond is formed; that can be manifested by changed<br />

properties <strong>of</strong> cured adhesive. ESSAWY et al. (2009) researched physical-chemical properties<br />

<strong>of</strong> UF adhesives modified with polyamidoamines. Authors expected modifiers to change the<br />

network structure <strong>of</strong> cured adhesive (due to a high number <strong>of</strong> –NH 2 functional groups). The<br />

adhesives showed higher strength and chemical stability, as well. Protein added in the form <strong>of</strong><br />

hydroysate can immediately influence the content <strong>of</strong> free formaldehyde in the adhesive. Free<br />

amino-groups <strong>of</strong> protein are able to react with free formaldehyde molecules, they bond them,<br />

and so they prevent the emission <strong>of</strong> formaldehyde. Another positive influence <strong>of</strong> HC for<br />

adhesive curing is an acid reaction medium (HC was added as water solution with pH = 5.2).<br />

Acid curing agents increase the rate <strong>of</strong> formation <strong>of</strong> both types <strong>of</strong> cross-links, and at markedly<br />

influence transformation <strong>of</strong> dimethylenether cross-links into methylene ones.<br />

Similar experiments were carried by LANGMAIER et al. (2004, 2005). They applied<br />

non-isotherma gravimetry to study the condensation kinetics <strong>of</strong> dimethylol-urea (DMU) with<br />

urea and with the hydrolysate (H) <strong>of</strong> chrome tanned leather waste. Authors stated that<br />

addition <strong>of</strong> a mass fraction 0.05 H to DMU reduces a rate <strong>of</strong> formation <strong>of</strong> unstable<br />

dimethylene ether cross-links in favor <strong>of</strong> more stable methylene bonds by 20–30 %.<br />

Hydrolysate lowered ratio <strong>of</strong> oxy–methylene bonds to methylene bonds in favor <strong>of</strong> methylene<br />

bonds at a ratio <strong>of</strong> about 1: 2. This was detected also at curing in neutral environment.<br />

We assume that glutaraldehyde included in activator AG is incorporated into cured<br />

adhesive structure and replaces dimethylen-ether cross-links with its 5-carbon chain. The<br />

46


chain is not hydrolytically degraded. Hydrolysis is well known for unstable dimethylen-ether<br />

bonds and results in formaldehyde emissions from cured resin. MAMINSKI et al. (2006)<br />

studied a possibility to improve adhesive properties and properties <strong>of</strong> hardener using<br />

glutaraldehyde. They stated hypothesis, that glutaraldehyde added will form 5-carbon crosslinks<br />

in the adhesive network; this way also water resistance <strong>of</strong> adhesive can be improved.<br />

When summing all the experiments, we can say that simultaneous presence <strong>of</strong> both<br />

components (activator AG based on glutaraldehyde, and collagen hydrolysate HC) gives the<br />

best environment for curing and good results from the point <strong>of</strong> view <strong>of</strong> content and emissions<br />

<strong>of</strong> formaldehyde (fig. 2).<br />

100<br />

100<br />

fd<br />

content -<br />

relative<br />

value (%)<br />

80<br />

60<br />

40<br />

20<br />

fd<br />

emissionrelative<br />

value (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

HrR Hr1 Hr3<br />

0<br />

HrR Hr1 Hr3<br />

UF adhesive mixture<br />

UF adhesive mixture<br />

adhesive without HC<br />

adhesive with 5 % HC<br />

adhesive without HC<br />

adhesive with 8 % HC<br />

Fig. 2 Content <strong>of</strong> formaldehyde in plywood and emissions <strong>of</strong> formaldehyde when various<br />

UF adhesive mixtures were used<br />

CONCLUSION<br />

In conclusion we can say that:<br />

• the best results <strong>of</strong> formaldehyde content in plywood were achieved by UF adhesive<br />

mixture containing Hr3 and 5 % HC,<br />

• the lowest emission from glued material was measured at UF adhesive mixture with<br />

Hr3 and 8 % HC.<br />

Simultaneous presence <strong>of</strong> both components in the UF adhesive mixture both reduced the<br />

amount <strong>of</strong> formaldehyde in plywood, and reduced the formaldehyde emission from cured UF<br />

adhesive film. As for the UF adhesives are widely used, utilization <strong>of</strong> secondary raw materials<br />

(skin collagen hydrolysates) in adhesive production can positively influence the environment<br />

and be economically interesting.<br />

Acknowledgments<br />

This paper was worked out in the frame <strong>of</strong> the project VEGA 1/0517/09 and projects APVV-<br />

0521-07 and APVV-0773-07.<br />

REFERENCES<br />

1. LANGMAIER, F. et al. 2004. Curing <strong>of</strong> urea-formaldehyde adhesives with collagen type<br />

hydrolysates under acid condition. In Journal <strong>of</strong> Thermal Analysis and Calorimetry. 2004,<br />

76, p. 1015-1023.<br />

2. LANGMAIER, F. et al. 2005. Curing urea-formaldehyde adhesives with hydrolysates <strong>of</strong><br />

chrome-tanned leather waste from leather production. In International Journal <strong>of</strong><br />

Adhesion and Adhesives. 2005, 25, p. 101-108.<br />

3. MAMINSKI, M.L., PAWLICKI, J., PARZUCHOWSKI, P. 2006. Improved water<br />

resistance and adhesive performance <strong>of</strong> a commercial UF resin blended with<br />

glutaraldehyde. In The Journal <strong>of</strong> Adhesion. ISSN 0021-8464, 2006, 82, p.629-641.<br />

47


4. PARK, B.D., LEE, S.M., ROH J.K. 2009. Effects <strong>of</strong> formaldehyde/urea mole ratio and<br />

melamine content on the hydrolytic stability <strong>of</strong> cured urea-melamine-formaldehyde resin.<br />

In Eur. J. Wood. Prod. 2009, 67, p. 121–123.<br />

5. RINGENA, O. et al. 2006. Estimating the hydrolytic durability <strong>of</strong> cured wood adhesives<br />

by measuring formaldehyde liberation and structural stability. In Holz als Roh- und<br />

Werkst<strong>of</strong>f. 2006, 64, p. 321–326.<br />

6. STN EN 120: 1995: Drevné materiály. Zisťovanie obsahu formaldehydu. Extrakčný<br />

postup zvaný „perforátorová metóda“.<br />

7. STN EN 322: 1995: Dosky z dreva. Zisťovanie vlhkosti.<br />

8. STN EN 717-1: 2005: Dosky na báze dreva. Zisťovanie uvoľnenia formaldehydu. Časť 1:<br />

Emisia formaldehydu zisťovaná komorovou metódou.<br />

9. TOHMURA, S., INOUE, A., SAHARI, S.H. 2001. Influence <strong>of</strong> the melamine content in<br />

melamine-urea-formaldehyde resins on formaldehyde emission and cured resin structure.<br />

In J. Wood Sci. 2001, 47, p. 451- 457.<br />

10. ZHANG, S.F. et al. 2010. Study on properties <strong>of</strong> modified low molecular ratio ureaformaldehyde<br />

resins (I). In Advanced Material Research. 2010, 113-116, p. 2016-2010.<br />

Streszczenie: Redukcja emisji formaldehydu ze sklejki klejonej modyfikowaną żywicą<br />

mocznikową. Stabilność chemiczna żywicy mocznikowej stanowi jej istotną własność<br />

higieniczną. Praca dotyczy stabilności chemicznej kleju mocznikowego modyfikowanego<br />

aldehydem glutarowym oraz kolagenem. Aldehyd glutarowy został dodany do kleju w celu<br />

zwiększenia stabilności strukturalnej. Kolagen został dodany w formie hydrolizatu<br />

kwasowego, pochodzącego z odpadów po garbowaniu skór. Zawartość formaldehydu<br />

zmierzono zgodnie z normami STN 49 0030 oraz STN EN 717-1. Wykazano, że równoczesna<br />

obecność kolagenu oraz GA w żywicy mocznikowej zmniejsza ilość formaldehydu oraz<br />

redukuje jego emisję z utwardzonej żywicy.<br />

Corresponding authors:<br />

Ing. Mária Šmidriaková<br />

Doc. Ing. Ján Sedliačik, PhD.<br />

Technical <strong>University</strong><br />

T.G. Masaryka, 24<br />

960 53 Zvolen<br />

Slovakia<br />

e-mail: smidriak@vsld.tuzvo.sk<br />

janos@vsld.tuzvo.sk<br />

Ing. Jan Matyašovsky,PhD<br />

Ing.Peter Duchovič<br />

VIPO a.s<br />

Ul. Gen Svobodu 1069/4<br />

958 01 Partizánske<br />

Slovakia<br />

e-mail: jmatyasovsky@vipo.sk<br />

pduchovic@vipo.sk<br />

48


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 49-53<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

ATR-FTIR spectral analysis <strong>of</strong> modified UF adhesive<br />

MÁRIA ŠMIDRIAKOVÁ 1 , MARTA LAUROVÁ 2<br />

1 Department <strong>of</strong> Furniture and Wood Products, 2 Department <strong>of</strong> Chemistry and Chemical Technologies, Faculty <strong>of</strong><br />

Wood <strong>Sciences</strong> and Technology, Technical <strong>University</strong> in Zvolen, Slovak Republic<br />

Abstract: This report deals with stability and toxicity <strong>of</strong> urea-formaldehyde (UF) adhesives for woodworking<br />

industry. ATR FTIR method was used to research UF adhesive modified by glutaraldehyde (GA). The<br />

glutaraldehyde was added to UF resin to increase structural stability <strong>of</strong> the adhesive. FTIR spectra <strong>of</strong> UF<br />

adhesives, UF and GA blends hardened at temperature 100 °C are presented in the paper. Formaldehyde released<br />

from the adhesive is harmful. Collagen solution was chosen as reaction agent to decrease UF adhesive toxicity.<br />

Measured FTIR spectra <strong>of</strong> UF adhesive modified with collagen hydrolysate approved the creation <strong>of</strong> bonds<br />

between formaldehyde and collagen.<br />

Keywords: UF resin, adhesive, collagen, glutaraldehyde, FTIR<br />

INTRODUCTION<br />

As the aminoplastic adhesives are widely used in woodworking industry, problems <strong>of</strong><br />

chemical stability <strong>of</strong> the adhesives, resistance against hydrolysis, and formaldehyde emissions<br />

are the main themes <strong>of</strong> modern research on urea-formaldehyde (UF) adhesives. To influence<br />

the quality <strong>of</strong> curing and the structure <strong>of</strong> cured resin various substances are added into<br />

adhesives. A way <strong>of</strong> modification <strong>of</strong> the adhesives is adding such substances, which bond free<br />

formaldehyde and so prevent releasing formaldehyde from glued materials (SEDLIAČIK<br />

2005).<br />

At hardening <strong>of</strong> UF adhesives, acid hardeners influence transformation <strong>of</strong> dimethyleneether<br />

links (less stable bonds) to the methylene links (more stable bonds). Lowering the<br />

number <strong>of</strong> dimethylene-ether links in cured adhesive film <strong>of</strong> aminoplastic, it is possible to<br />

lower the formaldehyde emission. One <strong>of</strong> examined chemical substances used for modifying<br />

aminoplastic adhesives is glutaraldehyde (GA). There is assumed that GA can be inbuilt into<br />

the structure <strong>of</strong> hardened adhesive and so replace less stable dimethylene-ether links with its<br />

5-carbon chain (MAMINSKI et al. 2006).<br />

In recent years, research on modification <strong>of</strong> adhesives has been also aimed at utilization<br />

<strong>of</strong> products that are easy to get, and using them the costs in adhesive production can be<br />

reduced. Chrome tanned leather waste contains collagen hydrolysate. Collagen (protein) bears<br />

a number <strong>of</strong> amino-groups that are known for their reactivity with formaldehyde.<br />

In our experiments we researched chosen additives and their influence on curing <strong>of</strong> UF<br />

adhesive. We measured and compared FTIR spectra <strong>of</strong> additives, standard UF adhesive and<br />

the adhesive modified with glutaraldehyde and collagen.<br />

MATERIAL AND METHODS<br />

In experimental work we researched UF adhesive KRONORES CB and hardener R-60.<br />

Natural polymers (skin collagen hydrolysate HK79) were added into the adhesive in amount<br />

<strong>of</strong> 5 %. The hydrolysate was a liquid containing collagen (26 %). Solid content <strong>of</strong> the<br />

hydrolysate was 43 %, pH = 5.2. Hardener was modified by addition <strong>of</strong> activator based on<br />

glutaraldehyde (GA) (VIPO a.s.) in amount <strong>of</strong> 3 %.<br />

FTIR spectra were measured with FTIR spectrometer NICOLET iS10 (Thermo<br />

Scientific). Collagen hydroysate was researched in liquid form. Formaldehyde (0.2 g 37 %<br />

water solution) was added into 10 grams <strong>of</strong> HK. The mixture was conditioned at temperature<br />

<strong>of</strong> 20 °C for 16 hours. Parallel sample was boiled for 5 minutes (to approximate conditions at<br />

49


plywood pressing). Spectra <strong>of</strong> liquid samples were measured immediately after reaction time.<br />

Spectra <strong>of</strong> hardened adhesive samples were measured on tablets.<br />

RESULTS AND DISCUSSION<br />

FTIR spectrum <strong>of</strong> collagen hydrolysate (HK) is shown in figures 1. In spectral interval<br />

1650–1400 cm -1 , the spectrum was characterized by two strong absorption bands (1626<br />

and 1458 cm -1 ) and in spectral interval 1350–1000 cm -1 by four mediate bands (1337, 1246,<br />

1157 and 1083 cm -1 ).<br />

In interval 3800–2500 cm -1 there is a wide absorption band that according MILATA et<br />

al. (2007) indicate the existence <strong>of</strong> peptide bonds (–CO–NH–) in solution (3400 – 3480 cm -1 )<br />

and hydrogen bonds (inter and intra–molecular bonds NH, OH).<br />

The measured infrared spectrum <strong>of</strong> collagen hydrolysate used for modification <strong>of</strong> UF<br />

adhesive correlated very well with the spectra measured by BELBACHIR et al. (2009). They<br />

compared spectra measured for various collagen types in four spectral intervals: υ(C=O)<br />

(1700–1600 cm -1 ), δ(CH 2 ) and δ(CH 3 ) (1480–1350 cm -1 ), υ(C–N) and δ(N–H) (1300–1180<br />

cm -1 ), υ(C–O) and υ(C–O–C) (1100–1005 cm -1 ). Comparing the spectra <strong>of</strong> collagen and the<br />

mixture <strong>of</strong> collagen and formaldehyde (fig. 1), we investigated interaction <strong>of</strong> formaldehyde<br />

with collagen hydrolysate.<br />

Fig. 1 FTIR spectrum <strong>of</strong> collagen hydrolysate after reaction with formaldehyde.<br />

The change in spectral curve is evident in interval 1550 cm -1 , and a new band and<br />

increased absorption is evident in interval 1160–1080 cm -1 . Intensity <strong>of</strong> band in HK spectrum<br />

at 1626 cm -1 , characteristic for amines, lowered after reaction with formaldehyde and at the<br />

same time intensity <strong>of</strong> bands at 3346 cm -1 increased (–OH groups; intra and inter–molecules<br />

hydrogen bonds). It can be considered the result <strong>of</strong> possible chemical interaction between<br />

researched substances and a product containing higher number <strong>of</strong> –OH groups. Samples<br />

conditioned at temperature 100 °C showed more intensive bands at 1550 cm -1 ; we can assume<br />

that the reaction rate at higher temperature is higher.<br />

Comparing the spectra <strong>of</strong> standard UF adhesive with UF modified with HK, high<br />

similarity is noticeable (fig. 2).<br />

50


Fig. 2 FTIR spectrum <strong>of</strong> UF adhesive and UF adhesive with collagen hydrolysate.<br />

Some differences are evident in bands intensity in interval 2800–2950 cm -1 , where two<br />

new bands appeared (–CH 2 – groups) (MILATA et al. 2007, ESSAWY et al. 2009), changed<br />

intensity <strong>of</strong> spectral band at 1600 cm -1 (primary amides) (BELBACHIR et al. 2009),<br />

and intensive band at 1438 cm -1 . The band in interval 1590–1450 cm -1 is resolved into two<br />

absorption bands: 1538 cm -1 υ(C=O) (carboxyl acids) and 1547 cm -1 υ(C=O) (peptide bonds –<br />

NH–CO–NH–). The peak 1338 cm -1 disappeared. Weak change <strong>of</strong> the spectra appeared in<br />

interval 1000–1150 cm -1 ; it can point at reduced number <strong>of</strong> C–O–C bonds in UF adhesive.<br />

Comparing the spectra <strong>of</strong> standard UF adhesive and UF modified with GA (fig. 3) we<br />

can see high similarity in „fingerprints“ interval.<br />

Fig 3 FTIR spectra <strong>of</strong> UF adhesive and UF adhesive with GA<br />

Some differences are found in interval 2980–2820 cm -1 , where two distinguishable<br />

bands are shown. According to MILATA et al. (2007) and ESSAWY et al. (2009) strong<br />

bands in interval 2950–2850 cm -1 belong to alkanes and their –CH 2 – groups, and in interval<br />

2900–2700 cm -1 to aldehydes (–CHO). We assume that main structure <strong>of</strong> cured UF adhesive<br />

was changed when GA was added. GA is able to react with free aminogroups <strong>of</strong> the adhesive<br />

and incorporate into the structure <strong>of</strong> cured adhesive; 5-carbon chain contributes to the<br />

strength, hydrophobic properties, and stability <strong>of</strong> adhesive network. The assumption was<br />

51


confirmed by the fact that the peak at 1720 cm -1 from the spectrum <strong>of</strong> GA (carbonyl group<br />

C=O) disappeared from the spectrum <strong>of</strong> cured adhesive.<br />

The sample <strong>of</strong> cured UF adhesive with GA and HK gave the spectral curve shown in<br />

fig. 4. The spectrum showed all <strong>of</strong> above mentioned differences. The band at 1720 cm -1 was<br />

not present; we assume that GA was incorporated into the structure <strong>of</strong> cured UF adhesive.<br />

At 1544 cm -1 there is the band, which was not in the spectrum <strong>of</strong> collagen. The presence<br />

<strong>of</strong> it we can explain by possible formation <strong>of</strong> structures <strong>of</strong> C–OH during the reaction <strong>of</strong> free –<br />

NH 2 groups with aldehydes. This is confirmed by decreased intensity <strong>of</strong> band at1630 cm -1<br />

when compared with the band at 1544 cm -1 ; this reflects decreased number <strong>of</strong> free –NH 2<br />

groups.<br />

Fig 4 FTIR spectra <strong>of</strong> UF adhesive and UF adhesive with GA and HK<br />

Based on our experiments, it is very hard to qualify the measure <strong>of</strong> how the particular<br />

components <strong>of</strong> such a complicated system (macromolecule <strong>of</strong> cured adhesive, present peptide<br />

chains, and presence <strong>of</strong> standard and modified hardener) are bonded by chemical links. It<br />

would also be interesting to know how all the system works on the wood surface.<br />

CONCLUSION<br />

The final adhesive mixture is a mixture <strong>of</strong> two adhesives – aminoplastic and protein.<br />

The curing <strong>of</strong> UF adhesive is combined with network formation <strong>of</strong> protein. At the same time,<br />

we assume the direct chemical bonding between macromolecules <strong>of</strong> protein and the resin. The<br />

assumption was confirmed with recognizing the structure <strong>of</strong> cured adhesive mixture by FTIR<br />

spectroscopy method. Evaluating the spectra <strong>of</strong> particular systems present in final adhesive<br />

mixture we can confirm that proteins from collagen hydrolysate react with their free –NH 2<br />

groups with free formaldehyde and bond it by covalent chemical link. At 1544 cm -1 there is a<br />

band, which was not visible in the spectrum <strong>of</strong> collagen. We can consider this fact as a result<br />

<strong>of</strong> formed C–OH structures at reaction <strong>of</strong> free –NH 2 groups with aldehydes. The same is<br />

confirmed by reduced absorption at 1630 cm -1 , which is the result <strong>of</strong> decrease <strong>of</strong> –NH 2<br />

groups. Also the ratio <strong>of</strong> unstable dimethylen-ether links in the structure <strong>of</strong> cured UF adhesive<br />

lowered. Glutaraldehyde present in adhesive mixture was inbuilt into the structure <strong>of</strong><br />

adhesive, the band at 1720 cm -1 indicating (C=O) group <strong>of</strong> GA disappeared from the spectrum<br />

<strong>of</strong> cured UF adhesive.<br />

52


REFERENCES<br />

1. BELBACHIR, K., NOREEN, R., GOUSPILLOU, G. 2009. Collagen types analysis and<br />

differentiation by FTIR spectroscopy. In Anal. Bioanal. Chem. 2009, 395, p. 829-837.<br />

2. BRYAN, M.A. et al. 2007. FTIR studies <strong>of</strong> collagen model peptides: Complementary<br />

Experimental and simulation approaches to conformation and unfolding. In J. Am.<br />

Chem. Soc. 2007, 129, 25, p. 7877-7884.<br />

3. ESSAWY, H.A., MOUSTAFA, A.A.B., ELSAYED N.H. 2009. Improving the<br />

performance <strong>of</strong> urea-formaldehyde wood adhesive system using dendritic<br />

poly(amidoamine)s and their corresponding half generations. In Journal <strong>of</strong> Applied<br />

Poymer Science. 2009, 114, p. 1348-1355.<br />

4. MAMINSKI, M.L., PAWLICKI, J., PARZUCHOWSKI, P. 2006. Improved water<br />

resistance and adhesive performance <strong>of</strong> a commercial UF resin blended with<br />

glutaraldehyde. In The Journal <strong>of</strong> Adhesion. ISSN 0021-8464, 2006, 82, p.629-641.<br />

5. MILATA, V., SEGĽA, P. 2007. Vybrané metódy molekulovej spektroskopie.<br />

Bratislava: Vydavateľstvo STU, 2007.416s. ISBN 978-80-227-2618-4<br />

6. SEDLIAČIK, J. 2005. Procesy lepenia dreva, plastov a kovov. Zvolen: TU, 2005. 221 s.<br />

ISBN 80-228-1500-4.<br />

Acknowledgement: This work has been supported by the Slovak Scientific Grant Agency<br />

under the contracts No. VEGA 1/0517/09.<br />

Streszczenie: Analiza spektralna ATR-FTIR modyfikowanej żywicy mocznikowej. Praca<br />

dotyczy stabilności i toksyczności klejów mocznikowych dla przemysłu drzewnego.<br />

Testowano żywicę modyfikowaną aldehydem glutarowym, dodanym w celu zwiększenia<br />

stabilności strukturalnej. Używano kolagenu w celu zmniejszenia toksyczności żywicy<br />

mocznikowej, potwierdzono powstawanie wiązań pomiędzy kolagenem oraz formaldehydem.<br />

Corresponding author:<br />

Dr. Mária Šmidriaková<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Faculty <strong>of</strong> Wood <strong>Sciences</strong> and Technology,<br />

Technical <strong>University</strong> in Zvolen,<br />

T.G. Masaryka 24, 960 53 Zvolen, Slovak Republic<br />

e-mail: smidriak@vsld.tuzvo.sk<br />

www.tuzvo.sk<br />

Ms. assoc. pr<strong>of</strong>. Marta Laurová,<br />

Department <strong>of</strong> Chemistry and Chemical Technologies<br />

Faculty <strong>of</strong> Wood <strong>Sciences</strong> and Technology,<br />

Technical <strong>University</strong> in Zvolen,<br />

T.G. Masaryka 24, 960 53 Zvolen, Slovak Republic<br />

e-mail: laurova@vsld.tuzvo.sk<br />

www.tuzvo.sk<br />

53


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 54-58<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

VOC emissions from melamine films and finish foils<br />

AGATA STACHOWIAK-WENCEK, WŁODZIMIERZ PRĄDZYŃSKI, PAULINA<br />

KRZYWOSIŃSKA<br />

Faculty <strong>of</strong> Wood Technology, Institute <strong>of</strong> Chemical Wood Technology, Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Abstract: VOC emissions from melamine films and finish foils. The paper presents results <strong>of</strong> investigations on<br />

VOC emissions from melamine films and finish foils, i.e. materials used to refine surface <strong>of</strong> wood-based<br />

materials. Compound adsorption was carried out on the Tenax TA solid sorbent. Volatile organic compounds<br />

were analysed with the assistance <strong>of</strong> gas chromatography coupled with mass spectrometry and thermal<br />

desorption (GC/MS/TD). It was concluded, on the basis <strong>of</strong> the obtained research results, that the tested finishing<br />

materials were characterised by relatively low levels <strong>of</strong> noxious emissions.<br />

Keywords: Volatile organic compounds (VOC), Emission, Melamine films, Finish foils , Wood-based materials,<br />

Chamber studies, GC/MS/TD<br />

INTRODUCTION<br />

The quality <strong>of</strong> air inside buildings as well as the health <strong>of</strong> their users are influenced by<br />

all kinds <strong>of</strong> finishing materials found there, including articles manufactured from wood and<br />

wood-based materials. Sometimes, their quantities are very considerable and, when combined<br />

with insufficient air exchange, can contribute to air contamination. Apart from solid wood,<br />

materials in common use include: particleboards, MDF and HDF finished with laminates or<br />

artificial veneers. These materials are used to manufacture, among others, furniture, wall and<br />

floor panels, skirting boards and doors.<br />

Considerable amounts <strong>of</strong> attention was devoted to investigations <strong>of</strong> VOC emissions<br />

from wood-based materials (Baumann et al. 1999, 2000; Stachowiak-Wencek and<br />

Prądzyński 2005; Kim et al. 2006, 2007; Ohlmeyer et al. 2008; T<strong>of</strong>tum et al. 2008) but little<br />

information can be found in the literature on the subject about VOCs released from materials<br />

used to finish wood surfaces, i.e. laminates and finish foils (Wiglusz et al. 2002; Gaca and<br />

Dziewanowska-Pudliszak 2005).<br />

The objective <strong>of</strong> the investigations was to determine quality and quantity <strong>of</strong> VOCs<br />

liberated by melamine films and finish foils. The investigations made it possible to determine<br />

the impact <strong>of</strong> decorative products on VOC emissions from finished wood-based materials.<br />

MATERIALS AND METODS<br />

Investigations were conducted on melamine films and finish foils which were<br />

manufactured on the base <strong>of</strong> 70 g/m 2 grammage papers imitating the structure <strong>of</strong> different<br />

wood species. The investigated melamine films were from 0.113 to 0.125 mm thick, whereas<br />

the thickness <strong>of</strong> the applied finish foils ranged from 0.100 to 0.115 mm. The examined<br />

materials were obtained from a Polish manufacturer. A detailed list <strong>of</strong> the main raw materials<br />

used for the production <strong>of</strong> the tested materials is presented in Table 1.<br />

54


Table 1. List <strong>of</strong> main raw materials used to manufacture the examined melamine films and<br />

finish foils in kg/m 2 (on the basis <strong>of</strong> the manufacturer’s information)<br />

Melamine films<br />

Finish foils<br />

Decor paper 1m 2 Decor paper 1m 2<br />

Urea-formaldehyde resin 0.12 kg Urea-formaldehyde resin 0.0354 kg<br />

Melamine resin 0.083 kg Melamine resin 0.0150 kg<br />

Triethanolamine 0.0005 kg Acrylic resin 0.0192 kg<br />

Butanol 0.0036 kg Diethylene glycol 0.0005 kg<br />

Polyglycol 2000 0.0004 kg Waterborne lacquer 0.0185 kg<br />

Diethylene glycol<br />

0.0002 kg<br />

Investigations <strong>of</strong> VOC emissions were carried out in a glass chamber <strong>of</strong> 0.225 m 3 volume in<br />

which the following conditions were maintained: temperature 23 +/- 1°C; relative humidity -<br />

45 +/- 2%; chamber load - 1m 2 /1m 3 ; air exchange - 1/h. After 24 hours, air from the chamber<br />

was collected into tubes packed with one layer Tenax TA (120 mg). Analytes adsorbed on the<br />

bed were released with the aid <strong>of</strong> a thermal desorber. Released analytes were transferred as a<br />

narrow band to the front <strong>of</strong> a chromatographic column, and then to a mass spectrometer.<br />

Parameters <strong>of</strong> the TD/GC/MS analytical system are presented in Table 2.<br />

Table 2. Conditions for analytes determinations with the use <strong>of</strong> a TD/GC/MS technique<br />

Elements <strong>of</strong> the system<br />

Parameters<br />

Gas chromatograph<br />

TRACE GC, Thermo Quest.<br />

Column<br />

RTX – 624 Restek Corporation, 60m x 0,32mm ID;<br />

D f – 1,8 m: 6% cyanopropylophenyl, 94% dimethylopolysiloxane<br />

Detector Mass spectrometer (SCAN: 10 – 350)<br />

Injector<br />

Thermal desorber connected with sorption microtrap;<br />

Rinsing gas: argon 20 m 3 min -1 ;<br />

Microtrap<br />

Sorbent: 80 mg Tenax TA/30 mg Carbosieve III;<br />

Desorption temperature: 250C during 90 s.<br />

Carrier gas Helium: 100 kPa, 2 cm 3 min -1 .<br />

Temperature setting 40C during 2 min, 7C min -1 to 200C, 10C min -1 to 230C, 230C<br />

during 20 min<br />

Compound identification: Compounds were identified by comparing the obtained mass<br />

spectra with the spectra stored at the NIST 98 library and then confirmed by collating mass<br />

spectra and retention times <strong>of</strong> the identified compounds with the spectra and retention times<br />

<strong>of</strong> appropriate standards.<br />

Quantitative analysis: The quantitative analysis <strong>of</strong> volatile organic compounds emitted from<br />

the examined surfaces was carried out using the method <strong>of</strong> addition <strong>of</strong> 4-brom<strong>of</strong>luorobenzene<br />

standard which was applied in the amount <strong>of</strong> 50 ng onto the tube with the sorbent.<br />

55


RESULTS AND DISCUSSION<br />

The obtained results are collated in Tables 3 and 4.<br />

Table 3. Concentration <strong>of</strong> VOCs from melamine films<br />

Compounds CAS a number<br />

Chamber air concentration [µg/m 3 ]<br />

L1 L2 L3<br />

Acetone 67-64-1 5.8 3.9 ND b<br />

1-butanol 71-36-3 31.4 58.8 105.0<br />

Toluene 108-88-3 13.4 10.8 8.6<br />

Ethylene glycol 107-21-1 10.3 15.8 28.8<br />

Hexanal 66-25-1 7.6 4.6 ND b<br />

α-pinene 80-86-8 8.6 58.8 ND b<br />

3-carene 13466-78-9 5.3 ND b ND b<br />

Others 32.2 30.0 29.3<br />

TVOC 115 183 172<br />

a<br />

- Chemical Abstract Service; na b - not detectable; TVOC – sum <strong>of</strong> all VOCs<br />

Table 4. Concentration <strong>of</strong> VOCs from finish foils<br />

Compounds CAS a number<br />

Chamber air concentration [µg/m 3 ]<br />

F1 F2 F3<br />

Toluene 108-88-3 10.3 8.2 10.1<br />

Ethylene glycol 107-21-1 72.2 27.2 59.3<br />

α-pinene 80-86-8 11.0 10.8 10.2<br />

3-carene 13466-78-9 7.7 7.1 5.5<br />

others 14.6 6.8 12.9<br />

TVOC 116 60 98<br />

a<br />

- Chemical Abstract Service; TVOC – sum <strong>of</strong> all VOCs<br />

The performed quantitative analysis revealed that the total emission <strong>of</strong> VOCs from the<br />

tested melamine films was determined at a higher level than from finish foils. Melamine films<br />

were found to release into the air from 115 to 183 µg/m 3 <strong>of</strong> organic compounds, while finish<br />

foils – from 60 to 116 µg/m 3 .<br />

On the basis <strong>of</strong> qualitative analyses, it was found that the examined melamine films<br />

released into the ambient air compounds belonging to ketones, alcohols, glycols, aromatic<br />

hydrocarbons and terpenes, whereas emissions from finish foils were made up <strong>of</strong> a smaller<br />

spectrum <strong>of</strong> compounds. Finish foils released mainly compounds belonging to glycols,<br />

aromatic hydrocarbons and terpenes. 1-butanol was the compound that was released in the<br />

highest quantities by melamine films. Its concentrations ranged from 31.4 to 105.0 µg/m 3 .<br />

Moreover, the examined films also liberated significant quantities <strong>of</strong> ethylene glycol whose<br />

quantities fluctuated from 10.3 to 28.8 µg/m 3 . Ethylene glycol was also a characteristic<br />

constituent <strong>of</strong> emissions released by finish foils. They were found to liberate higher than the<br />

examined melamine films quantities <strong>of</strong> this compound fluctuating between 27.2 and<br />

72.2 µg/m 3 .<br />

The examined materials emitted terpenes, mainly α-pinene and 3-carene. Terpene<br />

emissions are characteristic for materials manufactured on the basis <strong>of</strong> different wood species<br />

(Sundin et al. 1992; Risholm-Sundman et al. 1998; Baumann et al. 1999). Similar<br />

compounds from finish foil were identified by Gaca and Dziewanowska-Pudliszak (2005).<br />

56


CONCLUSION<br />

1. Investigations <strong>of</strong> VOC emissions from decorative materials, i.e. melamine films and finish<br />

foils demonstrated differences both with respect to the quality and quantity <strong>of</strong> compounds<br />

released by them.<br />

2. The examined finishing materials were characterised by a relatively low level <strong>of</strong> VOC<br />

emissions. Melamine films released slightly more volatile compounds (115 to 183 µg/m 3 )<br />

than the tested foils (60 to 116 µg/m 3 ).<br />

3. Melamine films released into the ambient air a wider spectrum <strong>of</strong> organic compounds in<br />

comparison with finish foils.<br />

4. The performed qualitative analysis revealed that the dominant constituent <strong>of</strong> emissions<br />

released by melamine films was 1-butanol, while in the case <strong>of</strong> finish foils – ethylene<br />

glycol. The concentration <strong>of</strong> 1-butanol in the air collected from the chamber fluctuated at<br />

the level <strong>of</strong> 31.4 to 105.0 µg/m 3 and constituted from 31 to 61% <strong>of</strong> all emissions. The<br />

concentration <strong>of</strong> ethylene glycol released from the finish foils in largest quantities and<br />

constituted 27.2 to 72.2 µg/m 3 making up 45 to 62% <strong>of</strong> all compounds.<br />

REFERENCES<br />

1. BAUMANN M.G.D., BATTERMAN S.A., ZHANG G.-Z., 1999: Terpene emissions<br />

from particleboards and medium fiberboards products, Forest Products Journal vol. 49<br />

(no. 1): 49-56.<br />

2. BAUMANN M.G.D., LORENZ L.F., BATTERMAN S.A., ZHANG G.-Z., 2000:<br />

Aldehyde emissions from particleboards and medium density fiberboards products,<br />

Forest Products Journal vol. 50 (no. 9): 75-82.<br />

3. GACA P., DZIEWANOWSKA-PUDLISZAK A., 2005: Volatile organic compounds<br />

(VOC) emission <strong>of</strong> selected wood species and other materials applied in furniture<br />

manufacture, Drewno-Wood vol. 48 (no.173): 119-125.<br />

4. KIM G.H., CHO J.S, RA J.B., PARK J.Y., 2006: Volatile organic compounds<br />

emissions from radiata pine MDF as a function <strong>of</strong> pressing variables. Forest Products<br />

Journal vol. 56 (no. 7/8): 91-95.<br />

5. KIM S., KIM J.A., AN J.Y., KIM H.J., KIM S.D., PARK J.C., 2007: TVOC and<br />

formaldehyde emission behaviors from flooring materials bonded with environmentalfriendly<br />

MF/PVAc hybrid resins. Indoor Air vol.17 (no. 5): 404-415.<br />

6. OHLMEYER M., MAKOWSKI M., FRIED H., HASH J., SCHÖLER M., 2008:<br />

Influence <strong>of</strong> panel thickness on the release <strong>of</strong> volatile organic compounds from OSB<br />

made <strong>of</strong> Pinus sylvestris L., Forest Products Journal vol. 58(no. 1/2): 65-70.<br />

7. RISHOLM-SUNDMAN M., LUNDGREN M., VESTIN E., HERDER P., 1998:<br />

Emissions <strong>of</strong> acetic acid and other volatile organic compounds from different species<br />

<strong>of</strong> solid wood. Holz als Roh- und Werkst<strong>of</strong>f 56: 125-129.<br />

8. STACHOWIAK-WENCEK A., PRĄDZYŃSKI W., 2005: Emission <strong>of</strong> volatile<br />

organic compounds from furniture surfaces finished with lacquer coatings, Acta Sci.<br />

Pol., Silv. Colendar. Rat. Ind. Lignar., vol. 4 (no. 2): 177-185.<br />

9. TOFTUM J., FREUND S., SALTHAMMER T., WESCHLER C.J., 2008: Secondary<br />

organic aerosols from ozone-initiated reactions with emissions from wood-based<br />

materials and a “green” paint, Atmospheric Environment 42: 7632-7640.<br />

10. WIGLUSZ R., NIKEL G., IGIELSKA B., SITKO E. 2002: Volatile organic<br />

compounds emissions from particleboard veneered with decorative paper foil,<br />

Holzforschung 56: 108-110.<br />

57


Streszczenie: Emisja VOC z filmów melaminowych oraz folii finish. W pracy przedstawiono<br />

wyniki badań emisji VOC z filmów melaminowych oraz folii finish, materiałów stosowanych<br />

do uszlachetniania powierzchni tworzyw drzewnych. Adsorpcję związków przeprowadzono<br />

na sorbencie stałym Tenax TA. Lotne związki organiczne analizowano za pomocą<br />

chromatografii gazowej sprzężonej z spektrometrią masową oraz termiczną desorpcją<br />

GC/MS/TD. W oparciu o uzyskane rezultaty stwierdzono, że badane materiały<br />

uszlachetniające charakteryzowały się stosunkowo niskim poziomem szkodliwych emisji.<br />

Corresponding author:<br />

Agata Stachowiak-Wencek<br />

Institute <strong>of</strong> Chemical Wood Technology<br />

ul. Wojska Polskiego 38/42<br />

60-637 Poznań<br />

e-mail: agates@up.poznan.pl<br />

58


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 59-63<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Investigations on volatile organic compounds (VOC) emissions from woodbased<br />

materials<br />

AGATA STACHOWIAK-WENCEK, WŁODZIMIERZ PRĄDZYŃSKI, PAULINA<br />

KRZYWOSIŃSKA<br />

Faculty <strong>of</strong> Wood Technology, Institute <strong>of</strong> Chemical Wood Technology, Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Abstract: Investigations on volatile organic compounds (VOC) emissions from wood-based materials. The<br />

study presents results <strong>of</strong> investigations on VOC emissions from raw particleboards as well as particleboards<br />

finished with decorative materials such as: melamine films and finish foils. The performed qualitative and<br />

quantitative analyses <strong>of</strong> VOCs in ambient air were carried out with the assistance <strong>of</strong> GC/MS/TD technique.<br />

Compound adsorption was carried out on the Tenax TA solid sorbent. It was found that raw wood-based<br />

products released into ambient air considerably more volatile substances than finished materials, i.e. those<br />

covered with melamine films and finish foils.<br />

Keywords: Volatile Organic Compounds (VOC), Emission, Particleboards, Chamber studies, GC/MS/TD<br />

INTRODUCTION<br />

The impact <strong>of</strong> harmful factors on human health constitutes the object <strong>of</strong> numerous<br />

investigations by specialists. Staying in contaminated rooms can lead to a wide range <strong>of</strong><br />

different health problems, among others: headaches, disturbances in memory and<br />

concentration, irritations, allergies, diseases <strong>of</strong> the respiratory system or even neoplasmic<br />

diseases. Ailments resulting from prolonged stays in contaminated internal environment are<br />

<strong>of</strong>ten referred to as: building related illnesses (BRI) or sick building syndrome (SBS).<br />

Compounds identified inside building responsible for health problems are volatile organic<br />

compounds (VOCs), inorganic compounds, dusts, aerosols as well as biological<br />

contaminations such as fungi, moulds and microorganisms. VOCs can be emitted from many<br />

sources which cause that these compounds are under special control <strong>of</strong> sanitary institutions.<br />

Among sources <strong>of</strong> VOC emissions are, among others, articles manufactured by the furniture<br />

industry. One <strong>of</strong> the basic raw materials employed in the wood sector comprises wood-based<br />

materials. Investigations <strong>of</strong> VOC emissions revealed that these compounds can lead to<br />

temporary air contamination in buildings (Brown 1999; Mogens 2001; Guo et al. 2002;<br />

Wiglusz et al. 2002; R<strong>of</strong>fael 2006; Ohlmeyer et al. 2008). Precise analysis <strong>of</strong> contaminations<br />

emitted from products as well as recognition <strong>of</strong> mechanisms <strong>of</strong> their release makes it possible<br />

to undertake appropriate measures leading to reduction in their quantities and improvement <strong>of</strong><br />

air hygiene inside buildings.<br />

The objective <strong>of</strong> the presented experiments was to determine the quality and quantity<br />

<strong>of</strong> volatile organic compounds emitted from selected wood-based materials. Investigations<br />

were carried out on both unfinished wood-based materials as well as materials coated with<br />

laminates (melamine films) and artificial veneer (finish foils).<br />

METHODOLOGY<br />

The experimental material included:<br />

Raw particleboards <strong>of</strong> 8, 15 and 18 mm thickness and <strong>of</strong> respective 640 – 705 kg/m 3<br />

density and 5,0 - 5,5% moisture content. The boards product is a combination <strong>of</strong> fine<br />

wood particles and UF-resin pressed into panels. The particleboards is suitable for<br />

interior.<br />

59


particleboards <strong>of</strong> 18 mm thickness laminated on both sides (3 kinds <strong>of</strong> laminates<br />

imitating the structure <strong>of</strong> different wood species),<br />

particleboards <strong>of</strong> 18 mm thickness covered on both sides with artificial veneer (3 kinds<br />

<strong>of</strong> finish foils imitating the structure <strong>of</strong> different wood species).<br />

Investigations were conducted on melamine films and finish foils which were<br />

manufactured on the base <strong>of</strong> 70 g/m 2 grammage papers.<br />

The examined articles were manufactured in Poland by one <strong>of</strong> the leading producers <strong>of</strong><br />

wood-based materials. After their manufacture, particleboards were cut into smaller panels<br />

measuring 280 x 200 mm and wrapped tightly in polyethylene foil for the time <strong>of</strong> transport.<br />

Prior to their placing in the research chamber, their narrow edges were secured by lowemission<br />

aluminium foil.<br />

Investigations <strong>of</strong> VOC emissions were carried out in a glass chamber <strong>of</strong> 0.225m 3 volume in<br />

which the following conditions were maintained: temperature 23 +/- 1°C; relative humidity -<br />

45 +/- 2%; chamber load - 1m 2 /1m 3 ; air exchange - 1/h. After 24 hours, air from the chamber<br />

was collected into glass tubes filled with Tenax TA (120 mg). Analytes adsorbed on the<br />

Tenax TA were released with the aid <strong>of</strong> a thermal desorber. VOCs analysis was performed<br />

with the assistance <strong>of</strong> gas chromatography coupled with mass spectrometry in conditions<br />

presented in Table 1.<br />

Table 2. Parameters <strong>of</strong> the analytical system TD/GC/MS<br />

Elements <strong>of</strong> the system<br />

Parameters<br />

Gas chromatograph<br />

TRACE GC, Thermo Quest.<br />

Column<br />

RTX – 624 Restek Corporation, 60m x 0,32mm ID;<br />

D f – 1,8 m: 6% cyanopropylophenyl, 94% dimethylopolysiloxane<br />

Detector Mass spectrometer (SCAN: 10 – 350)<br />

Injector<br />

Thermal desorber connected with sorption microtrap;<br />

Rinsing gas: argon 20 m 3 min -1 ;<br />

Microtrap<br />

Sorbent: 80 mg Tenax TA/30 mg Carbosieve III;<br />

Desorption temperature: 250C during 90 s.<br />

Carrier gas Helium: 100 kPa, 2 cm 3 min -1 .<br />

Temperature setting 40C during 2 min, 7C min -1 to 200C, 10C min -1 to 230C, 230C<br />

during 20 min<br />

Compound identification: Compounds were identified by comparing the obtained mass<br />

spectra with the spectra stored at the NIST 98 library and then confirmed by collating mass<br />

spectra and retention times <strong>of</strong> the identified compounds with the spectra and retention times<br />

<strong>of</strong> appropriate standards.<br />

Quantitative analysis: The quantitative analysis <strong>of</strong> volatile organic compounds emitted from<br />

the examined surfaces was carried out using the method <strong>of</strong> addition <strong>of</strong> 4-brom<strong>of</strong>luorobenzene<br />

standard which was applied in the amount <strong>of</strong> 50 ng onto the tube with the sorbent.<br />

RESULTS AND DISCUSSION<br />

Detailed results <strong>of</strong> investigations <strong>of</strong> the quality and quantity <strong>of</strong> VOCs emitted from the<br />

examined particleboards are presented in Tables 2, 3 and 4.<br />

60


Table 2. The VOCs concentration from raw particleboards <strong>of</strong> different thicknesses<br />

Chamber air concentration [µg/m 3 ]<br />

Compounds CAS a number<br />

Board thickness [mm]<br />

8 15 18<br />

Acetone 67-64-1 125.7 765.8 565.8<br />

Pentanal 110-62-3 35.6 185.6 191.3<br />

Toluene 108-88-3 8.8 11.5 24.2<br />

1-pentanol 71-41-0 16.7 58.0 38.4<br />

Hexanal 66-25-1 218.0 2253.3 1427.4<br />

α-pinene 80-86-8 41.1 149.9 350.2<br />

3-carene 13466-78-9 9.8 36.8 114.9<br />

Limonene 138-86-3 ND b ND b 11.3<br />

Others 3.3 15.9 25.8<br />

TVOC 459 3477 2749<br />

a – Chemical Abstract Service; ND b – not detectable; TVOC – sum <strong>of</strong> all VOCs<br />

Table 3. The VOCs concentration from laminated particleboards<br />

Compounds CAS a number<br />

Chamber air concentration [µg/m 3 ]<br />

Board 1L Board 2L Board 3L<br />

Acetone 67-64-1 188.8 169.2 94.9<br />

Pentanal 110-62-3 74.8 84.8 55.8<br />

Toluene 108-88-3 24.6 26.0 18.8<br />

Hexanal 66-25-1 302.6 356.7 264.3<br />

α-pinene 80-86-8 140.3 116.8 100.5<br />

3-carene 13466-78-9 28.3 23.3 19.6<br />

Others 49.0 35.9 33.9<br />

TVOC 808 813 588<br />

a – Chemical Abstract Service; TVOC – sum <strong>of</strong> all VOCs<br />

Table 4. The VOCs concentration from particleboards covered with finish foils<br />

Compounds CAS a number<br />

Chamber air concentration [µg/m 3 ]<br />

Board 1Fm Board 2F Board 3F<br />

Acetone 67-64-1 302.8 904.3 304.0<br />

Pentanal 110-62-3 40.9 78.0 46.0<br />

Toluene 108-88-3 20.6 11.6 9.8<br />

1-pentanol 71-41-0 ND b 39.1 ND b<br />

Hexanal 66-25-1 147.7 205.1 40.7<br />

α-pinene 80-86-8 74.6 29.1 1.9<br />

3-carene 13466-78-9 9.2 5.5 11.2<br />

Others 26.4 24.3 24.3<br />

TVOC 622 1297 438<br />

a – Chemical Abstract Service, ND b – not detectable, TVOC – sum <strong>of</strong> all VOCs<br />

The total concentration <strong>of</strong> volatile organic compounds (TVOC) in the air collected<br />

from the chamber filled with raw particleboards ranged from 459 to 3477 µg/m 3 . From among<br />

unfinished boards subjected to investigations, the highest emissions <strong>of</strong> volatile organic<br />

compounds were recorded in 15 mm thick particleboards, while the lowest – in 8 mm thick<br />

particleboards.<br />

VOC emissions from the tested particleboards covered with decorative materials, i.e.<br />

melamine films and finish foils, were found to be much lower in comparison with unfinished<br />

18 mm thick particleboards which were used as the raw material for the manufacture <strong>of</strong><br />

melamine film and artificial veneer finished boards. The amounts <strong>of</strong> VOCs released by<br />

61


laminated particleboards released from 588 to 813 µg/m 3 , whereas from those covered with<br />

the finish foils – from 438 to 1297 µg/m 3 .<br />

Analysing the obtained research results, it was noticed that the tested wood-based<br />

materials both in raw form as well as those finished with melamine films and finish foils<br />

released into air compounds belonging to ketones, aldehydes, alcohols, aromatic<br />

hydrocarbons as well as terpenes. Aldehydes turned out to be the dominant group <strong>of</strong><br />

compounds with respect to their quantities released from raw and laminated particleboards.<br />

The proportion <strong>of</strong> aldehydes in the total emission in the case <strong>of</strong> unfinished boards ranged<br />

from 55 to 70% <strong>of</strong> all released compounds, while in the case <strong>of</strong> laminated particleboards –<br />

from 47 to 55%.<br />

Particleboards finished with finish foils released the highest quantities <strong>of</strong> ketones which made<br />

up 49 to 70% <strong>of</strong> all emissions. From among all the identified compounds, the tested materials<br />

released into the ambient air the highest quantities <strong>of</strong> acetone and hexanal. Acetone emissions<br />

from raw boards ranged from 125.7 to 765.8 µg/m 3 , whereas those <strong>of</strong> hexanal was higher and<br />

fluctuated from 218.0 to 2253.3 µg/m 3 . Laminated particleboards as well as those covered<br />

with finish foils released much smaller quantities <strong>of</strong> these compounds. Acetone emission in<br />

the case <strong>of</strong> laminated particleboards ranged from 94.9 to 188.8 µg/m 3 , while <strong>of</strong> hexanal - from<br />

264.3 to 356.7 µg/m 3 . Acetone was determined to be released in the highest amounts from the<br />

tested wood-based materials finished with finish foils as its emissions fluctuated from 302.8<br />

to 904.3 µg/m 3 .<br />

All wood-based materials also released significant quantities <strong>of</strong> terpenes, primarily, <strong>of</strong> α-<br />

pinene and 3-carene. Terpene emissions from laminated particleboards as well as those<br />

covered with finish foils, similarly to other compounds, were distinctly lower in comparison<br />

with 18 mm thick raw particleboards which constituted the base material for finished boards.<br />

The total concentration <strong>of</strong> terpene from 18 mm thick raw particleboards was determined at the<br />

level <strong>of</strong> 476.4 µg/m 3 , from laminated boards from 120.1 to 168.6 µg/m 3 and from boards<br />

covered with finish foils from 13.1 to 83.8 µg/m 3<br />

CONCLUSIONS<br />

1. The performed GC/MS analysis revealed that emissions were made up <strong>of</strong> compounds<br />

classified as aldehydes, ketones, alcohols, aromatic hydrocarbons as well as terpenes.<br />

Aldehydes and ketones constituted a dominant group with respect to their quantities.<br />

2. The performed investigations <strong>of</strong> particleboards <strong>of</strong> different thickness ranging from 8 to<br />

18 mm failed to exhibit a significant impact <strong>of</strong> board thickness on VOCs concentrations.<br />

From among the tested particleboards, 15 mm thick boards turned out to release the<br />

highest quantities <strong>of</strong> VOCs.<br />

3. Covering particleboards with laminates or finish foils reduced significantly quantities <strong>of</strong><br />

volatile substances released by them. Board lamination resulted in a decrease <strong>of</strong> emissions<br />

<strong>of</strong> VOCs by about 77-83%, while finishing them with a finish foils – by about 63 to 87%.<br />

REFERENCES<br />

1. BROWN S.K., 1999: Chamber Assessment <strong>of</strong> formaldehyde and VOC emissions from<br />

wood-based panels, Indoor Air 9: 209-215.<br />

2. GUO H., MURRAY F., SHUN-CHENG L., 2002: Emissions <strong>of</strong> total volatile organic<br />

compounds from pressed wood products in an environmental chamber, Building and<br />

Environment 37: 1117-1126.<br />

3. MOGENS K.H., 2001: Health evaluation <strong>of</strong> volatile organic compounds (VOC)<br />

emissions from wood and wood-based materials, Arch. Environm. Health. vol.56 (no.<br />

5): 419-432.<br />

62


4. OHLMEYER M., MAKOWSKI M., FRIED H., HASCH J., SCHÖLER M., 2008:<br />

Influence <strong>of</strong> panel thickness on the release <strong>of</strong> volatile organic compounds from OSB<br />

made <strong>of</strong> Pinus sylvestris L., Forest Products Journal. vol. 58 (no. 1/2): 65-70.<br />

5. ROFFAEL E., 2006: Volatile organic compounds and formaldehyde in nature, wood<br />

and wood based panels, Holz als Roh- und Werkst<strong>of</strong>f 64: 144-149.<br />

6. WIGLUSZ R., NIKEL G., IGIELSKA B., SITKO E. 2002: Volatile organic<br />

compounds emissions from particleboard veneered with decorative paper foil,<br />

Holzforschung 56: 108-110.<br />

Streszczenie. Emisja VOC z filmów melaminowych oraz folii finish. Praca przedstawia<br />

wyniki badań emisji VOC z płyt wiórowych surowych oraz pokrytych materiałami<br />

uszlachetniającymi tj. filmami melaminowymi oraz foliami finish. Analizy lotnych związków<br />

organicznych (VOC) w powietrzu pod względem jakościowym i ilościowym dokonano za<br />

pomocą techniki GC/MS/TD. Adsorpcję związków przeprowadzono na sorbencie stałym<br />

Tenax TA. Stwierdzono, że tworzywa drzewne nieuszlachetnione wydzielają do powietrza<br />

znacznie większe ilości substancji lotnych niż produkty uszlachetnione tj. pokryte filmami<br />

melaminowymi i foliami finish.<br />

Corresponding author:<br />

Agata Stachowiak-Wencek<br />

Institute <strong>of</strong> Chemical Wood Technology<br />

ul. Wojska Polskiego 38/42<br />

60-637 Poznań<br />

e-mail: agates@up.poznan.pl<br />

63


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 64-69<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Tests <strong>of</strong> shock absorption and vertical deformation in sports floors on<br />

wooden structure<br />

EWA SUDOŁ, ANNA POLICIŃSKA−SERWA<br />

Department <strong>of</strong> Structures and Building Elements, Building Research Institute − ITB<br />

Abstract: Tests <strong>of</strong> shock absorption and vertical deformation in sports floors on wooden structure. The paper<br />

presents test results for selected properties <strong>of</strong> sports floors on wooden structure that determine the safety <strong>of</strong> their<br />

use. Shock absorption and vertical deformation have been determined for area−elastic floor with wooden<br />

surface, area−elastic floor with synthetic surface and two combined−elastic floors with synthetic surface. The<br />

test results have proven compliance with the requirements <strong>of</strong> PN−EN 14904:2009 as regards the verified<br />

properties. Respective solutions, however, have revealed variations in the properties that resulted from<br />

differences in the structure and types <strong>of</strong> applied components.<br />

Keywords: sports surface, indoor surface for sport area, wood, floor, shock absorption, vertical deformation,<br />

EN 14904, safety in use<br />

INTRODUCTION<br />

Sports floors are currently a standard asset in any kind <strong>of</strong> sports facilities, from school gyms,<br />

dedicated to children’s amateur practice <strong>of</strong> many disciplines, to sports facilities where<br />

international basketball, volleyball or handball competitions are held [2].<br />

Requirements for surfaces in all indoor sports facilities, including floors on wooden<br />

structures, are defined by PN−EN 14904:2009 [5]. It addresses floors meant for practising<br />

many sports disciplines – multi−sports use, including all types <strong>of</strong> team and physical education<br />

games, though excluding surfaces for indoor tennis. The requirements presented in PN−EN<br />

14904:2009 relate to surfaces and surface systems which include both their supporting and<br />

upper layers, whether prefabricated, produced in situ or a combination <strong>of</strong> the two. The<br />

following types <strong>of</strong> sports surfaces are differentiated [1, 5]:<br />

<br />

area−elastic sports floor (Mj), in which a relatively large area <strong>of</strong> deflection is created<br />

around the force application point after applying a force,<br />

point−elastic sports floor (P), in which a deflection is created at the force application point<br />

or close to it after applying a force,<br />

combinated−elastic sport floor (K) with a point−elastic top layer, in which both a local<br />

and a larger deflection are created after applying a force,<br />

mixed−elastic sports floor (Ms) with a synthetic area−stiffening component.<br />

Sports floors on wooden structure are usually surfaces type Mj or K.<br />

Sports floors are subject to dynamic loads when in use, due to which they are exposed to<br />

complex impacts. Desired components <strong>of</strong> the interaction are vertical deformation under load,<br />

the ability to absorb impact and the energy restitution <strong>of</strong> the impact, i.e. the amount <strong>of</strong> energy<br />

returned to a sport−person from the surface on witch he/she is performining. The ability <strong>of</strong> a<br />

surface to absorb an impact, considering the safety <strong>of</strong> a sportsman’s movement apparatus, is<br />

one <strong>of</strong> the most important feature <strong>of</strong> sorts surface. Along with vertical deformation and<br />

friction, which determines adequate adhesion <strong>of</strong> sports footwear to the floor, it conditions the<br />

safety in use a given floor. Table 1 shows the requirements <strong>of</strong> PN−EN 14904:2009 regarding<br />

these properties.<br />

64


Safety requirements for using sports floors [5]<br />

Property Requirement according to PN−EN 14904:2009<br />

Shock absorption<br />

Vertical deformation<br />

Friction<br />

force reduction: 25−75%,<br />

no individual result should differ from the mean value by more than 5 units<br />

5 mm<br />

average value <strong>of</strong> the pendulum: 80−110,<br />

no individual result should differ from the mean value by more than 4 units<br />

Table 1<br />

Regarding the value <strong>of</strong> shock absorption and vertical deformation, Table 2 differentiates the<br />

following levels for floors type Mj and K.<br />

Table 2<br />

Levels <strong>of</strong> shock absorption and vertical deformation for floors type Mj and K [5]<br />

Level*<br />

Mj (area−elastic)<br />

Type <strong>of</strong> sports floor<br />

Absorption <strong>of</strong> shock R<br />

3 40% R < 55%<br />

4 55% R < 75%<br />

Vertical deformation D<br />

K (combined−elastic)<br />

3 1.8 mm D < 3.5 mm 1.8 mm D < 5.0 mm<br />

0.5 mm D p ** < 2.0 mm<br />

4 2.3 mm D < 5.0 mm 2.3 mm D < 5.0 mm<br />

0.5 mm D p ** < 2.0 mm<br />

* no level below 3 is anticipated for floors type Mj and K<br />

** D p – deflection <strong>of</strong> a point−elastic top layer<br />

EXPERIMENT<br />

Four models imitating the real floor structure, composed <strong>of</strong> all the layers provided for by a<br />

given system and assembled according to it, have been tested, namely:<br />

Floor 1, type Mj, on a cross grid <strong>of</strong> glued laminated pinewood, laid on flexible pads <strong>of</strong><br />

elastic rubber fixed under the bottom joists at mid−span between cross joints, using a<br />

polyurethane glue. Joists spaced 500500 mm were connected using bolts and a glue.<br />

Planking <strong>of</strong> single−layer 12 mm thick OSB−3 board with joints above the joists, fixed to<br />

the joists with steel stitches. Top surface <strong>of</strong> solid floor elements made <strong>of</strong> O class ash, with<br />

tongues and grooves, 22 mm thick, size 70500 mm. The floor elements fixed for OSB<br />

by means <strong>of</strong> glue and steel stitches. The PUR varnish coat;<br />

Floor 2, type Mj, on a cross grid <strong>of</strong> solid pinewood, laid on flexible pads <strong>of</strong> elastic rubber<br />

fixed under the bottom joists at mid−span between cross joints. 10020 mm joists,<br />

spaced 250 mm (top)500 mm (bottom), connected using steel stitches. Planking <strong>of</strong><br />

double−layer 12 mm thick OSB−3 board with joints laid <strong>of</strong>fset, fixed to each other and to<br />

the joists with steel stitches. Synthetic top surface, based on synthetic resins, in the form<br />

<strong>of</strong> a mastic and PUR overlayment. The PUR varnish coat;<br />

Floor 3, type K, whose grid structure is analogous to floor 2, with planking <strong>of</strong><br />

double−layer 10 mm thick OSB−3 board with joints laid <strong>of</strong>fset, fixed to the joists with<br />

steel stitches. Multilayer synthetic top surface, with the total thickness <strong>of</strong> 6 mm, consisting<br />

65


<strong>of</strong> a rubber granulate mat, adhered to the substrate using the PUR adhesive, a filler and the<br />

PUR overlayment. The PUR varnish coat.<br />

Floor 4, type K, analogous to floor 3, though the top surface layer does not include a<br />

rubber granulate mat, which resulted in reducing the thickness to 2 mm.<br />

The tests were conducted for models sized 3.53.5 m, according to the standards referred to<br />

in PN−EN 14904:2009, namely:<br />

shock absorption – PN−EN 14808:2006 [3], at the points shown in Figure 1,<br />

vertical deflection – PN−EN 14809:2006+AC:2007 [4], at the points as above.<br />

I<br />

II<br />

Fig. 1. Test point: I – between joists, II – at a crossing <strong>of</strong> joists, III – on a joist<br />

RESULTS<br />

The test results (mean values) are shown in Graphs 1 and 2. Detailed results <strong>of</strong> selected tests<br />

are included in Table 3.<br />

III<br />

Graph 1. Results <strong>of</strong> shock absorption tests<br />

66


Graph 2. Results <strong>of</strong> vertical deformation tests<br />

Analysis <strong>of</strong> the data shown in Graphs 1 and 2 reveals that the properties <strong>of</strong> particular solutions<br />

differed, which resulted both from differences in structure <strong>of</strong> the floors and from the<br />

components used. The best values <strong>of</strong> shock absorption were reported for floor no. 2, type K.<br />

The result <strong>of</strong> 66% allowed to assign it to the highest level, i.e. 4. The other floors (1, 3 and 4)<br />

yielded results 12, 15 and 17 percentage points lower, respectively. The results obtained<br />

corresponded to level 3. Similar relations were observed with respect to vertical deformation.<br />

The highest deflection (2.6 mm) was recorded for floor 2. Deflections in the other solutions<br />

resulted 2.3, 2.2 and 2.0 mm for floors no. 1, 3 and 4, respectively. The results obtained<br />

correspond to level 4 for floors no. 1 and 2, and to level 3 for floors no. 3 and 4.<br />

It should be noted that floors no. 2, 3 and 4 have the same structure <strong>of</strong> the grid, so the test<br />

results were determined by type <strong>of</strong> the planking and the surface layer. The absence <strong>of</strong> the<br />

rubber granulate mat (4 mm thick) in floor no. 4 resulted in reducing the shock absorption by<br />

2 percentage points and the vertical deflection by 0.2 mm as compared to floor no. 3.<br />

Nevertheless it should be stressed that, in spite <strong>of</strong> the differences observed, all the tested<br />

solutions met the requirements <strong>of</strong> PN−EN 14904:2009 regarding the properties in question.<br />

It also deserves mentioning that sports floors, apart from having the properties presented in<br />

this paper, should also, as observed in the introduction, have adequate friction and meet<br />

technical requirements related to their sports function (adequate behaviour <strong>of</strong> a vertically<br />

bounced ball). They should also be durable in use other than practising sports, i.e. associated<br />

with, among others, moving the platforms or backstops (resistance to rolling load, abrasion,<br />

indentation and impact), properly react to fire and emissions <strong>of</strong> hazardous substances<br />

(formaldehyde and pentachlorophenol) and show other properties related to the comfort <strong>of</strong> use<br />

(specular reflection).<br />

67


Type <strong>of</strong> tests<br />

point<br />

I<br />

III<br />

III<br />

I<br />

III<br />

II<br />

I<br />

III<br />

II<br />

I<br />

III<br />

II<br />

Number <strong>of</strong><br />

measurement<br />

Detailed results <strong>of</strong> shock absorption − floor 1, type Mj<br />

Maximum<br />

force for<br />

measurement,<br />

N<br />

1 2692<br />

2 2716<br />

3 2709<br />

1 3101<br />

2 3116<br />

3 3122<br />

1 3261<br />

2 3278<br />

3 3269<br />

1 2842<br />

2 2863<br />

3 2860<br />

1 2843<br />

2 2894<br />

3 2886<br />

1 3258<br />

2 3258<br />

3 3273<br />

1 2839<br />

2 2830<br />

3 2830<br />

1 2842<br />

2 2956<br />

3 2993<br />

1 3263<br />

2 3251<br />

3 3273<br />

1 2915<br />

2 2864<br />

3 2900<br />

1 2938<br />

2 2999<br />

3 3020<br />

1 3349<br />

2 3371<br />

3 3373<br />

Mean value <strong>of</strong><br />

maximum forces at<br />

measurement point<br />

F t , N<br />

2712<br />

3119<br />

3274<br />

2861<br />

2895<br />

3266<br />

2830<br />

2974<br />

3262<br />

2882<br />

3009<br />

3372<br />

Mean value <strong>of</strong><br />

maximum forces<br />

measured on concrete<br />

substrate F r , N<br />

6632<br />

6629<br />

6627<br />

6581<br />

6581<br />

6605<br />

6579<br />

6541<br />

6593<br />

6584<br />

6567<br />

mean value<br />

(after eliminating the<br />

first value): 6589<br />

Table 3<br />

Shock<br />

absorption R,<br />

%<br />

59<br />

53<br />

50<br />

57<br />

56<br />

50<br />

57<br />

55<br />

50<br />

56<br />

54<br />

49<br />

mean value 54<br />

68


CONCLUSIONS<br />

<br />

<br />

<br />

The tested sports floors on wooden structure − area−elastic floor with wooden surface,<br />

area−elastic floor with synthetic surface and two combined−elastic floors with synthetic<br />

surface − have proven compliance with PN−EN 14904:2009 as regards shock absorption<br />

(levels 3 or 4) and vertical deformation (level 3 or 4).<br />

Floor structure and type <strong>of</strong> components have had a significant influence on the tested<br />

parameters.<br />

No fundamental differences between the properties <strong>of</strong> the area−elastic floors and the<br />

combined−elastic ones have been observed.<br />

REFERENCES<br />

1. Policińska−Serwa A., Sulik P.: Wymagania na wewnętrzne nawierzchnie sportowe;<br />

Materiały Budowlane, 6/2009; 5859;<br />

2. Policińska−Serwa A., Sudoł E.: Wymagania dotyczące podłóg do obiektów<br />

sportowych; Materiały Budowlane, 9/2010, 3537;<br />

3. PN−EN 14808:2006 Nawierzchnie terenów sportowych. Wyznaczanie amortyzacji;<br />

4. PN−EN 14809:2006+AC:2007 Nawierzchnie terenów sportowych. Wyznaczanie<br />

odkształcenia pionowego;<br />

5. PN−EN 14904:2009 Nawierzchnie terenów sportowych. Nawierzchnie kryte<br />

przeznaczone do uprawiania wielu dyscyplin sportowych. Specyfikacja.<br />

Streszczenie: Badania amortyzacji siły i odkształcenia pionowego podłóg sportowych o<br />

konstrukcji z drewna. W pracy zaprezentowano wyniki badań nad wybranymi<br />

właściwościami podłóg sportowych o konstrukcji<br />

z drewna, decydującymi o<br />

bezpieczeństwie ich użytkowania. Określono amortyzację siły i odkształcenie pionowe<br />

podłogi powierzchniowo sprężystej o nawierzchni z drewna, powierzchniowo sprężystej o<br />

nawierzchni syntetycznej oraz dwóch podłóg sprężystych kombinowanych o nawierzchni<br />

syntetycznej. Rezultaty badań potwierdziły zgodność z wymaganiami PN−EN 14904:2009, w<br />

zakresie sprawdzanych cech, przy czym poszczególne rozwiązania wykazały zróżnicowane<br />

właściwości, wynikające z różnic w konstrukcji i rodzaju użytych komponentów.<br />

Corresponding author:<br />

Ewa Sudoł<br />

Anna Policińska−Serwa<br />

Building Research Institute<br />

Department <strong>of</strong> Structures and Building Elements<br />

02656 <strong>Warsaw</strong>, ul. Ksawerów 21<br />

email: e.sudol@itb.pl<br />

a.serwa@itb.pl<br />

69


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 70-77<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Water resistance <strong>of</strong> glue lines in windows made <strong>of</strong> selected exotic wood<br />

species<br />

EWA SUDOŁ, PAWEŁ SULIK<br />

Department <strong>of</strong> Structures and Building Elements, Building Research Institute − ITB<br />

Abstract: Water resistance <strong>of</strong> glue lines in windows made <strong>of</strong> selected exotic wood species. The paper presents<br />

test results for water resistance <strong>of</strong> glue lines <strong>of</strong> 2K PVAC/Al(NO 3 ) 3 , EPI, and PUR adhesives and respectively<br />

white meranti, eucalyptus and sapele wood. The glue lines were assessed for their shear strength after soaking in<br />

water, as well as for their delamination degree and shear strength decrease after delamination test. The results<br />

obtained were compared with relevant national and European criteria for semi−finished products used in<br />

windows, during which the following glue lines proved compliant: EPI and PUR − white meranti wood,<br />

PVAC/Al(NO 3 ) 3 , EPI and PUR − eucalyptus wood, and PUR − sapele wood. At the same time it was also<br />

observed that strength <strong>of</strong> glue lines in the control samples <strong>of</strong> white meranti products had not complied with<br />

national requirements.<br />

Keywords: joinery, wooden window, water resistance, glue line, adhesive, EPI, PUR, PVAC, exotic wood, white<br />

meranti, eucalyptus, sapele<br />

INTRODUCTION<br />

Recent years have seen a clear increase <strong>of</strong> interest in exotic wood species. Now it is used not<br />

only in the manufacture <strong>of</strong> furniture or elements <strong>of</strong> garden architecture, but also as an<br />

engineering material [3]. In the 90s <strong>of</strong> the last century, it became known also in building<br />

joinery, though only the Asian red meranti (Shorea spp.) had been introduced to industrialscale<br />

manufacturing. Problems with its quality and uninterrupted deliveries became an<br />

impulse to seek alternative solutions [4].<br />

The window industry is interested in many types <strong>of</strong> wood. However, when a new type <strong>of</strong><br />

wood is introduced to manufacture, this should always be done after a series <strong>of</strong> aspects that<br />

determine the reliability and durability <strong>of</strong> a final product have been analysed. Considering that<br />

structural elements <strong>of</strong> modern windows are normally made <strong>of</strong> glued laminated wood, one <strong>of</strong><br />

the principal properties determining the usability <strong>of</strong> a given species in window is its<br />

gluability. This property seems particularly important in wood coming from outside Europe,<br />

which is rich in side components like resins, essential oils, waxes, fats, colourants, protein<br />

substances etc. These are frequently whose varied and complex chemical composition<br />

adversely affects the gluing process. Those components usually hinder wettability <strong>of</strong> the<br />

glued surfaces or inhibit solidification <strong>of</strong> adhesives [1, 2, 5, 7].<br />

A window, like any external element <strong>of</strong> a building, is exposed to direct environmental impacts<br />

– it is subject to the activity <strong>of</strong> wind, rainwater, steam, varying temperatures, and solar<br />

radiation. These cause, to a larger or smaller extent, indirectly or directly, changes both in a<br />

given adhesive substance, which forms a cohesive layer <strong>of</strong> the glue lines, and in the degree in<br />

which it bonds with the substrate in adhesive layers. It is assumed that one <strong>of</strong> the most<br />

important factors determining the durability <strong>of</strong> glue lines is water [10]. This paper presents<br />

test results for water resistance <strong>of</strong> glue lines in the semi-finished products meant for windows<br />

that formed part <strong>of</strong> the work completed at the ITB for the internal development project no.<br />

NR04 0001 06, titled “Usability <strong>of</strong> selected exotic wood species for window manufacturing”.<br />

70


EXPERIMENT<br />

On the basis <strong>of</strong> the data from reference literature, private experiences, and exhausting<br />

consultations with the industry, the following, among others, wood species were selected for<br />

the tests (names and codes in accordance with PN−EN 13556:2005 [16]):<br />

white meranti (Shorea spp. section Anthoshorea), SHWM.<br />

eucalyptus (Eukaliptus grandis), not included in PN−EN 13556<br />

sapele (Entandrophragma cylindricum Sprague), ENCY.<br />

Wood <strong>of</strong> all these species had quality corresponding with class J2 according to PNEN<br />

942:2008 [15], humidity <strong>of</strong> 913%, and average density <strong>of</strong> 395 kg/m 3 (white meranti),<br />

540 kg/m 3 (eucalyptus), and 710 kg/m 3 (sapele).<br />

Glue lines were made using the following adhesives, selected from the current market <strong>of</strong>fer<br />

dedicated to windows:<br />

two−component PVAC with a 5% (pbw) addition <strong>of</strong> a hardener based on Al(NO 3 ) 3 ,<br />

hereinafter referred to as the 2K PVAC/Al(NO 3 ) 3 ,<br />

two−ccomponent PVAC with a 15% (pbw) addition <strong>of</strong> a polyisocyanate hardener,<br />

hereinafter referred to as the EPI,<br />

one−component PUR glue, hereinafter referred to as the PUR.<br />

Basic properties <strong>of</strong> the adhesives, on the basis <strong>of</strong> their producers’ specification sheets, are<br />

given in Table 1. All the adhesives were classified by their producers as consistent with<br />

durability class D4 according to PNEN 204:2002 [13] and declared resistant to the<br />

temperature <strong>of</strong> 80°C when tested in accordance with PN-EN 14257:2007 [17].<br />

Property, unit<br />

Table 1. Properties <strong>of</strong> the adhesives used for the tests<br />

2K PVAC/Al(NO 3 ) 3<br />

PVAC<br />

dispersion<br />

hardener<br />

Al(NO 3 ) 3<br />

ingredient type<br />

Adhesive type<br />

PVAC<br />

dispersion<br />

EPI<br />

isocyanate<br />

hardener<br />

Density, g/cm3 1.06 1.25 1.5 1.25 1.1<br />

Brookfield apparent<br />

viscosity, mPas<br />

Dry matter content,<br />

%<br />

PUR<br />

9,000 no data 11,000 300 4,000<br />

51 62 60 no data 99<br />

pH 5 1 7 no data no data<br />

Glued laminated semi−finished products were prepared under industrial conditions. Wood in<br />

the form <strong>of</strong> lamellae, whose cross−sections measured approx. 8620 mm and the length was<br />

10001200 mm, underwent planing. Directly afterwards, gluing was carried out applying the<br />

technology used in normal manufacturing conditions and taking into consideration the<br />

adhesives manufacturers’ guidelines. Principal parameters <strong>of</strong> the gluing are shown in Table 2.<br />

71


Parameter, unit<br />

Application method<br />

Table 2. Principal parameters <strong>of</strong> the gluing process<br />

Adhesive type<br />

2K PVAC/Al(NO 3 ) 3 and EPI<br />

PUR<br />

using a roller glue spreader, on one side<br />

Amount <strong>of</strong> application, g/m 2 165 120<br />

Pressing pressure, MPa 0.6 0.8<br />

Pressing time, min. 75 90<br />

The glued laminated elements made in this way, after more than ten days <strong>of</strong> seasoning,<br />

provided test samples.<br />

Two independent series <strong>of</strong> tests were conducted:<br />

one using the national method, based on PN−B−03156:1997 [12] and applied for a<br />

number <strong>of</strong> years at the ITB in procedures for assessing the usability <strong>of</strong> wooden<br />

semi−products for window manufacturing (UA GS III.11/2003 [11]),<br />

one following the guidelines <strong>of</strong> the latest European specification FprCEN/TS<br />

13307−2:2009 [18].<br />

In compliance with PN−B−03156:1997, the shear strength <strong>of</strong> glue lines was determined after<br />

seasoning the samples in normal climate for 7 days and soaking in water with the temp. <strong>of</strong><br />

202C for 4 days. The control samples, seasoned in normal climate for 7 days, were also<br />

tested.<br />

According to FprCEN/TS 133072:2009, tests <strong>of</strong> the glue lines’ resistance to changes <strong>of</strong><br />

humidity covered verification <strong>of</strong> the degree <strong>of</strong> delamination after the delamination test and the<br />

reduction <strong>of</strong> shear strength after the same test.<br />

The delamination test consisted in submitting the samples that were 50 mm long, 50 mm wide<br />

and 60 mm high (3 layers, 20 mm each) to the following sequence <strong>of</strong> impacts:<br />

160.5h <strong>of</strong> soaking in water with the temp. <strong>of</strong> 202C,<br />

241.5h <strong>of</strong> drying inside a drying tunnel, at 502C and the air flow velocity <strong>of</strong> 2 m/sec.,<br />

1−2 h <strong>of</strong> seasoning in normal climate (temp. 202C, relative humidity 65±5%).<br />

Directly after applying these impacts, the samples were thoroughly assessed visually for cases<br />

<strong>of</strong> delamination within seams. Both cross−sections were subject to the check. Potential cases<br />

<strong>of</strong> delamination on lateral surfaces were not taken into account. Delamination meant only<br />

such cracks in glue lines into which a 0.2 mm thick tongue <strong>of</strong> a clearance gauge could be<br />

easily inserted to the depth <strong>of</strong> at least 1 mm. The tongue was held at the distance <strong>of</strong> 65 mm<br />

from its end. The length <strong>of</strong> all areas <strong>of</strong> delamination was measured using a slide caliper, with<br />

the accuracy <strong>of</strong> 0.1 mm. The delamination degree was calculated for every sample according<br />

to the following:<br />

D = (J 0 / J ) 100 [%]<br />

where:<br />

J 0 − sum <strong>of</strong> the lengths <strong>of</strong> delaminated glue lines at both cross−sections <strong>of</strong> a given sample,<br />

mm<br />

J − total length <strong>of</strong> glue lines at both cross−sections <strong>of</strong> a given sample, mm.<br />

Directly after determining the degree <strong>of</strong> delamination, strength tests were performed in<br />

accordance with PN−EN 392:1999 [14] to determine shear strength <strong>of</strong> the glue lines. An<br />

analogous test was conducted for the control samples, seasoned in normal climate for 7 days.<br />

72


The data obtained were used to calculate changes in the resistance R S :<br />

R S = (f vd / f vr ) 100 [%]<br />

where:<br />

f vd − mean shear strength <strong>of</strong> glue lines following the delamination test, MPa<br />

f vd − mean shear strength <strong>of</strong> glue lines in the samples not subjected to the impacts, MPa.<br />

RESULTS<br />

The results <strong>of</strong> the shear strength tests (mean values) for glue lines, with the values <strong>of</strong> standard<br />

deviation taken into account in the form <strong>of</strong> error bars, are shown in Graphs 1 and 3, as<br />

contrasted against the requirements contained in UA GS III.11/2003 (marked with the<br />

horizontal line). Graphs 2 and 4 show the WFP values.<br />

9.0<br />

Graph 1. Shear strength <strong>of</strong> glue lines<br />

as contrasted against the requirements <strong>of</strong> UA GS III.11/2003 − control samples<br />

Graph 2. Wood failure percentage (WFP) − control samples<br />

An analysis <strong>of</strong> the results shown in Graphs 1 and 3 confirms the data from reference literature<br />

about the dependence <strong>of</strong> strength and water resistance <strong>of</strong> glue lines both on the kind <strong>of</strong><br />

adhesive and wood species [1, 2, 5, 6, 9]. Regarding the requirements presented in UA GS<br />

III.11/2003, all tested glue lines had water resistances adequate for windows. It should be<br />

stressed at this point that the relevant requirements on the resistance after the seasoning in<br />

normal climate were not met by glue lines <strong>of</strong> all types <strong>of</strong> adhesives and white meranti wood.<br />

73


3.2<br />

Graph 3. Shear strength <strong>of</strong> glue lines<br />

as contrasted against the requirements <strong>of</strong> UA GS III.11/2003 – samples after soaking in water<br />

Graph 4. Wood failure percentage (WFP) – samples after soaking in water<br />

The degree <strong>of</strong> delamination after the delamination test (mean values along with elementary<br />

statistical estimation) is shown in Table 3 next to the requirements FprCEN/TS<br />

13307−2:2009. Acceptable values <strong>of</strong> delamination are calculated taking into consideration the<br />

mean densities <strong>of</strong> respective species. The requirements shown relate to the value D l , being the<br />

upper confidence limit, with k=0.580.<br />

Table 3. Degree <strong>of</strong> delamination <strong>of</strong> glue lines<br />

Wood species<br />

white meranti<br />

eucalyptus<br />

sapele<br />

Results <strong>of</strong> testing the degree <strong>of</strong> delamination<br />

Adhesive type<br />

D s D l<br />

% % %<br />

2K PVAC/Al(NO 3 ) 3 0 0 0<br />

EPI 0 0 0<br />

PUR 0 0 0<br />

2K PVAC/Al(NO 3 ) 3 0 0 0<br />

EPI 0 0 0<br />

PUR 0 0 0<br />

2K PVAC/Al(NO 3 ) 3 18 15 27<br />

EPI 28 17 38<br />

PUR 1 2 3<br />

Requirements<br />

for D l according<br />

to FprCEN/TS<br />

13307−2:2009<br />

6<br />

11<br />

16<br />

74


Table 4 presents results <strong>of</strong> decrease <strong>of</strong> shear strength <strong>of</strong> glue lines after the delamination test.<br />

Mean strength values are presented for glue lines in control samples and after the<br />

delamination test, along with the standard deviation and WFP values. The results were<br />

contrasted against the requirements <strong>of</strong> FprCEN/TS 13307−2:2009. Acceptable value <strong>of</strong><br />

changes in strength R s were determined considering the mean densities <strong>of</strong> respective wood<br />

species.<br />

Table 4. Decrease shear strength <strong>of</strong> glue lines after the delamination test<br />

Wood<br />

species<br />

white<br />

meranti<br />

eucalyptus<br />

sapele<br />

Results <strong>of</strong> testing for shear strength <strong>of</strong> lines<br />

Adhesive type f vr s WFP f vr s WFP R S<br />

MPa MPa % MPa MPa % %<br />

2K PVAC/Al(NO 3 ) 3 8.2 0.7 100 6.5 1.6 80 79<br />

EPI 8.4 0.5 80 8.2 0.8 70 97<br />

PUR 7.6 0.5 100 9.5 1.1 100 124<br />

2K PVAC/Al(NO 3 ) 3 9.5 1.2 100 10.3 2.5 70 109<br />

EPI 10.1 1.0 90 10.5 1.7 60 103<br />

PUR 14.8 1.2 100 11.5 1.5 100 78<br />

2K PVAC/Al(NO 3 ) 3 16.1 2.0 50 5.9 4.8 20 37<br />

EPI 14.4 0.5 80 6.4 2.1 40 44<br />

PUR 12.2 1.4 20 13.6 0.4 90 111<br />

Requirements<br />

for R S according<br />

to FprCEN/TS<br />

13307−2:2009<br />

88<br />

79<br />

67<br />

Results <strong>of</strong> the tests performed in accordance with FprCEN/TS 13307−2:2009 confirmed the<br />

dependency <strong>of</strong> glue lines’ resistance to changes in humidity on both adhesive type and wood<br />

species. Glue lines <strong>of</strong> respective adhesives and different wood species, yielded various<br />

degrees <strong>of</strong> delamination and decrease in shear strength after the delamination test.<br />

No delamination was observed in glue lines <strong>of</strong> all the adhesives in question and white meranti<br />

and eucalyptus wood. As regards the glue lines in the sapele semi−finished products, only the<br />

PUR adhesive provided the resistance to delamination compliant with the requirements <strong>of</strong><br />

FprCEN/TS 13307−2:2009. The glue lines <strong>of</strong> the PVAC/Al(NO 3 ) 3 and EPI yielded a degree<br />

<strong>of</strong> delamination that considerably exceeds the acceptable value.<br />

The test results <strong>of</strong> shear strength decrease following the delamination test were, in most cases,<br />

in correlation with the degree <strong>of</strong> delamination. As regards the glue lines <strong>of</strong> EPI and PUR<br />

adhesives − white meranti wood, PVAC/Al(NO 3 ) 3 and EPI adhesives − eucalyptus wood, and<br />

PUR adhesive − sapele wood, the reduced strengths complied with the requirements <strong>of</strong><br />

prCEN/TS 13307−2:2009. The glue lines <strong>of</strong> PUR adhesive − eucalyptus wood yielded a<br />

reduction in strength that slightly exceeds the acceptable limit. Considering, however, the<br />

nature <strong>of</strong> the deterioration, it should be concluded that the test result was determined by the<br />

quality <strong>of</strong> wood and not by the glue line as such. The result obtained was found acceptable.<br />

The glue lines <strong>of</strong> PVAC/Al(NO 3 ) 3 and EPI adhesives − sapele wood, for which an<br />

unacceptable degree <strong>of</strong> delamination was observed, as well as the glue lines <strong>of</strong><br />

PVAC/Al(NO 3 ) 3 adhesive – white meranti wood also yielded strength reductions that were<br />

non−compliant with the requirements.<br />

While comparing the results provided by the two methods, it was observed that only the glue<br />

lines in white meranti semi−finished products, found non−compliant with the requirements <strong>of</strong><br />

UA GS III.11/2003, complied with the criteria set forth in FprCEN/TS 13307−2:2009. The<br />

decisive factor for the difference was the strength <strong>of</strong> glue lines in the control samples, a<br />

75


property that is not directly included in the European specification. Taking into consideration<br />

the cohesive nature <strong>of</strong> destroying the samples in these tests (WFP was approx. 90%,<br />

regardless <strong>of</strong> the adhesive type), it can be concluded that the strength is determined by the<br />

strength <strong>of</strong> the white meranti wood species, which is assured by its low density. The decisive<br />

factor in assessing the this solution will be the results <strong>of</strong> functionality and usability tests <strong>of</strong> the<br />

windows.<br />

The second difference was observed for glue lines <strong>of</strong> EPI adhesive and sapele wood, which<br />

were found good according to the ITB’s criteria, though they did not meet the ones set forth in<br />

FprCEN/TS 13307−2:2009. Considering the fact that this specification is still being<br />

developed, and thus the presented criteria are provisional, the final conclusions will be drawn<br />

when climatic tests are finished for the windows, during which also the glue lines in question<br />

are to be assessed.<br />

CONCLUSIONS<br />

The test results presented in this paper have allowed coming to the following conclusions:<br />

The gluability <strong>of</strong> the tested wood species varied according to type <strong>of</strong> adhesive applied, the<br />

results <strong>of</strong> which were different strength and water resistances <strong>of</strong> the glue lines.<br />

Some types <strong>of</strong> the adhesives discussed in this paper, in the view <strong>of</strong> water resistances <strong>of</strong><br />

glue lines, were found adequate for use in the manufacture <strong>of</strong> windows from the wood<br />

species studied herein.<br />

The following glue lines had the water resistance required under the national and<br />

European standards:<br />

EPI and PUR adhesives – white meranti wood,<br />

PVAC/Al(NO 3 ) 3 , EPI, and PUR adhesives – eucalyptus wood,<br />

PUR adhesive – sapele wood.<br />

Considering the fact that the control samples’ strength <strong>of</strong> all types <strong>of</strong> adhesives and white<br />

meranti wood was below the value required for window semi−products, the results <strong>of</strong><br />

functional and usability tests <strong>of</strong> windows will be decisive for these solution.<br />

Water resistance <strong>of</strong> glue lines <strong>of</strong> EPI adhesive and sapele wood, which was found<br />

insufficient according to the criteria <strong>of</strong> FprCEN/TS 13307−2:2009, will be ultimately<br />

assessed after studying the results <strong>of</strong> the climatic tests for windows.<br />

REFERENCES<br />

1. Alamsyah E., Nan L., Yamada M., Taki K., Yoshida H. (2006): Bondability <strong>of</strong><br />

tropical fast−growing tree species. I: Indonesian wood species; Jap. Wood Res. Soc.<br />

53, 4046;<br />

2. Hwang G., Tang J. Noguchi M. (1993): Gluing Properties <strong>of</strong> HighDensity<br />

Hardwoods; Makuzai Gakkaishi, 39 (3), 363367;<br />

3. Kozakiewicz P., Kościelniak C., Zakrzewska−Rudzińska W. (2008): Badania<br />

właściwości i innowacyjne zastosowania drewna egzotycznego w Polsce; Przemysł<br />

drzewny 59 (4), 1823;<br />

4. Krawczyk S. (2006): Chropowate losy kantówki; Okna, Drzwi, Fasady Forum<br />

branżowe; 42 (10), 13;<br />

5. Kryst<strong>of</strong>iak T., Proszyk S., Dobrowolski J. (1997): Badania sklejalności wybranych<br />

gatunków drewna egzotycznego przy użyciu klejów PVAC i PUR. Materiały II.<br />

Międzynarodowego Seminarium nt. Nowości w dziedzinie klejów stosowanych do<br />

stolarki budowlanej 05.11.1997, Poznań; 99104.<br />

6. Kryst<strong>of</strong>iak T., Proszyk S., Lis B. (2004): Studies upon resistance to ageing tests <strong>of</strong><br />

glue lines from PVAC adhesives applied in building woodworking industry; V.<br />

76


Sympózium Drevné Kompozitné Materiály; wyd. Technická Univerzita vo Zvolene,<br />

Zvolen; 209212;<br />

7. Proszyk S., Przybylak A. (1986): Wpływ ubocznych składników drewna na<br />

utwardzanie środków wiążących i uszlachetniających. Wyd. AR w Poznaniu;<br />

8. Sudoł E., Sulik P. (2010): Shear strength <strong>of</strong> glue line <strong>of</strong> PVAC adhesives and selected<br />

wood species; <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> <strong>SGGW</strong>, Forestry and<br />

Wood Technology No 72; wyd. <strong>SGGW</strong>, 293297;<br />

9. Wang S.Y. (1977): Studies in the physical and mechanical properties <strong>of</strong> wood<br />

imported from South−Eastern Asian Countries. Experimental Forest <strong>of</strong> National<br />

Taiwan <strong>University</strong>, Bulletin No 116, s. 373 – wg Wood Industry Abstracts t. 6/5, poz.<br />

993;<br />

10. Zenkteler M. (1996): Kleje i klejenie drewna; wyd. AR w Poznaniu;<br />

11. UA GS III.11/2003 dotyczące wymaganych właściwości półfabrykatów z drewna<br />

iglastego klejonego warstwowo, stosowanych do produkcji stolarki budowlanej<br />

zewnętrznej − opracowanie wewnętrzne Instytutu Techniki Budowlanej w Warszawie.<br />

12. PN−B−03156:1997 Konstrukcje drewniane. Metody badań. Nośność złączy<br />

klejonych;<br />

13. PN−EN 204:2002 Klasyfikacja klejów termoplastycznych do drewna przeznaczonych<br />

do połączeń niekonstrukcyjnych;<br />

14. PN−EN 392:1999 Drewno klejone warstwowo. Badanie spoin klejowych na ścinanie;<br />

15. PN−EN 942:2008 Drewno w stolarce budowlanej. Wymagania ogólne;<br />

16. PN−EN 13556:2005 Drewno okrągłe i tarcica. Terminologia stosowana w handlu<br />

drewnem w Europie;<br />

17. PN−EN 14257:2007 Kleje. Kleje do drewna. Oznaczanie wytrzymałości na<br />

rozciąganie połączeń zakładkowych w podwyższonej temperaturze (WATT `91);<br />

18. FprCEN/TS 13307−2:2009 Laminated and finger jointed timber blanks and<br />

semi−finished pr<strong>of</strong>iles for non−structural uses. Part 2: Production control.<br />

Streszczenie: Wodoodporność połączeń klejowych w stolarce okiennej z wybranych<br />

gatunków drewna egzotycznego. W pracy zaprezentowano rezultaty badań nad<br />

wodoodpornością połączeń z klejów 2K PVAC/Al(NO 3 ) 3 , EPI oraz PUR i drewna<br />

odpowiednio damarzyk, eukaliptus oraz sapeli. Określono wytrzymałość połączeń klejowych<br />

na ścinanie po zanurzeniu w wodzie oraz stopień rozwarstwienia i spadek wytrzymałości<br />

połączeń na ścinanie po teście delaminacji. Uzyskane wyniki zestawiono z odnośnymi<br />

kryteriami krajowymi i europejskimi dla półfabrykatów do stolarki okiennej, stwierdzając<br />

zgodność w odniesieniu do połączeń z klejów EPI oraz PUR i drewna damarzyk, klejów<br />

PVAC/Al(NO 3 ) 3 , EPI oraz PUR i drewna eukaliptus, a także kleju PUR i drewna sapeli.<br />

Zauważono jednocześnie, że wytrzymałość połączeń w kontrolnych próbkach półfabrykatów<br />

z drewna damarzyk nie spełniła wymagań krajowych<br />

Corresponding authors:<br />

Ewa Sudoł<br />

Paweł Sulik<br />

Building Research Institute<br />

Department <strong>of</strong> Structures and Building Elements<br />

02656 Warszawa, ul. Ksawerów 21<br />

email: e.sudol@itb.pl<br />

p.sulik@itb.pl<br />

77


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 78-81<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Archiv–ein Rohst<strong>of</strong>f für die Papiermaché und Papier Fabrikation<br />

BARBARA SURMA-ŚLUSARSKA 1) , EWA DOBROWOLSKA 2)<br />

1)<br />

Institut für Papierherstellung und Druck der Technischen Universität Lodz<br />

2)<br />

Lehrstuhl für Holzkunde und Holzschutz, Fakultät für Holztechnologie, Warschauer Naturwissenschaftliche<br />

Universität – <strong>SGGW</strong><br />

Abstract: Archiv – ein Rohst<strong>of</strong>f für die Papiermaché und Papier Fabrikation. In der Arbeit wurde die<br />

Verwendung von Archivalien als Rohst<strong>of</strong>f für die Papiermaché- und Papierfabrikation besprochen. Zitierte<br />

Literaturquellen beweisen, dass dies eine allgemeine Praxis in Europa war, dass nicht nur Kriege, aber auch<br />

Geldmangel, Unwissenheit usw. zur Verarbeitung von Archivmaterial geführt haben. Am Anfang des 19. Jh. gab<br />

es schon z. B. in England Fabriken, die alte Druckschriften und alte Manuskripte zu Papier von vortrefflicher<br />

Qualität verarbeitet haben.<br />

Schlüsselwörter. Archivmaterial, Papier, Rohst<strong>of</strong>f.<br />

Mit dem Namen Papiermachéwaren bezeichnet man eine Gruppe von<br />

Industrieerzeugnissen, deren Herstellung durch Formen mit der Hand oder Bossiergriffeln,<br />

Eindrücken in Formen aus Schwefel, Holz, Gips, Metall, Gießen oder Pressen in geeigneten<br />

Formen mit oder ohne Überdruck einer aus aufweichenden Papierabfällen, Holz- oder<br />

Strohst<strong>of</strong>f- Cellulose in Verbindung mit Bindemitteln wie Leim, Gelatine, Stärke, Dextrin<br />

oder harzigen Substanzen, sowie auch Gips, beschwerenden St<strong>of</strong>fen, wie Kreide, Kaolin und<br />

Farbekörpern, erfolgt.<br />

Andés 1900.<br />

In der Kunst Ost-Asiens fand Papiermaché seine früheste Verwendung u.a. auch für<br />

Großplastiken, vor a. in Japan im 8. Jh. Seit der 2. Hälfte 15. Jh. war dieses Material auch in<br />

den Niederlanden und im Elsass im Gebrauch. Im 18. Jh. wurden Büsten und Statuen daraus<br />

geschaffen. Unter a. schöner Festsaal mit Dekorationen aus Papiermaché im Schloss<br />

Ludwigslust (erbaut zwischen 1764 und 1776).<br />

Die Verwendung von Papiermaché im Schloss Ludwigslust war aus der Not der leeren<br />

Staatskasse geboren und durch den Überfluss an Altpapier ermöglicht – Altakten des<br />

Herzogtums Mecklenburg-Schwerin.<br />

Der Cheflakai Johann Georg Bachmann schuf 1764 die Basis für die „Papp-Fabrique “<br />

Zur Verfertigung der überaus reichen Innenausstattung waren: mehrere Lagen Altpapier,<br />

Kleister, Leimwasser, Formen und natürlich Material für die Oberflächenveredelung (...) die<br />

Utensilien, mit denen feuchte Papiermasse in Form gebracht wurde.<br />

„Papierzeit“<br />

Die Pappenmacher, schreibt de La Lande im Jahre 1764, würden Materien genug<br />

haben, wenn ihnen die Buchhändler um einen billigen Preiß alle Bücher, die in Rießen<br />

verkaufet werden, überließen; da man aber vor dergleichen sechsmal mehr bey den<br />

Gewürzkrämern und Butterhändlern bekömmt; so sind die Pappenmacher gezwungen, mit<br />

denen zufrieden seyn, welche nicht zum Einwickeln dienen (...). Es sind nur die schädlichen<br />

und verbotenen Bücher, welche die Pappenmacher, seit der Zeit, da es bey der Policey sie<br />

nicht mehr zu verbrennen weislich eingeführet worden ist, zu Nutze zu machen pflegen. Man<br />

läßt sie bey einen Pappenmacher zerreißen, und gleich darauf erweichen, welchem man sie<br />

nach dem Preiß der Abschnittsel überläßt.<br />

Die Möglichkeit der Umarbeitung des bereits genutzten Papiers, hat H. H<strong>of</strong>r.<br />

Claproth* in einem Aufsatze [Claproth 1774], der auf Papier aus einem noch mit<br />

78


Mönchsschriften gedruckten Buche gedruckt ist, erwiesen. Der Vortheil scheint inzwischen<br />

nicht erheblich seyn zu können, theils weil man, zumal wenn man nicht alte Bücher von<br />

besserem als jetzt gebräuchlichem Papiere nimmt, doch nur schlechte graue Waare erhält,<br />

wozu die nötigen Lumpen überflüssig zu haben sind, theils auch weil die Kosten der<br />

Umarbeitung gegen den Preis der Makulatur zu hoch steigen.<br />

Darüber berichteten ausführlich im Jahre 2009 Surma – Ślusarska B, und Matejak M.<br />

Im 19. Jh. gab es schon Fabriken, die besondere Einrichtungen für die Verwendung von<br />

Altpapier getr<strong>of</strong>fen haben, auch sind eigene Papiersortieranstalten entstanden, die, in<br />

ähnlicher Weise wie die Lumpensortieranstalten arbeitend, große Mengen gleichartiger<br />

Altpapiersorten aufstapeln, denn natürlich erhält das Material erst Wert, wenn man große<br />

Mengen gleichartigen Materials - Makulatur, besonders die Schreibakten, alte Bücher und<br />

Buchbinderabfälle waren schon immer in beschränktem Maße als Rohst<strong>of</strong>f für Papier<br />

Handelsartikel, und wurden nach Klemm [1904] besonders für Aktendeckel und Graupappen<br />

benutzt - zur Wiederverwendung bereit hat.<br />

Nach Rüst [1838]: Auch die alten abgenutzten Papiere, seien sie auch noch so alt und<br />

mit irgend einer Tinte oder Schwärze beschrieben oder bedruckt, hat man wieder zu Papier<br />

umzuarbeiten versucht und einen mehr oder weniger guten Erfolg erlangt...<br />

Die ungeleimten, oder auch in der Bütte geleimten alten Papiere zeigen keine Schwierigkeiten<br />

beim Umarbeiten; sie lösen sich vollkommen in dem Holländer auf und geben Papier von<br />

derselben Qualität, als sie früher waren, wenn sie sonst nicht zu sehr beschmutzt und zerstört<br />

sind. Die in Leimwasser getauchten alten Papiere lassen sich etwas schwieriger verarbeiten,<br />

weil sie zuvor durch Kochen im Wasser und durch Unterwerfung einer mehrtägigen<br />

Maceration von dem enthaltenen Leim befreiet werden müssen.<br />

Obgleich diese verschiedene Arbeiten mehr Arbeitslohn verursachen, viel Zeit und<br />

einigen Materialaufwand kosten, so ist es doch nicht ohne Vortheile, alte Papiere<br />

umzuarbeiten, da man sie zu billigen Preisen haben kann, und das daraus gefertigte Papier<br />

eine besondere gute Consistenz erhält.<br />

79


Die Idee, alte Papiere umzuarbeiten, scheint in Frankreich entstanden zu sein; allein<br />

die Engländer, die sich alle nützlichen Erfindungen anzueignen suchen, haben auch diese<br />

nicht unberücksichtigt gelassen. Im Jahre 1800 entstand zu Bermondsey, neun Meilen von<br />

London, eine Fabrik, in welcher das Umarbeiten alter Papiere im Grossen betrieben wird.<br />

Man verwandelt daselbst alte Druckschriften und alte Manuscripte zu einem Papier von<br />

vortrefflicher Qualität, so dass man es von dem gewöhnlichen Papiere nicht unterscheiden<br />

kann. Das in dieser Fabrik angewendete Verfahren wird geheim gehalten. Die in der Fabrik<br />

angewendeten Pressen zeichnen sich durch ihre ausserordentliche Kraft und durch den<br />

sinnreichen Mechanismus, welcher sie bewegt, aus. Man findet daselbst drei Trockenräume<br />

und eine Trockenkammer, die nach allen Richtungen von kupfernen Röhren durchschnitten<br />

ist, in denen Wasserdämpfe cirkuliren. In dieser Trockenkammer kann das Papier zu allen<br />

Jahreszeiten getrocknet werden, und die Temperatur steigt in denselben bis auf 35 o R. Die<br />

ganze Fabrik ist in jeder Hinsicht grossartig, ihre Mühlentheile werden durch eine<br />

Dampfmaschine von fünfundzwanzig Pferdekräften in Bewegung gesetzt, und ihre übrigen<br />

Arbeiten beschäftigen etwa siebenhundert Menschen, Männer, Weiber und Kinder. Es werden<br />

jährlich ungefähr eine Million Pfund altes Papier verarbeitet, und wöchentlich fünf- bis<br />

sechshundert Riess Papier angefertigt.<br />

Einige Altpapier verarbeitenden Fabriken und Altpapiersortieranstalten sortierten<br />

gesondert Akten, die Papierfabrik Paul Steinbock, Frankfurt a.d.O. sortierte unter anderem<br />

besonders Schreibakten und Druckbücher, und die Papiersortierungsanstalt Josef Schimek, in<br />

Berlin O. sortierte u.a. besonders Akten und Skripturen. (nach Papier-Zeitung 1902) 2011<br />

schreibt Eduard von Habsburg-Lothringen folgendes über Archive: “Vielleicht ist das Archiv<br />

(zur Geschichte des Schlosses) nämlich überhaupt beinahe leer, weil im Jahre 1805 unter<br />

Napoleon bei der Besetzung ein Feuer ausgebrochen ist. Oder weil 1945 sowjetische Truppen<br />

einzogen, vier Jahre im Schloss hausten und dabei alles als Heizmaterial verbrannten... Oder<br />

die Vorbesitzer des Schlosses „starben aus“ oder verkauften das Schloss im Jahr 1840,<br />

woraufhin alle Quellen entweder verlorengegangen sind oder in irgendeinem Palais in einer<br />

fernen Stadt ruhen.“<br />

Oder eine englische, französische, deutsche oder andere Fabrik das Archiv als „Alte<br />

Papiere“ nach den Ratschlägen von H<strong>of</strong>r. Claproth verarbeitete oder ein Schlossherr das<br />

Archiv in der „Papp-Fabrique„ der späteren Herzoglichen Cartonfabrique Ludwigslust zu<br />

Pappmaché verarbeiten ließ, oder...<br />

LITERATURVERZEICHNIS<br />

1. ANDÉS, L, E. 1900. Die Fabrikation der Papiermaché und Papierst<strong>of</strong>f-Waaren. Wien,<br />

Pest, Leipzig.<br />

2. CLAPROTH, Justus 1774: Eine Erfindung aus gedrucktem Papier wiederum neues<br />

Papier zu machen und völlig heraus zu waschen. Barmeier, Göttingen<br />

3. KATALOG „Papierzeit“ ©Klartext –Verlag , Essen 1997<br />

4. LANDE, de la Joseph Jerom Francois, 1764: Die Kunst Pappen zu machen von Herrn<br />

de la Lande: In: Schauplatz der Künste und Handwerke, oder vollständige<br />

Beschreibung derselben verfertiget oder gebilliget von denen Herren der Akademie<br />

der Wissenschaften zu Paris. Mit vielen Kupfertafeln. Dritter Band. In das Teutsche<br />

übersetzt und mit Anmerkungen versehen, von Johann Heinrich Gottlob von Justi,<br />

Königlichen Großbrittanischen Bergrathe und Ober=Policey=Commisario, der Königl.<br />

Großbrittanischen Societät zu Wissenschaften zu Göttingen und der Churfürstl.<br />

Bayerischen Academie der Wissenschaften zu München Mitgliede. Dritter Band.<br />

Berlin, Stettin und Leipzig bey Johann Heinrich Rüdigern 1764<br />

80


5. PAPIER UND SCHREIBWAREN ZEITUNG. 1902. Wien Kaiser.<br />

6. PHYSIKALISCH=ÖKONOMISCHE BIBLIOTHEK, worinnen von den neuesten<br />

Büchern, welche die Naturgeschichte, Naturlehre, und die Land- und Stadtwirtschaft<br />

betreffen, zuverlässige und vollständige Nachrichten ertheilet wurden. Johann<br />

Beckmann- Göttingen: Vanderhoek & Ruprecht. 1770 – 1806 . VI. S. 126.<br />

7. RÜST W., A. 1838: Die mechanische Technologie. Dritte Abtheilung. Die<br />

Papierfabrikation und die technischen Anwendungen des Papiers. Berlin. In der<br />

Nicolai`schen Buchhandlung.<br />

8. SURMA- ŚLUSARSKA B., MATEJAK M., 2009: Erfindungen, aus gedrucktem<br />

Papier neues Papier zu machen. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong>. Forestry and Wood Technology No. 67; s. 245– 25<br />

Streszczenie: Archiwa – surowiec do wytwarzania papieru mache i papieru. W pracy omówiono<br />

na podstawie danych zawartych w fachowej literaturze źródła pochodzenia makulatury stosowanej do produkcji<br />

papieru mache i papieru. Stwierdzono, że znacząca bazą surowcową do wytwarzania papieru z makulatury były<br />

archiwa, w skład których wchodziły różnego rodzaju dokumenty od rękopisów książek po spisy ewidencyjne<br />

ludności, dokumentację biurową itp. Niszczenie zasobów archiwalnych w Europie wiązało się nie tylko z<br />

wojnami i innymi klęskami, ale również ich masowym przerobem na masy włókniste do wyrobu papieru mache i<br />

papieru. Opisane zostały sposoby pozyskiwania, segregowania i przerobu archiwów w celu uzyskania<br />

odpowiedniej jakości makulatury do produkcji papieru.<br />

Corresponding authors:<br />

pr<strong>of</strong>. dr hab. Barbara Surma-Ślusarska<br />

Instytut Papiernictwa i Poligrafii, Politechnika Łódzka<br />

90-925 Łódź, ul. Wólczanska 223<br />

bsurma@p.lodz.pl<br />

pr<strong>of</strong>. dr hab. Ewa Dobrowolska<br />

Wydział Technologii Drewna, <strong>SGGW</strong> w Warszawie<br />

02-776 Warszawa, ul. Nowoursynowska 159<br />

ewa_dobrowolska@sggw.pl<br />

81


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 82-87<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Hardness and wear resistance tests <strong>of</strong> the wood species most frequently<br />

used in flooring panels<br />

IRENA SWACZYNA, ANDRZEJ KĘDZIERSKI, ANDRZEJ TOMUSIAK, ANDRZEJ<br />

CICHY, ANNA RÓŻAŃSKA,<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> –<br />

<strong>SGGW</strong><br />

ANNA POLICIŃSKA-SERWA<br />

Building Research Institute.<br />

Abstract: Hardness and wear resistance tests <strong>of</strong> the wood species most frequently used in flooring panels. The<br />

hardness and wear resistance tests <strong>of</strong> the wood species most frequently used in flooring panels show that<br />

hardness is closely related to wood density, whereas the correlation <strong>of</strong> wear resistance is lower, with a very high<br />

coefficient <strong>of</strong> variation.<br />

Keywords: wood hardness, wear resistance, flooring tiles<br />

INTRODUCTION<br />

Aesthetics is an important feature <strong>of</strong> wood applied in antique, decorative flooring.<br />

Aesthetic perception is formed by the visual impression <strong>of</strong> the patterns <strong>of</strong> the flooring<br />

elements layout, <strong>of</strong> the wood structure <strong>of</strong> the applied species, their colour and surface<br />

finishing quality. The kind <strong>of</strong> wood that was most frequently used in South-eastern Poland in<br />

decorative, antique wooden flooring dated to the 1st half <strong>of</strong> 19th century was oak wood. The<br />

floors that had an especially representative character were made <strong>of</strong> numerous, <strong>of</strong>ten very<br />

exotic wood species, and their choice depended, most <strong>of</strong> all, on their decorative qualities. In<br />

the Łańcut Castle, apart from oak, fossil oak, elm, ash, beech, sycamore maple, hornbeam,<br />

birch and alder, also the wood <strong>of</strong> walnut and mahogany was used. Quite seldom the wood <strong>of</strong><br />

taxus would appear – as veneer (Manor House in Witkowice) [Swaczyna, Kędzierski,<br />

Różańska, Szymczyk, Tomusiak, Rżewska 2010]. In the Hunting Lodge in Julin, geometric<br />

flooring tiles combine oak with hornbeam and oak with ash [Różańska, Swaczyna 2011].<br />

Usually, the flooring in manor houses is made either <strong>of</strong> oak alone (manor houses in<br />

Tarnowiec and Falejówka, manor house outbuilding in Kolbuszowa), or oak with pine (manor<br />

house in Przewrotne and Bieździedza) [Różańska, Tomusiak Beer 2011]. In such case, the<br />

oak wood was used to make the frames marking the square pattern, whereas pine was used to<br />

fill in the centre. Sporadically, at the end <strong>of</strong> the 19th century, panels with oak framing and<br />

with centre made <strong>of</strong> ash or birch can be found (Manor House in Niwiskie). The parquet<br />

planks were usually made <strong>of</strong> oak (Lodge in Julin, manor houses in Dydnie and Falejówka) or<br />

ash (manor house in Przewrotne). Different wear level may be observed in the case <strong>of</strong><br />

different wood species [Swaczyna, Tomusiak, Kędzierski, Koryciński, Policińska-Serwa<br />

2009]. It is especially visible in the tiles <strong>of</strong> the Castle in Łańcut. Therefore, we have<br />

undertaken to investigate the mechanical properties that have a significant influence on the<br />

flooring usage, that is: hardness and wear resistance <strong>of</strong> the wood species that are most<br />

frequently found in antique flooring.<br />

RESEARCH METHODOLOGY<br />

Hardness tests<br />

The hardness and wear resistance tests were conducted in accordance with the PN-EN<br />

1534 standard. The samples used for the tests were <strong>of</strong> square shape, minimum c.a. 50 mm<br />

82


long and with the normative thickness, made <strong>of</strong> pine, oak, fossil oak, cherry, sycamore maple,<br />

walnut, ash and mahogany wood. The tests were carried out by the Brinell method, with a<br />

hardness tester <strong>of</strong> the company CV Instruments 3000LDB. . The test consisted <strong>of</strong> indenting a<br />

10 mm ball into the wooden element being subject to the test, with the force <strong>of</strong> 1kN and<br />

during the time specified in the standard. For each indentation, the hardness was calculated in<br />

accordance to the formula (1). The number <strong>of</strong> indentations for each wood species was 15. The<br />

samples were acclimatized in the same conditions as for the wear resistance tests.<br />

2F<br />

HB (1)<br />

<br />

2 2<br />

DD<br />

D d <br />

where:<br />

HB – Brinell hardness [N/mm 2 ]<br />

F – nominal force [N]<br />

D – ball diameter [mm]<br />

d – permanent indentation diameter [mm]<br />

Moreover, the characteristic value <strong>of</strong> hardness was calculated in accordance with the<br />

formula (2):<br />

X k = m-(t 0,5·s) (2)<br />

where:<br />

m – medium hardness value<br />

t 0,5 – t Student coefficient for a 5% one-sided interval load<br />

s – standard deviation<br />

Wear resistance tests<br />

The wear resistance was measured with the Taber method in accordance with the PN-<br />

EN ISO 5470-1:2001 standard. The test was based on the loss <strong>of</strong> thickness and loss <strong>of</strong> mass <strong>of</strong><br />

the tested samples after 1 thousand revolutions <strong>of</strong> the wheel. The load amounted to 1000 g,<br />

test temperature was <strong>of</strong> 22,3°C, and air humidity - 54,6 %. The samples were acclimatized<br />

before the test. The tested samples had the dimensions <strong>of</strong>: 100x100x8 mm and were made <strong>of</strong><br />

the wood species included in the research. The abrasion took place in the radial and tangential<br />

sections. In accordance with the standard, 6 tests were conducted. The samples were made <strong>of</strong><br />

the same wood species as in the case <strong>of</strong> the hardness test.<br />

Density tests<br />

Moreover, we have decided to test dry wood density. For this purpose, the wood species<br />

samples corresponding to the standard were weighed and measured after having dried them.<br />

The density was calculated in accordance with the formula (3).<br />

m<br />

(3)<br />

where:<br />

m – mass <strong>of</strong> a dry sample [kg]<br />

V – sample volume [m 3 ]<br />

Ρ – density [kg/m 3 ]<br />

V<br />

TEST RESULTS<br />

The results <strong>of</strong> the hardness tests <strong>of</strong> the tested wood species are presented in Table no<br />

1, the results <strong>of</strong> the wear resistance tests – in Table no 2, and the results <strong>of</strong> the density tests –<br />

in Table no 3.<br />

83


Table 1. Results <strong>of</strong> hardness tests <strong>of</strong> the specific wood species tested.<br />

Wood<br />

species<br />

Hardness<br />

test<br />

direction<br />

Medium HB<br />

hardness<br />

value<br />

[N/mm 2 ]<br />

Standard<br />

deviation, S<br />

[N/mm 2 ]<br />

Coefficient<br />

<strong>of</strong> variation,<br />

V [%]<br />

Characteristic<br />

value <strong>of</strong><br />

hardness<br />

[N/mm 2 ]<br />

Oak<br />

radial 33,2 7,1 21,3 20,7<br />

tangential 30,5 3,7 12,1 24,0<br />

Fossil oak<br />

radial 20,8 3,7 17,8 14,3<br />

tangential 26,9 2,7 10,1 22,1<br />

Pine<br />

radial 20,0 3,4 16,8 14<br />

tangential 17,9 1,8 9,9 14,7<br />

Cherry<br />

radial 27,6 1,5 5,4 25,0<br />

tangential 42,3 6,0 14,2 31,7<br />

Sycamore radial 22,9 1,7 7,5 19,9<br />

maple tangential 29,1 3,4 11,6 23,1<br />

Walnut<br />

radial 28,6 2,1 7,4 24,9<br />

tangential 26,2 1,6 6,1 23,4<br />

Ash<br />

radial 26,9 2,5 9,3 22,5<br />

tangential 23,3 2,8 12,0 18,4<br />

Mahogan radial 20,8 0,8 3,8 19,4<br />

y tangential 23,9 1,0 4,1 22,1<br />

Medium<br />

characteristic<br />

value <strong>of</strong><br />

hardness<br />

[N/mm 2 ]<br />

22,35<br />

18,2<br />

14,35<br />

28,35<br />

21,5<br />

24,15<br />

20,45<br />

20,75<br />

Table 2. Results <strong>of</strong> wear resistance tests <strong>of</strong> the specific wood species that were tested.<br />

Medium<br />

Wood Loss <strong>of</strong>: thickness [mm] /<br />

Standard deviation Coefficient <strong>of</strong><br />

value<br />

species<br />

mass [g]<br />

[mm] / [g] variation [%]<br />

[mm]/[g]<br />

Oak<br />

loss <strong>of</strong> thickness 0,18 0,03 14,0<br />

loss <strong>of</strong> mass 0,204 0,035 17,5<br />

Fossil oak<br />

loss <strong>of</strong> thickness 0,19 0,04 21,0<br />

loss <strong>of</strong> mass 0,283 0,033 11,6<br />

Pine<br />

loss <strong>of</strong> thickness 0,28 0,04 13,8<br />

loss <strong>of</strong> mass 0,34 0,09 26,1<br />

Cherry<br />

loss <strong>of</strong> thickness 0,17 0,05 33,1<br />

loss <strong>of</strong> mass 0,25 0,02 8,6<br />

Sycamore loss <strong>of</strong> thickness 0,17 0,04 22,4<br />

maple loss <strong>of</strong> mass 0,26 0,03 13,0<br />

Walnut<br />

loss <strong>of</strong> thickness 0,14 0,06 43,1<br />

loss <strong>of</strong> mass 0,24 0,04 18,2<br />

Ash<br />

loss <strong>of</strong> thickness 0,19 0,06 32,7<br />

loss <strong>of</strong> mass 0,24 0,03 12,4<br />

Mahogany<br />

loss <strong>of</strong> thickness 0,23 0,04 15,5<br />

loss <strong>of</strong> mass 0,34 0,07 21,3<br />

84


Table 3. Results <strong>of</strong> density tests <strong>of</strong> the specific wood species tested.<br />

Wood species<br />

Dry wood density<br />

[kg/m 3 ]<br />

Standard deviation<br />

[kg/m 3 ]<br />

Coefficient <strong>of</strong><br />

variation<br />

[%]<br />

Oak 605,6 26,8 4,4<br />

Fossil oak 595,0 11,5 1,7<br />

Pine 529,0 20,7 3,9<br />

Cherry 662,3 12,6 1,9<br />

Sycamore maple 544,5 15,2 2,8<br />

Walnut 552,8 53,3 9,6<br />

Ash 550,2 21,4 3,9<br />

Mahogany 546,3 10,1 1,8<br />

RESULT ANALYSIS<br />

The above-mentioned tests show that the hardness <strong>of</strong> the tested wood species is diverse.<br />

The highest characteristic value <strong>of</strong> hardness for radial and tangential directions was observed<br />

in the case <strong>of</strong> cherry (28,35 N/mm 2 ), next was walnut (24,15 N/mm 2 ) and oak (22,35 N/mm 2 ).<br />

The lowest hardness was observed in the case <strong>of</strong> pine (14,35 N/mm 2 ). What draws attention is<br />

the high dispersion <strong>of</strong> test results for such species as oak (12,1% - 21,3%) and fossil oak<br />

(17,8% - 10,1%). Relatively low dispersion <strong>of</strong> results can be seen in the case <strong>of</strong> exotic species<br />

such as mahogany (3,8% - 4,1%) and walnut (6,1% - 7,4%). In general it can be concluded<br />

that hardness is closely associated with wood density. The highest characteristic hardness was<br />

obtained for cherry, which has the highest density, and the lowest hardness was observed in<br />

the case <strong>of</strong> pine wood, whose dry wood density had the lowest value. Linear regression<br />

function between hardness and density was determined in the form: y = 0,0627x - 14,68, and<br />

the correlation coefficient equals 0,69, which shows how strong is the relation between them.<br />

The wear resistance tests revealed a very high coefficient <strong>of</strong> variation. It amounts to<br />

43% for the loss <strong>of</strong> thickness in the case <strong>of</strong> walnut wood, and 26,1% for the loss <strong>of</strong> mass in<br />

the case <strong>of</strong> pine wood. The lowest loss <strong>of</strong> mass was observed in the case <strong>of</strong> walnut wood -<br />

0,14 mm, and the highest in case <strong>of</strong> pine wood - 0,28 mm. After analysing the loss <strong>of</strong> mass it<br />

can be concluded that the lowest loss occurs in the oak wood - 0,204 g, and the highest in the<br />

pine wood - 0,34 g. Linear regression function between loss <strong>of</strong> mass and wood density was<br />

determined in the form: y = -0,0005x + 0,5591, and the correlation coefficient equals 0.41. In<br />

general, it is worth noting that wear resistance is correlated with wood density; however, this<br />

correlation is not as significant as in the case <strong>of</strong> hardness. It is more related with the<br />

anatomical structure <strong>of</strong> wood and with the fact if the wood is an exotic species or if it is<br />

coniferous or broadleaf.<br />

In practice, the choice <strong>of</strong> wood for decorative flooring was not always driven by<br />

practical considerations.<br />

Technically, the best kind <strong>of</strong> wood for flooring is the oak ring-porous wood, taken from<br />

the heartwood. It is durable: hard, resistant to abrasion, flexible and containing tannins that<br />

make it more resistant to microbiological factors. It is easily processed and smooth surface<br />

can be obtained. The growing percentage share <strong>of</strong> summerwood is positively correlated with<br />

wood’s durability, hardness, shrinkage and wear resistance. The share <strong>of</strong> summerwood<br />

usually tends to grow together with the width <strong>of</strong> growth rings, for this reason the growth rings<br />

are a reference indicator <strong>of</strong> the technical properties <strong>of</strong> oak wood [Korzeniowski 1956].<br />

Another popular wood species in the manor houses <strong>of</strong> South-eastern Poland is coniferous<br />

wood – mostly pine. It is used for the elements that fill in the oak frames, because the<br />

hardness <strong>of</strong> this wood is significantly smaller and its structure is less even. These features<br />

85


cause faster and less even wear <strong>of</strong> the flooring. The tangential section and the simultaneous<br />

appearance <strong>of</strong> sapwood and heartwood in the wear layer <strong>of</strong> the flooring is especially<br />

unfavourable in this respect. Pine wood, in turn, is perfect for flooring planks for white floor,<br />

because <strong>of</strong> its properties. Among other species <strong>of</strong> coniferous wood used for flooring<br />

manufacture, larch wood <strong>of</strong> slow growth is desirable, but its application is limited due to the<br />

fact that it is rarely found. Larch wood hardness and wear resistance is similar to oak wood,<br />

but its resistance to compression across fibres is two times lower. The depth <strong>of</strong> finishing<br />

material penetration is analogous to oak wood [Korzeniowski 1956]. Larch wood has higher<br />

cleavability and lower resistance properties than oak wood.<br />

The wood used to manufacture flooring is wood <strong>of</strong> medium growth (3-4 rings for each<br />

1 cm <strong>of</strong> the radius) and wood <strong>of</strong> slow growth (>4 rings for each 1 cm <strong>of</strong> the radius), because<br />

<strong>of</strong> lower wear <strong>of</strong> the cutting edge <strong>of</strong> the tools used for its processing. Moreover, this kind <strong>of</strong><br />

wood has more uniform structure, so the wear <strong>of</strong> the flooring surface is more evenly<br />

distributed. The best wood is the one that is straight-grained, because it helps to avoid<br />

spallings and surface roughness during the pr<strong>of</strong>ile cutting. Sapwood is inadmissible on the<br />

front surface <strong>of</strong> the flooring elements. The most valuable kind <strong>of</strong> wood is oak heartwood from<br />

the radial section with large pith rays (lustre).<br />

The ring-porous wood <strong>of</strong> ash and elm also has a lot <strong>of</strong> lustre, although it is less intense.<br />

Their aesthetic advantage consists <strong>of</strong> clearly visible rings, diverse pattern and dark, ashenbrown<br />

colour <strong>of</strong> heartwood. The wood <strong>of</strong> these species is hard, mechanically resistant and<br />

flexible. Thin sapwood is not a problem for the usage, although it is not applied on the front<br />

surface <strong>of</strong> the flooring elements.<br />

For highly decorative flooring, the wood <strong>of</strong> fossil oak was used. Fossil oak is sensitive<br />

to changes in temperature and air humidity in the environment. As a kind <strong>of</strong> wood that<br />

remained under water, it requires specialist and long-lasting drying methods after it is taken<br />

out similarly to other archaeological wood, called “wet”.<br />

In accordance to the tests <strong>of</strong> decorative flooring performed in situ in the Łańcut Castle,<br />

the fossil oak used within them is less durable than the light oak. Its hardness, assessed with<br />

the Brinell method with a 5 mm ball hit with the force <strong>of</strong> 40 N, is 19% higher for light oak<br />

than for fossil oak [Swaczyna, Tomusiak, Kędzierski, Koryciński, Policińska-Serwa 2009].<br />

CONCLUSIONS<br />

1. In accordance to the test results, hardness is closely associated with wood density, and<br />

the coefficient <strong>of</strong> correlation amounts to 0,69.<br />

2. There is some relation between wear resistance and density, but it is not as significant<br />

as in the case <strong>of</strong> hardness, and the coefficient <strong>of</strong> correlation amounts to -0,41.<br />

REFERENCES<br />

1. KORZENIOWSKI A. 1956: Posadzki drewniane [Wooden flooring], Warszawa<br />

2. KRZYSIK F.1978:Nauka o drewnie (Wood Science). PWRiL, Warszawa<br />

3. RÓŻAŃSKA A., TOMUSIAK A., BEER P. 2011: Influence <strong>of</strong> Climate on Surface<br />

Quality <strong>of</strong> Antique Wooden Flooring in Manor House. Proceeding <strong>of</strong> the 20 th<br />

International Wood Machining Seminar, Skellefte, Sweden June 7-10<br />

4. RÓŻAŃSKA A., SWACZYNA I. 2011: Characteristics <strong>of</strong> Interior Decor <strong>of</strong> Hunting<br />

Lodge in Julin, in Surface Quality Aspects. Proceeding <strong>of</strong> the 20 th International Wood<br />

Machining Seminar, Skellefte, Sweden June 7-10<br />

5. SWACZYNA I., TOMUSIAK A., KĘDZIERSKI A., KORYCIŃSKI W.,<br />

POLICIŃSKA SERWA A. 2009: Indentation and abrasion resistance <strong>of</strong> decorative<br />

wooden flooring <strong>of</strong> the Castle in Łańcut [in:] Ann.WULS-<strong>SGGW</strong>, For. And Wood<br />

Technol., no 69.<br />

86


6. SWACZYNA I., KĘDZIERSKI A., RÓŻAŃSKA A., SZYMCZYK A., TOMUSIAK<br />

A., RŻEWSKA Z. 2010: Design <strong>of</strong> wooden flooring in historical buildings in<br />

Kolbuszowa County. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>- <strong>SGGW</strong>, No 71<br />

7. PN-EN ISO5470-1/2001 Taber abrasion testing<br />

8. PN-EN 1534 Brinell hardness testing<br />

Streszczenie: Badanie twardości i ścieralności gatunków drewna najczęściej stosowanych w<br />

taflach posadzkowych Z przeprowadzonych badań twardości i ścieralności gatunków drewna<br />

najczęściej stosowanych w taflach posadzkowych wynika, że twardość jest ściśle związana z<br />

gęstością drewna, ścieralność zaś wykazuje mniejszą korelację przy bardzo dużym<br />

współczynniku zmienności.<br />

Corresponding authors:<br />

Andrzej Tomusiak E – mail: andrzej_tomusiak@sggw.pl<br />

Andrzej Kędzierski E – mail: andrzej_kedzierski@sggw.pl<br />

Andrzej Cichy E – mail: andrzej_cichy@sggw.pl<br />

Anna Różańska E – mail: anna_rozanska@sggw.pl<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

Szkoła Główna Gospodarstwa Wiejskiego (<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>)<br />

02-787 Warszawa, ul. Nowoursynowska 166, Poland<br />

Anna Policińska-Serwa E – mail: a.serwa@itb.pl<br />

87


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 88-91<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Lignin-based hexamine-hardened thermosetting wood adhesive –<br />

preliminary results<br />

ANNA ŚWIETLIK, KAROLINA SZYMONA, MARIUSZ MAMIŃSKI*<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Lignin-based hexamine-hardened thermosetting wood adhesive – preliminary results. The bonding<br />

properties <strong>of</strong> two adhesive systems based on two types <strong>of</strong> lignin <strong>of</strong> various origin were compared. Mechanical<br />

tests showed that the type <strong>of</strong> a lignin strongly affected shear strength <strong>of</strong> the adhesive joints.<br />

Keywords: lignin, thermosetting, wood adhesive<br />

INTRODUCTION<br />

For some time environmental policy has been imposing growing interest in bio-based<br />

adhesives that manifests in an intensified research on those types <strong>of</strong> renewable resources,<br />

however numerous papers concerning lignin, tannin or carbohydrates utilization in adhesive<br />

technology were published already decades ago (Olivares et al. 1988, El-saied et al. 1984,<br />

Custers et al. 1979, Pizzi and Scharfetter 1978, Pizzi 1977, Saayman and Oatley 1976,<br />

McKenzie and Yuritta 1972).<br />

Lignin is an abundant renewable reservoir <strong>of</strong> aromatic compounds. Lignin resources<br />

generated by paper industry only are estimated on 30 million tones annually (Hatakeyama and<br />

Hatakeyama 2010) and still remain underutilized in terms <strong>of</strong> adhesive technology. Additional<br />

amounts <strong>of</strong> lignin come from cellulosic ethanol plants – 0.5 kg per 1 L. Moreover, it is<br />

estimated that ca. 1-2% <strong>of</strong> lignin is converted into derivate-products (Lora and Glasser 2002).<br />

The rest is burnt for energy.<br />

In terms <strong>of</strong> adhesives, numerous studies have been reported in literature so far (El<br />

Mansouri et al. 2007, Çetin and Özmen 2002, Sanjuan et al. 1999), however poor<br />

reproducibility <strong>of</strong> bonding effects, due to variable properties <strong>of</strong> lignin from various sources,<br />

was the main drawback (Jones 2007).<br />

In this work adhesive performance <strong>of</strong> two types <strong>of</strong> lignin was compared. Chemical<br />

composition <strong>of</strong> the lignins and functional group abundance were not made due to the<br />

preliminary nature <strong>of</strong> the experiments. Unmodified, neat lignins were cured in alkaline<br />

conditions and used for wood bonding.<br />

EXPERIMENTAL<br />

Two types <strong>of</strong> lignin were used in experiments: L1 - commercial alkaline low-sulfonate<br />

lignin purchased from Aldrich (cat. no. 471003, average M w = 10000, 4% sulfur) and L2 –<br />

industrial s<strong>of</strong>twood lignin from the sulfite process. 33 wt% aqueous solution <strong>of</strong> hexamine was<br />

used as a hardener.<br />

Lignin (1.5 g) was dissolved in water (2.3 g), then pH 10 was adjusted with 33%<br />

NaOH and hexamine (5 wt% based on total solution weight) was added. When thoroughly<br />

mixed the adhesive was applied on solid beech specimens <strong>of</strong> dimensions 300 x 50 x 5 mm 3 .<br />

Wood density 697 ± 15 kg/m 3 and 5.2% moisture content. Bonding was performed in hot<br />

press at 180ºC for 10 min. Due to preliminary nature <strong>of</strong> the studies, bonding conditions were<br />

88


not a subject <strong>of</strong> optimization. Adhesives without hardener in the formulation were used as<br />

references.<br />

Specimens were subjected to dry shear strength tests according to EN 205 after 7-day<br />

conditioning in normal climate.<br />

RESULTS AND DISCUSSION<br />

As the data shown in Fig. 1 indicate the highest dry strength (6.5 N/mm 2 ) was<br />

observed for the L1 series which denoted hexamine-cured low-sulphonate lignin, while the<br />

strength observed for the uncured reference series (L1 ref.) was 70% lower (1.9 N/mm 2 ).<br />

When the results for the industrial lignin are concerned (L2 series), it is clear that<br />

presence <strong>of</strong> the hardener in the adhesive formulation did not affect the shear strengths <strong>of</strong> the<br />

bond line, since the strengths <strong>of</strong> the cured (L2) and <strong>of</strong> the uncured (L2 ref.) series were<br />

comparable and the differences were statistically insignificant– 1.08 and 1.15 N/mm 2 ,<br />

respectively. Therefore, it seems that curing progress is dependent on the lignin type and its<br />

chemical functionality which are a subject <strong>of</strong> further investigations.<br />

7<br />

6<br />

shear strength (N/mm 2 )<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

L1 L1 ref. L2 L2 ref.<br />

Fig. 1 Dry shear strengths <strong>of</strong> the lignin based adhesives<br />

Since those findings are <strong>of</strong> preliminary nature, a detailed discussion <strong>of</strong> the phenomena<br />

is not reasonable and possible now. However, certain assumptions may be made. The<br />

obtained results are consistent with the reports on hardly repeatable bonding results when<br />

lignins <strong>of</strong> various origin and, subsequently, various structure are involved. Having in mind<br />

that lignin molecule mainly consists <strong>of</strong> phenylpropane units (Fig. 2), some <strong>of</strong> the moieties are<br />

highly reactive toward hexamine, while other exhibit no reactivity at all. It seems that the<br />

aromatic moieties bearing no deactivating methoxyl groups are possible cross-linking nodes.<br />

89


CH 2<br />

OH<br />

CH<br />

CH 2<br />

CH 2<br />

OH<br />

CH<br />

CH 2<br />

CH 2<br />

OH<br />

CH<br />

CH 2<br />

OH<br />

OH<br />

OCH 3<br />

CH 3<br />

O OCH 3<br />

OH<br />

1 2 3<br />

Fig. 2 Schematic representation <strong>of</strong> phenylpropane units present in lignin:<br />

1 – 4-hydroxyphenyl, 2 – guaiacyl, 3 – syringyl (El Mansouri et al. 2011)<br />

CONCLUSIONS<br />

It was shown that hexamine-cured lignin was applicable as a thermosetting adhesive<br />

for wood bonding, however the origin <strong>of</strong> the lignin determines its chemical structure that was<br />

a key factor affecting the bonding results and ambiguous performance <strong>of</strong> the two compared<br />

adhesive systems was observed. Further, detailed studies including analysis <strong>of</strong> molecular<br />

structure <strong>of</strong> lignin used in adhesive formulation are necessary.<br />

REFERENCES<br />

1. ÇETIN N.S., ÖZMEN N.I. (2002) Use <strong>of</strong> organosolv lignin in phenol-formaldehyde<br />

resins for particleboard production: II. Particleboard production and properties. Int.<br />

J. Adhes. Adhes. 22: 481486<br />

2. CUSTERS P., RUSHBROOK R., PIZZI A., KNAUFF C.J. (1979) Industrial<br />

applications <strong>of</strong> wattle-tannin/urea-formaldehyde fortified starch adhesives for damppro<strong>of</strong><br />

corrugated cardboard. Holzforsch Holzvert 31: 131-133<br />

3. EL MANSOURI N.-E., PIZZI A., SALVADÓ J. (2007) Lignin-based wood panel<br />

adhesives without formaldehyde. Holz Roh Werkst. 65: 65-70<br />

4. EL MANSOURI N.-E., YUAN Q., HUANG F. (2011) Characterization <strong>of</strong> alkaline<br />

lignins for use in phenol-formaldehyde and epoxy resins. BioResources. 6: 2647-2662<br />

5. EL-SAIED H., NADA A.M., IBRAHEM A.A., YOUSEF M.A. (1984) Waste liquors<br />

from cellulosic industries. III. Lignin from soda-spent liquor as a component in<br />

phenol-formaldehyde resin. Die Angewante makromolekulare Chemie 122: 169-181<br />

6. EN 205 (2005) Test methods for wood adhesives for non structural applications—<br />

Determination <strong>of</strong> tensile strength <strong>of</strong> lap joints<br />

7. HATAKEYAMA H., HATAKEYAMA T. (2010) Lignin Structure, Properties, and<br />

Applications. Adv. Polym. Sci. 232: 1<br />

8. JONES D. (2007) Review <strong>of</strong> existing bioresins and their applications. Report for<br />

Building Research Establishment Ltd.<br />

9. LORA J.H., GLASSER W.G. (2002) Recent industrial applications <strong>of</strong> lignin: A<br />

sustainable alternative to nonrenewable materials. J. Polym. Environ. 10: 39<br />

10. MCKENZZIE A.W., YURITTA J.P. (1972) Starch tannin corrugating adhesives.<br />

Appita 26: 30-34<br />

90


11. OLIVARES M., GUZMAN J.A., NATHO A., SAAVEDRA A. (1988) Kraft lignin<br />

utilization in adhesives. Wood Sci. Technol. 22: 157-165<br />

12. PIZZI A (1977) Hot-setting tannin-urea-formaldehyde exterior wood adhesives.<br />

Adhes. Age 20: 27-29<br />

13. PIZZI A., SCHARFETTER H.O. (1978) The chemistry and development <strong>of</strong> tanninbased<br />

adhesives for exterior plywood. J Appl Polym Sci 22:1745-1761<br />

14. SAAYMAN H.M., OATLEY J.A. (1976) Wood adhesives from wattle bark extract.<br />

Forest Prod. J. 26: 27-33<br />

15. SANJUAN R., RIVERA J., FUENTES F.J. (1999) Evaluation <strong>of</strong> adhesive mixtures <strong>of</strong><br />

phenol-formaldehyde and organosolv lignin <strong>of</strong> sugarcane bagasse. Holz Roh Werkst.<br />

57: 418<br />

Streszczenie: Klej do drewna na podstawie lignin sieciowanych heksaminą – wyniki badań<br />

wstępnych. Porównano właściwości klejące dwóch klejów otrzymanych na podstawie dwóch<br />

lignin o różnym pochodzeniu. Badania wytrzymałościowe wykazały, że rodzaj ligniny jest<br />

czynnikiem decydującym o wytrzymałości połączeń klejonych.<br />

Corresponding authors:<br />

Anna Świetlik<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

Karolina Szymona<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

Mariusz Mamiński<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: mariusz_maminski@sggw.pl<br />

91


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 92-95<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Analysis <strong>of</strong> the impact <strong>of</strong> the production assortment structure on the<br />

economic performance in a furniture factory<br />

MIECZYSŁAW SZCZAWIŃSKI; MAGDALENA OLKOWICZ<br />

Department <strong>of</strong> Technology, Organisation and Management in Wood Industry; <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong>;<br />

Abstract: Analysis <strong>of</strong> the impact <strong>of</strong> the production assortment structure on the economic performance in a<br />

furniture factory The proposed model has a standard form <strong>of</strong> a polynomial in which an explanatory (exogenous)<br />

variable is net operating pr<strong>of</strong>it increment in relation to total <strong>of</strong>fer <strong>of</strong> a plant, or what would be recommended, in<br />

relation to particular types <strong>of</strong> products. Explanatory variables are hypothetical the most important relationships<br />

expressing impact on a level and changes in the value <strong>of</strong> function that is expounded. A relatively low value <strong>of</strong> a<br />

random variable indicates accuracy <strong>of</strong> selection these variables and that variables number was sufficient (E ξ=0).<br />

Keywords: verification method, production assortment structure, furniture, new product;<br />

INTRODUCTION<br />

Furniture factories, as well producers <strong>of</strong> other manufactured products, are forced by<br />

market conditions for continuous verification <strong>of</strong> assortment structure <strong>of</strong> <strong>of</strong>fered products.<br />

Manufacturers aim at achieving the highest possible net pr<strong>of</strong>it from the business. On financial<br />

result the most impact exerts operating pr<strong>of</strong>itability <strong>of</strong> production turnover in the particular<br />

phase <strong>of</strong> the economic cycle. In the furniture industry, success on the market largely<br />

determines appearance <strong>of</strong> furniture corresponding to the current, although rapidly changing,<br />

trends. The furniture in the assortment <strong>of</strong> furniture factory have different positions in the<br />

product life cycle courses. A handbook's course <strong>of</strong> this cycle is determined by phases, which<br />

are shaped by market, beginning from product implementation through (usually extended)<br />

period <strong>of</strong> maturity until the decline [3].<br />

Furniture factories, as well as other manufacturing companies, should be interested in<br />

verifying the structure <strong>of</strong> production aimed at disclosure <strong>of</strong> whose life cycle ends. The<br />

declining pr<strong>of</strong>itability <strong>of</strong> the item from sale, which is going to disappearance <strong>of</strong> operative<br />

pr<strong>of</strong>it margin, also could tell us about that.<br />

The proposed method <strong>of</strong> analyzing the structure <strong>of</strong> production may allow it to<br />

conclusively verify and disclose products that should be converted to products that could<br />

better meet market requirements in a particular phase <strong>of</strong> economic cycle. Confirmation <strong>of</strong><br />

your choice accuracy may be higher production operating pr<strong>of</strong>itability <strong>of</strong> a new type <strong>of</strong><br />

furniture.<br />

THE ANALYSIS METHOD OF THE CHANGES IMPACT OF A MARKET OFFER IN A<br />

FURNITURE FACTORY ON THE VALUE INCREMENTS OF NET OPERATING<br />

PROFIT<br />

The proposed method <strong>of</strong> analysis uses a quantitative approach to the impact <strong>of</strong> a chain<br />

(series) from partial factors on the level and dynamics <strong>of</strong> net operating pr<strong>of</strong>it in the considered<br />

period.<br />

In case you do not have the data to calculate unit cost <strong>of</strong> each product, calculation can<br />

encompass the whole production, but because <strong>of</strong> this, precision <strong>of</strong> cost-effectiveness analysis<br />

may suffer.<br />

The model <strong>of</strong> a multivariate analysis is a polynomial in which the expounded<br />

(endogenous) variable may be net operating pr<strong>of</strong>it increment <strong>of</strong> total production, or, if<br />

92


possible, increment <strong>of</strong> this pr<strong>of</strong>it from the production <strong>of</strong> every kind and type <strong>of</strong> product. This<br />

increment depends on influence <strong>of</strong> some factors (possibly large number), that can be<br />

determined quantify and verified statistically, what the proposed model provides, and which<br />

has a form <strong>of</strong> a polynomial (a function <strong>of</strong> several variables).<br />

The general form <strong>of</strong> the polynomial:<br />

where:<br />

Y expounded (endogenous) variable;<br />

a 1 free term <strong>of</strong> the polynomial being graph intersection <strong>of</strong> y = f (Xi) with the axis <strong>of</strong> the<br />

explanatory (exogenous) variable (Y);<br />

X i value ,,i" <strong>of</strong> the explanatory variable <strong>of</strong> the polynomial, i ;<br />

ξ the explanatory (exogenous) variable value <strong>of</strong> the polynomial, expressing influence <strong>of</strong><br />

unknown factors on a value <strong>of</strong> the expounded (endogenous) variable Y, E ξ = 0;<br />

The expounded variable <strong>of</strong> the polynomial is a net operating pr<strong>of</strong>it increment from<br />

total production sold, or, if this is possible, in relation to particular types <strong>of</strong> products.<br />

The value <strong>of</strong> the expounded variable is defined by dependencies for an entire<br />

enterprise:<br />

where:<br />

increment <strong>of</strong> net operating pr<strong>of</strong>it during a considered period [pln];<br />

increment <strong>of</strong> gross pr<strong>of</strong>it during a considered period (before taxation) [pln];<br />

coefficient <strong>of</strong> company share in gross pr<strong>of</strong>it (f 2010 = 0,81);<br />

With reference to particular products, an increment <strong>of</strong> pr<strong>of</strong>its is signified by the index<br />

which is a number <strong>of</strong> the product, e.g. j .<br />

In the previous, the last year article, there was a small but significant error, which has<br />

distorted a form <strong>of</strong> the function determining the value <strong>of</strong> an expounded variable in the model.<br />

The was described in an erroneous way [2].<br />

For this reason, the function <strong>of</strong> the expounded value for the case <strong>of</strong> analysis relating to<br />

the particular products with a number ,,j”, is below quoted again:<br />

where:<br />

increment <strong>of</strong> gross pr<strong>of</strong>it during a considered period (before taxation) from sales <strong>of</strong><br />

a product with a number ,,j” [pln];<br />

unit cost <strong>of</strong> production <strong>of</strong> the ,,j” product, after start and after finish a measured<br />

period;<br />

price <strong>of</strong> sales <strong>of</strong> the ,, j” product, after start and after finish a measured period;<br />

size <strong>of</strong> production <strong>of</strong> the ,,j” product, after start and after finish a measured<br />

period (in natural units);<br />

93


supply increment <strong>of</strong> the ,,j” product, after start and after finish a measured<br />

period;<br />

j reference number <strong>of</strong> product in a factory <strong>of</strong>fer.<br />

The explanatory variables values <strong>of</strong> the polynomial, which quantitatively express<br />

factors that are shaping the expounded variable ( ), can be determined by<br />

relationships indicated below. The more variables we assume and the more accurate we<br />

choose it, the expected value <strong>of</strong> the measured factors, expressed as a random variable ξ, will<br />

be closer to zero (E ξ=0).<br />

Boards <strong>of</strong> companies, which can have access to detailed data, will have a better chance<br />

<strong>of</strong> accurate verification <strong>of</strong> the production structure using the proposed model.<br />

Explanatory variables <strong>of</strong> the polynomial can thus be determined by the following<br />

relationships [1]:<br />

1. The share <strong>of</strong> income from sales <strong>of</strong> new products from the ,,j” group in total income from<br />

the sale <strong>of</strong> that ,,j” products group:<br />

,,j” group;<br />

the ,,j” group;<br />

, net income (without VAT) from sales <strong>of</strong> new products from the<br />

total net income (without VAT) from sales <strong>of</strong> new products from<br />

2. The share <strong>of</strong> net pr<strong>of</strong>it (after taxation) from sales <strong>of</strong> new products from the ,,j” group in<br />

total net pr<strong>of</strong>it from that ,,j” products' group:<br />

, own costs <strong>of</strong> new products production from the ,,j” group;<br />

total own costs <strong>of</strong> products production from the ,,j” group;<br />

3. The net income from sales <strong>of</strong> new products from ,,j” group on a worker who is involved<br />

in new products development from the ,,j" group:<br />

; number <strong>of</strong> employees involved in the development <strong>of</strong> new<br />

products from the ,,j” group;<br />

4. The net pr<strong>of</strong>it (after taxation) from sales <strong>of</strong> new products from the ,,j” group per<br />

employee involved in the development <strong>of</strong> new products from the ,,j” group:<br />

;<br />

5. The share <strong>of</strong> investment to develop and implement new products from the ,,j” group in<br />

total investment outlays:<br />

; investment outlays to develop and implement new products from<br />

the ,,j” group;<br />

94


I total investment outlays;<br />

6. The share <strong>of</strong> sales costs in the unit production cost <strong>of</strong> new products:<br />

; unit cost <strong>of</strong> sales <strong>of</strong> new products with the number ,,j”;<br />

unit cost <strong>of</strong> production <strong>of</strong> new products with the number ,,j”;<br />

The impact <strong>of</strong> economic situation changes can express the relation <strong>of</strong> national income<br />

increment in the country, and therefore:<br />

7. The rate <strong>of</strong> national income increment in the measured period:<br />

; rate <strong>of</strong> national income increment;<br />

national income in earlier period;<br />

national income in later period;<br />

The time period covered by the study, preferably in the sections <strong>of</strong> the quarterly or<br />

even monthly, should be as long as required to provide satisfactory statistical reliability. We<br />

are dealing with a sort <strong>of</strong> compromise between labour intensity <strong>of</strong> research and the<br />

expectations associated with statistics. The cases <strong>of</strong> the selection <strong>of</strong> explanatory variables, the<br />

weight <strong>of</strong> their influence, and, what is important, the smallest value <strong>of</strong> ξ, are presented<br />

similarly.<br />

REFERENCES:<br />

1. RUTKOWSKI I., 2006: Metodyczne i kompetencyjne uwarunkowania rozwoju nowego<br />

produktu w przedsiębiorstwach przemysłowych; Seria: Prace habilitacyjne;<br />

Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań;<br />

2. SZCZAWIŃSKI M., OLKOWICZ M., 2010: The verification method <strong>of</strong> the production<br />

assortment structure in the furniture factory; Ann. WULS-<strong>SGGW</strong>, For and Wood<br />

Technol. No 72, 2010, 317 - 319;<br />

3. SZYMANOWSKI W., SZCZAWIŃSKI M., 2005: Elementy nauki o przedsiębiorstwie;<br />

<strong>SGGW</strong>, Warszawa;<br />

Streszczenie: Analiza wpływu zmian struktury asortymentowej produkcji na wyniki<br />

ekonomiczne fabryki mebli Proponowany model ma standardową postać wielomianu, w<br />

którym zmienną objaśnianą jest przyrost zysku operacyjnego netto zarówno całości <strong>of</strong>erty<br />

zakładu, lub też, co należałoby rekomendować, w odniesieniu do poszczególnych typów<br />

wyrobów. Zmiennymi objaśniającymi są hipotetycznie najistotniejsze relacje wyrażające<br />

wpływ na poziom i zmiany wartości funkcji objaśnianej. O trafności doboru tych zmiennych i<br />

wystarczającej ich liczbie świadczy względnie mała wartość zmiennej losowej (E ξ = 0).<br />

Corresponding authors:<br />

dr Mieczysław Szczawiński, mgr inż. Magdalena Olkowicz<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>; Department <strong>of</strong> Technology, Organisation and Management in Wood<br />

Industry; ul. Nowoursynowska 159, 02-776 Warszawa, Poland<br />

e-mail: mieczyslaw_szczawinski@sggw.pl; e-mail: magdalena_olkowicz@sggw.pl<br />

95


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 96-102<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Einfluss der Vorschub und Schnittgeschwindigkeit auf die Standzeit beim<br />

Bohren Spanplatten<br />

JOANNA ZIELIŃSKA-SZWAJKA 1) , JAROSŁAW GÓRSKI 1) KRZYSZTOF SZWAJKA 1)<br />

1) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> Agriculture <strong>University</strong> – <strong>SGGW</strong><br />

Zusammenfassung: Einfluss der Vorschub und Schnittgeschwindigkeit auf die Standzeit beim Bohren<br />

Spanplatten. Der Beitrag stellt die Auswirkungen von Schnittgeschwindigkeit und Vorschub auf die Standzeit<br />

beim Bohren Melamin Spanplatte. Um die Wirkung von Schnittgeschwindigkeit und Vorschub auf die Standzeit<br />

Haltbarkeit Tests wurden 18 mit verschiedenen Schnittgeschwindigkeiten und Vorschübe durchgeführt<br />

bestimmen.<br />

Stichworte: Bohren, Spanplatten Melamin, Vorschub, Schnittgeschwindigkeit, Standzeit<br />

EINLEITUNG<br />

Eines der größten Probleme in der Behandlung von Spanplatten ist die Auswahl der<br />

Schnittparameter. Aufgrund der Gleichzeitigkeit von den Erwartungen der besten<br />

Behandlungsergebnisse wie: Genauigkeit, Kosten und Leistung muss ein Gleichgewicht der<br />

<strong>of</strong>t sehr widersprüchlichen Begriffe. Zum Beispiel ist wegen der Genauigkeit der Behandlung<br />

für die Auswahl von kleinen Feeds angezeigt, und das ist zu Leistungseinbußen verbunden.<br />

Bearbeitungsprozess sollte so sein, dass bei möglichst geringen Kosten durch den Empfänger<br />

erhalten wurde geforderten Qualität bearbeitete Komponenten und deren Ausführungszeit<br />

überschreitet nicht die Zeit, in den Vertrag angegeben.<br />

Grob gesagt, können Sie davon ausgehen, dass die Optimierung von Schneiden der<br />

richtigen Auswahl der technologischen Parameter der Schnitt beinhaltet: a p , f i v c<br />

Auswahl der Vorschubgeschwindigkeit muss daher die erforderliche Oberflächenqualität bei<br />

maximal mögliche Effizienz der Behandlung.<br />

Auswahl der Schnittgeschwindigkeit durch den angenommenen Standzeit, dh die Zeit, nach<br />

der die Klinge geschärft oder ersetzt wird. Eine Erhöhung der Schnittgeschwindigkeit erhöht<br />

die Prozesseffizienz ist wahr, aber es reduziert die Standzeit und erfordern häufige Austausch<br />

oder Schärfen.<br />

In der Literatur und ist viel Informationen über die Auswahl der Wirtschaftsteilnehmer<br />

Geschwindigkeit und maximale Effizienz zu finden [2, 3, 4, 5, 6]. Dieses Problem wurde in<br />

den frühen zwanzigsten Jahrhunderts interessiert, Taylor [1].<br />

Taylor schlug vor, dass die Haltbarkeit natürlich abhängig von der Geschwindigkeit der<br />

Schneide, die ein Power-Funktion durch einen einfachen Doppelklick logarithmische in das<br />

System in der Form von Gleichung (Gleichung 1) beschrieben wird:<br />

v<br />

T <br />

<br />

C<br />

c<br />

v<br />

<br />

<br />

<br />

k<br />

(1)<br />

METHODIK UND ERGEGNISSE<br />

Die Studie wurde mit dem CNC-Bearbeitungszentrum. Buselatto JET 100<br />

durchgeführt. Das Material wurde W2201 Melamin Spanplatte 18 mm dick (Abb. 1)<br />

behandelt. Als Werkzeug verwendet, um Löcher FABA Hartmetall HW Ø10mm Durchmesser<br />

ø10 K0500012 (Abb. 1) zu bohren.<br />

96


Bild 1. Werkstück und Werkzeuge.<br />

Bearbeitungsparameter von denen die Studie durchgeführt wurden, sind in Tabelle 1<br />

zusammengefasst<br />

Tafel 1.Bearbeitungsparameter.<br />

Werkzeug<br />

-Nummer<br />

Vorschub<br />

[mm/obr]<br />

1. 376.8<br />

2. 376.8<br />

3. 314<br />

Schnittgeschwindigkeit<br />

[m/min]<br />

4.<br />

0.2<br />

251.2<br />

5. 188.4<br />

6.<br />

125.6<br />

7. 376.8<br />

8. 376.8<br />

9. 314<br />

10.<br />

0.25<br />

251.2<br />

11. 188.4<br />

12.<br />

125.6<br />

13. 376.8<br />

14. 376.8<br />

15. 314<br />

16.<br />

0.3<br />

251.2<br />

17. 188.4<br />

18.<br />

125.6<br />

Wie in der Tabelle, einschließlich Haltbarkeit Tests 18 Werkzeuge vorgestellt. Als<br />

Indikator für Werkzeugverschleiß wurde zu Beginn VB max Flanke angenommen. (Abb.2).<br />

Bild 2. Werkzeuge und Verschleißkriterien.<br />

Werkzeugverschleiß Kriterium angenommen wurden VB max =0,2 (mm) [7].<br />

Verbrauchsmessung wurde am Mikroskop Bank gemacht.<br />

97


Basierend auf der Umfrage ergaben sich folgende Ergebnisse für die Proben mit einem<br />

Kern Kriterium der Abstumpfung VB max . Die Ergebnisse dieser Messungen sind in Tabellen<br />

zusammengefasst (Tabelle 2, 3, 4) jeweils für jede der drei Vorschübe und präsentiert in<br />

grafischer Form (Abb. 3, 4, 5).<br />

Tafel 2. Zusammensetzung Schnittgeschwindigkeiten und Standzeit – Vorschub 0.2[mm/obr]<br />

v c (m/min) 376.8 376.8 314 251.2 188.4 125.6<br />

T(min) 13.67 15.62 21.08 32.18 46.80 105.22<br />

Bild 3. Standzeitdiagram – Vorschub 0.2[mm/obr]<br />

Tafel 3. Zusammensetzung Schnittgeschwindigkeiten und Standzeit – Vorschub 0.25[mm/obr]<br />

v c (m/min) 376.8 376.8 314 251.2 188.4 125.6<br />

T(min) 9.46 9.46 15.12 21.25 35.35 75.41<br />

Bild 4. Standzeitdiagram – Vorschub 0.25[mm/obr]<br />

98


Tafel 4. Zusammensetzung Schnittgeschwindigkeiten und Standzeit – Vorschub 0.3[mm/obr]<br />

v c (m/min) 376.8 376.8 314 251.2 188.4 125.6<br />

T(min) 13.67 15.62 21.08 32.18 46.80 105.22<br />

Bild 5. Standzeitdiagram – Vorschub 0.3[mm/obr]<br />

Dann werden die gewonnenen Ergebnisse bzw. für jeden Feed, um eine doppeltlogarithmischen<br />

Diagramm (Abb. 6, 7, 8).<br />

Bild 6. Standzeitdiagram – Vorschub 0.2[mm/obr]<br />

99


Bild 7. Standzeitdiagram – Vorschub 0.25[mm/obr]<br />

Bild 8. Standzeitdiagram – Vorschub 0.3[mm/obr]<br />

Mit der Methodik der Erstellung einer einfachen Satz nach Taylors Regression. Die<br />

Bezeichnung dieser Linie erlaubt die Bestimmung der Gleichung Konstanten C v Taylor und<br />

k. Das erhaltene Ergebnis bilden die folgende Gleichung:<br />

100


Tafel 5. Die daraus resultierende Form der Taylor-Gleichung<br />

Vorschub (mm/obr) Taylor-Gleichung<br />

0.2<br />

v c<br />

<br />

T <br />

1737 <br />

-1.76<br />

0.25<br />

0.3<br />

v c<br />

<br />

T <br />

1318 <br />

v c<br />

<br />

T <br />

1000 <br />

-1.86<br />

-2.02<br />

Angesichts der beobachteten Auswirkungen auf Futterwert der Standzeit in der<br />

weiteren Analyse wurde beschlossen, eine erweiterte Form der Taylor-Gleichung verwenden<br />

berücksichtigt den Wert die Vorschub. Um zu bestimmen, diese Abhängigkeit Ergebnisse in<br />

allen 18 Proben wurde eine doppelt-logarithmischen Diagramm aufgetragen, und dann C v und<br />

einfache Richtungs-Faktor k:<br />

Bild 9. Standzeitdiagram. Z uwzględnieniem posuwu<br />

Ernennung k i C v erlaubt, die Gleichung der Form zu bestimmen:<br />

-1,88<br />

v <br />

1,6<br />

T c<br />

f<br />

2<br />

<br />

1288<br />

<br />

Bestimmung der Gleichung hat die genauen Auswirkungen des Vorschub auf die<br />

Standzeit erlaubt. Wie bei den abnehmenden Wert des Futters zu sehen ist erhöht Standzeit.<br />

Basierend auf der obigen Gleichung kann die Schnittgeschwindigkeit für den<br />

Berichtszeitraum Standzeit und Futtermitteln und umgekehrt zu bestimmen. Diese<br />

Abhängigkeit kann verwendet werden, um die Schnittgeschwindigkeit Bereich, eine<br />

bestimmte Art von Werkzeug und Werkstück zu testen.<br />

101


ANWENDUNGEN<br />

Die Ergebnisse dieser Studie zeigen deutlich, dass es einen signifikanten Einfluss<br />

sowohl auf die Schnittgeschwindigkeit und Vorschub auf die Stabilität der das<br />

Schneidwerkzeug. Mit der Mit der Zunahme der beiden Schnittgeschwindigkeit und<br />

Vorschub verringert die Standzeit und Schneiden im Gegenteil. Allerdings, wenn die<br />

Schnittgeschwindigkeit Effekt größer ist.<br />

LITERATUR<br />

1. TAYLOR FW., 1907: On the art <strong>of</strong> cutting metals, Trans. ASME.; 28:31-35.<br />

2. VAN LUTTERVELT CA, CHILDS THC, JAWAHIR IS, KLOCKE F, VENUVINOD<br />

PK., 1998: Present situation and future trends in modeling <strong>of</strong> machining operations, Ann.<br />

CIRP.; 47(2):587-626.<br />

3. JAWAHIR IS, WANG X., 2007: Development <strong>of</strong> hybrid predictive models and<br />

optimization techniques for machining operations, J. Mat. Proc. Technol.; 185:46-59.<br />

4. JEMIELNIAK K., 1998: Obróbka skrawaniem, Oficyna Wydawnicza Politechniki<br />

Warszawskiej.<br />

5. WILKOWSKI J., DUBIS M., CZARNIAK P., 2010: Influence <strong>of</strong> cutting speed on tool<br />

life during <strong>of</strong> laminated particleboard drilling, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong> – <strong>SGGW</strong> Forestry and Wood Technology No 72 2010 463-467<br />

6. ZIELIŃSKA-SZWAJKA J., GÓRSKI J., 2010: Schnittgeschwindigkeitseinfluß auf die<br />

Standzeit den Fräser, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong> Forestry<br />

and Wood Technology No 72 2010 527-530<br />

Streszczenie: Wpływ posuwu i prędkości skrawania na trwałość narzędzia przy wierceniu<br />

płyty wiórowej. W artykule przedstawiono wpływ prędkości skrawania oraz posuwu na<br />

trwałość ostrza narzędzia skrawającego przy wierceniu płyty wiórowej laminowanej. W celu<br />

określenia korelacji między prędkością skrawania i posuwem a trwałością ostrza<br />

przeprowadzono 18 prób trwałościowych ze zróżnicowanymi prędkościami skrawania i<br />

wartościami posuwu.<br />

Corresponding authors:<br />

Joanna Zielińska-Szwajka<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong><br />

02-776 <strong>Warsaw</strong><br />

Nowoursynowska 159 str.<br />

Poland<br />

jzielinska@poczta.onet.pl<br />

Jarosław Górski<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong><br />

02-776 <strong>Warsaw</strong><br />

Nowoursynowska 159 str.<br />

jaroslaw_gorski@wa.home.pl<br />

Krzyszt<strong>of</strong> Szwajka<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong><br />

02-776 <strong>Warsaw</strong><br />

Nowoursynowska 159 str.<br />

kszwajka@poczta.onet.pl<br />

102


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 103-107<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Einfluss von Werkzeugverschleiß auf die Oberflächenqualität bearbeitet<br />

beim Bohren Spanplatten<br />

JOANNA ZIELIŃSKA-SZWAJKA 1) , JAROSŁAW GÓRSKI 1) KRZYSZTOF SZWAJKA 1)<br />

1) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> Agriculture <strong>University</strong> – <strong>SGGW</strong><br />

Zusammenfassung: Einfluss von Werkzeugverschleiß auf die Oberflächenqualität bearbeitet beim Bohren<br />

Spanplatten. Der Beitrag stellt die Auswirkungen der Werkzeugverschleiß auf die Oberflächenqualität bearbeitet<br />

beim Bohren Melamin Spanplatte.<br />

Stichworte: Bohren, Spanplatten Melamin, Werkzeugverschleiß, Oberflächenqualität bearbeitet<br />

EINLEITUNG<br />

Melamin Spanplatte ist eine der am häufigsten verwendeten Materialien, zusätzlich zu<br />

MDF und Furnier in der Möbelindustrie. Bohren ist eine häufig auftretende Betrieb in die<br />

Herstellung von Möbeln, mit Aufmerksamkeit auf die Notwendigkeit für die nachträgliche<br />

Montage-Kit Möbel. Während der Bohrarbeiten in Spanplatten Melamin gibt es eine Tendenz<br />

zur Ablösung des Materials unter dem Einfluss der Schnittkräfte. In der Literatur wird Bohren<br />

Holzwerkst<strong>of</strong>fe nicht viel Aufmerksamkeit [12, 11, .13, 10] gegeben, während der Prozess der<br />

Bohrungen von Verbundwerkst<strong>of</strong>fen und Metallen wurde und wird intensiv untersucht.<br />

Dippon [12] analysiert die Modellierung von orthogonalen Schnitt MDF. Der Autor<br />

führte eine Reihe von verschiedenen Studien zum Wissen über die Bearbeitung von MDF zu<br />

vertiefen, wobei der Schwerpunkt vor allem auf die Schnittkräfte und Reibungskräfte.<br />

Lin [11] die Bearbeitbarkeit von MDF untersucht. Laut dem Autor einen signifikanten<br />

Einfluss auf die Eigenschaften der Bearbeitung ist die Dichte der Platte.<br />

Dann Philbin und Gordon [10] untersucht den Einsatz von PKD (polykristalliner Diamant) in<br />

Bearbeitung MDF. Laut den Autoren ist der Hauptvorteil der Verwendung von PKD-<br />

Werkzeug Leben mehr, die sich aus ihrer verbesserten Eigenschaften gegenüber<br />

herkömmlichen Materialien, Werkzeuge.<br />

Zhao und Ehmann [9] beschrieben den ursprünglichen experimentellen Studien über die<br />

Anwendung von einer neuen Generation von Bohrern. Laut den Autoren einer neuen Lösung<br />

führte zu einer Verringerung der Kräfte und Momente beim Bohren.<br />

Davim eine Studie versucht, die Beziehungen zwischen Schnittparameter und Laminat<br />

am Eingang und Ausgang Delamination beim Bohren MDF bestimmen.<br />

Die Ergebnisse zeigen, dass, um eine größere Effizienz und Schneiden zu erreichen bei<br />

gleichzeitiger Minimierung der Dissektion für höhere Schnittgeschwindigkeiten verwendet<br />

werden soll.<br />

Schichtung ist der größte Schaden während des Bohrens der Spanplatte beobachtet.<br />

Aufgrund dieser Schichtung entstehen Faktor in der erheblichen Qualität der Oberfläche<br />

Material für strukturelle Anwendungen.<br />

Eine Analyse der Literatur zeigt, dass nur wenig Aufmerksamkeit auf das Problem der<br />

Ablösung beim Bohren von laminierten Holzwerkst<strong>of</strong>fen bezahlt wurde.<br />

In der Literatur, mit einer Reihe von Assessment-Material um das Loch Delamination,<br />

können Sie arbeiten, wo die Autoren Indikatoren zur Messung der maximalen Durchmesser<br />

der beobachteten Aufspaltung formstabil bestimmen die Fläche [1, 2] basieren. Vor kurzem<br />

jedoch einige Autoren in ihren Studien, häufiger anwenden, um das dimensionslose<br />

Verhältnis Schichtung zu bewerten. Die Arbeit von Chen [6] angewendet dimensionslose<br />

103


Verhältnis der maximale Durchmesser des beschädigten Bereich um das Loch (F d ), die als<br />

das Verhältnis der maximalen Durchmesser (D max ) bestimmt wird Delamination Bereich der<br />

Nennweite (D nom ) zugrunde:<br />

D<br />

max<br />

Fd<br />

(1)<br />

Dnom<br />

oder einem ähnlichen Indikator für den Anteil Volumen von Oberflächenschäden:<br />

F<br />

A<br />

Amax<br />

(2)<br />

A<br />

wo: A max [mm 2 ] ist ein Gebiet mit der Randzone und Schichtung verbunden A nom [mm 2 ] ist<br />

ein Bereich der Nennweite (D nom ).<br />

Davim und Reis und andere [4, 7], auch dimensionslose Verhältnisse in ihren Studien.<br />

Indicators (D RAT ), gefolgt von Meht eingeführt, die als das Verhältnis der maximalen<br />

Durchmesser D MAR berechnet wird Delamination Zone der nominalen Fläche A AVG , wie in<br />

Gleichung (3) gezeigt.<br />

nom<br />

D<br />

MAR<br />

DRAT<br />

(3)<br />

A<br />

AVG<br />

Durao [8] und Bhatnagar [3] verwendet ein Indikator basierend auf (F d ), sondern nach<br />

(1), kann eine gewisse Inkonsistenz bemerken. Scope der Schichtung kann der unebenen und<br />

nie einen ausführlich in das gesamte Spektrum der aktuellen Dissektion am Rand des Loches.<br />

Diese Fehler können durch die Einführung des Kriteriums-basierte (D RAT ) oben genannten<br />

durch die Beziehung (3) ausgeglichen werden. Die Arbeit Romoli und Dini [5] Die Autoren<br />

verwendeten eine Schichtung Index (DF), und es ist Beziehung definiert (4), wo A del Bereich<br />

der Dissektion (Abb. 2) ist, ist A nom der nominalen Oberfläche der Bohrung.<br />

DF<br />

A<br />

<br />

<br />

A<br />

A<br />

<br />

<br />

* 100%<br />

<br />

del nom<br />

(4)<br />

nom<br />

Bild 1. Grafische Darstellung der konventionellen Indikatoren der Schichtung.<br />

Schichtung Indikatoren entweder durch (3) und (4), in der Tat, es spiegelt nicht das wahre<br />

Bild der Schäden gegeben, sie definieren die nur einen Teil beschädigt Oberfläche im<br />

Verhältnis zum Par des Lochs. Wenn die Rate in Gleichung (1) beschrieben nicht<br />

berücksichtigt Größenbereich Schäden um das Loch, und nur der maximale Durchmesser des<br />

Schadens im Fall der Indikatoren (3) und (4) nicht über die Informationen, die sie gaben uns<br />

einen Zeiger (F d ).<br />

104


METHODIK UND ERGEGNISSE<br />

Die Tests wurden auf einem CNC-Bearbeitungszentrum Buselatto JET100, die eine<br />

maximale Spindeldrehzahl 12.000 dirigierte U / min. Als Werkstück, in einem Bohrvorgang<br />

getestet, verwendet Drei-Schicht-Spanplatte (Tabelle 1) mit einer Dicke von 18 mm (Abb. 2a)<br />

Tafel 1.. Mechanische und physikalische Eigenschaften von Spanplatten in der Studie verwendet.<br />

Zugfestigkeit Biegefestigkeit Elastizitätsmodul Luftfeuchtigk Dichte<br />

(N/mm 2 )<br />

(N/mm 2 )<br />

(N/mm 2 )<br />

eit (%) (kg/m 3 )<br />

Spanplatte n >0.35<br />

>013 ≥1600 5-13 650<br />

Norm EN 319 EN 310 EN 310 EN 322 EN 323<br />

Die Studie verwendet eine typische Bohrer Hartmetall K20 mit einem Durchmesser von<br />

10 mm (Abb. 2b), FABA ist für die Verarbeitung von Holzwerkst<strong>of</strong>fen auf CNC-Maschinen.<br />

Bild 2. Werkstück und Werkzeug.<br />

Tabelle 2 zeigt die Bearbetungsparameter (Schnittgeschwindigkeit und Vorschub) in der<br />

Studie verwendet.<br />

Tafel 2. Bearbeitungsparameter.<br />

Vorschub<br />

Probennummer<br />

br)<br />

Schnittgeschwindigkeit<br />

(m/s)<br />

Drehzahl<br />

(min -1 )<br />

(mm/o<br />

1 0.30 3.14 6000<br />

2 0.30 3.14 6000<br />

3 0.30 3.14 6000<br />

Eine Analyse der Literatur lässt sich in mehrere Techniken, die nützlich sein, zu<br />

analysieren und berechnen Sie die Fläche von Schäden in Composites Bohrarbeiten unterteilt<br />

werden kann. In diesem Papier wurden ein digitales Bild der Delamination Gebiet um das<br />

Loch analysiert, um die Größe des Eingangs-Bits in das Werkstück zu bestimmen.<br />

Delamination Bereich wurde durch die Digitalisierung des Bildes und seiner weiteren<br />

Verarbeitung erhalten. Abbildung 3 zeigt eine schematische Darstellung der Bildverarbeitung<br />

Verfahren zu erhalten Delamination Gebiet um das Loch.<br />

Bild 3. Digitale Bildverarbeitung in LabVIEW a) das digitale Bild, b) Bild nach der Behandlung.<br />

105


Basierend auf der Umfrage, für die Behandlung von Spanplatte Löcher für das Schneiden<br />

der oben die folgenden Ergebnisse für Proben mit einem Kern Kriterium der Abstumpfung<br />

VBmax (Abb. 4 und 5) zu bohren. Für die Bewertung der Oberfläche, als Indikatoren für die<br />

Schichtung, wurde beschlossen, Gleichung (1) verwenden und (2), weil sie sind die am<br />

häufigsten verwendete Indikator zur Delamination zu bewerten.<br />

Bild 4. Wirkung von Werkzeugverschleiß auf Delamination Verhältnis F A<br />

Bild 5. Wirkung von Werkzeugverschleiß auf Delamination Verhältnis F d<br />

In den Abbildungen 4 und 5 zeigt die Wirkung von Werkzeugverschleiß auf<br />

Delamination Index (F A und F d) mit einer konstanten Vorschub von 0,3 (mm / obr). Bei der<br />

Interpretation der Verlauf der beiden Indikatoren lässt sich schließen, dass es eine deutliche<br />

Wirkung auf den Werkzeugverschleiß Werte der beiden Indizes zu brechen. Im Fall des Index<br />

(F d ), haben die Bestimmung Koeffizienten für die drei Schneidwerkzeuge hoch und<br />

vergleichbar zwischen den aufeinanderfolgenden Werkzeug Wert. Außerdem auf der<br />

Grundlage dieser Indikatoren der Schichtung kann geschlossen werden, dass es so eine<br />

unverwechselbare Form der um das Loch Delamination werden.<br />

106


LITERATUR<br />

1. W. Kőnig, C. Wulf, P. Graß, H. Willerscheid, Machining <strong>of</strong> fibre reinforced plastics,<br />

<strong>Annals</strong> <strong>of</strong> the CIRP 34 (1985) 537–547.<br />

2. V. Tagliaferri, G. Caprino, A. Diterlizzi, Effect <strong>of</strong> drilling parameters on the finish and<br />

mechanical properties <strong>of</strong> GFRP composites, International Journal <strong>of</strong> Machine Tools and<br />

Manufacture 30 (1) (1990) 77–84.<br />

3. N. Bhatnagar, I. Singh, D. Nayak, Damage investigations in drilling <strong>of</strong> glass fiber<br />

reinforced plastic composite laminates, Materials and Manufacturing<br />

Processes19(6)(2004)995–1007.<br />

4. J. P. Davim, P. Reis, Study <strong>of</strong> delamination in drilling carbon fiber reinforced plastics<br />

(CFRP) using design experiments,Composite Structures 59 (4) (2003) 481–487.<br />

5. L. Romoli, G. Dini, Experimental study on the influence <strong>of</strong> drillwear in CFRP drilling<br />

process, in:Proceedings <strong>of</strong> the Sixth CIRP International Conference on Inteligent<br />

Computation in Manufacturing Engineering, Naples, Italy, July 2008.<br />

6. W. C. Chen, Some experimental investigations in the drilling <strong>of</strong> carbon fiber- reinforced<br />

plastic (CFRP) composite laminates ,International Journal <strong>of</strong> Machine Tools &<br />

Manufacture 37 (8) (1997) 1097–1108.<br />

7. J. P. Davim, P. Reis, Drilling carbon fiber reinforced plastics manufactured by<br />

autoclave — experimental and statistical study, Materials & Design 24 (5) (2003) 315–<br />

324.<br />

8. L. M. P. Durao, A. G. Magalhaes, A. T. Marques, J. Manuel, R. S. Tavares, Effect <strong>of</strong><br />

drilling parameters on composite plates damage, in: Proceedings <strong>of</strong> the International<br />

Conference HSIMP 2007—High Speed Industrial Manufacturing processes, Senlis,<br />

France, November 2007.<br />

9. Zhao, H., Ehmann, K.F., 2002. Development and performance analysis <strong>of</strong> new spade bit<br />

designs. Int. J. Mach. Tools Manuf. 42, 1403–1414.<br />

10. Philbin, P., Gordon, S., 2006. Recent research on the machining <strong>of</strong> wood-based<br />

composite materials. Int. J. Mach. Machinab. Mater. 1, 186–201.<br />

11. Lin, R.J., Van Houts, J., Bhattacharyya, D., 2006. Machinability investigation <strong>of</strong><br />

medium-density fibreboard. Holzforschung 60, 71–77.<br />

12. Dippon, J., Ren, H., Amara, F.B., Altintas, Y., 2000. Orthogonal cutting mechanics <strong>of</strong><br />

medium density fibreboards. For. Prod. J. 50, 25–30.<br />

13. Engin, S., Altintas, Y., Amara, F.B., 2000. Mechanics <strong>of</strong> routing medium density<br />

fibreboard. For. Prod. J. 50, 65–69.<br />

Streszczenie: Wpływ zużycia narzędzia na jakość powierzchni obrobionej przy wierceniu<br />

płyty wiórowej . W artykule przedstawiono wpływ zużycia narzędzia na jakość powierzchni<br />

obrobionej przy wierceniu płyty wiórowej melaminowanej.<br />

Corresponding author:<br />

Joanna Zielińska-Szwajka<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong><br />

02-776 <strong>Warsaw</strong><br />

Nowoursynowska 159 str.<br />

Poland<br />

jzielinska@poczta.onet.pl<br />

107


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 108-115<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Torque and thrust force in drilling<br />

KRZYSZTOF SZWAJKA<br />

1) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Model torque and thrust force in drilling. A theoretical model to predict thrust force and torque in<br />

drilling is presented. The method consists <strong>of</strong> determining the continuous distributions <strong>of</strong> thrust and torque along<br />

the lip and the chisel edge <strong>of</strong> a twist drill. The calculation uses the oblique cutting model for the lip and the<br />

orthogonal cutting model for the chisel edge. Thrust and torque are obtained in terms <strong>of</strong> the geometric features <strong>of</strong><br />

the drill, the cutting conditions and the properties <strong>of</strong> the machined material.<br />

Keywords: Theoretical model, drilling; thrust force, torque<br />

INTRODUCTION<br />

Drilling is probably the most important conventional mechanical process associated with<br />

chipboard processing. In the furniture industry, for instance, large quantities <strong>of</strong> holes have to<br />

be drilled due to the use <strong>of</strong> connections, handles and hinges. A considerable part <strong>of</strong> the current<br />

research effort in this field is still being devoted to major process-optimization issues such as<br />

the most appropriate cutting parameters or tool geometries.<br />

Chipboard drilling require different process parameter optimization approaches: in the<br />

former process, the smoothness <strong>of</strong> the surface processed and tool wear are equally important;<br />

in chipboard drilling, the former parameter is prioritized over the latter given the difficulty to<br />

drill laminate without producing unacceptable cracks.<br />

A suitable model would assist in a focused selection <strong>of</strong> the most appropriate feed rates,<br />

spindle speeds and geometrical cutting tool shapes. A detailed review <strong>of</strong> dynamic cutting<br />

models is provided in Ehmann et al. [1].<br />

The study <strong>of</strong> drilling has <strong>of</strong>ten presented some difficulties which are linked to the<br />

complex geometry <strong>of</strong> the twist drill (Fig. 1). In practice, generally empirical equations are<br />

used to calculate thrust force and torque. These equations are very approximate, because they<br />

do not take all the cutting parameters into account. They <strong>of</strong>ten use only the feed speed and the<br />

diameter <strong>of</strong> the drill.<br />

Figure 1. View showing geometric data <strong>of</strong> a twist drill.<br />

108


Few theoretical works have been undertaken on drilling. Bera and Bhattacharya [2]<br />

described the first attempt to use a cutting model to determine torque and thrust in drilling.<br />

They analyzed the whole drill and considered that the chisel edge acted as an indenting tool<br />

and the lip as a cutting tool. They assumed that the resultant force per unit length <strong>of</strong> the lip is<br />

constant.<br />

They assumed that the resultant force per unit length <strong>of</strong> the lip is constant. Williams [3]<br />

recognised the significance <strong>of</strong> the feed on the resultant velocity and on altering the cutting<br />

geometry. In making predictions <strong>of</strong> torque and thrust, Williams argued that a portion <strong>of</strong> the<br />

drill acted as an orthogonal cutting edge because the cutting velocity is assumed to be<br />

perpendicular to the cutting edge.<br />

In 1972 Armarego and Cheng [4] proposed an approach to predict thrust and torque<br />

during drilling for a conventional drill and a modified drill in order to simplify the<br />

calculations. The method <strong>of</strong> calculation used the orthogonal cutting model and the oblique<br />

cutting model, and was also used in 1979 by Wiriyacosol and Armarego [5]. Basically, this<br />

method consists <strong>of</strong> dividing the cutting edges into a limited number <strong>of</strong> cutting elements.<br />

These elements were assumed to be oblique cutting edges on the cutting lip and orthogonal<br />

cutting edges on the chisel edge. The calculation used empirical equations established from<br />

orthogonal cutting tests. In most <strong>of</strong> the methods mentioned above, the major problem was to<br />

choose the number <strong>of</strong> cutting elements, and to determine the empirical equations for some<br />

cutting parameters.<br />

More recently Watson [6–10] initially used practically the same method, with a different<br />

geometry. He developed a model for the chisel edge and the lip from the orthogonal cutting<br />

model and the oblique cutting model, respectively. The author initially used the same<br />

principle which consisted <strong>of</strong> dividing drill edges into a number <strong>of</strong> elementary cutting edges.<br />

Watson [7] recognised that the chips front the lips and the chisel edges are continuous across<br />

their width and that continuity imposes a restriction on the possible variation <strong>of</strong> the chip flow<br />

angle across those edges.<br />

Other works have been interested in particular drilling operations, such as deep hole<br />

drilling [11,12], using an experimental model, and drilling with a three-cutting-edge drill<br />

[13,14]. Most <strong>of</strong> the models for drilling presented above were based on experimental<br />

measurements.<br />

MODEL OF DRILLING<br />

The model that will be studied in this work uses the geometry <strong>of</strong> a conventional twist<br />

drill. It is based on an analysis <strong>of</strong> the thrust and the torque continuity, from the force<br />

distribution along the cutting edges. It uses no preliminary experimental results. The purpose<br />

<strong>of</strong> the study is to establish predictive formulae to calculate thrust amid torque <strong>of</strong> drilling.<br />

This theoretical model is based on the development <strong>of</strong> the shear zone model established<br />

by Oxley [15] for the cutting <strong>of</strong> metals, in the two cutting parts <strong>of</strong> a twist drill via the lip and<br />

the chisel edge. It is a purely analytical method, which makes it possible to determine thrust<br />

and torque according to the geometry <strong>of</strong> the tool and the cutting conditions. Although several<br />

investigations on drilling [2,3] have used the orthogonal cutting model to describe the<br />

deformation <strong>of</strong> the machined material about the lip and the chisel edge, other authors [4,5]<br />

have shown that the oblique cutting model gives a better approximation <strong>of</strong> the cutting<br />

mechanism for the lip. Concerning the chisel edge, its geometry does not set any major<br />

problem for the modelling <strong>of</strong> thrust and torque, except for the zone situated in the vicinity <strong>of</strong><br />

the drill centre which will be discussed further in the article.<br />

Before developing this model, it is necessary to give a geometrical characterization <strong>of</strong> a<br />

standard twist drill. Indeed, the form <strong>of</strong> a standard twist drill is characterized by the symmetry<br />

around its axis, and the type <strong>of</strong> sharpening. The three sharpening types most used for twist<br />

109


drills are described in the work <strong>of</strong> Armarego and Wright [16]. They are defined by<br />

geometrical parameters which depend on the cutting geometry <strong>of</strong> the two active parts <strong>of</strong> the<br />

twist drill, the lip and the chisel edge. These parameters are: 2κ r : point angle, τ: chisel edge<br />

angle, 2w: lip spacing.<br />

Parameters defined above are illustrated by Figure 1; they constitute the basic data for the<br />

determination <strong>of</strong> the necessary parameters used in the drilling force calculations.<br />

The method used for the calculation <strong>of</strong> thrust and torque on the cutting lip <strong>of</strong> the drill<br />

consists <strong>of</strong> determining the element <strong>of</strong> the thrust dF l , and the element <strong>of</strong> the torque dM l for an<br />

element dl <strong>of</strong> the lip at an arbitrary point M on the edge, situated at a radius r from the drill<br />

axis. Force distributions along the lip are obtained using geometrical parameters, cutting<br />

conditions and properties <strong>of</strong> the machined material. Because <strong>of</strong> the symmetry around the drill<br />

axis the study will be done for one lip. The cutting geometry at a point M (Fig. 2) is such that<br />

the cutting speed and the tangent to the cutting edge at this point are not perpendicular.<br />

Consequently, an analysis using oblique cutting is a better approach to describe the cutting<br />

process on this part <strong>of</strong> the drill.<br />

Figure 2. Edge geometry at a cutting point on the lip.<br />

The geometry described in the work <strong>of</strong> Wiriyacosol and Armarego [5] for a conventional<br />

twist drill will be used to determine, according to the position <strong>of</strong> the cutting point M,<br />

trigonometrical relationships between the different angles. The speed <strong>of</strong> any point M on the<br />

edge situated at a radius r from the drill axis is also determined. The drilling investigations<br />

[4–10] have used existent models <strong>of</strong> orthogonal cutting and oblique cutting. Those models<br />

were based on the same technique <strong>of</strong> dividing the edges <strong>of</strong> the drill into elementary cutting<br />

edges, and applying thereafter on those edges, the oblique cutting model and the orthogonal<br />

cutting model.<br />

The model proposed in this work was inspired by the previously mentioned works and<br />

takes the whole cutting edge into account. The notion <strong>of</strong> the number <strong>of</strong> elements is<br />

suppressed, as well as the preliminary experimental tests, which were necessary in the works<br />

mentioned above. This new model is continuous and predictive.<br />

110


Determination <strong>of</strong> necessary parameters for the calculation <strong>of</strong> thrust and torque<br />

Increments <strong>of</strong> thrust dF pr and torque dM pr are determined by supposing that the cutting<br />

geometry is approximately static (f


Calculation <strong>of</strong> the thrust force and the torque distributions<br />

f sinr<br />

cos<br />

t1<br />

(9)<br />

2<br />

Determination <strong>of</strong> the increments dF l and dM pr at point M (Fig. 3) is undertaken using the<br />

oblique cutting model established by Oxley [15]. The basis <strong>of</strong> this model is to analyze the<br />

stresses along the shear plane and the tool/chip interface so that the resultant force transmitted<br />

by the shear plane and the interface are in equilibrium. The thrust force element dF l and the<br />

torque dM pr are determined in terms <strong>of</strong> the differential force dF C in the direction parallel to<br />

the cutting speed V c , the differential force dF T in the direction perpendicular to the cutting<br />

speed and to the cutting edge at point M, and the differential force dF R in the direction<br />

perpendicular to dF C and dF T as shown by Fig. 3. The differential element <strong>of</strong> shear force dF s<br />

is given for an element <strong>of</strong> the lip dl by:<br />

ks<br />

t1<br />

dl<br />

dFs<br />

(10)<br />

sin<br />

where, n is the normal shear angle and k s is the shear flow stress along the shear plane. n<br />

and k s are calculated using the model <strong>of</strong> Oxley [15]. Replacing t 1 and dl by their respective<br />

expression given in Eqs. (8) and (9), gives the following formula:<br />

f cos<br />

r<br />

dFs<br />

ks<br />

dr<br />

(11)<br />

2 sin<br />

2 2<br />

n r w<br />

Then it is possible to determine force components dF C ’ , dF T ’ , dF T<br />

’<br />

and<br />

dF<br />

dF<br />

n<br />

cos( )<br />

(Fig. 3):<br />

'<br />

n n<br />

C<br />

dFs<br />

(12)<br />

sinn<br />

sin( )<br />

'<br />

n n<br />

T<br />

dFs<br />

(13)<br />

cosn<br />

' 2 ' 2 1<br />

dFC<br />

dFT<br />

sinn<br />

tgc<br />

'<br />

dFR<br />

(14)<br />

2<br />

where dF ’ C is normal to the cutting edge and situated in the plane <strong>of</strong> the cutting edge and the<br />

cutting speed, dF ’ T is normal to the machined surface and dF ’ R is normal to dF ’ C and dF ’ T .<br />

Elements <strong>of</strong> force dF C , dF T and dF R are then given by the following formulae:<br />

and<br />

dF<br />

C<br />

'<br />

'<br />

dF cos dF sin<br />

(15)<br />

C<br />

R<br />

'<br />

dFT dF T<br />

(16)<br />

dF<br />

R<br />

'<br />

'<br />

dF cos dF sin<br />

(17)<br />

R<br />

C<br />

where dF C and dF R are perpendicular and situated in the plane <strong>of</strong> dF ’ C and dF ’ R . dF C and dF R<br />

’<br />

make respectively an angle λ with dF C and dF ’ ’<br />

R . Elements <strong>of</strong> forces dF T and dF T are<br />

identical. From these elements <strong>of</strong> forces at point M, the thrust force element dF l and the<br />

torque element dM pr are found from the following formulae:<br />

2 2<br />

2 2 1<br />

dFl<br />

dFT<br />

dFC<br />

cos<br />

dFR<br />

sin<br />

sinn<br />

<br />

n<br />

sin<br />

r<br />

dFC<br />

sin<br />

dFR<br />

coscos<br />

r<br />

2<br />

(18)<br />

dM<br />

l<br />

rdF C<br />

(19)<br />

Substituting for the various force elements, the following formulae are obtained.<br />

112


dFl<br />

dr<br />

k<br />

with <br />

n n<br />

<br />

r c n r<br />

f cos<br />

A<br />

s<br />

1<br />

2sin<br />

cos<br />

2 2<br />

n<br />

n<br />

r w<br />

A1 sin <br />

sin<br />

tg<br />

sin<br />

cos<br />

and<br />

dM<br />

l<br />

f cos<br />

r<br />

ks<br />

A2<br />

dr 2 sin<br />

cos<br />

2<br />

n<br />

n<br />

r w<br />

A cos<br />

cos tg<br />

sin<br />

sin<br />

with <br />

2 n n c n<br />

.<br />

Besides the geometrical data <strong>of</strong> the drill and the cutting parameters at point M, it is necessary<br />

to know the normal friction angle λ n , between the tool and the chip, the normal shear angle n ,<br />

the chip flow angle η c and the relationship between the chip thickness and the cutting depth.<br />

The determination <strong>of</strong> these parameters is made from the shear zone model in oblique cutting<br />

[15]. Each parameter is a linear or non linear function <strong>of</strong> radius r which defines the distance<br />

from the cutting point to the drill axis. At each cutting point, tile oblique cutting model is<br />

applied. An iterative calculation is used to obtain tile normal shear angle n . The convergence<br />

<strong>of</strong> the iteration allows the determination <strong>of</strong> the parameters quoted above. This operation is<br />

undertaken for all values <strong>of</strong> r in the range [d 1 /2, d/2] so as to cover the entire lip.<br />

Calculation <strong>of</strong> the total thrust force and the total torque<br />

In calculating the shear angle, cutting forces etc. at a point M, the given information will be<br />

the tool normal rake angle λ n , the cutting speed V c , and the thickness t 1 , together with the<br />

thermal and flow stress properties <strong>of</strong> the work material and the initial temperature <strong>of</strong> the<br />

work. The method <strong>of</strong> calculation uses the same iterations on the shear angle n and the<br />

temperature along the shear zone T AB as in the model <strong>of</strong> Oxley [15]. Knowing those elements<br />

<strong>of</strong> force and torque determined previously, which are given according to the position <strong>of</strong> point<br />

M, the total cutting force and torque are obtained by integrating the dM l and dF l expressions,<br />

from the boundary between the lip and the chisel edge to the periphery <strong>of</strong> the drill.<br />

d<br />

r<br />

2<br />

(20)<br />

(21)<br />

2<br />

dFl<br />

Fl<br />

2 dr<br />

(22)<br />

dr<br />

M<br />

l<br />

d1<br />

2<br />

d<br />

2<br />

dM<br />

l<br />

2 dr<br />

(23)<br />

dr<br />

d1<br />

2<br />

dF l<br />

/ dr , and / dr are replaced by their respective expressions, the following formulae are<br />

obtained:<br />

d<br />

dM l<br />

sin<br />

r<br />

cos<br />

r<br />

sin<br />

sin<br />

cos dr<br />

2<br />

f<br />

Fl 2 ks<br />

n n<br />

r<br />

r<br />

d<br />

2sinn<br />

cos<br />

2<br />

n<br />

r w<br />

M<br />

l<br />

1<br />

2<br />

d<br />

2<br />

f sin<br />

r<br />

cos<br />

2<br />

ks<br />

cos<br />

n n<br />

<br />

sin<br />

cos<br />

d 2<br />

1<br />

2<br />

n<br />

n<br />

<br />

<br />

dr<br />

r<br />

2<br />

r<br />

w<br />

2<br />

2<br />

(24)<br />

(25)<br />

113


CONCLUSION<br />

The idea <strong>of</strong> considering the lip as a series <strong>of</strong> elementary edges [3–9], which has been<br />

applied in the preceding works, does not take the mechanical reality <strong>of</strong> the cutting mechanism<br />

into account. Indeed, according to experimental observations, the chip is not fragmented<br />

along its width. For the cutting edges, the variation <strong>of</strong> the cutting parameters is significant,<br />

and cannot be neglected on an elementary cutting edge. Thus, the presented method is<br />

realistic and makes it possible to analyze the cutting process without any approximation that<br />

might introduce additional errors.<br />

LITERATURE<br />

1. K.F. Ehmann, S.G. Kapoor, R.E. Devor, I. Lazoglu, Machining process modeling: a<br />

review. Journal Manufacturing Science Engineering, 119, (1997): 655–663.<br />

2. S.K. Bera, A. Bhattacharyya, Mechanics <strong>of</strong> drilling process, Journal Inst. Engineering<br />

(India) ME 6 46 ,(11), (1966): 265–276.<br />

3. R.A. Williams, A theoretical and experimental study <strong>of</strong> the mechanics <strong>of</strong> the drilling<br />

process, PhD thesis, <strong>University</strong> <strong>of</strong> South Wales, 1968.<br />

4. E.J.A. Armarego, C.Y. Cheng, Drilling with rake face and conventional twist drills. i:<br />

Theoretical investigation, Int. J. Mach. Tool Des. Res. 12 (1972) 17.<br />

5. S. Wiriyacosol, E.J.A. Armarego, Thrust and torque prediction in drilling from a<br />

cutting mechanics approach, <strong>Annals</strong> <strong>of</strong> the CIRP, 28 (1), (1979) 87.<br />

6. A.R. Watson, Geometry <strong>of</strong> drill elements, Int. J. Mach. Tool Des. Res. 25 (3) (1985)<br />

209–227.<br />

7. A.R. Watson, Drilling model for cutting lip and chisel edge ad comparison <strong>of</strong><br />

experimental and predicted results. i—initial cutting lip model, Int. J. Mach. Tool Des.<br />

Res. 25 (4) (1985) 347–365.<br />

8. A.R. Watson, Drilling model for cutting lip and chisel edge ad comparison <strong>of</strong><br />

experimental and predicted results. ii—revised cutting lip model, Int. J. Mach. Tool<br />

Des. Res. 25 (4) (1985) 367–376.<br />

9. A.R. Watson, Drilling model for cutting lip and chisel edge ad comparison <strong>of</strong><br />

experimental and predicted results. iii—drilling model for chisel edge, Int. J. Mach.<br />

Tool Des. Res. 25 (4) (1985) 377–392.<br />

10. A.R. Watson, Drilling model for cutting lip and chisel edge and comparison <strong>of</strong><br />

experimental and predicted results. iv—drilling tests to determine chisel edge<br />

contribution to torque and thrust, Int. J. Mach. Tool Des. Res. 25 (4) (1985) 394–404.<br />

11. B.J. Griffiths, R.J. Grieve, Modeling complex force systems, part 1: The cutting and<br />

pad forces in deep drilling, Trans. ASME, J. Eng. Ind. 115 (1993) 169–176.<br />

12. B.J. Griffiths, R.J. Grieve, Modeling complex force systems, part 2: A decomposition<br />

<strong>of</strong> the pad forces in deep drilling, Trans. ASME, J. Eng. Ind. 115 (1993) 177–183.<br />

13. H.-T. Huang, Prediction <strong>of</strong> thrust and torque for multifacet drills (mfd), Trans. ASME,<br />

J. Eng. Ind. 116 (1994), 1–7.<br />

14. H.-T. Huang, Analysis <strong>of</strong> clearance and rake angles along cutting edge for multifacet<br />

drills (mfd), Trans. ASME, J. Eng. Ind. 116 (1994) 8–16.<br />

15. P.L.B. Oxley, Modeling machining processes with a view to their optimization,<br />

Robobotics and Computer Integrated Manufacturing 4 (1988), 103–119.<br />

114


16. J.A. Armarego, J.D. Wright, An analytical study <strong>of</strong> three point grinding methods for<br />

general purpose twist drills, <strong>Annals</strong> <strong>of</strong> the CIRP 29 (1) (1980), 5–10.<br />

Streszczenie: Model momentu i siły w procesie wiercenia. W artykule przedstawiono<br />

teoretyczny model do przewidywania siły skrawania i moment przy wierceniu. Metoda polega<br />

na wyznaczeniu rozkładu siły i momentu wzdłuż krawędzi wiertła. Do obliczeń zastosowano<br />

model ortogonalnego skrawania. Siłę i moment uzyskuje się w zależności od cech<br />

geometrycznych narzędzia, warunków skrawania i właściwości obrabianego materiału. W nie<br />

uwzględniono wpływu ścina wiertła.<br />

Corresponding author:<br />

Krzyszt<strong>of</strong> Szwajka<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong><br />

02-776 <strong>Warsaw</strong><br />

Nowoursynowska 159 str.<br />

kszwajka@poczta.onet.pl<br />

115


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 116-119<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Relationship between cutting speed and tool life observed for MDF milling<br />

process<br />

KAROL SZYMANOWSKI , JAROSŁAW GÓRSKI<br />

Wood Mechanical Processing Department, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

Abstract: Relationship between cutting speed and tool life observed for MDF milling process. In this article the<br />

effect <strong>of</strong> cutting speed on tool life was presented. During the experiments a single point tool (milling head) was<br />

used. According to the empirical data the “cutting speed – tool life” curve was determined.<br />

Keywords: milling, tool life, cutting speed<br />

INTRODUCTION<br />

The milling <strong>of</strong> MDF is a very <strong>of</strong>ten used in the wood industry, especially in furniture<br />

manufacturing, machining process. During manufacturing a high level <strong>of</strong> cutting performance<br />

and long life <strong>of</strong> cutting tools are the most important from practical point <strong>of</strong> view. Both above<br />

things (cutting performance and tool life) are closely related to cutting speed [Porankiewicz<br />

1993, Stefaniak 1970]. The basic aim <strong>of</strong> this paper is to analyze the relationship between<br />

cutting speed and tool life observed for MDF milling process.<br />

MATERIALS AND METHODS<br />

Experiments were made by means <strong>of</strong> the standard CNC milling centre (BUSELLATO<br />

JET 130). In the study the milling head from FABA company was used (Fig.1). Diameter <strong>of</strong><br />

milling head (i.e. cutting diameter) was 40mm. The milling head was single point tool.<br />

Cutting wedge was made <strong>of</strong> standard carbide - KCR08. The tool wedge angle was 76 degrees.<br />

During the experiments the grooving process was done. The depth <strong>of</strong> the groove was 6 mm<br />

and the length was 2800 mm (Fig.2). The tool wear was monitored using the VBmax<br />

indicator (maximum width <strong>of</strong> wear observed on clearance face <strong>of</strong> cutting edge). VBmax<br />

indicator was monitored by means <strong>of</strong> the workshop microscope (Mitutoyo TM-505). The<br />

arbitrarily adopted tool-life criterion was VBmax = 0,2 mm. The experiments were done<br />

using the five cutting speed and constant feed per revolution. Total range <strong>of</strong> cutting condition<br />

is specified in Tab.1. The relationship “cutting speed – tool life” was determined by means <strong>of</strong><br />

on the results <strong>of</strong> six tests (six cutting wedge were used).<br />

Tab.1 Milling parameters<br />

116


Fig.1 Milling cutter<br />

Fig.2 Grooves made in MDF particleboard<br />

RESULTS<br />

The basic results <strong>of</strong> the experiments are shown in Fig.3. This figure contains different<br />

tool wear curves which were observed for five different cutting speeds. It is very clear that the<br />

greater cutting speed the faster progress in tool wear. This observation is especially evident<br />

when the tool wear indicator (VBmax) was above 0,15 mm (Fig.3). These data were a base <strong>of</strong><br />

tool life determination. Fig.4 shows the relationship between cutting speed and tool life. The<br />

non-linear trend <strong>of</strong> above relationship (i.e. “cutting speed – tool life” curve) was determined.<br />

Fig. 3. Value <strong>of</strong> tool wear indicator (VBmax) as a function <strong>of</strong> time for different cutting speed<br />

117


Fig. 4. Relationship between cutting speed and tool life<br />

CONCLUSION<br />

The results <strong>of</strong> the study allow to formulate the following conclusion: the greater<br />

cutting speed <strong>of</strong> MDF milling the faster progress in tool wear. The non-linear trend <strong>of</strong> this<br />

relationship was observed.<br />

118


REFERENCES<br />

1. JEMIELNIAK K.,1998: Obróbka skrawaniem” Oficyna Wydawnicza Politechniki<br />

Warszawskiej”<br />

2. PORANKIEWICZ B.,1985: Wybrane problemy z narzędzi skrawających do obróbki<br />

drewna. Wydawnictwo Akademii Rolniczej w Poznaniu<br />

3. PORANKIEWICZ B., 2003: Tępienie się ostrzy i jakość przedmiotu obrabianego w<br />

skrawaniu płyt wiórowych. Roczniki Akademii Rolniczej w Poznaniu, Rozprawy<br />

Naukowe, zeszyt 341, Poznań.<br />

4. STEFANIAK W.,1970: Wpływ szybkości skrawania na tępienie się ostrzy pił tarczowych z<br />

nakładkami z węglików spiekanych przy piłowaniu płyt wiórowych. Folia For. Pol.<br />

B,9:66-77<br />

Streszczenie: Zależność między prędkością skrawania a trwałością narzędzia podczas<br />

frezowania płyt MDF. W artykule omówiono wpływ prędkości skrawania na trwałość<br />

narzędzi. Podczas eksperymentów wykorzystywano narzędzie jednoostrzowe (głowicę<br />

frezową). Na podstawie danych empirycznych wyznaczono krzywą odzwierciedlającą<br />

zależność między prędkością skrawania a trwałością narzędzia.<br />

Acknowledgement: This paper was prepared within the project” Machinability <strong>of</strong> wood<br />

materials”, which was financed by the Polish Ministry <strong>of</strong> Science and Higher Education<br />

(grant No. NN309007537).<br />

Corresponding authors:<br />

Karol Szymanowski<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong>,<br />

Wood Mechanical Processing Department,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: karol_szymanowski@sggw.pl<br />

Jarosław Górski<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong>,<br />

Wood Mechanical Processing Department,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: jaroslaw_gorski@sggw.pl<br />

119


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 120-123<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Relative machinability index <strong>of</strong> chipboard based on tool life testing<br />

KAROL SZYMANOWSKI, JAROSŁAW GÓRSKI<br />

Wood Mechanical Processing Department, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

Abstract: Relative machinability index <strong>of</strong> chipboard based on tool life. This article presents the experimental<br />

study <strong>of</strong> wood-based materials machinability. During the experiment two materials were machined: MDF (as a<br />

reference material) and raw chipboard (as a tested materials). The conventional, relative machinability index was<br />

determined. The effect <strong>of</strong> cutting speed was taking into account.<br />

Keywords: machinability, wood-based materials, tool life, cutting speed<br />

INTRODUCTION<br />

The machinability is a very specific technological feature <strong>of</strong> material which can be<br />

defined in a most simply way as a vulnerability to machining process [Górski, Podziewski,<br />

Szymanowski 2010]. According to Jemielniak [1998] or Dmochowski [1980] one <strong>of</strong> the most<br />

important (essential for engineering practice) criterion <strong>of</strong> machinability is tool life.<br />

The conventional machinability means that all experimental procedures must be<br />

realized in cutting conditions which are conventional, identical for each <strong>of</strong> the tested<br />

materials. Relative conventional machinability means that some reference material must be<br />

adopted. For this reference material 100% machinability index should be assumed. During<br />

comparative tests <strong>of</strong> the machinability <strong>of</strong> different materials it is possible to apply quite<br />

simple procedure. For example the relative machinability index <strong>of</strong> tested material X can be<br />

determined as follows [Górski, Podziewski, Szymanowski 2010]:<br />

M X = (T X /T S ) 100% (1)<br />

where:<br />

M X – calculated machinability index <strong>of</strong> material X,<br />

T X - tool life determined for the tested material X,<br />

T S - tool life determined for the reference (standard) material S.<br />

The aim <strong>of</strong> the paper is to determine the relative machinability index <strong>of</strong> raw chipboard.<br />

As a reference material the medium-density fibreboard (MDF) was adopted.<br />

MATERIALS AND METHODS<br />

During the experiment two materials were machined: MDF (as a reference material)<br />

and raw chipboard (as a tested materials). Machinability index <strong>of</strong> MDF (as a reference<br />

material) was assumed as 100%. Both boards had a thickness <strong>of</strong> 18mm. Machining was done<br />

by means <strong>of</strong> standard CNC machine (BUSELLATO JET 130). The tool was milling head<br />

(diameter 40mm) supplied by FABA company. There was one knife made <strong>of</strong> carbide (type <strong>of</strong><br />

carbide was KCR08) in the tool. The machining operation was grooving (the depth <strong>of</strong> the<br />

groove was 6 mm). Research was conducted with the use <strong>of</strong> the five speeds <strong>of</strong> the spindle and<br />

a constant feed per revolution (Tab.1). To determine the degree <strong>of</strong> tool wear, the VBmax<br />

indicator (maximum width <strong>of</strong> wear observed on clearance face <strong>of</strong> cutting edge - Fig.1) was<br />

120


used. The criterion <strong>of</strong> blunting was adopted at the level <strong>of</strong> 0,2 mm. VBmax indicator was<br />

observed by means <strong>of</strong> the workshop microscope (Mitutoyo TM-505).<br />

The relationship between tool life and cutting speed was taken into account. So the<br />

classic Taylor formula was used:<br />

T = C (V) k (2)<br />

where:<br />

T – tool life [min],<br />

V – cutting speed [m/s],<br />

k, C – constants.<br />

Tab.1 Milling parameters used in the study<br />

Fig.1. General view <strong>of</strong> tool wear indicator - VB max<br />

RESULTS<br />

The basic results <strong>of</strong> experiments are shown in Fig. 2. It is worth noting that this is a<br />

double logarithmic scale chart. Trends observed for both material are analogical (the higher<br />

level <strong>of</strong> the cutting speed the lower tool durability), strong linear (coefficients <strong>of</strong><br />

determination were equal 0,98 and 0,92) and almost parallel. However it is very clear that tool<br />

121


life observed for MDF is longer than for raw chipboard. On the base <strong>of</strong> experimental results<br />

the Taylor formulas for both materials were determined:<br />

T MDF = 515000 (V) -2,38 (3)<br />

T X = 4550 (V) -2,14 (4)<br />

where:<br />

T MDF – tool life observed for MDF [min]<br />

T X – tool life observed for raw chipboard [min]<br />

V – cutting speed [m/s]<br />

Consequently the relative machinability index <strong>of</strong> raw chipboard can be determined,<br />

according to formula (1), as follows:<br />

M X = (T X /T MDF ) 100 [%] = 0,88 (V) 0,24 [%] (5)<br />

Above relationship can be illustrated by means <strong>of</strong> Fig.3. In the cutting speed range<br />

which was taking into account (20,9 ÷ 37,7 m/s) the relative machinability index <strong>of</strong> raw<br />

chipboard is between 1,8 % and 2,1 %. Generally speaking the average value <strong>of</strong> the relative<br />

machinability index <strong>of</strong> raw chipboard was about 2 %.<br />

Fig.2. Double logarithmic scale chart which illustrates relationship between cutting speed (V [m/s])<br />

and tool life (T [min])<br />

Fig.3. Relationship between cutting speed (V [m/s]) and relative machinability index <strong>of</strong> chipboard<br />

(Mx [%])<br />

122


CONCLUSIONS<br />

1. Relationships between tool life and cutting speed observed for the MDF and for raw<br />

chipboard are analogical. The classic Taylor formula turned out to be enough useful to<br />

describe it.<br />

2. However the tool life observed for MDF was longer (about 50 times) than for raw<br />

chipboard. So the relative machinability index <strong>of</strong> raw chipboard based on tool life was<br />

about 2 %.<br />

REFERENCES<br />

1. GÓRSKI J., PODZIEWSKI P., SZYMANOWSKI K.: 2010: Fundamentals <strong>of</strong><br />

experimental studies <strong>of</strong> wood and wood based materials machinability. Wood machining<br />

and processing- product and tooling quality development. <strong>SGGW</strong><br />

2. DMOCHOWSKI J., 1980: Obróbka skrawaniem i obrabiarki. PWN<br />

3. JEMIELNIAK K.,1998: Obróbka skrawaniem” Oficyna Wydawnicza Politechniki<br />

Warszawskiej”<br />

Streszczenie: Względny wskaźnik skrawalności płyty wiórowej oparty na badaniach trwałości<br />

narzędzia. W artykule przedstawiono badania dotyczące skrawalności materiałów<br />

drewnopochodnych. W trakcie eksperymentu skrawano dwa materiały: MDF (jako materiał<br />

referencyjny) i surową płytę wiórową (jako materiał badany). Ustalono konwencjonalny,<br />

względny wskaźnik skrawalności. Wpływ prędkości skrawania na trwałość narzędzia<br />

posłużył do określenia wskaźnika.<br />

Acknowledgement: This paper was prepared within the project” Machinability <strong>of</strong> wood<br />

materials”, which was financed by the Polish Ministry <strong>of</strong> Science and Higher Education (No.<br />

NN309007537 grant).<br />

Corresponding author:<br />

Karol Szymanowski<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong>,<br />

Wood Mechanical Processing Department,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: karol_szymanowski@sggw.pl<br />

123


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 124-128<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Comparative wear analysis <strong>of</strong> modified cutters during processing <strong>of</strong> milling<br />

<strong>of</strong> selected wood-based materials<br />

WALDEMAR SZYMAŃSKI 1 , ADAM GILEWICZ 2 , GRZEGORZ PINKOWSKI 1 , ANDRZEJ<br />

CZYŻNIEWSKI 2<br />

1 Department <strong>of</strong> Woodworking Machinery and Basis <strong>of</strong> Machine Construction, Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

2 Institute <strong>of</strong> Mechatronics, Nanotechnology & Vacuum Technique, Koszalin <strong>University</strong> <strong>of</strong> Technology<br />

Abstract: Comparative wear analysis <strong>of</strong> modified cutters during processing <strong>of</strong> milling <strong>of</strong> selected wood-based<br />

materials. This study presents comparative investigations <strong>of</strong> durability <strong>of</strong> cutters covered with different variants<br />

<strong>of</strong> antiwear coatings. The impact <strong>of</strong> hard coatings spread on faces <strong>of</strong> cutters on the wear <strong>of</strong> cutting edges during<br />

the process <strong>of</strong> milling <strong>of</strong> chipboards and MDFs was investigated. Every time, the wear <strong>of</strong> the cutting edge caused<br />

by milling chipboards and MDFs was determined in the area <strong>of</strong> the same cutter utilising the entire length <strong>of</strong> the<br />

main milling edge which guaranteed the same characteristics <strong>of</strong> the applied coating. The edge wear surface area<br />

was measured using, for this purpose, a surface analyser. It was established that milling chip boards and MDFs<br />

<strong>of</strong> similar mean density using cutters made from high-speed steel covered with antiwear coatings <strong>of</strong> different<br />

characteristics caused, for each <strong>of</strong> the examined cutting edges, at least over 50 times greater wear during<br />

chipboard milling. The character <strong>of</strong> the obtained wear curves makes it possible to assume that the applied milling<br />

method will allow initial assessment <strong>of</strong> edge durability, especially in the case <strong>of</strong> MDF and will make it possible,<br />

on this basis, to plan the timetable <strong>of</strong> investigations.<br />

Keywords: antiwear coatings, milling, cutting edge wear, chipboard, MDF<br />

INTRODUCTION<br />

At the present time, in the case <strong>of</strong> furniture industry, mainly such furniture board<br />

materials as chipboards and MDFs are used to manufacture constructions <strong>of</strong> furniture bodies.<br />

Elements exerting a decisive impact on both efficiency and quality <strong>of</strong> furniture body<br />

production include all factors from the so called WM/PO/T (woodworking machine –<br />

processed object - tool) system. The choice <strong>of</strong> the constituent elements <strong>of</strong> this system is<br />

a resultant <strong>of</strong> the production technology advancement. The factor that exerts a decisive impact<br />

on processing results is the condition and durability <strong>of</strong> the cutting edge. Many processing<br />

operations are carried out employing heads <strong>of</strong> different mounting systems <strong>of</strong> milling cutters.<br />

Cutters are most frequently manufactured from such materials <strong>of</strong> high-speed steel (HSS) and<br />

cemented carbide (HM). These materials are very popular and are characterised by defined<br />

possibilities regarding exploitation durability. Covering cutters with various antiwear coatings<br />

aims at increasing durability <strong>of</strong> cutter edges as well as improvement <strong>of</strong> the functional values<br />

regarding better milling results. Investigations in this field have been carried out by<br />

researchers for many years [3-5, 7].<br />

Klimczyk et al. [2] reported that among possible ways <strong>of</strong> modification <strong>of</strong> composite<br />

coatings are multilayers composed <strong>of</strong> two or more layers manufactured from various materials<br />

and added that, in recent years, the interest in production <strong>of</strong> multilayers based on chromium<br />

nitride increased markedly. In their publication, Gilewicz et al. [1] concluded that tools with<br />

CrCN/CrN multilayer coatings improved the quality <strong>of</strong> the processed wood surface in<br />

comparison with cutters without coatings, while Szymański et al. [6], in their article, maintain<br />

that covering tools with hard antiwear multilayer CrCN/CrN-type coatings improves cutting<br />

edge durability during pinewood milling.<br />

An important problem associated with investigations on durability <strong>of</strong> cutting edges in<br />

laboratory conditions is their time- and material consumption. Within the framework <strong>of</strong> the<br />

presented experiments, an attempt was made to accelerate the cycle <strong>of</strong> the cutting edge wear<br />

using HSS cutters covered with selected variants <strong>of</strong> composite coatings to mill chipboards and<br />

124


MDFs and to obtain data regarding possibilities <strong>of</strong> utilisation <strong>of</strong> this kind <strong>of</strong> cutters for milling<br />

selected wood-based materials.<br />

The objective <strong>of</strong> investigations was to compare durability <strong>of</strong> cutting edges <strong>of</strong> cutters<br />

for milling heads used for milling chipboards and MDFs. The experimental cutters were made<br />

from high-speed steel (HSS) with edges modified with four kinds <strong>of</strong> antiwear coatings <strong>of</strong><br />

varying architecture.<br />

RESEARCH METHODOLOGY<br />

Investigations were performed on a bottom-spindle woodworking machine (Felder).<br />

Prior to the initiation <strong>of</strong> investigations, geometric and static accuracy <strong>of</strong> the woodworking<br />

machine was checked. During milling, the local device for chip removal was applied.<br />

Investigations were conducted using 40x30x3 mm cutters (FABA), <strong>of</strong> 45 o tool angle,<br />

manufactured from high-speed steel SW 18 onto which special antiwear coatings were<br />

applied. Cutters were mounted in a three-edge, cylinder mill head by means <strong>of</strong> clips.<br />

A 16 mm thick MDF and a three-layer 12 mm thick chipboard were used in the<br />

performed experiments. Milling was carried out on specially prepared board panels 250 mm<br />

wide and 2 m long. Mean densities <strong>of</strong> experimental boards were as follows: MDF - ~740<br />

kg/m 3 and chipboard - ~785 kg/m 3 .<br />

The designations <strong>of</strong> the experimental cutters with four variants <strong>of</strong> antiwear coatings<br />

were as follows: C1 cutter – a Cr 2 N + CrN monolayer, C2 cutter – a CrN/CrN + TiAlN/TiAlN<br />

multilayer, DLC cutter – amorphous carbon and W-DLC cutter – a nanocomposite coating.<br />

The antiwear coatings were developed and spread on cutters at the Centre <strong>of</strong> Vacuous-Plasma<br />

Technology <strong>of</strong> the Institute <strong>of</strong> Mechatronics, Nanotechnology & Vacuum Technique <strong>of</strong><br />

Koszalin <strong>University</strong> <strong>of</strong> Technology.<br />

Narrow planes <strong>of</strong> both medium densuty and chip boards were milled with milling<br />

heights <strong>of</strong> H = 16 mm in the case <strong>of</strong> MDF and H = 12 mm <strong>of</strong> chipboard. The remaining<br />

parameters were as follow: thickness <strong>of</strong> the milled layer h = 1 mm, spindle rotational speed -<br />

n = 6000 min -1 , feed speed - v f = 6.3 m · min -1 (three-rolled Felder feed device was applied),<br />

milling speed - v c = 35.8 m · s -1 and feed per cutting edge - p z = 1.05 mm.<br />

Milling investigations on both the MDF and chip boards were conducted using the<br />

same cutters utilising optimally the entire length <strong>of</strong> the upper milling edge. This research<br />

approach allowed unequivocal comparative reference to the characteristics and architecture <strong>of</strong><br />

the applied antiwear coatings.<br />

Cutting edge wear measurements were carried out on a modernised surface analyser<br />

ME10 (Carl Zeiss Jena) workstation. Utilisation <strong>of</strong> this pr<strong>of</strong>ilograph made it possible to obtain<br />

high measurement density on the entire area <strong>of</strong> the cutting edge. A special measuring stylus <strong>of</strong><br />

25 µm rounding radius and 3 mm length <strong>of</strong> the measuring edge as well as a µDAQ-Lite<br />

measuring module were employed which were coupled with a PC and special s<strong>of</strong>tware.<br />

Cutters were mounted in a repeatable manner in a specially designed grip. The registered wear<br />

pr<strong>of</strong>iles were recorded as ASCII files. The employed s<strong>of</strong>tware allowed comparison <strong>of</strong><br />

diagrams from different stages <strong>of</strong> investigations and calculation <strong>of</strong> areas <strong>of</strong> the cutting edges.<br />

RESULTS AND DISCUSSION<br />

Table 1 presents types and characteristics <strong>of</strong> coatings applied onto cutting edges <strong>of</strong><br />

cutters used in the described investigations.<br />

125


Table 1. Types and characteristics <strong>of</strong> antiwear coatings used in experiments<br />

Cutter C1 C2 DLC W-DLC<br />

Type <strong>of</strong> coating monolayer multilayer amorphous nanocomposite<br />

Coating composition Cr 2 N+CrN CrN/CrN+TiAlN/TiAlN<br />

amorphous<br />

carbon<br />

Nanocrystalline separations <strong>of</strong><br />

wolfram carbides (WC)<br />

in amorphous matrix <strong>of</strong><br />

hydrogenated carbon (a - C : H)<br />

Coating thickness [µm] 2.38 3.43 1.8 2.9<br />

Coating hardness[GPa] 24 18 41 19.3<br />

Surface roughness Ra [µm] 0.1 0.33 0.2 0.06<br />

Figure 1 shows calotest friction track <strong>of</strong> the selected C1 and C2 coatings <strong>of</strong> applied<br />

onto cutters used in experiments.<br />

Fig. 1. Calotest friction track <strong>of</strong> the C1 and C2 coatings<br />

The diagram (Fig. 2) presents research results <strong>of</strong> cutters cutting edge wear covered<br />

with different combinations <strong>of</strong> antiwear coatings applied in the discussed experiments<br />

depending on the milling distance in the course <strong>of</strong> milling <strong>of</strong> MDF and chip boards.<br />

126


Fig. 2. Dependence <strong>of</strong> the cutting edge area in the milling distance function for cutters with different architecture<br />

<strong>of</strong> antiwear coatings during milling <strong>of</strong> MDF and chipboard<br />

The presented diagram (Fig. 2) shows a distinctly greater wear <strong>of</strong> all the examined<br />

cutting edges from high-speed steel covered with different antiwear coatings in the course <strong>of</strong><br />

milling <strong>of</strong> the experimental chipboard than <strong>of</strong> the MDF. Both the chipboard as well as the<br />

MDF were milled using the same cutting edge utilising the entire length <strong>of</strong> the main milling<br />

edge (Fig. 3). The observed wear areas <strong>of</strong> the cutting edges show that, in the case <strong>of</strong><br />

chipboard processing, the wear <strong>of</strong> each <strong>of</strong> the examined cutting edges was distinctly greater<br />

(at least by more than 50 times) in comparison with the milling <strong>of</strong> the MDF. The performed<br />

analysis <strong>of</strong> edge durability (Fig. 2) makes it possible to conclude that the best results were<br />

obtained for the cutting edge <strong>of</strong> the W-DLC cutter with the nanocomposite coating and for the<br />

cutting edge <strong>of</strong> the DLC cutter with the amorphous coating, both in the course <strong>of</strong> MDF and<br />

chipboard milling.<br />

a<br />

b<br />

c<br />

Fig. 3. Wear images <strong>of</strong> cutting edges <strong>of</strong> the DLC cutter: left side – chipboard (5 m); right side – MDF (50 m); a –<br />

wear pr<strong>of</strong>ilogram, b – cutting edge <strong>of</strong> a cutter, c – general view <strong>of</strong> the cutter<br />

CONCLUSIONS<br />

The milling <strong>of</strong> chipboards and MDF <strong>of</strong> similar mean densities with cutting edges <strong>of</strong><br />

high-speed steel covered with antiwear coatings <strong>of</strong> different characteristics and architecture<br />

caused, in the case <strong>of</strong> each <strong>of</strong> the examined edges, over 50 times greater wear in the course <strong>of</strong><br />

chipboard milling.<br />

The comparison <strong>of</strong> cutting edges <strong>of</strong> the experimental cutters made <strong>of</strong> high-speed steel<br />

and modified using four different variants <strong>of</strong> antiwear coatings used in this investigation<br />

revealed that the W-DLC cutter with a nanocomposite coating was characterised by the best<br />

durability during machining <strong>of</strong> the chipboard and MDF.<br />

The character <strong>of</strong> the obtained individual wear curves made it possible to conclude that<br />

the applied method <strong>of</strong> milling <strong>of</strong> wood-based materials using cutting edges <strong>of</strong> high speed steel<br />

covered with antiwear coatings <strong>of</strong> different structure will accelerate, especially in the case <strong>of</strong><br />

MDF, the initial assessment <strong>of</strong> durability <strong>of</strong> cutting edges and facilitate planning <strong>of</strong> research<br />

timetable on this basis.<br />

127


ACKNOWLEDGEMENT<br />

Investigations were carried out within the project: “Hybrid technologies for<br />

woodworking tools modifications” co-financed by the European Regional Development Fund<br />

under the Operational Programme Innovative Economy”.<br />

REFERENCES<br />

1. Gilewicz A., Warcholiński B., Mysliński P., Szymański W. (2010): Anti-wear<br />

multilayer coatings based on chromium nitride for wood machining tools, Wear<br />

270/2010: 32 –38.<br />

2. Klimczyk P., Kowaluk G., Szymański W., Beer P., Zbieć M. (2008): Nowe<br />

materiały do produkcji narzędzi stosowanych do obróbki drewna i materiałów<br />

drewnopochodnych. Przemysł drzewny. Nr 8/2008: 45 – 47.<br />

3. Novueau C., Jorand E., Decès-Petit C., Labidi C., Djouadi A. A.(2005): Influence <strong>of</strong><br />

carbide substrates on tribological properties <strong>of</strong> chromium nitride coatings:<br />

application to wood machining. Wear 258, 157-165.<br />

4. Polcar T., Cvrček L., Široký P., Novák R. (2005): Tribological characteristics <strong>of</strong><br />

Cr(CN) coatings at elevated temperature. Vacuum 80, 113-116.<br />

5. Seok J. W., Jadeed N. M., Lin R. Y. (2001): Sputter deposited nanocrystalline Cr<br />

and CrN coatings on steels. Surf. Coat. Technol. 138, 14-22.<br />

6. Szymański W., Gilewicz A., Pinkowski G., Beer P. (2010): Durability <strong>of</strong> blades<br />

covered by multilayer anti-wear coatings during wood milling Ann. WULS -<br />

<strong>SGGW</strong>, Forestry and Wood Technology, 68/2009: 353 – 357.<br />

7. Warcholiński B., Gilewicz A., Kukliński Z., Myśliński P. (2009): Arc-evaporated<br />

CrN and CrCN coatings. Vacuum 83, 715-718.<br />

Streszczenie: Analiza porównawcza zużycia ostrzy modyfikowanych podczas obróbki<br />

wybranych tworzyw drzewnych. W pracy przedstawiono badania porównawcze trwałości<br />

ostrzy pokrytych różnymi wariantami powłok przeciwzużyciowych. Badano wpływ twardych<br />

powłok nakładanych na powierzchnie natarcia noży, na zużycie ostrzy, w czasie frezowania<br />

płyty wiórowej i płyty MDF. Zużycie ostrza, wynikające z frezowania płyty wiórowej i płyty<br />

MDF, określano każdorazowo w obszarze tego samego noża, wykorzystując całą długość<br />

głównej krawędzi skrawającej, co gwarantowało taką samą charakterystykę nałożonej<br />

powłoki. Mierzono pole powierzchni zużycia ostrza z zastosowaniem pr<strong>of</strong>ilografometru.<br />

Ustalono, że frezowanie płyty wiórowej i płyty MDF, o przybliżonej średniej gęstości,<br />

nożami ze stali szybkotnącej, z naniesionymi powłokami przeciwzużyciowymi, o różnej<br />

charakterystyce, powoduje, dla każdego badanego ostrza, co najmniej ponad 50 krotnie<br />

większe zużycie podczas skrawania płyty wiórowej. Charakter otrzymanych krzywych<br />

zużycia, pozwala sądzić, że zastosowana metoda frezowania umożliwi, w przyspieszony<br />

sposób, szczególnie z zastosowaniem płyty MDF, ocenić wstępną trwałość ostrzy i na tej<br />

podstawie planować harmonogram badań.<br />

Corresponding authors:<br />

Waldemar Szymański, Grzegorz Pinkowski<br />

Faculty <strong>of</strong> Wood Technology,<br />

Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Al. Wojska Polskiego 28, Poznań 60-627,<br />

e-mail: wszymanski@up.poznan.pl,<br />

Adam Gilewicz, Andrzej Czyżniewski<br />

Institute <strong>of</strong> Mechatronics, Nanotechnology &<br />

Vacuum Technique,<br />

Koszalin <strong>University</strong> <strong>of</strong> Technology<br />

Racławicka 15-17 75-620 Koszalin,<br />

e-mail: adam.gilewicz@tu.koszalin.pl<br />

128


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 129-133<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Selcted physical properties <strong>of</strong> furfurylated oil palm wood (Elaeis guineensis<br />

Jacq.)<br />

KAROLINA SZYMONA A , ANDRZEJ CICHY A , PIOTR BORYSIUK A , PAIK SAN H’NG B ,<br />

MARIUSZ MAMIŃSKI A, *<br />

a Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

b Faculty <strong>of</strong> Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia<br />

Abstract: Selected physical properties <strong>of</strong> furfurylated oil palm wood (Elaeis guineensis Jacq.) Oil palm<br />

wood (Elaeis guineensis Jacq.) was subjected to furfurylation in acidic conditions. The furfurylated<br />

speciemens exhibited markedly increased density (up to 135%), hydrophobicity and intense darkening. It<br />

was shown that the furfurylation allowed for improving physical properties <strong>of</strong> the material which<br />

potentially extends the area <strong>of</strong> its application.<br />

Keywords: Elaeis guineensis, furfurylation, oil palm<br />

INTRODUCTION<br />

In response to increasing cost <strong>of</strong> solid wood there is a need to look for alternative<br />

sources <strong>of</strong> raw materials. Malaysia is the biggest producer <strong>of</strong> oil palm wood in the world.<br />

Traditionally oil palm trunks were burnt before later replanting. However, it created<br />

environment issues, so the government <strong>of</strong> Malaysia banned that procedure. It takes five years<br />

to complete decomposition <strong>of</strong> the trunks, which are usually just left on the fields. Thus, oil<br />

palm trunks are just wasted. The area <strong>of</strong> plantations in 2005 reached 4 million hectares,<br />

although in 2010 it was 4.5 million hectares. Having in mind that each hectare can produce 54<br />

to 58 m 3 oil palm trunks, overall production is ranging from 10.8 to 11.6 million m 3 (Bakar et<br />

al. 2006). Facing such a feedstock <strong>of</strong> raw material seems promising and tempting, but<br />

utilization <strong>of</strong> the palm is limited mainly by its morphology and weak mechanical performance.<br />

Oil palm is monocotyledon, so its properties are highly different from those <strong>of</strong> wood descent<br />

from other species (Bakar et al. 2008). Oil palm wood has no secondary thickening, primary<br />

vascular bundles are built-in parenchymatous tissue (Fig. 1). Therefore, the density within the<br />

same species and even within the same trunk may range from 140 to 600 kg/m 3 (Erwinsyah<br />

2008, Chai 2010). As a generally weak material, in order to become a valuable alternative<br />

resource for wood industry and it needs to be modified, so that its mechanical characteristics<br />

be improved.<br />

Fig. 1. Image <strong>of</strong> oil palm wood cross-sections. A – tangential, B – transversal.<br />

129


That is why a proper treatment seems to be a crucial approach to efficient processing<br />

<strong>of</strong> oil palm wood and finding new reinforcing methods is a challenge. So far, approaches<br />

involving natural rubber and polypropylene impregnations have been described by Siburian et<br />

al (2005). Also, phenol-formaldehyde impregnations were performed by Bakar et al. (2008).<br />

Chai (2010) investigated three-layer engineered boards with oil palm wood impregnated with<br />

urea-formaldehyde resin as core <strong>of</strong> the sandwich-type composite.<br />

The results showed that impregnation might be an efficient approach for improvement<br />

<strong>of</strong> mechanical properties <strong>of</strong> oil palm wood and the obtained materials would be utilized in<br />

new areas. Thus, this work regards the effect <strong>of</strong> furfurylation <strong>of</strong> oil palm wood on some<br />

physical properties <strong>of</strong> the material.<br />

MATERIALS AND METHODS<br />

Treatments <strong>of</strong> oil palm wood with furfuryl alcohol (FA) was carried out according to<br />

the modified procedure previously described by Hadi et al. (2005). 90% or 45% aqueous<br />

solutions <strong>of</strong> furfuryl alcohol with 1.5% citric acid as a catalyst were used. Before<br />

modification samples were oven dried for 24 hours at 103ºC. Then weights and sizes <strong>of</strong> the<br />

samples were measured. Impregnations in both 90% FA or 45% FA were carried out in<br />

vacuum <strong>of</strong> 0.01 MPa for 45 minutes. Afterwards samples were wrapped with aluminum foil<br />

and dried at 103ºC for 48 hours. Weights and sizes <strong>of</strong> the samples were measured after drying.<br />

After impregnation, the modified and unmodified (reference) samples <strong>of</strong> oil palm wood were<br />

subjected to water wetting test, measurements <strong>of</strong> color change and weight percent gain.<br />

Total color change (ΔE) <strong>of</strong> the samples was determined according to EN 7224 using the<br />

Euclidean distance equation:<br />

E<br />

<br />

L<br />

2<br />

a<br />

2<br />

b<br />

2<br />

where: ΔE – denotes total color change, ΔL – denotes sample lightening/darkening, Δa –<br />

denotes red/green shift, Δb – denotes yellow/blue shift.<br />

Weight percent gain (WPG) was calculated from the relation:<br />

WPG% = (m 1 – m 0 ) / m 0 * 100%<br />

where: m 0 - initial oven-dry weight <strong>of</strong> a sample (g), m 1 – oven-dry weight <strong>of</strong> a sample after<br />

treatment.<br />

The sessile droplet method was used for the contact angle measurements. The average<br />

contact angles as well as spreading curves are means <strong>of</strong> 15 measurements.<br />

RESULTS AND DISCUSSION<br />

When 45%- and 90%-FA series are compared, it is obvious that density and weight<br />

gain are correlated with FA concentration in impregnating solution. 45%-FA solution is<br />

almost as effective as 90%-FA. As the data in Table 1 indicate, the WPG after 45%-FA<br />

treatment reached 100% and 201% after 90%-FA treatment. Subsequently, furfurylation<br />

resulted in significant increase in the density <strong>of</strong> the modified samples – 79% for 45%-FA and<br />

135% for 90%-FA. The phenomenon can be explained by high porosity <strong>of</strong> oil palm wood and<br />

large space for FA for bulk polymerization.<br />

Measurements <strong>of</strong> the contact angle (θ) showed that water wetting was markedly<br />

reduced. The observation can be explained by the bulk polymerization <strong>of</strong> FA within wood<br />

pores. Initial θ=38º came from high hydrophilicity <strong>of</strong> the reference material, while contact<br />

130


angle for the modified series increased to 89º and 96º respectively for 45%- and 90%-FA<br />

treated series (Fig. 2).<br />

Table 1. Selected physical properties <strong>of</strong> the unmodified and FA-modified oil palm wood<br />

Modification<br />

unmodified 45%-FA 90%-FA<br />

Density (kg/m 3 ) 290 520 683<br />

WPG (%) - 100 201<br />

Contact angle (º) 38 89 96<br />

Fig. 2. Water droplets onto the reference and modified material 60 s after deposition<br />

The color changes <strong>of</strong> the samples before and after the modifications were described by<br />

total color change (ΔE) value. An intense darkening <strong>of</strong> the material was observed (Fig. 3).<br />

The measured L values for the unmodified, 45%-FA and 90%-FA series were 68.3, 24.7 and<br />

24.0, respectively. Since L=0 is for black and L=100 is for white, it is obvious that the lower<br />

L value, the darker color is observed. The calculated values <strong>of</strong> ΔE were 52.6 and 45.9,<br />

respectively for the 45%- and 90%-FA series. The observed color change is nothing new,<br />

since furfurylated material always darkens regardless <strong>of</strong> the species. It is also worth noting<br />

that the final darkening <strong>of</strong> oil palm wood depends on the density <strong>of</strong> the material and on the<br />

retention <strong>of</strong> FA. The lower density, the higher retention and, in consequence, more intense<br />

darkening.<br />

Fig. 3. Color change after treatments: A – reference (unmodified), B – 45%-FA, C – 90%-FA.<br />

(Constant density <strong>of</strong> the material)<br />

131


CONCLUSIONS<br />

1. Treatment <strong>of</strong> oil palm wood with aqueous furfuryl alcohol in acidic solution is an easy way<br />

for chemical modification and provides high gain in material density.<br />

2. Reduced water contact angle indicated more hydrophilic character developed by the<br />

furfuryl alcohol treatment.<br />

3. The modification caused intense darkening <strong>of</strong> the oil palm wood.<br />

5. Furfuryl alcohol modification can be a way to improve the water-resistance <strong>of</strong> oil palm<br />

wood, however further investigations <strong>of</strong> the mechanical parameters are necessary.<br />

REFERENCES<br />

1. BAKAR E.S., FAUZI F., IMAN W., ZAIDON A. (2006) Polygon sawing: an<br />

optimum sawing pattern for oil palm stems. J. Biol. Sci. 64: 744–749<br />

2. BAKAR E.D., HAMAMI M.S., H’NG P.S. (2008) In: M.S. Hamami and T. Nobuchi<br />

(eds.). Anatomical characteristics and utilization <strong>of</strong> oil palm wood. In: The formation<br />

<strong>of</strong> wood in tropical forest trees: A challenge from the preservative <strong>of</strong> functional wood<br />

anatomy. Serdang: Universiti Putra Malaysia. pp. 161–178<br />

3. CHAI L.Y. (2010) M.Sc. thesis. Development <strong>of</strong> three-layer engineered board from<br />

oil palm wood trunk. Universiti Putra Malaysia<br />

4. EN 7224-3:2003. Paints and varnishes – Colorimetry Part 3: Calculation <strong>of</strong> colour<br />

differences<br />

5. ERWINSYAH V. (2008) Ph.D. thesis. Improvement <strong>of</strong> oil palm wood properties using<br />

bioresin. TUD, Dresden, Germany<br />

6. HADI Y.S., WESTIN M., RASYID E. (2005) Resistance <strong>of</strong> furfurylated wood to<br />

termite attack. Forest Prod. J. 55: 85–88<br />

7. SIBURIAN R., SIANTURI H.L., AHMAD F. (2005) Impregnasi kayu kalepa sawit<br />

dengan poliblen polipropilena / karet alam dan asam akrilat. Jurnal Natur Indonesia 8:<br />

48–53<br />

132


Streszczenie: Wybrane właściwości fizyczne furfurylowanego drewna palmy oleistej<br />

(Elaeis guineensis Jacq.) Drewno palmy oleistej zostało poddane modyfikacji alkoholem<br />

furfurylowym w środowisku kwaśnym. W wyniku modyfikacji uzyskano znaczący<br />

wzrost gęstości (do 135%), zwiększenie hydr<strong>of</strong>obowości oraz zmianę barwy na<br />

ciemniejszą. Wykazano, że furfurylacja pozwala na poprawę właściwości fizycznych<br />

drewna, co potencjalnie może poszerzyć obszar jego zastosowań.<br />

Corresponding authors:<br />

Karolina Szymona<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

Mariusz Mamiński<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: mariusz_maminski@sggw.pl<br />

H’ng Paik San<br />

Faculty <strong>of</strong> Forestry,<br />

Universiti Putra Malaysia<br />

43400 UPM Serdang,<br />

Selangor, Malaysia<br />

e-mail: ngpaiksan@gmail.com<br />

133


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 134-138<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

ОЦЕНКА ВЛИЯНИЯ ТЕРМОВЛАГОПРОВОДНОСТИ НА ОБЩИЙ<br />

ВЛАГОПЕРЕНОС В ДРЕВЕСИНЕ ПРИ ОСЦИЛИРУЮЩЕЙ СУШКЕ.<br />

МАРИНА ТЕПНАДЗЕ<br />

Кафедра технологии древесины грузинского технического университета.<br />

Abstract: The general considering a system <strong>of</strong> moisture conductive elements in the wood-pulp and forms <strong>of</strong><br />

moisture shifting are considered. The fact <strong>of</strong> why the shifting <strong>of</strong> the heating and cooling periods <strong>of</strong> the drying<br />

agent in transient condition together with the moisture gradient causes activation <strong>of</strong> the temperature gradient<br />

resulting in intense transference <strong>of</strong> moisture from the inner layers <strong>of</strong> the wood-pulp towards the surface.<br />

The proposed mechanism <strong>of</strong> moisture transfer in wood is fully acknowledged in the laws governing changes in<br />

temperature gradient ratio as a function <strong>of</strong> temperature and humid condizions <strong>of</strong> the body.<br />

Keywords: Wood drying, heating and cooling periods, temperature gradient, moisture gradient, in intense<br />

transference.<br />

При низкотемпературном процессе сушки древесины существует такой<br />

недостаток сушки, как продвижение влаги к поверхности только за счет градиента<br />

влагосодержания. Плотность потока влаги зависит от коэффициента влагопроводности<br />

и перепада влагосодержания q f ( a',<br />

U<br />

) ; увеличение коэффициента<br />

влагопроводности происходит с повышением температуры агента сушки, а увеличение<br />

перепада гигроскопического влагосодержания достигается снижением степени<br />

насыщенности среды. Но при построении стандартных режимов температуру<br />

принимали уже максимально допустимой, превышение которой отразится на физикомеханических<br />

свойствах древесины, а снижение степени насыщенности влечет за собой<br />

увеличение пропорциональной ей величины внутренних напряжений, вызывающих<br />

нарушение целостности материала.<br />

Для построения рациональных режимов осцилирующих сушки древесины в<br />

гелиосушилках необходимо учитывать постоянное колебание температуры среды в<br />

течение всего процесса сушки. Надо полагать, что чередование нагрева и охлаждения<br />

агента сушки вызовет изменение температуры самого пиломатериала и создание по его<br />

сечению градиента температуры.<br />

О механизме движения влаги в древесине под действием градиента влажности в<br />

изотермических условиях различными исследователями выдвинуто много теорий и<br />

гипотез, которые учитывают возможность различных форм движения влаги в<br />

материале, а вопросы, связанные с особенностями переноса пара и жидкости в<br />

древесине в осцилирующих условиях при одновременном действии градиентов<br />

влажности и температуры, требуют дополнительных исследований. Необходимость<br />

последних объясняется тем, что закономерности диффузионного и капиллярного<br />

перемещения влаги в древесине могут быть эффективно использованы при построении<br />

режимов для осцилирующей сушки пиломатериалов, в которых учитывалось бы<br />

преобладающее влияние одного из видов переноса.<br />

Как известно, влагопроводящие элементы в древесине при движении влаги в ней<br />

поперек волокон можно рассматривать состоящими из систем:<br />

1. Система микрокапилляров в клеточных оболочках. Влага передвигается в виде<br />

жидкости и пара.<br />

134


2. Система микрокапилляров, заполненных воздухом. Влага по этой системе<br />

движется в виде пара, проходя последовательно через полости клеток, полости<br />

пор и отверстия в мембранах или мельчайшие микрокапилляры клеточных<br />

стенок.<br />

3. Комбинированная система, состоящая из полостей клеток и прерывистых<br />

микрокапилляров, соединяющих полости смежных клеток. Здесь влага<br />

движется как в виде жидкости (микрокапилляры), так и в виде пара (полости<br />

клеток) [1].<br />

Четко выделить каждый из этих видов переноса практически невозможно, т.к. в<br />

древесине существует непрерывная сеть влагопроводимых элементов постоянного<br />

сечения. Влага, прежде чем быть удаленной из древесины в окружающую среду,<br />

проходит сложную сеть каналов переменного сечения, последовательно переходя при<br />

этом (иногда многократно) из одного состояния в другое.<br />

Нет оснований полагать, что при нестационарных условиях сушки перенос влаги<br />

будет происходить по иным путям. Однако относительная эффективность<br />

вышеуказанных влагопроводящих систем может колебаться в очень широких пределах,<br />

в зависимости от породы (особенностей строения), влажности и температуры<br />

древесины.<br />

Движение влаги под влиянием перепада влажности происходит или внутри<br />

гигроскопической области, или же к области гигроскопичности из мест, где влажность<br />

выше точки насыщения волокна. Массоперенос при этом подчиняется законам<br />

капиллярного движения и вызывается высшим фактором – капиллярным потенциалом,<br />

создающим всасывающую силу, которая способствует извлечению влаги из<br />

центральных слоев сортимента.<br />

Наличие градиента температуры при влажности ниже предела гигроскопичности<br />

обуславливает появление в древесине соответствующего градиента парциального<br />

давления водяного пара. Под действием этого градиента водяной пар диффундирует по<br />

направлению к поверхности по полостям клеток через отверстия в мембранах пор. С<br />

другой стороны, молекулярная термодиффузия в микрокапиллярах (полостях клеток)<br />

сопровождается диффузией скольжения пристеносточного слоя парообразной влаги в<br />

направлении температурного градиента, т.е. от холодного конца к горячему. Если<br />

концы микрокапилляров закрыты или сообщаются через другие капилляры, то<br />

возникает циркуляция пара в такой замкнутой системе [2].<br />

С повышением температуры тепловое скольжение становится весьма заметным и<br />

существенным образом влияет на диффузионный перенос пара в макрокапиллярах. При<br />

низких же влажностях тепловое скольжение служит препятствующим фактором для<br />

перемещения пара из нагретой зоны в охлаждаемую.<br />

При влажности древесины выше точки насыщения волокна все микрокапилляры<br />

в стенках клеток заполнены адсорбированной и сконденсированной влагой, что<br />

исключает возможность переноса влаги в виде пара по системам макрокапилляров.<br />

Единственным возможным путем для переноса влаги является комбинированная<br />

система. Движение влаги при этом сопровождается ее последовательным переходом из<br />

жидкого состояния в парообразное и усложняется тепловым скольжением пара в<br />

полостях клеток, а также движением пристеночной жидкости в капиллярах.<br />

Таким образом, перенос влаги в древесине в осцилирующих условиях<br />

сопровождается дополнительным переносом вещества по направлению градиента<br />

температуры в виде теплового скольжения пара и термоосмотического эффекта.<br />

Плотность потока влаги в этих видах движения зависит от температуры и влажности<br />

древесины. Интенсивность теплового скольжения пара нарастает с повышением<br />

температуры и снижением влажности тела, термоосмотический эффект проявляется в<br />

135


максимальной степени при низких температурах и влажностях, когда интенсивность<br />

движения жидкости становится соизмеримой с движением жидкости по направлению<br />

теплового потока, обусловленного перепадом капиллярного потенциала, т.е. при<br />

определенных температурно-влажностных условиях, величина плотности потока влаги<br />

по направлению градиента температуры может принять существенные значения и<br />

активно влиять на общий массоперенос в древесине.<br />

Суммарный количественный эффект, создаваемый всеми видами переноса влаги<br />

в древесине, оценивается как отношение коэффициента термодиффузии влаги a' T<br />

к<br />

коэффициенту диффузии влаги a' .<br />

a'<br />

j dU <br />

<br />

T<br />

<br />

<br />

(1)<br />

a'<br />

a'<br />

t<br />

dt<br />

0 <br />

При отсутствии влагообмена, когда имеет место гигроскопическое равновесие,<br />

формула (1) запишется в следующем виде:<br />

dU U<br />

p<br />

dt t<br />

т.е. относительный коэффициент термодиффузии равен термоградиентному<br />

коэффициенту.<br />

Графическая зависимость термоградиентного коэффициента от влажности при<br />

постоянной температуре (рис. 1) имеет вид параболы, симметричной в отношении<br />

вертикальной оси, проходящей через вершины.<br />

При высоких вляжностях термоградиентный коэффициент очень мал, далее с<br />

уменьшением влажности почти линейно возрастает и достигает максимуиа при<br />

определенной влажности, различной для различных температур. После перехода<br />

максимума отмечается сильное падение коэффициента, которое происходит почти<br />

линейно.<br />

Движение влаги, обусловленное температурным градиентом, начинается при<br />

определенной для каждой температуры влажности, при которой в полостях появляются<br />

участки объемов, занятые паровоздушной смесью или происшедшего в определенных<br />

условиях удаления воздуха, только водяным паром. При снижении влажности<br />

древесины, т.е. при снижении уровня свободной влаги в плостях клеток, все большее<br />

количество микрокапилляров начинает участвовать в перемещении жидкости. В<br />

результате возрастает эффективность комбинированной влагопроводящей системы, и<br />

соответственно, интенсивность переноса вдаги, что находит свое выражение в<br />

увеличении термоградиентного коэффициента.<br />

136


Рис. 1. Термоградиентный коэффициент<br />

Одновременно с этим происходит отрицательный перенос влаги по направлению<br />

температурного градиента в виде теплового скольжения пара и движения<br />

пристеночного слоя жидкости. Как было сказано ранее, интенсивность этих видов<br />

движения влаги возрастает при низких влажностях. Поэтому, при дальнейшем<br />

снижении влажности древесины плотность отрицательного потока влаги увеличивается<br />

и лимитирует общий процесс переноса влаги по направлению теплового потока. В<br />

результате этого термоградиентный коэффициент, достигнув максимума, уменьшается<br />

и когда интенсивность теплового скольжения пара в макрокапилярах и движения<br />

пристеночной жидкости в микрокапиллярах станет соизмеримой при низкой влажности<br />

древесины с плотностью положительного потока влаги, становится близко нулю.<br />

Предложенный механизм переноса влаги в древесине находит полное<br />

подтверждение в закономерностях изменения термоградиентного коэффициента в<br />

зависимости от температурно-влажных состояний тела.<br />

137


REFERENCES:<br />

1. Шубин Г.С. Физические основы и расчет процессов сушки древесины. М.<br />

«Лесная промышленность», 248 с.<br />

2. Лыков А.В. Теория сушки. М. «Энергия», 472 с.<br />

3. Чудинов Б.С. Вода в древесине. Новосибирск, «Наука», 270 с.<br />

Streszczenie: Artykuł prezentuje system elementów przewodzących wodę w ścierze<br />

drzewnym i typy przewodzenia wody. Zaproponowany system przewodzenia wody w<br />

drewnie bazuje na znanych prawach gradientu temperatur jako funkcji temperatury oraz<br />

warunków wilgotności w ciałach.<br />

Corresponding author:<br />

Marina Tepnadze<br />

Department <strong>of</strong> Wood Processing<br />

Georgian technical university<br />

Tbilisi, Kostava str. 77, 0175. Georgia.<br />

Antioxidanti@mail.ru<br />

138


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 139-143<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

The ecological aspect <strong>of</strong> used nature wood<br />

DANIELA TESAŘOVÁ 1 , PETR ČECH 2<br />

Department <strong>of</strong> furniture, design and habitation, Mendel <strong>University</strong> in Brno, Czech Republic<br />

Abstract: The ecological aspect <strong>of</strong> used nature wood. The contribution is interested in problems <strong>of</strong> volatile<br />

organic compounds emitted by wood shavings <strong>of</strong> different kinds <strong>of</strong> wood: pine (Pinus sylvestris) sapwood,<br />

(Pinus sylvestris) heartwood, English oak (Quercus robur), western red cedar (Thuja plicata) in the comparing <strong>of</strong><br />

them. In the same time the olfactometric influence <strong>of</strong> individual components emitted by western red cedar and<br />

sapwood <strong>of</strong> pine was under review. In the work there is also described the relation among the results reported<br />

during the olfactometric measuring and the results reported during the measuring <strong>of</strong> volatile organic compounds<br />

especially emitted by cedar wood. The dependence <strong>of</strong> Limonene and α Pinene olfactory activity on the<br />

concentration <strong>of</strong> organic compounds emitted by tested samples <strong>of</strong> wood with strong olfactory activity.<br />

Keywords: Olfactometry, VOC emissions, solid wood, perception, odour<br />

INTRODUCTION<br />

Due to the fact that only volatile organic compounds can be odour activity some <strong>of</strong><br />

volatile organic compounds could contribute to the odour impression <strong>of</strong> the testing emissions<br />

emitted. In our case there are the emissions emitted by finished surfaces <strong>of</strong> wood based<br />

materials.<br />

The separation <strong>of</strong> the individual compounds in the VOC emissions and their simultaneous<br />

detection are essential to determinate which components <strong>of</strong> the complex VOC mixture are<br />

contained in the VOC emissions blends and which volatile compounds have the important<br />

influence on odour <strong>of</strong> testing specimens. One volatile organic compound in odorous products<br />

is responsible for the typical aroma. The combination <strong>of</strong> several compounds gives the typical<br />

product smell by the finished surface <strong>of</strong> the wooden furniture.<br />

The odour has become a part <strong>of</strong> the products specification made from wooden based<br />

materials. The odour <strong>of</strong> product, in our case some kind <strong>of</strong> the wood furniture, is near closed<br />

with comfort <strong>of</strong> living.<br />

New furniture should only smell like new furniture and nothing else. A bad odour <strong>of</strong> new<br />

furniture in an apartment can make living and using the furniture there very uncomfortable.<br />

The indicated odour <strong>of</strong> emissions emitted by the wooden furniture with finished surfaces into<br />

indoor air is reported bad quality indoor air for 15 – 30 % <strong>of</strong> the general population.<br />

Sometimes the smell <strong>of</strong> furniture means the toxic furniture for consumers.<br />

The aim <strong>of</strong> this study is:<br />

1. to identify the main components contributing to an odour emitted emissions by<br />

finished surface <strong>of</strong> wooden furniture<br />

2. to solve the odour impact <strong>of</strong> the individual chemical compound in the correlation with<br />

the concentration <strong>of</strong> measured emissions<br />

Due to the fact that only volatile substance can be odour active, gas chromatography in the<br />

conclusion olfactometric detector system, is the preferred analytic method. The combination<br />

<strong>of</strong> sensory and instrumental methods is a powerful approach to identify the volatile<br />

compounds, which are responsible for an odour.<br />

139


MATERIAL AND METHODS<br />

Used method<br />

We used for the measurement special combined techniques <strong>of</strong> the sensorial analysis E-<br />

nose Sniffer in conclusion with the GC-MS chromatography and the thermal desorption.<br />

We collected air containing VOC emissions into the desorption tubes on the sorbent<br />

TENAX TA where the emitted air is evaluated and split <strong>of</strong> the effluent <strong>of</strong> chromatography<br />

column into two streams. One stream is analyzed by the detector <strong>of</strong> the gas chromatography<br />

and the second stream is passed into an effluent <strong>of</strong> Sniffer. The results <strong>of</strong> gas chromatography<br />

is the chromatogram with quality and quality identification <strong>of</strong> chemicals and the results<br />

coming in the same time from human olfactory response sniffer is the olfactogram. We can<br />

compare the both reached results the quality and quantity determinate volatile organic<br />

compounds to the sensory results, so results <strong>of</strong> the chromatogram and the results <strong>of</strong> the<br />

olfactogram.<br />

Some kinds <strong>of</strong> wood become among the important sources <strong>of</strong> volatile organic compounds<br />

and so the sources <strong>of</strong> odours. We were investigating the VOC emissions emitted by some<br />

kinds <strong>of</strong> wood (cedar, oak, pine - heartwood and sapwood) and so in this time we investigated<br />

the odour impact <strong>of</strong> these VOC emissions emitted by tested specimens <strong>of</strong> wood. We prepared<br />

the thin wood shavings with the surface 1m 2 and then we started to collect VOC emission<br />

emitted by tested kinds <strong>of</strong> wood. The collected emissions <strong>of</strong> VOC were analyzed on GC<br />

connection with Sniffer for odour identification <strong>of</strong> individual organic compounds in their<br />

blend.<br />

Methods <strong>of</strong> VOC testing were set via standards<br />

ISO 16000: 2007 Indoor air<br />

ISO 16000-1: 2007 General aspects <strong>of</strong> sampling strategy<br />

ISO 16000-5: 2007 Sampling strategy for volatile organic compounds (VOCs)<br />

ISO 16000-11:2007 Determination <strong>of</strong> the emission <strong>of</strong> volatile organic compounds sampling, storage <strong>of</strong> samples<br />

and preparation <strong>of</strong> test specimens<br />

VOC samplings in small-space chambers were done according to:<br />

ISO 16000-6: 2007 Determination <strong>of</strong> volatile organic compounds indoor and test chamber<br />

air by active sampling on Tenax TA ® sorbent, thermal desorption and chromatography using<br />

MS/FID<br />

ISO 16000-9: 2007 Determination <strong>of</strong> the emission <strong>of</strong> volatile organic compound from<br />

building products and furnishing- Emission test chamber method<br />

The main impact for odour has the irritant thresholds <strong>of</strong> emitted chemicals that means at<br />

what level a chemical is an odorant for the first time and then becomes an irritant. We<br />

compared the thresholds. VOC emissions measuring Time: 24 h, 14 and 28 days after the<br />

preparing <strong>of</strong> wood shavings.<br />

Used equipment<br />

- small-space chamber for VOCs testing<br />

- short path thermal desorption, Silco treated, Thermal Desorption Tube<br />

- air sampler Gilian – LFS 113 SENSEDNE with air flow 6 l.h -1<br />

- gas chromatograph Agilent GC 6790 with MS (mass spectrometer) detector 5973,<br />

thermal desorption<br />

- olfactory detector outlet Sniffer 9000 based on sensor techniques, one the most<br />

sensitive and intelligent detector<br />

140


RESULTS<br />

VOC emissions emitted by wood shavings <strong>of</strong> pine wood<br />

(Pinus sylvestris L.) - heartwood<br />

90<br />

80<br />

Concentration in μg.m -3<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Benzene<br />

Pentanal<br />

Toluene<br />

Hexanal<br />

n-Butyl acetate<br />

Ethylbenzene<br />

Σ m,p-Xylene<br />

Styrene<br />

o-Xylen<br />

VOCs<br />

Butoxy-Ethanol<br />

α-Pinene<br />

Camphene<br />

β-Pinene<br />

Myrcen<br />

α-Phelandrene<br />

3-δ-Carene<br />

Limonene<br />

γ-Terpinene<br />

24h<br />

336h<br />

672h<br />

Fig.1: VOC emissions emitted by wood shavings <strong>of</strong> pine wood – heartwood<br />

14<br />

VOC emissions emitted by wood shavings <strong>of</strong> western red cedar wood<br />

(Thuja plicata)<br />

Concentration in μg.m -3<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Benzene<br />

Pentanal<br />

Toluene<br />

Hexanal<br />

n-Butyl acetate<br />

Ethylbenzene<br />

Σ m,p-Xylene<br />

Styrene<br />

o-Xylene<br />

VOCs<br />

Butoxy-Ethanol<br />

α-Pinene<br />

Camphene<br />

β-Pinene<br />

Myrcene<br />

α-Phelandrene<br />

3-δ-Carene<br />

Limonene<br />

γ-Terpinene<br />

24h<br />

336h<br />

672h<br />

Fig.2: VOC emissions emitted by wood shavings <strong>of</strong> west Red Cedar (Thuja plicata)<br />

141


TVOC emitted by various kind <strong>of</strong> wood in form shavings<br />

TVOC [μg.m -3 ]<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Tab.1: Hedonic tone and intensity <strong>of</strong> odour<br />

0<br />

24 336 672<br />

time [h]<br />

west red cedar oak pine -heartwood pine-sapwood<br />

Fig.3: TVOC emitted by various kind <strong>of</strong> wood in form shavings<br />

VOC<br />

Pine -<br />

heartwood<br />

Pine - sapwood Red cedar Oak<br />

after plating (h) 24 336 672 24 336 672 24 336 672 24 336 672<br />

Toluene -2 -1 -2 -1 1 2 1 1 2 2 2 -2<br />

Σ m,p-Xylene -1 -2 - -2 -2 -2 1 - 1 1 -1 1<br />

α-Pinene -2 -2 - 1 -1 1 - - -3 1 - -<br />

β-Pinene -2 - -1 - -3 -3 -2 -3 -2 2 -3 -4<br />

3-δ-Carene -2 - - 3 -1 - - - - - - -<br />

Limonene 1 - - 1 - - -1 1 - - - -<br />

DISCUSSION<br />

The measured values <strong>of</strong> emission VOC emitted by wood shavings <strong>of</strong> different kinds <strong>of</strong><br />

wood: pine (Pinus sylvestris) sapwood, (Pinus sylvestris) heartwood, English oak (Quercus<br />

robur), western red cedar (Thuja plicata) are predicative about it, that the most amount were<br />

emitted by heartwood <strong>of</strong> Pinus sylvestris, namely first terpenes: (α-Pinene: 85,4 μg.m -3 ,<br />

limonene: 44,8 μg.m -3 ), next sapwood <strong>of</strong> Pinus sylvestris (3-δ-Carene: 62,4 μg.m -3 ,<br />

α-Pinene: 21,9 μg.m -3 ) namely 24 hours after planning <strong>of</strong> wood shavings. Thuja plicata and<br />

Quercus robur were emitted the most <strong>of</strong> Butoxy-Ethanol (Thuja plicata:12,8 μg.m -3 , Quercus<br />

robur: 12,0 μg.m -3 ) 336 hour after planning. The most amount <strong>of</strong> TVOC emitted by<br />

heartwood <strong>of</strong> Pinus sylvestris (814 μg.m -3 ), 24 hours after planning <strong>of</strong> wood shavings.<br />

CONCLUSION<br />

The great volume <strong>of</strong> VOC emissions emitted the shavings <strong>of</strong> heartwood <strong>of</strong> pine with the<br />

greatest odour impact from the tested samples <strong>of</strong> wood.<br />

Limonene, α-Pinene, β Pinene, Camphene, 3-δ-Carene has the great odour impact in the<br />

blend <strong>of</strong> VOC emissions emitted by tested kinds <strong>of</strong> wood.<br />

REFERENCES:<br />

1. FISHER, B. 1998: Scents sensitivity Environmental Health Perspectives 1998 volume<br />

106, Nb. 12 p 594 – 599.<br />

2. GOSTELOW, P., LONGHURST, P., PARSONS, S., STUETZ, R., SamplingKIM, Y.,<br />

WATANUKI. S., 2003:Characteristics <strong>of</strong> electroencephalographicresponses induced<br />

by a pleasant and an unpleasant odor. In Journal <strong>of</strong> PHYSIOLOGICAL ANTHROPO-<br />

LOGY and Applied Human Science 22, s.285-291, ISSN 1345-3475<br />

142


3. TESAŘOVÁ, D., ČECH, P., ANSORGOVÁ, A., 2010: Hedonic influence <strong>of</strong> volatile<br />

organic compounds emitted by finished surface <strong>of</strong> furniture part. In Reducing the<br />

Environmental Footprint.1. vyd. 14 Castle Mews, High Street, Hampton Middlesex:<br />

PRA Coating Technology Centre, 2010, s. 8-15. ISBN 978-0-9561357-2-8.<br />

4. TESAŘOVÁ, D., ČECH, P., 2009: The air <strong>of</strong> school classrooms loaded by volatile<br />

organic compounds. In:School and health 21. MSD, s.r.o, Brno: MSD, s.r.o, 2009,<br />

s. 258-268. ISBN 978-80-7392-042-5.<br />

Streszczenie: Aspekty ekologiczne drewna poużytkowego. Praca skupia się na substancjach<br />

lotnych emitowanych przez rozdrobnione drewno bielu sosny (Pinus sylvestris) , twardzieli<br />

sosny (Pinus sylvestris), dębu (Quercus robur) oraz żywotnika olbrzymiego (Thuja plicata).<br />

Dokonano pomiarów olfaktometrycznych związków emitowanych przez żywotnik oraz biel<br />

sosny.<br />

Corresponding authors:<br />

Doc. Ing. Daniela Tesařová, Ph.D.<br />

Mendel university in Brno,<br />

Faculty <strong>of</strong> Forestry and Wood Technology,<br />

Department <strong>of</strong> furniture, design and habitation,<br />

Zemědělská 3, 613 00 Brno, Czech Republic,<br />

phone: +420 545 134170, E-mail:tesar@mendelu.cz<br />

Ing. Petr Čech, Ph.D.<br />

Mendel university in Brno,<br />

Faculty <strong>of</strong> Forestry and Wood Technology,<br />

Department <strong>of</strong> furniture, design and habitation,<br />

Zemědělská 3, 613 00 Brno, Czech Republic,<br />

phone: +420 545 134177,E-mail:Cech.P007@seznam.cz<br />

143


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 144-148<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Wood density <strong>of</strong> Scots pine (Pinus sylvestris L.) trees broken by wind<br />

ARKADIUSZ TOMCZAK, TOMASZ JELONEK, MARCIN JAKUBOWSKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Faculty <strong>of</strong> Forestry, Department <strong>of</strong> Forest Utilization<br />

Abstract: Wood density <strong>of</strong> Scots pine (Pinus sylvestris L.) trees broken by wind. The paper analyzes pure density<br />

<strong>of</strong> wood in wind-broken trees and standing trees (control) coming from two stands damaged by strong wind (the<br />

Świdwin and Kolbudy forest districts). Generally a higher wood density was found for the control trees. The<br />

difference was 2 kg/m 3 and it was not significant statistically. A similar result was recorded for the Kolbudy plot,<br />

while in the Świdwin plot the result was opposite (QuB > QuC). Moreover, radial variation <strong>of</strong> this parameter was<br />

analyzed. Generally pure density increases with a reduction <strong>of</strong> the distance from the stem circumference. In case<br />

<strong>of</strong> control trees changes in values are more dynamic.<br />

Keywords: windthrow, wood properties, basic density<br />

INTRODUCTION<br />

Wind is a very important stress factor influencing the forest environment. In Europe<br />

catastrophic wind storms were experienced e.g. in 1999 (Lothar), 2005 (Gudrun) and 2007<br />

(Kyrill). In 2007 in Poland damage caused by the action <strong>of</strong> wind was found in stands over an<br />

area <strong>of</strong> more than 273 thousand ha [Raport… 2007]. In 2008 the State Forests recorded<br />

damage on an area <strong>of</strong> approx. 61 thousand ha stands aged over 20 years, e.g. only in the areas<br />

administered by the Regional Directorate <strong>of</strong> the State Forests in Olsztyn and Wrocław the<br />

volume <strong>of</strong> 722 thousand m 3 and 568 thousand m 3 wood were obtained from uprooted trees<br />

and wind-broken trees [Raport… 2008]. The degree <strong>of</strong> threat for the forest environment in<br />

Poland is one <strong>of</strong> the highest, since our country is located in the transition climatic zone<br />

between the temperate oceanic climate in the west and temperate continental climate in the<br />

east.<br />

The problems <strong>of</strong> ecological consequences <strong>of</strong> the effect <strong>of</strong> wind on forest ecosystems<br />

discussed in research papers is still current due to the constant threat imposed by the stress<br />

factor. The complexity <strong>of</strong> the problem is related with the continuous development <strong>of</strong> many<br />

issues, including climatology, mechanisms <strong>of</strong> air mass flows in stands, the effect <strong>of</strong><br />

topographic features on wind load on trees, modelling <strong>of</strong> threat, fluctuations in forest<br />

resistance to tending interventions, proper management and utilisation, as well as<br />

biomechanics and adaptation growth <strong>of</strong> trees. A specific position among the above mentioned<br />

research areas taken by biomechanics and adaptation growth <strong>of</strong> trees emphasizes the rank <strong>of</strong><br />

the problem, since the non-uniform wood structure is a distinct cause-and-effect relationship.<br />

The heterogeneity <strong>of</strong> wood is a species-specific (genetic) trait and it results from the<br />

action <strong>of</strong> several external factors, leading through adaptation to numerous biomodifications in<br />

the wood tissue. Knowledge on the basic physical and mechanical properties <strong>of</strong> wood as well<br />

as factors modifying them is required for the understanding <strong>of</strong> the essence <strong>of</strong> the phenomenon<br />

<strong>of</strong> the adverse effect <strong>of</strong> snow and wind on stands, as well as the determination <strong>of</strong> the degree <strong>of</strong><br />

resistance <strong>of</strong> stands to the action <strong>of</strong> specific forces caused by these factors [Zajączkowski<br />

1991]. Properties <strong>of</strong> wood are also elements <strong>of</strong> input data for the assessment <strong>of</strong> risk <strong>of</strong> tree<br />

damage by wind [Peltola et al. 1999]. Among them wood density is a parameter used<br />

relatively frequently. Among other things for this reason it was attempted in this study to<br />

assess wood density in windthrows <strong>of</strong> Scots pine (Pinus sylvestris L.), coming from stands<br />

located in northern Poland.<br />

144


MATERIAL AND METHODS<br />

Studies were conducted in the Świdwin (Sw) and Kolbudy (Ko) Forest Districts, in<br />

two maturing pine stands damaged by wind. In each experimental pot all damaged trees and a<br />

proportional number <strong>of</strong> undamaged trees were numbered successively. Next their biometric<br />

traits were measured. In case <strong>of</strong> wind-broken trees it was breast height diameter and height <strong>of</strong><br />

wind-broken trees, the length <strong>of</strong> the lying part <strong>of</strong> the tree, the length and width <strong>of</strong> the crown.<br />

On standing trees measurements were taken for breast height diameter, tree height, the height<br />

<strong>of</strong> the position <strong>of</strong> the first live branch as well as minimum and maximum diameter <strong>of</strong> the<br />

crown. In the Sw plot a total <strong>of</strong> 73 wind-broken trees and 109 standing trees were measured.<br />

The Ko plot represented a total <strong>of</strong> 53 trees, <strong>of</strong> which 23 were trees broken by wind.<br />

Wind-broken trees in the Sw plot were divided in terms <strong>of</strong> their height into three<br />

categories: I < 2.4 m; II 2.5 – 3.4 m; III > 3.5m. From each category three model trees were<br />

selected, one each in relation to the adopted diameter subclasses <strong>of</strong> trees: A [14 – 18 cm], B<br />

[19 – 23 cm], C [24 – 28 cm]. Diameter was measured at breast height. A total <strong>of</strong> nine model<br />

wind-broken trees were selected. In relation to undamaged trees the average tree height and<br />

average parameters <strong>of</strong> the crown for each diameter subclass were calculated. On the basis <strong>of</strong><br />

collected data for a given subclass one control tree each was selected. In the Ko plot, due to<br />

the small number <strong>of</strong> wind-broken trees and their variation in terms <strong>of</strong> breast height diameter 6<br />

model trees were selected on the basis <strong>of</strong> adopted diameter classes. In a similar manner 3<br />

control trees were selected.<br />

Heart planks were cut from the stem <strong>of</strong> each model tree, oriented parallel to the<br />

direction <strong>of</strong> wind break (R – the flexed side, S – the compressed side). The sample included<br />

the section <strong>of</strong> the stem from breast height to the position located at a distance <strong>of</strong> 2 m from the<br />

kerf plane <strong>of</strong> the wind-broken tree. After preparation <strong>of</strong> samples (20x20x30 mm) density was<br />

determined in accordance with guidelines contained in the standard PN-77/D-4101.<br />

RESULTS<br />

Generally at a difference <strong>of</strong> 2 kg/m 3 a greater wood density was found for control<br />

trees. Wood density <strong>of</strong> wind-broken trees (QuB) from the Sw plot was 403 kg/m 3 (SD ± 65<br />

kg/m 3 ) and it was higher than that <strong>of</strong> the control trees (QuC) by 19 kg/m 3 . In turn, in the Ko<br />

plots a higher wood density was found for control trees and the difference between the<br />

compared groups was 20 kg/m 3 (tab. 1). In both cases the recorded differences were<br />

statistically non-significant.<br />

Table 1. The statistical characteristics <strong>of</strong> wood density <strong>of</strong> the control trees and broken by the wind<br />

Qu C/B n<br />

average standard variability<br />

[kg/m 3 ] deviation coefficient [%]<br />

min max<br />

Sw<br />

C 24 384 57 15 302 534<br />

B 64 403 68 17 293 712<br />

Ko<br />

C 34 408 65 16 296 537<br />

B 51 388 50 13 303 481<br />

Total<br />

C 58 398 62 16 296 537<br />

B 115 396 61 15 293 712<br />

Sw – Świdwin, Ko – Kolbudy, C – control trees, B – broken trees<br />

At the cross stem sections pure density <strong>of</strong> wood in wind-broken trees and the control<br />

trees (Sw) increases with an increase in the distance from the pith. On the side <strong>of</strong> action <strong>of</strong> the<br />

145


tensile force the dynamics <strong>of</strong> these changes is similar in both analyzed groups <strong>of</strong> trees, while<br />

on the side <strong>of</strong> action <strong>of</strong> compressive forces the density <strong>of</strong> wood in control trees was increasing<br />

more dynamically than in wind-broken trees (fig. 1). In case <strong>of</strong> the Kolbudy plot the increase<br />

in density at cross stem sections was more dynamic in control trees (fig. 2).<br />

Fig. 1. Radial distribution <strong>of</strong><br />

wood density – Świdwin<br />

Fig. 2. Radial distribution <strong>of</strong><br />

wood density – Kolbudy<br />

CONCLUSION<br />

Density <strong>of</strong> wood is closely related with age <strong>of</strong> trees and conditions <strong>of</strong> their growth and<br />

development [Kärenlampi, Riekkinen 2004]. This constitutes an important parameter in the<br />

evaluation <strong>of</strong> stem biomechanics and tree resistance to the action <strong>of</strong> external forces. In<br />

selected models it is one <strong>of</strong> the basic data in the estimation <strong>of</strong> risk <strong>of</strong> damage <strong>of</strong> trees or<br />

stands by wind.<br />

Wood density <strong>of</strong> wind-broken trees <strong>of</strong> Scots pine (north – eastern Scotland) was<br />

analyzed by Cameron and Dunham [1999]. Those authors observed that in comparison to the<br />

undamaged trees it was slightly lower. In turn, Meyer et al. [2008] when investigating wood<br />

density in Norway spruce stated that in the dry state (W=0%) differences were not significant<br />

statistically, while in the fresh state (W>30%) a marked statistically significant variation was<br />

recorded.<br />

In the study pure density was compared between Scots pine from wind-broken trees<br />

(QuB) and standing trees – the control (QuC), originating from two stands from the<br />

Pomerania region. In case <strong>of</strong> the Sw plot it was found that QuC was lower in comparison to<br />

the QuB plot. In turn, in the Ko plot an opposite situation was observed (QuC > QuB), which<br />

146


was consistent with the results <strong>of</strong> Cameron and Dunham [1999]. However, recorded<br />

differences were not statistically significant.<br />

Bent tree stems are similar to beams attached at one end, on which the moment <strong>of</strong><br />

force resulting from their own weight and the action <strong>of</strong> external forces. The value <strong>of</strong> the<br />

moment <strong>of</strong> force changes along the length <strong>of</strong> the organ, while at the cross stem section the<br />

highest stresses are generated in the circumferential section. The distribution <strong>of</strong> stresses in the<br />

tree stem is comparable to the variation represented by properties <strong>of</strong> wood. This dependence<br />

is particularly marked in case <strong>of</strong> selected coniferous species, where average density increases<br />

in the direction from the pith to the circumference [Kärenlampi, Riekkinen 2004; Jakubowski<br />

et al. 2005; Tomczak et al. 2010]. Obtained radial distributions for a given wood parameter<br />

markedly confirm this dependence. However, the recorded variation may not be linked with<br />

the action <strong>of</strong> a strong wind. However, we may observe that in control trees changes <strong>of</strong> the<br />

values are more dynamic, except for the flexed side in control trees from the Świdwin plot. In<br />

view <strong>of</strong> the relationship <strong>of</strong> wood density with other properties, it may be assumed that they<br />

will change analogously. Probably there is also a relationship between tree resistance to the<br />

action <strong>of</strong> wind and radial heterogeneity <strong>of</strong> its wood.<br />

This work was supported by grant <strong>of</strong> Polish Ministry <strong>of</strong> Science and Higher Education:<br />

IP2010 015270<br />

REFERENCES<br />

1. CAMERON A. D., DUNHAM R. A. 1999. Strength properties <strong>of</strong> wind- and snowdamaged<br />

stems <strong>of</strong> Picea sitchensis and Pinus sylvestris in comparision with undamaged<br />

trees. Can. J. For. Res., 29: 595 – 599.<br />

2. JAKUBOWSKI M., TOMCZAK A., JELONEK T., PAZDROWSKI W. 2005. Radial<br />

variability <strong>of</strong> the strength quality coefficient <strong>of</strong> Scots pine (Pinus sylvestris L.) wood in<br />

relation to the tree biosocial position in the stand. EJPAU 8(3), #08.<br />

3. KÄRENLAMPI P. P., RIEKKINEN M. 2004. Maturity and growth rate effects on Scots<br />

pine basic density. Wood Sci. Technol., 38: 465 – 473.<br />

4. MEYER F. D., PAULSEN J., KÖRNER CH. 2008. Windthrow damage in Picea abies is<br />

associated with physical and chemical stem wood properties. Trees, 22: 463 - 473.<br />

5. RAPORT O STANIE LASÓW. 2007. CILP.<br />

6. RAPORT O STANIE LASÓW 2008. CILP.<br />

7. PELTOLA H., KELLOMÄKI S., VÄISÄNEN H., IKONEN V. P. 1999. A mechanistic<br />

model for assessing the risk <strong>of</strong> wind and snow damage to single trees and stands <strong>of</strong> Scots<br />

pine, Norway spruce, and birch. Can. J For. Res., 29: 647-661.<br />

8. POLSKA NORMA PN-77/D-4101. Drewno. Oznaczanie gęstości.<br />

9. TOMCZAK A., JELONEK T., ZOŃ L. 2010. Porównanie wybranych właściwości<br />

fizycznych drewna młodocianego i dojrzałego sosny zwyczajnej (Pinus sylvestris L.) z<br />

drzewostanów rębnych. Sylwan, 154(12): 809 - 817.<br />

10. ZAJĄCZKOWSKI J. 1991. Odporność lasu na szkodliwe działanie wiatru i śniegu.<br />

Wydawnictwo Świat, Warszawa.<br />

147


Streszczenie: Gęstość drewna wiatrołomów sosny zwyczajnej (Pinus sylvestris L.) W pracy<br />

przeanalizowano gęstość umowną drewna wiatrołomów oraz drzew stojących (kontrolnych)<br />

pochodzących z dwóch drzewostanów uszkodzonych przez silny wiatr (nadleśnictwa<br />

Świdwin oraz Kolbudy). Ogólnie wyższą gęstością drewna charakteryzowały się drzewa<br />

kontrolne. Różnica wynosiła 2 kg/m 3 i nie była istotna statystycznie. Podobny wynik<br />

uzyskano na powierzchni Kolbudy, natomiast na powierzchni Świdwin rezultat był odwrotny<br />

(QuB > QuC). Przeanalizowano również zmienność promieniową parametru. Generalnie<br />

gęstość umowna rośnie wraz ze spadkiem odległości od obwodu pnia. W przypadku drzew<br />

kontrolnych zmiany wartości są bardziej dynamiczne.<br />

Corresponding author:<br />

Arkadiusz Tomczak<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Department <strong>of</strong> Forest Utilisation<br />

Wojska Polskiego 71A, 60 – 625 Poznań<br />

E-mail address: arkadiusz.tomczak@up.poznan.pl<br />

148


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 149-153<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Modulus <strong>of</strong> elasticity <strong>of</strong> twin samples (wet and absolute dry) origin from<br />

Scots pine (Pinus sylvestris L.) trees broken by wind<br />

ARKADIUSZ TOMCZAK, TOMASZ JELONEK, MARCIN JAKUBOWSKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Faculty <strong>of</strong> Forestry, Department <strong>of</strong> Forest Utilization<br />

Abstract: Modulus <strong>of</strong> elasticity <strong>of</strong> twin samples (wet and absolute dry) origin from Scots pine (Pinus sylvestris<br />

L.) trees broken by wind. The study analysed values <strong>of</strong> modulus <strong>of</strong> elasticity at static bending in the tangential<br />

direction for wood <strong>of</strong> wind-broken trees and standing trees (control) coming from two stands damaged by strong<br />

wind (the Świdwin and Kolbudy Forest Divisions). Analyses were conducted at moisture content above fiber<br />

saturation point (wet samples) and at zero moisture content (dry samples). When testing wood with moisture<br />

content above fiber saturation point it was found that wood <strong>of</strong> control trees was characterised by a higher MOE.<br />

This difference was not significant statistically. Statistically significant differences were recorded between<br />

values <strong>of</strong> MOE <strong>of</strong> wood from wind-broken and control trees in the Świdwin plot (p


it was attempted in this study to assess this parameter for wind-broken trees <strong>of</strong> Scots pine<br />

(Pinus sylvestris L.), coming from stands located in the northern part <strong>of</strong> Poland.<br />

MATHERIAL AND METHODS<br />

Investigations were conducted in two wind-damaged stands located in the northern<br />

part <strong>of</strong> Poland (the Świdwin and Kolbudy Forest Divisions) (tab. 1).<br />

Table 1. Description <strong>of</strong> the study sites<br />

symbol area<br />

[ha]<br />

species<br />

composition<br />

age stand<br />

density<br />

d 1,3<br />

[cm]<br />

height<br />

[m]<br />

quality<br />

class<br />

site<br />

type<br />

Sw 5,97 9 So, 1 Db 52 0,9 27 22 Ia FMC<br />

Ko 2,04 10 So 60 0,9 31 25 Ia FMB<br />

On each plot all damaged trees and a proportional number <strong>of</strong> undamaged trees were<br />

numbered successively. Next their biometric traits were measured. In case <strong>of</strong> broken trees it<br />

was breast height diameter and height <strong>of</strong> break, length <strong>of</strong> the lying part <strong>of</strong> the tree, length and<br />

width <strong>of</strong> the crown. In turn, on standing trees breast height diameter, tree height, height <strong>of</strong> the<br />

position <strong>of</strong> the first live branch as well as minimum and maximum diameters <strong>of</strong> the crown<br />

were measured. In the Sw plot a total <strong>of</strong> 73 wind-broken trees and 109 standing trees were<br />

measured. The Ko plot was represented by a total <strong>of</strong> 53 trees, <strong>of</strong> which 23 were trees broken<br />

by wind.<br />

Broken trees in the Sw plot were divided in terms <strong>of</strong> height into three categories: I <<br />

2.4 m, II 2.5 – 3.4 m and III > 3.5 m. From each category three model trees were selected, one<br />

in relation to the adopted diameter subclasses: A [14 – 18 cm], B [19 – 23 cm] and C [24 – 28<br />

cm]. Diameter was measured at breast height. A total <strong>of</strong> nine model wind-broken trees were<br />

selected. In case <strong>of</strong> undamaged trees their average height and average crown parameters were<br />

calculated for each diameter subclasses. On the basis <strong>of</strong> the data for the compartment one<br />

mean sample tree each was selected. In the Ko plot, due to the limited number <strong>of</strong> wind-broken<br />

trees, their height (mean <strong>of</strong> 11.7 m) and their variation in terms <strong>of</strong> breast height diameter, 6<br />

model trees were selected on the basis <strong>of</strong> adopted diameter subclasses. Similarly, 3 mean<br />

sample trees were selected.<br />

From the trunk <strong>of</strong> each model tree a heart plank was cut, oriented parallel to the<br />

direction <strong>of</strong> the wind breakage. The sample comprised a section <strong>of</strong> the trunk from breast<br />

height to the point located at a distance <strong>of</strong> 2 m from the kerf plane <strong>of</strong> the broken tree. In the<br />

next stage <strong>of</strong> the analyses 2 series <strong>of</strong> (twin) samples <strong>of</strong> 20 x 20 x 300 mm were applied. The<br />

first series was used in measurements <strong>of</strong> wet samples (W>30%), while the other was used<br />

absolutely dry (W=0%). The wet state was obtained by soaking samples in water, while the<br />

absolute dry state samples were produced by drying in the laboratory drier. The selected<br />

condition was reached, when dimensional stability <strong>of</strong> samples was confirmed, i.e. three<br />

successive measurements <strong>of</strong> width and height <strong>of</strong> samples showed identical values. Next the<br />

modulus <strong>of</strong> elasticity <strong>of</strong> wood at static bending was tested in the tangential direction in<br />

accordance with the respective standard PN-63/D-04117.<br />

RESULTS<br />

When testing wood with moisture content above fiber saturation point it was found<br />

that wood <strong>of</strong> mean sample trees is characterised by MOE higher by approx. 5% (fig. 1). The<br />

difference was not statistically significant. A statistically significant difference was found<br />

between the value <strong>of</strong> MOE in wood <strong>of</strong> windbreaks and mean sample trees in the Świdwin plot<br />

(p


Table 2. Statistical characteristics <strong>of</strong> MOE (W>30%)<br />

MOE C/B n<br />

average<br />

[MPa]<br />

standard<br />

deviation<br />

variability<br />

coefficient [%]<br />

C 24 3653 1522 41,7 1915 7564<br />

Sw*<br />

B 64 4056 1716 42,3 1784 8104<br />

C 35 4557 1944 42,7 1923 8545<br />

Ko<br />

B 55 3902 1840 47,2 1020 12395<br />

C 59 4189 1826 43,6 1915 8545<br />

Total<br />

B 119 3985 1769 44,4 1020 12395<br />

Sw – Świdwin, Ko – Kolbudy, C – control trees, B – broken trees<br />

* Marked effects are significant with p


Cameron and Dunham [1999], when comparing wood <strong>of</strong> Scots pines from north–<br />

eastern Scotland stated that wood <strong>of</strong> damaged (broken) pines in comparison to that <strong>of</strong><br />

undamaged trees was characterised by a markedly lower value <strong>of</strong> the modulus <strong>of</strong> elasticity. A<br />

similar result was obtained when comparing wood with moisture content above fiber<br />

saturation point. In turn, in case <strong>of</strong> dry samples an opposite situation was observed, in which a<br />

higher MOE was found for wood <strong>of</strong> wind-broken trees. However, this difference was only<br />

slight, amounting to as little as 0.3%. Contradictory results in relation to those reported by<br />

Cameron and Dunham [1999] are particularly evident in relation to the Świdwin plot. Both in<br />

wet and dry samples a significantly higher value <strong>of</strong> MOE was stated in case <strong>of</strong> wood <strong>of</strong> windbroken<br />

trees. This result is <strong>of</strong> interest, since elasticity is to a certain degree a measure <strong>of</strong> tree<br />

resistance to the action <strong>of</strong> wind. The trunk breaks when the total bending moment exceeds the<br />

value <strong>of</strong> the maximum resistance moment <strong>of</strong> wood (equal to breaking stresses) [Zajączkowski<br />

1991]. Probably wood properties are not the only factor connected with resistance <strong>of</strong> trees to<br />

damage which occurrs under the influence <strong>of</strong> strong wind. It results from investigations<br />

conducted by Jakubowski and Pazdrowski [2005] that in Scots pine the trunk breaks typically<br />

at the position <strong>of</strong> a verticil <strong>of</strong> knots and/or reaction wood. A similar phenomenon was also<br />

observed by Dunham and Cameron [2000], while in relation to spruce it was reported by<br />

Jakubowski [2010]. Knots are natural remnants <strong>of</strong> dead or cut branches. However, from the<br />

point <strong>of</strong> view <strong>of</strong> biomechanics the presence <strong>of</strong> a knot not encased in the surrounding wood is<br />

disadvantageous, since in comparison to the intergrown knot the distribution <strong>of</strong> stresses<br />

formed around it is less homogeneous [Buksnowitz et al. 2010].<br />

This work was supported by grant <strong>of</strong> Polish Ministry <strong>of</strong> Science and Higher Education:<br />

IP2010 015270<br />

REFERENCES<br />

1. BUKSNOWITZ CH., HACKSPIEL CH., HOFSTETTER K., MÜLLER U., GINDL W.,<br />

TEISCHINGER A., KONNERTH J. 2010. Knots in trees: strain distribution in a naturally<br />

optimised structure. Wood Sci. Technol., 44: 389 - 398.<br />

2. BURDON D. R., KIBBLEWITHE R. P., WALKER J. C. F., MEGRAW R. A., EVANS<br />

R., COWN D. J. 2004. Juvenile versus mature wood: a new concept, orthogonal to<br />

corewood versus outerwood, with special reference to Pinus radiata and Pinus tadea. For.<br />

Sci., 50(4): 399 – 415.<br />

3. CAMERON A. D., DUNHAM R. A. 1999. Strength properties <strong>of</strong> wind- and snowdamaged<br />

stems <strong>of</strong> Picea sitchensis and Pinus sylvestris in comparision with undamaged<br />

trees. Can. J. For. Res., 29: 595 – 599.<br />

4. DUNHAM R. A., CAMERON A.D. 2000. Crown, stem and wood properties <strong>of</strong> winddamaged<br />

and undamaged Sitka spruce. For. Ecol. Manage., 135: 73-81.<br />

5. GURAU L., CIONCIA M., MANSFIELD-WILLIAMS H., SAWYER G., ZELENIUC O.<br />

2008. Comparison <strong>of</strong> the mechanical properties <strong>of</strong> branch and stem wood for three<br />

species. Wood Fib. Sci., 40(4): 647 – 656.<br />

6. HELIŃSKA – RACZKOWSKA L., FABISIAK E. 1994. Zmienność wybranych cech<br />

budowy drewna młodocianego drewna sosny wzdłuż wysokości drzew. Roczniki<br />

Akademii Rolniczej w Poznaniu, 262: 3 – 13.<br />

7. JAKUBOWSKI M. 2010. Promieniowa zmienność makrostruktury drewna wiatrołomów<br />

sosny zwyczajnej (Pinus sylvestris L.) i świerka pospolitego (Picea abies Karst.) w relacji<br />

do niektórych właściwości drewna. Rozprawy naukowe 407, UP w Poznaniu.<br />

8. JAKUBOWSKI M., PAZDROWSKI W. 2005. Wood defects accompanying windbreaks<br />

<strong>of</strong> Scots pine (Pinus sylvestris L.) trees. Ann. WULS–<strong>SGGW</strong>, For and Wood Technol.,<br />

56: 286 - 290.<br />

152


9. KÄRENLAMPI P. P., RIEKKINEN M. 2004. Maturity and growth rate effects on Scots<br />

pine basic density. Wood Sci. Technol., 38: 465 – 473.<br />

10. LINDSTRÖM H., REALE M., GREKIN M. 2009. Using non-destructive testing to assess<br />

modulus <strong>of</strong> elasticity <strong>of</strong> Pinus sylvestris trees. Scan. J. For. Res., 24: 247-257.<br />

11. NISHIMURA T. B. 2005. Tree characteristics related to stem breakage <strong>of</strong> Picea glehnii<br />

and Abies sachalinensis. For. Ecol. Manage., 215: 295 - 306.<br />

12. OTTO H. J. 1994. Nach dem Sturm - Erfahrungenund Folgerungen aus der<br />

Sturmkatastrophe 1972 in Niedersachsen. Der Wald Berlin, 44(2): 52-56.<br />

13. PASCHALIS P. 1980. Zmienność jakości technicznej drewna sosny pospolitej we<br />

wschodniej części Polski. Sylwan 124 (1): 29−43.<br />

14. PELTOLA H. M. 2006. Mechanical stability <strong>of</strong> trees under static loads. Am. J. Bot.,<br />

93(10): 1501 - 1511.<br />

15. PELTOLA H., KELLOMÄKI S. 1993. A mechanistic model for calculating windthrow<br />

and steam breakage <strong>of</strong> Scots pine at stand edge. Silva Fenn., 27(2): 99 - 111.<br />

16. Polska Norma PN-63/D-04117. Fizyczne i mechaniczne właściwości drewna. Oznaczanie<br />

współczynnika sprężystości przy zginaniu statycznym.<br />

17. RIESCO MUÑOZ G., SOILÁN CAÑAS M. A., RODRÍGUEZ SOALLEIRO R. 2008.<br />

Physical properties <strong>of</strong> wood in thinned Scots pines (Pinus sylvestris L.) from plantations<br />

in northern Spain. Ann. For. Sci., 65: 507p8.<br />

18. ZAJĄCZKOWSKI J. 1991. Odporność lasu na szkodliwe działanie wiatru i śniegu.<br />

Wydawnictwo Świat, Warszawa.<br />

Streszczenie: Moduł elastyczności prób bliźniaczych (mokrych i absolutnie suchych)<br />

pochodzących z drewna wiatrołomów sosny zwyczajnej (Pinus sylvestris L.). W pracy<br />

przeanalizowano wartość modułu elastyczności przy zginaniu statycznym w kierunku<br />

stycznym drewna wiatrołomów oraz drzew stojących (kontrolnych) pochodzących z dwóch<br />

drzewostanów uszkodzonych przez silny wiatr (nadleśnictwa Świdwin oraz Kolbudy).<br />

Badanie przeprowadzono przy wilgotności powyżej punktu nasycenia włókien (próby mokre)<br />

oraz przy wilgotności zerowej (próby suche). Badając drewno o wilgotności powyżej punktu<br />

nasycenia włókien stwierdzono, że wyższym MOE charakteryzuje się drewno drzew<br />

kontrolnych. Różnica nie była statystycznie istotna. Istotną statystycznie różnice stwierdzono<br />

między wartością MOE drewna wiatrołomów i drzew kontrolnych na powierzchni Świdwin<br />

(p


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 154-159<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

State <strong>of</strong> preservation analysis <strong>of</strong> the wooden construction <strong>of</strong> the Holiest<br />

Sacrament altar in the right wing <strong>of</strong> the transept in the Holy Cross Church<br />

in <strong>Warsaw</strong><br />

ANDRZEJ TOMUSIAK, ANDRZEJ CICHY<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products, Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: State <strong>of</strong> preservation analysis <strong>of</strong> the wooden construction <strong>of</strong> the Holiest Sacrament altar in the right<br />

wing <strong>of</strong> the transept in the Holy Cross Church in <strong>Warsaw</strong>. The altar structure was scrutinised. A number <strong>of</strong><br />

errors in the construction were found, starting with the foundations and ending with the lateral elements <strong>of</strong> the<br />

altar. It has been recommended to monitor the structure and to eliminate the existing structural errors.<br />

Keywords: altar, wooden structures<br />

INTRODUCTION<br />

The reconstruction <strong>of</strong> the Holiest Sacrament altar in the Holy Cross Church in <strong>Warsaw</strong><br />

is the last stage <strong>of</strong> restoring the furnishings <strong>of</strong> the church interior that were destroyed during<br />

World War II, end especially during the <strong>Warsaw</strong> Uprising in 1944. It was not surprising that<br />

this undertaking aroused interest. The altar under renovation had been designed by the most<br />

renowned architect <strong>of</strong> the baroque era – Tylman van Gameren, for whom <strong>Warsaw</strong> was the<br />

most important place <strong>of</strong> his designing activity, as well as the one related to architecture and<br />

church interior furnishing. The project was to be completed in 2010. The assembly <strong>of</strong><br />

structural components and <strong>of</strong> the heavy sculptures on their top caused, within a short time,<br />

serious deformations <strong>of</strong> the structure, which grew bigger in spite <strong>of</strong> a partial disassembly <strong>of</strong><br />

the top group <strong>of</strong> sculptures. The preparation <strong>of</strong> an expert report explaining the reasons <strong>of</strong> this<br />

situation was commissioned to the Department <strong>of</strong> Construction and Technology <strong>of</strong> Final<br />

Wood Products <strong>of</strong> the <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>).<br />

The subject <strong>of</strong> the expert report is the wooden construction <strong>of</strong> the altar (Photo 1), and<br />

in particular the description <strong>of</strong> the present state <strong>of</strong> this construction.<br />

Photo 1. Holiest Sacrament Altar (Altar <strong>of</strong> the Fatherland) State after the disassembly <strong>of</strong><br />

saints from the entablature and from the top part (22/10/2010).<br />

154


CONSTRUCTION ERRORS<br />

The altar was scrutinised on 22 Oct 2010. The following construction errors were<br />

observed:<br />

- The bottom part <strong>of</strong> the altar should transmit stresses to the concrete foundations<br />

through a bearer. Unfortunately it does not happen in this case. The wooden bottom part <strong>of</strong><br />

the altar placed on the foundations has local points <strong>of</strong> support. Squashed wood can be seen –<br />

the compressive stress resistance has been surpassed at a right angle to the fibres.<br />

Wedges were placed on the uneven foundation in order to level and stabilize the<br />

position <strong>of</strong> the wooden altar parts (Photographs 2-3). Just as in the previous case, this kind <strong>of</strong><br />

support is improper, because it causes greater deformations and uneven settling <strong>of</strong> the wooden<br />

altar elements. It may cause delamination <strong>of</strong> different parts <strong>of</strong> the altar, especially in the top<br />

part. Additionally, the forces from the wedge are transmitted to bricks which creates local<br />

tensions in the bricks, and as a result – also deformations.<br />

The recesses <strong>of</strong> the socle pedestals were placed in the rabbets <strong>of</strong> their frames without<br />

leaving the necessary free space <strong>of</strong> several millimetres applied for the purpose <strong>of</strong> possible<br />

wood swelling. The lack <strong>of</strong> this gap in a part <strong>of</strong> the frames caused the vertical frame elements<br />

to bend and the shape <strong>of</strong> the pedestals to deform under the stress caused by the recesses. The<br />

increase <strong>of</strong> relative air humidity (right now it stays at the level <strong>of</strong> more or less 53%) can even<br />

cause damage to the carpentry joints and formation <strong>of</strong> cracks on the layer <strong>of</strong> gilt.<br />

Photo 2. View <strong>of</strong> a point <strong>of</strong> support and <strong>of</strong> the squashed wood<br />

Photo 3. Local point <strong>of</strong> support with the use <strong>of</strong> a wedge on the external side<br />

A heavy frame construction was properly made <strong>of</strong> C-pr<strong>of</strong>ile elements NP 100. The<br />

manner <strong>of</strong> joining the structural elements <strong>of</strong> the altar with the frame is far from perfect. Quite<br />

155


unstable joints made <strong>of</strong> metal were applied, fastened to the C-pr<strong>of</strong>iles by only one single bolt,<br />

which forms an articulation joint (Photo 4). Moreover, in the case <strong>of</strong> some <strong>of</strong> the flat bars,<br />

although they were fastened to the steel frame, someone has forgotten to fasten them to the<br />

wooden altar structure. A stronger joint should have been applied, for instance through metal<br />

triangles. The above-mentioned errors caused gaps to appear at the carpentry joints <strong>of</strong> the<br />

entablature cornice, as well as incompatibilities between pr<strong>of</strong>ile shapes visible on the cornice<br />

and in the pedestal part, which appeared because the elements forming them changed their<br />

position in respect to one another, moving vertically and horizontally (Photo 5).<br />

Photo 4. Manner <strong>of</strong> fastening the altar construction to vertical steel elements<br />

It is worth noting that these extensive damages were caused by the errors in pedestal<br />

installation that were mentioned before, as well as by insufficient manner <strong>of</strong> joining the<br />

elements <strong>of</strong> those structures. Metal joints in the form <strong>of</strong> bolts and flat bars <strong>of</strong> different shape<br />

and length were applied, their number was not sufficient and the places <strong>of</strong> fastening seem to<br />

be chosen at random without any kind <strong>of</strong> plan based on an analysis <strong>of</strong> the structure and <strong>of</strong> the<br />

forces operating within it (it should be reminded that the altar construction and the metal<br />

frame fastened to the wall are symmetrical structures). Similar errors can be seen in the<br />

manner <strong>of</strong> joining the altar with the steel frame and with the transept wall.<br />

a<br />

b<br />

Photo 5 a) View <strong>of</strong> a gap in the entablature cornice on the right side <strong>of</strong> the altar;<br />

b) Shifted cornice pr<strong>of</strong>iles at the point <strong>of</strong> touch between two elements forming<br />

the entablature (right side <strong>of</strong> the upper tier <strong>of</strong> the altar)<br />

156


Photo 6. Incorrect placement <strong>of</strong> the board supporting the figures at the lateral wall<br />

The photograph no 6 shows the improper installation <strong>of</strong> a horizontal element<br />

supporting the figures on a vertical wall, with the use <strong>of</strong> blocks. The forces transmitted by this<br />

kind <strong>of</strong> joint are too small. There is a risk that the block would fall <strong>of</strong>f while working under a<br />

load. The photograph no 7 shows an absolutely unacceptable manner <strong>of</strong> joining a vertical post<br />

with a horizontal element. The horizontal element overlaps the post by only a couple <strong>of</strong><br />

millimetres. It does not touch it at the whole surface <strong>of</strong> the post. At the same time it should be<br />

mentioned, that the post itself is not vertical. There is a risk that this joint will be broken<br />

under a load, because the compressive stress resistance will be exceeded in parallel to the<br />

fibres. As it is well known, the value <strong>of</strong> resistance to compression in parallel to the fibres is<br />

low, just a few MPa, in accordance to the class <strong>of</strong> wood. The photograph no 8 shows the<br />

manner <strong>of</strong> joining a horizontal element <strong>of</strong> the steel frame with a vertical board. This kind <strong>of</strong><br />

joint is unstable, because there is an empty space between the clamp and the C-pr<strong>of</strong>ile, while<br />

there should be a wooden wedge.<br />

Photo 7. View <strong>of</strong> an incorrect joint between the post, tilted in relation to the vertical axis, and<br />

a horizontal element that supports the sculptures<br />

157


Photo 8. View <strong>of</strong> an incorrect joint between a wooden element and horizontal C-pr<strong>of</strong>iles<br />

Photo 9. View <strong>of</strong> a bent horizontal board supporting the sculptures<br />

Photo 10. Pedestal pr<strong>of</strong>iles shifted in vertical and horizontal planes<br />

Photo 11. View <strong>of</strong> cracks in the joints <strong>of</strong> the bottom part <strong>of</strong> the altar and <strong>of</strong> the chipped <strong>of</strong>f<br />

gilt in a place where the wooden elements <strong>of</strong> the column base touch the foundations<br />

158


The sections <strong>of</strong> the structural elements were inappropriate for the static loads that they<br />

should be able to transmit. The photograph no 9 shows a strongly bent horizontal element in<br />

the left part <strong>of</strong> the altar; therefore, we may assume that an incorrect section <strong>of</strong> the bent<br />

element was applied. An element with a thicker section should have been used.<br />

The photograph no 11 shows some chip-<strong>of</strong>fs <strong>of</strong> the gilt in the place where it touches the<br />

marble socle. This means that the compressive stress <strong>of</strong> both elements is very high; therefore,<br />

it should be assumed that the individual parts <strong>of</strong> the altar construction are shifting, which<br />

confirms that the settling <strong>of</strong> the external segments <strong>of</strong> the altar is greater than in the middle<br />

part.<br />

SUMMARY<br />

The exact calculation <strong>of</strong> the loads and forces present in all the elements may only be<br />

performed after cataloguing the whole altar and after determining the sections <strong>of</strong> the elements.<br />

It must be asserted that the contractor and the investor do not have any construction plan <strong>of</strong><br />

the altar whatsoever, which seems utterly strange and contrary to the construction law.<br />

The most probable reason <strong>of</strong> the apparition <strong>of</strong> cracks and delaminations in the<br />

construction is the lack <strong>of</strong> continuous timber bearers on which the altar should be placed.<br />

Local points <strong>of</strong> support and wedges between the foundation and the bottom part <strong>of</strong> the altar<br />

cause uneven settling <strong>of</strong> individual altar components, which results in the apparition <strong>of</strong> cracks<br />

in its upper part. In the immediate future the gaps may grow as a result <strong>of</strong> the wood creep<br />

phenomenon and as a result <strong>of</strong> the planned installation <strong>of</strong> additional sculptures <strong>of</strong> saints and<br />

angels that are to be placed on the entablature <strong>of</strong> the lower tier and over the top part <strong>of</strong> the<br />

altar. Therefore, it is necessary to periodically monitor the state <strong>of</strong> the altar structure<br />

preservation.<br />

The joints between the wooden altar construction and the steel frame and the wall<br />

should be made in a more pr<strong>of</strong>essional way, with the use <strong>of</strong> rigid joints instead <strong>of</strong> articulation<br />

joints, fixed in the appropriate number and along the entire height.<br />

Engineered wood materials should not be used in the construction <strong>of</strong> the altar. It<br />

should be made <strong>of</strong> solid wood.<br />

It is striking how carelessly the construction was made, especially in the case <strong>of</strong> joints<br />

between the elements and the substructures. An egregious error was committed in the manner<br />

<strong>of</strong> joining the post with the horizontal element (Photo no 12).<br />

The wooden material used is <strong>of</strong> good quality. It has been applied in conditions <strong>of</strong> first<br />

class usage, as the air humidity does not exceed 60% and the temperature is about 13ºC;<br />

therefore, the wood moisture equivalent amounts to between ten and twenty percent.<br />

Streszczenie: Analiza stanu konstrukcji drewnianej ołtarza Najświętszego Sakramentu w<br />

prawym skrzydle transeptu bazyliki Świętego Krzyża w Warszawie. Dokonano oględzin<br />

konstrukcji ołtarza. Stwierdzono szereg błędów konstrukcyjnych, począwszy od<br />

fundamentów a skończywszy na elementach bocznych ołtarza. Zalecono monitorowanie<br />

konstrukcji oraz likwidację istniejących błędów konstrukcyjnych.<br />

Corresponding authors:<br />

Andrzej Cichy<br />

Andrzej Tomusiak<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

Szkoła Główna Gospodarstwa Wiejskiego (<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>)<br />

02-787 <strong>Warsaw</strong>, ul. Nowoursynowska 166, Poland<br />

E-mail addresses:<br />

andrzej_cichy@sggw.pl<br />

andrzej_tomusiak@sggw.pl<br />

159


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 160-163<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Basic chemical composition <strong>of</strong> selected species <strong>of</strong> bush willows<br />

BOGUSŁAWA WALISZEWSKA, KINGA SZENTNER, AGNIESZKA SPEK-DŹWIGAŁA<br />

Institute <strong>of</strong> Chemical Wood Technology, Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Basic chemical composition <strong>of</strong> selected species <strong>of</strong> bush willows. The content <strong>of</strong> cellulose, lignin and<br />

holocellulose was determined in wood <strong>of</strong> bush willows cultivated using the Eco-Salix method. The following<br />

willow clones were selected for experiments: K-TURBO, K-1054, K-DUOTUR, TUR-KOCIBÓRZ, CORDA<br />

and K-EKOTUR. The performed analyses were conducted employing standard methods commonly used in<br />

wood chemistry.<br />

Keywords: cellulose, lignin, holocellulose.<br />

Willows belong to the Salix sp., genus in which over 300 species as well as numerous<br />

sub-species are distinguished. They settle a wide range <strong>of</strong> sites beginning from very moist,<br />

even inundated and fertile to very dry and poor with respect to nutrients. They occur in the<br />

form <strong>of</strong> trees, bushes and shrubs and can be found from the Arctic, right across the zone <strong>of</strong><br />

temperate climate up to the hot equatorial region (Białobok et al., 1990).<br />

In recent years, an increasing interest has been observed in Poland in bush willows as<br />

fast-growing species associated with possibilities <strong>of</strong> their utilisation for energy purposes as<br />

ecologic raw material and as a raw material for chemical industry to obtain cellulose (Staffa<br />

1965) and bioalcohol (Ciechanowicz, Szczukowski 2010). In addition, willows can also be<br />

utilised in industry to manufacture particleboards. Bush forms <strong>of</strong> willows can also be utilised<br />

in wickerwork to manufacture ornamental or household articles.<br />

As a result <strong>of</strong> centuries <strong>of</strong> willow cultivation and breeding wicker, twig and fascine<br />

forms <strong>of</strong> willow species were developed producing huge quantities <strong>of</strong> raw material <strong>of</strong><br />

appropriate quality for the requirements <strong>of</strong> a given buyer.<br />

Willow extraordinary adaptational qualities to a wide range <strong>of</strong> different environmental<br />

conditions make this species exceptionally valuable to be employed in environmental<br />

protection, among others, to develop along motor ways as well as dual carriage ways<br />

protection zones against motor-car emissions – green screens protecting against noise. In<br />

addition, the Salix viminalis L. species is utilised for reclamation <strong>of</strong> areas degraded and<br />

destroyed by human industrial and urban activities (Waliszewska, Podobiński, Bobkiewicz,<br />

1999).<br />

Biomass production obtained from 3 to 4-year plantations <strong>of</strong> fast-growing, selected<br />

Salix spp. clones can yield 10 to 14 times greater volumes <strong>of</strong> biomass in comparison with the<br />

biomass increment produced during the same period <strong>of</strong> time in the forest. Expansion <strong>of</strong><br />

willow cultivations would make it possible to supplement wood obtained from forests. This<br />

kind <strong>of</strong> wood could provide raw material for the production <strong>of</strong> thermal energy in a sustainable<br />

way friendly for the environment.<br />

Willow species are characterised by high yielding potentials, fast growth during the<br />

vegetation period and considerable regeneration capabilities after cutting. They can grow well<br />

both in conditions <strong>of</strong> water excess and its shortage. However, in order to ensure production <strong>of</strong><br />

large biomass quantities, the growing site should be characterised by appropriate water<br />

reserves (Sowiński 1988). In Sweden, intensively fertilised and watered plants were reported<br />

to yield annually even 15 Mg <strong>of</strong> wood dry matter per hectare. In two-year cultivations, 35-39<br />

160


Mg/ha DM yields were recorded, whereas from three-year plantations – 60 Mg/ha wood dry<br />

matter was harvested. In Poland, valuable species and hybrids <strong>of</strong> fast-growing shrub willows<br />

were selected yielding in three-year cultivation even 86 Mg/ha fresh biomass, i.e. 36 m 3<br />

annually. The best ‘Harrison’ Salix viminalis hybrida clone yielded 110 Mg/ha fresh biomass<br />

in a 3-year cultivation, i.e. approximately 55 Mg dry matter <strong>of</strong> wood (Szczukowski et al.,<br />

2002).<br />

The objective <strong>of</strong> the presented investigations was to determine the content <strong>of</strong> primary<br />

wood constituents <strong>of</strong> selected Salix sp. clones obtained from an experimental plantation <strong>of</strong><br />

Warmia-Mazury <strong>University</strong> in Olsztyn.<br />

EXPERIMENTAL MATERIAL AND RESEARCH METHODOLOGY<br />

Investigations were carried out on five-year willow twigs collected from an<br />

experimental plantation cultivated according to the Eko-Salix method situated in Obory near<br />

Kwidzyń in Warmia-Mazury Voivodeship. The following clones were investigated: K-<br />

TURBO, K-1054, K-DUOTUR, TUR-KOCIBÓRZ, CORDA and K-EKOTUR.<br />

The experimental material was collected before the onset <strong>of</strong> vegetation in February<br />

2011 and ground initially into chips together with bark. The initial moisture content <strong>of</strong> the raw<br />

material was determined and then the material was subjected to seasoning in a well-aerated<br />

facility at room temperature until it reached constant moisture content. Dried material was<br />

comminuted with the assistance <strong>of</strong> a laboratory mill Pulverisette 15 <strong>of</strong> Fritsch Company and<br />

0.5-1.0 mm analytical fraction was separated using appropriate laboratory sieves.<br />

Chemical analyses were conducted in accordance with the PN-92/P-50092<br />

methodology and the following parameters were determined:<br />

Cellulose content by Seifert method,<br />

Lignin content by Tappi method,<br />

Holocellulose content using sodium chlorite,<br />

Pentosan content by Tollens method.<br />

All results were calculated in relation to wood dry matter.<br />

RESEARCH RESULTS AND DISCUSSION<br />

Table 1. Content <strong>of</strong> principal wood constituents in examined willow clones.<br />

Name <strong>of</strong> raw<br />

material<br />

Initial<br />

moisture<br />

content [%]<br />

Moisture content<br />

following<br />

seasoning [%]<br />

Cellulose<br />

[%]<br />

Lignin<br />

[%]<br />

Holocellulose<br />

[%]<br />

K-TURBO 46,4 6,58 42,58 24,68 73,71<br />

K-1054 47,5 6,71 42,30 24,35 77,36<br />

K-DUOTUR 44,5 5,89 44,16 22,59 77,47<br />

TUR KOCIBÓRZ 43,9 6,62 42,30 24,49 75,13<br />

CORDA 47,1 6,74 44,80 24,63 77,52<br />

K-EKOTUR 36,7 6,88 43,00 22,68 78,60<br />

The initial moisture content <strong>of</strong> freshly-cut raw material was high and fluctuated in a<br />

wide range from 36.7% to 47.5% (Tab. 1). The highest moisture content was determined in<br />

the clone designated as K-EKOTUR, while the highest – in K-1054. Two clones: TUR<br />

KOCIBÓRZ and K-DUOTUR were found to contain similar quantities <strong>of</strong> free water: 43.9%<br />

and 44.5%, respectively. The willow clone designated as K-TURBO contained slightly more<br />

water – 46.4%, whereas clone CORDA was found to contain 47.1% water.<br />

The content <strong>of</strong> the main wood constituent – cellulose - was similar in all the examined<br />

willow clones and ranged from 42.30% to 44.80% (Tab. 1), which means that differences in<br />

its content differed by only 2.5%. The highest cellulose content was found in the willow clone<br />

161


called CORDA, while the lowest content <strong>of</strong> 43.00% – in K-1054 and TUR KOCIBÓRZ<br />

clones. The wood <strong>of</strong> the K-DUOTUR willow clone was determined to contain 44.16%<br />

cellulose.<br />

The quantity <strong>of</strong> lignin in the examined samples ranged from 22.59% to 24.68% (Tab.<br />

1). Four willow clones revealed very similar levels (about 24%) <strong>of</strong> lignin, namely: K-1054 –<br />

24.35%, TUR KOCIBÓRZ – 24.49%, CORDA – 24.63% and K-TURBO – 24.68%, whereas<br />

two shrub willows contained approximately 2% less lignin, namely: K-DUOTUR – 22.59%<br />

and K-EKOTUR – 22.68%.<br />

The lowest holocellulose content (73.71%) was determined in the willow clone called<br />

K-TURBO, i.e. the one that was found to contain the highest level <strong>of</strong> lignin. The examined<br />

clones designated as: K – 1054, K-DUOTUR and CORDA contained very similar quantities<br />

<strong>of</strong> holocellulose: 77.36%, 77.47% and 77.52%, respectively, whereas the willow clone<br />

designated as TUR KOCIBÓRZ contained over 2% less <strong>of</strong> this constituent. The highest<br />

quantity <strong>of</strong> holocellulose was determined in the wood <strong>of</strong> the K-DUOTUR willow which was<br />

found to contain 78.60% <strong>of</strong> this constituent.<br />

25<br />

20<br />

21,15 21,26 21,03<br />

20,27 19,58 21,06<br />

15<br />

[%]<br />

10<br />

5<br />

0<br />

K-TURBO K-1054 K-DUOTUR TUR-KOCIBÓRZ CORDA K-EKOTUR<br />

Figure 1. Pentosan content in the examined willow clones.<br />

The content <strong>of</strong> pentosans in the wood <strong>of</strong> four <strong>of</strong> the examined willow clones was very<br />

similar and ranged from 21.03% to 21.26% (Fig. 1). The above clones included: K-TURBO –<br />

21.15%, K-1054 – 21.26%, K-DUOTUR – 21.03% and K-EKOTUR – 21.06%. The wood <strong>of</strong><br />

the TUR KOCIBÓRZ clone contained 20.27% pentosans, while CORDA clone was<br />

characterised by the lowest content <strong>of</strong> these compounds – 19.58%.<br />

CONCLUSIONS<br />

1. All the examined clones <strong>of</strong> the Salix sp. genus were characterised by a similar content<br />

<strong>of</strong> cellulose. The highest levels <strong>of</strong> this constituent (over 44%) were determined in<br />

CORDA and K-DUOTUR cultivars.<br />

2. The amount <strong>of</strong> lignin in the wood <strong>of</strong> the examined willow clones was similar and<br />

differences in its content amounted to about 2%.<br />

3. Holocellulose content in the wood <strong>of</strong> the experimental samples ranged from 73.71% to<br />

78.60%.<br />

4. The content <strong>of</strong> principal constituents in the wood <strong>of</strong> the examined shrub willow clones<br />

was characteristic for broad-leaved species.<br />

162


REFERENCES:<br />

1. BIAŁOBOK S. i in., 1990: Wierzby. Salix alba L., Salix fragilis L.. Nasze drzewa<br />

leśne, t. 13. PAN-PWN Inst. Dendrologii, W-wa-Poznań, s. 9-34.<br />

2. CIECHANOWICZ W., SZCZUKOWSKI S., 2006: Paliwa i energia XXI wieku<br />

szansą rozwoju wsi i miast. Oficyna Wyd. WIT, W-wa, s.71-152.<br />

3. CIECHANOWICZ W., SZCZUKOWSKI S., 2010: Transformacja cywilizacji z ery<br />

ognia do ekonomii wodoru i metanolu. Wyższa Szkoła Informatyki Stosowanej i<br />

Zarządzania, W-wa, s. 34-40.<br />

4. SOWIŃSKI J., 1988: Wpływ herbicydów oraz dodatkowego spulchniania<br />

międzyrzędzi na zachwaszczenie, wzrost i plonowanie wikliny. Cz. II.: Wpływ<br />

następczy na plon i jakość prętów w drugim roku uprawy. Rocz. Nauk. Roln., A, (107)<br />

3:205-219.<br />

5. STAFFA K., 1965: Studia nad szybko rosnącymi wierzbami jako surowcem dla<br />

przemysłu celulozowo-papierniczego. Hod. Rośl. Aklim. i Nas., 2, (2): 180-24, cz. II i<br />

III, 3: 320-338.<br />

6. SZCZUKOWSKI S., TWORKOWSKI J., WIWART M., PRZYBOROWSKI J., 2002:<br />

Wiklina (Salix sp.). Uprawa i możliwości wykorzystywania. Wyd. UW-M Olsztyn, s.<br />

5-57.<br />

7. WALISZEWSKA B., PODOBIŃSKI A., BOBKIEWICZ K., 1999: Skład chemiczny<br />

wierzb i redukcja metali ciężkich w hydrobotanicznych oczyszczalniach wód. Mat.<br />

XIII Konf. Naukowej WTD <strong>SGGW</strong> W-wa: „Drewno – Materiał o wszechstronnym<br />

przeznaczeniu i zastosowaniu”, s. 59-65.<br />

Streszczenie: Podstawowy skład chemiczny wybranych gatunków wierzb krzewiastych<br />

W niniejszej pracy oznaczono ilościowo zawartość podstawowych składników drewna wierzb<br />

krzewiastych następujących klonów: K-TURBO, K-1054, K-DUOTUR, TUR-KOCIBÓRZ,<br />

CORDA oraz K-EKOTUR. Materiał badawczy pochodził z uprawianej metodą Eko-Salix<br />

plantacji doświadczalnej Uniwersytetu Warmińsko-Mazurskiego, położonej w miejscowości<br />

Obory koło Kwidzyna w woj. warmińsko-mazurskim. Oznaczono ilość celulozy, ligniny i<br />

holocelulozy w drewnie wraz z korą. Badane klony wierzbowe zawierały od 42,30% do<br />

44,80% celulozy. Zawartość ligniny kształtowała się w granicach od 22,59% do 24,68%, a<br />

ilość holocelulozy wynosiła od 73,71% do 78,60%.<br />

The research project is financed from financial resources <strong>of</strong> the National Centre for Research<br />

and Development, within the framework <strong>of</strong> a development grant No. N R 12-0065-10/2011.<br />

Corresponding authors:<br />

Bogusława Waliszewska, Agnieszka Spek-Dźwigała<br />

Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Institute <strong>of</strong> Chemical Wood Technology<br />

ul. Wojska Polskiego 38/42<br />

60-637 Poznań<br />

e-mail: bwaliszewska@up.poznan.pl<br />

e-mail: adzwigala@wp.pl<br />

Kinga Szentner<br />

Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Faculty <strong>of</strong> Land Reclamation and Environmental Engineering<br />

ul. Wojska Polskiego 75<br />

60-625 Poznań<br />

e-mail: szentner@up.poznan.pl<br />

163


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 164-167<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Extractive substances in selected species <strong>of</strong> shrub willows<br />

BOGUSŁAWA WALISZEWSKA, WŁODZIMIERZ PRĄDZYŃSKI,<br />

AGNIESZKA SIERADZKA<br />

Institute <strong>of</strong> Chemical Wood Technology, Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Extractive substances in selected species <strong>of</strong> shrub willows. Quantities <strong>of</strong> substances soluble in organic<br />

solvents as well as in water found in the wood <strong>of</strong> shrub willows cultivated using the Eko-Salix method were<br />

determined. The following willow clones were investigated: K-TURBO, K-1054, K-DUOTUR, TUR-<br />

KOCIBÓRZ, CORDA and K-EKOTUR. Additionally, quantities <strong>of</strong> mineral substances were also determined.<br />

Analyses were carried out employing standard methods commonly used in wood chemistry.<br />

Keywords: extractive substances, water-soluble substances, mineral substances.<br />

INTRODUCTION<br />

Salix genus has attracted attention <strong>of</strong> many researchers for centuries not only as the<br />

best available material for wicker industry. Shrub varieties <strong>of</strong> willow were used for<br />

wickerwork purposes already in ancient times and the oldest evidence confirming willow<br />

utilisation for various purposes derives from the Neolithic Epoch (Wąsowiczówna 1958).<br />

Polish plantations <strong>of</strong> willow are dominated by the Salix americana variety because it<br />

is characterised by the best traits required in wicker industry. However, Salix genus finds<br />

wide applications in environmental protection, among others, for the reclamation <strong>of</strong> degraded<br />

land and sewage treatment (Waliszewska et al., 1999), in cellulose production (Staffa 1965),<br />

to manufacture wood-based boards (Morze, Prądzyński 1971), in production <strong>of</strong> active carbon<br />

(Kiełczewski et al., 1996) as well as for energy production (Ciechanowicz, Szczukowski<br />

2006).<br />

In recent years, both in Poland and in many other countries, we can observe an<br />

increasing interest in fast-growing shrub willow varieties <strong>of</strong> low soil requirements cultivated,<br />

primarily, for purposes <strong>of</strong> production <strong>of</strong> bi<strong>of</strong>uels (Ciechanowicz, Szczukowski 2010).<br />

Wood chemical composition depends on many factors (Prosiński 1984). The quantity<br />

<strong>of</strong> non-structural wood constituents which include: fats, waxes, resins, tannins, dyes, alkaloids<br />

and glycosides depends not only on the wood species but also on growth conditions, age and<br />

the part <strong>of</strong> plant etc.<br />

The objective <strong>of</strong> the performed investigations was to determine the content <strong>of</strong> nonstructural<br />

substances soluble in organic substances, water and 1% NaOH in selected species<br />

<strong>of</strong> shrub willow. Additionally, also the content <strong>of</strong> minerals in the examined wood was<br />

assessed.<br />

EXPERIMENTAL MATERIAL AND RESEARCH METHODOLOGY<br />

Investigations were carried out on five-year old willow twigs collected from an<br />

experimental plantation cultivated according to the Eko-Salix method situated in Obory near<br />

Kwidzyń in Warmia-Mazury Voivodeship. The following clones were investigated: K-<br />

TURBO, K-1054, K-DUOTUR, TUR-KOCIBÓRZ, CORDA and K-EKOTUR. The<br />

experimental material was collected in February 2011 and ground initially into chips together<br />

with bark. The material was next subjected to seasoning in a well-aerated facility at room<br />

164


temperature until it reached constant moisture content. Dried material was comminuted with<br />

the assistance <strong>of</strong> a laboratory mill Pulverisette 15 <strong>of</strong> Fritsch Company and 0.5-1.0 mm<br />

analytical fraction was separated using appropriate laboratory sieves.<br />

Chemical analyses were conducted in accordance with the PN-92/P-50092<br />

methodology and the following parameters were determined:<br />

Quantities <strong>of</strong> substances soluble in ethanol,<br />

Quantities <strong>of</strong> substances soluble in cold and hot water,<br />

Quantities <strong>of</strong> substances soluble in 1% NaOH.<br />

All results were calculated in relation to wood dry matter.<br />

RESEARCH RESULTS AND DISCUSSION<br />

Table 1. Content <strong>of</strong> extractive substances in the wood <strong>of</strong> the selected willows.<br />

Name <strong>of</strong> raw<br />

material<br />

Ethanol soluble<br />

substances [%]<br />

Substances soluble<br />

in cold water [%]<br />

Substances soluble<br />

in hot water [%]<br />

Substances soluble<br />

in 1% NaOH [%]<br />

K-TURBO 3,45 2,45 3,21 25,62<br />

K-1054 3,29 2,56 2,93 25,30<br />

K-DUOTUR 3,86 2,33 3,31 22,90<br />

TUR KOCIBÓRZ 3,81 2,51 3,92 26,55<br />

CORDA 3,33 2,24 3,06 22,39<br />

K-EKOTUR 3,47 3,22 4,06 26,44<br />

The quantities <strong>of</strong> substances extracted with the organic solvent in wood <strong>of</strong> the<br />

examined shrub willows were very similar. The greatest differences in the content <strong>of</strong> these<br />

compounds did not exceed 0.6%. The highest amount <strong>of</strong> ethanol soluble substances - 3.86%<br />

was determined in the clone designated as K-DUOTUR. The examined TUR KOCIBÓRZ<br />

clone was also found to contain high content (3.81%) <strong>of</strong> these substances. Practically,<br />

identical quantities <strong>of</strong> extractive substances, i.e. 3.45% and 3.47% were determined in the<br />

wood <strong>of</strong> respectively K-TURBO and K-EKOTUR clones. Two shrub willow clones<br />

designated as K-1054 and CORDA contained respectively 3.29% and 3.33% <strong>of</strong> compounds<br />

soluble in ethanol.<br />

When analysing the amount <strong>of</strong> substances soluble in cold water, it can be concluded<br />

that the only willow clone that contained somewhat higher levels <strong>of</strong> these compounds (3.22%)<br />

was the one designated as K-EKOTUR. The remaining clones <strong>of</strong> the Salix genus were<br />

characterised by very similar quantities <strong>of</strong> substances diluted by cold water which ranged<br />

from 2.24% in the case <strong>of</strong> the clone designated as CORDA to 2.56% in the case <strong>of</strong> the clone<br />

called K-1054. The wood <strong>of</strong> the K-DUOTUR willow clone was found to contain 2.33% <strong>of</strong><br />

cold-water extracted substances, whereas that <strong>of</strong> the K-TURBO clone – 2.45%. A similar<br />

amount <strong>of</strong> these substances (2.51%) was determined in the willow clone designated as TUR<br />

KOCIBÓRZ.<br />

The content <strong>of</strong> substances soluble in hot water determined in the wood <strong>of</strong> the<br />

examined shrub willows ranged from 2.93% in the case <strong>of</strong> the clone designated as K-1054 to<br />

4.06% in the K-EKOTUR clone. The wood <strong>of</strong> CORDA clone contained 3.06% <strong>of</strong> these<br />

compounds. High content (3.92%) <strong>of</strong> substances extracted by hot water was determined in the<br />

wood <strong>of</strong> the TUR KOCIBÓRZ clone, while the successive two <strong>of</strong> the examined willow<br />

clones, namely K-TURBO and K-DUOTUR were found to contain, respectively: 3.21% and<br />

3.31% <strong>of</strong> substances diluted with hot water.<br />

The analyses <strong>of</strong> the content <strong>of</strong> substances soluble in diluted alkalis indicated high<br />

quantities <strong>of</strong> these compounds in the examined willow samples. Their quantities ranged from<br />

22.39% to 26.55%. Their highest levels were determined in the wood <strong>of</strong> TUR KOCIBÓRZ<br />

165


willow clone, whereas the clone designated as CORDA was found to contain their lowest<br />

quantities. Two <strong>of</strong> the examined willow clones contained similar quantities <strong>of</strong> substances<br />

washed out by diluted NaOH, namely: clone K-TURBO – 25.62% and clone K-1054 –<br />

25.30%. The willow clone designated as K-DUOTUR contained 22.90% <strong>of</strong> these substances<br />

in its wood, whereas the wood <strong>of</strong> the K-EKOTUR clone was found to contain over 3.5% more<br />

<strong>of</strong> them.<br />

[%]<br />

2,00<br />

1,80<br />

1,60<br />

1,40<br />

1,20<br />

1,00<br />

0,80<br />

0,60<br />

0,40<br />

0,20<br />

0,00<br />

1,81<br />

1,64<br />

1,63<br />

1,49<br />

1,31<br />

1,1<br />

K-TURBO K-1054 K-DUOTUR TUR-KOCIBÓRZ CORDA K-EKOTUR<br />

Figure 1. Content <strong>of</strong> mineral substances in wood <strong>of</strong> selected willow clones.<br />

The amount <strong>of</strong> mineral substances in wood depends on many factors, among others,<br />

on growth conditions and can be treated as an important indicator in situations when this raw<br />

material is intended for energy purposes. Obviously, the lower the content <strong>of</strong> these<br />

substances, the better. Wood <strong>of</strong> the examined bush willow clones was characterised by an<br />

elevated content <strong>of</strong> mineral substances in comparison with the literature data (Prosiński<br />

1984).<br />

Analysing the amount <strong>of</strong> ash in the wood <strong>of</strong> the examined bush willow clones, it was<br />

found that its quantities ranged from 1.10% in the case <strong>of</strong> the clone designated as K-<br />

DUOTUR up to 1.81% in the case <strong>of</strong> the K-TURBO clone. Two <strong>of</strong> the examined willow<br />

clones - CORDA and K-1054 - contained the same amounts <strong>of</strong> ash (1.63-1.64%). Wood <strong>of</strong> the<br />

willow clone designated as TUR-KOCIBÓRZ contained 1.31% mineral substances, while that<br />

<strong>of</strong> the K-EKOTUR clone – 1.49%.<br />

CONCLUSIONS<br />

1. Quantities <strong>of</strong> substances soluble and ethanol and in cold water in the examined willow<br />

clones were very similar and were determined at levels characteristic for broad-leaved<br />

species.<br />

2. The content <strong>of</strong> compounds soluble in diluted alkalis was fairly high and ranged from<br />

22.39% to 26.44%.<br />

3. The recorded elevated content <strong>of</strong> mineral substances in the wood <strong>of</strong> the examined<br />

willow samples should not restrict their application for energy purposes.<br />

4. Uniform growth conditions may have impacted the recorded similar quantities <strong>of</strong> nonstructural<br />

substances in the wood <strong>of</strong> experimental willow wood.<br />

166


REFERENCES:<br />

1. CIECHANOWICZ W., SZCZUKOWSKI S., 2006: Paliwa i energia XXI wieku<br />

szansą rozwoju wsi i miast. Oficyna Wyd. WIT, W-wa, s.71-152.<br />

2. CIECHANOWICZ W., SZCZUKOWSKI S., 2010: Transformacja cywilizacji z ery<br />

ognia do ekonomii wodoru i metanolu. Wyższa Szkoła Informatyki Stosowanej i<br />

Zarządzania, W-wa, s. 34-40.<br />

3. KIEŁCZEWSKI M., BABEŁ K., ZAKRZEWSKI R., 1996: Badania nad<br />

otrzymaniem ziarnowych węgli aktywnych z jednorocznych prętów wierzby Salix<br />

americana. Mat. Konf. „Kompleksowe wykorzystanie wierzb krzewiastych z<br />

krajowych plantacji”. Poznań-Zielonka.<br />

4. MORZE Z., PRĄDZYŃSKI W., 1971: Możliwosci wykorzystania odpadów z wikliny<br />

do produkcji płyt wiórowych. Roczniki WSR, L II:73-87.<br />

5. PROSIŃSKI S., 1984: Chemia drewna. PWRiL Warszawa.<br />

6. STAFFA K., 1965: Studia nad szybko rosnącymi wierzbami jako surowcem dla<br />

przemysłu celulozowo-papierniczego. Hod. Rośl. Aklim. i Nas., 2, (2): 180-24, cz. II i<br />

III, 3: 320-338.<br />

7. WALISZEWSKA B., PODOBIŃSKI A., BOBKIEWICZ K., 1999: Skład chemiczny<br />

wierzb i redukcja metali ciężkich w hydrobotanicznych oczyszczalniach wód. Mat.<br />

XIII Konf. Naukowej WTD <strong>SGGW</strong> W-wa: „Drewno – Materiał o wszechstronnym<br />

przeznaczeniu i zastosowaniu”, s. 59-65.<br />

8. WĄSOWICZÓWNA A., 1958: Plecionkarstwo w starożytnym Rzymie. Polska<br />

Wiklina. PPW Poznań nr 4 (8).<br />

Streszczenie: Substancje ekstrakcyjne wybranych gatunków wierzb krzewiastych<br />

W niniejszej pracy oznaczono ilościowo zawartość niestrukturalnych składników drewna<br />

wierzb krzewiastych następujących klonów: K-TURBO, K-1054, K-DUOTUR, TUR-<br />

KOCIBÓRZ, CORDA oraz K-EKOTUR. Materiał badawczy pochodził z uprawianej metodą<br />

Eko-Salix plantacji doświadczalnej Uniwersytetu Warmińsko-Mazurskiego, położonej w<br />

miejscowości Obory koło Kwidzyna w woj. warmińsko-mazurskim. Oznaczono ilość<br />

substancji rozpuszczalnych w etanolu, zimnej i gorącej wodzie oraz 1% NaOH. Zawartość<br />

substancji rozpuszczalnych w etanolu oraz w zimnej wodzie w badanych klonach<br />

wierzbowych była bardzo zbliżona i kształtowała się na poziomie odpowiednio 3,29% do<br />

3,86% oraz 2,24% do 3,22%. Ilość związków rozpuszczalnych w rozcieńczonych alkaliach<br />

była wysoka i wynosiła od 22,39% do 26,55%. Badane wierzby zawierały od 1,10% do<br />

1,81% popiołu.<br />

Investigations were financed from the financial resources <strong>of</strong> The National Centre for Research<br />

and Development, within the framework <strong>of</strong> the development grant No. 12-0065-10/2011.<br />

Corresponding authors:<br />

Bogusława Waliszewska,<br />

Włodzimierz Prądzyński,<br />

Agnieszka Sieradzka<br />

Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Institute <strong>of</strong> Chemical Wood Technology<br />

ul. Wojska Polskiego 38/42<br />

60-637 Poznań<br />

e-mail: bwaliszewska@up.poznan.pl<br />

e-mail: wpradzynski@up.poznan.pl<br />

e-mail: rosandgild@wp.pl<br />

167


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 168-171<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Effect <strong>of</strong> the press closing speed on mechanical properties <strong>of</strong> particleboards<br />

with the core layer made from willow (Salix viminalis)<br />

KRZYSZTOF WARMBIER 1) , ARNOLD WILCZYŃSKI 1) , LESZEK DANECKI 2) ,<br />

MIROSŁAWA MROZEK 2)<br />

1) Institute <strong>of</strong> Technology, Kazimierz Wielki <strong>University</strong> in Bydgoszcz<br />

2) Research and Development Centre for Wood-Based Panels Industry in Czarna Woda<br />

Abstract: Effect <strong>of</strong> the press closing speed on mechanical properties <strong>of</strong> particleboards with the core layer made<br />

from willow (Salix viminalis). Three-layer experimental particleboards were prepared using basket willow (Salix<br />

viminalis) particles for the core layer and industrial pine particles for the face layers. The effect <strong>of</strong> the speed <strong>of</strong><br />

press closing (1, 2 and 3 mm/s from the mat thickness to the distance bar) on modulus <strong>of</strong> elasticity (MOE),<br />

modulus <strong>of</strong> rupture (MOR) and internal bond (IB) was investigated. The greater speed provided better MOE and<br />

MOR, and worse IB. For comparison, the properties <strong>of</strong> particleboards with the core layer made from pine<br />

particles were studied. MOE and MOR <strong>of</strong> particleboards with the core layer from willow were slightly smaller,<br />

and IB was slightly greater.<br />

Keywords: particleboard, willow, mechanical properties, press closing time<br />

INTRODUCTION<br />

Considering the growth <strong>of</strong> particleboard production, Polish particleboard industry is<br />

looking for new lignocellulosic materials. One <strong>of</strong> such material can be willow Salix viminalis<br />

cultivated in Poland for energetic purposes (Dubas and Tomczyk 2005, Szczukowski et al<br />

2006). Initial studies in the Institute <strong>of</strong> Wood Technology in Poznań (Poland) (Frąckowiak<br />

2007, Frąckowiak et al 2008) showed the usefulness <strong>of</strong> this willow. This usefulness was also<br />

confirmed by Sean et al. (2006). The group <strong>of</strong> scientists from the Institute <strong>of</strong> Technology <strong>of</strong><br />

the Kazimierz Wielki <strong>University</strong> (Poland) and the Research and Development Centre for<br />

Wood-Based Panels Industry (Poland) has carried out comprehensive investigations into<br />

effects <strong>of</strong> different factors on mechanical and physical properties <strong>of</strong> three-layer particleboards<br />

with the core layer made from willow Salix viminalis. (Warmbier et al 2010, Wilczyński et al<br />

2011).<br />

The aim <strong>of</strong> this paper is to present one <strong>of</strong> the parts <strong>of</strong> these investigations – the study<br />

on the effect <strong>of</strong> the press closing speed on mechanical properties <strong>of</strong> three-layer experimental<br />

particleboard with the core layer made from basket willow.<br />

MATERIALS AND METHODS<br />

The raw material for the core layer was obtained from a basket willow plantation in<br />

Mieścisko (Poland). Three-year willow stems were stored for air-drying to moisture content<br />

<strong>of</strong> about 12%, then chipped in a hammer-mill. To obtain particles for the core layer <strong>of</strong><br />

experimental particleboards, particles from the hammer-mill were screened and those which<br />

passed through the sieve <strong>of</strong> 5 mesh (4 mm) and remained on the sieve <strong>of</strong> 18 mesh (1 mm)<br />

were used. The raw material for the face layers was industrial fine particles made from pine<br />

wood, supplied by Pfleiderer Prospan Wieruszów (Poland). All the particles were dried to<br />

168


achieve moisture content <strong>of</strong> less than 3%. Urea formaldehyde resin was used as a binder and<br />

no hydrophobic agent was added. The resin content was 8 and 10% for the core and face<br />

layers, respectively. The ratio <strong>of</strong> the thickness <strong>of</strong> the face layers to the thickness <strong>of</strong> the board<br />

was 0.4, the target board density was 700 kg/m 3 , and the thickness was 16 mm. The pressing<br />

conditions were: temperature <strong>of</strong> 180 o C, maximum pressure <strong>of</strong> 2.5 MPa, and pressing time <strong>of</strong><br />

4 min. Three press closing speeds were assumed: 1, 2 and 3 mm/s, from the mat thickness to<br />

the distance bar. Four experimental boards were manufactured for each press closing speed.<br />

For comparison, three-layer particleboards with the core layer made from industrial<br />

pine particles supplied by Pfleiderer Prospan Wieruszów were prepared. Particle sizes, board<br />

construction and pressing conditions were the same as for the particleboard with the willow<br />

core layer.<br />

Prior to testing all the boards were stored in controlled conditions (50% relative<br />

humidity and 20 o C) for two weeks. The following properties <strong>of</strong> produced particleboards were<br />

determined according to EN standards: modulus <strong>of</strong> elasticity (MOE) and modulus <strong>of</strong> rupture<br />

(MOR) according to EN 310: 1994, internal bond (IB) according to EN 319: 1999. Test<br />

specimens for IB were prepared from the specimens that were formerly tested for MOE and<br />

MOR. Twenty replicates were run for each test.<br />

RESULTS<br />

Results <strong>of</strong> the tests are given in Figs 1-3. Error bars represented ±standard deviation<br />

based on twenty specimens. Mechanical properties in bending <strong>of</strong> tested particleboards (Figs<br />

1and 2) increase whereas IB (Fig. 3) decreases gradually with increasing the press closing<br />

speed from 1 to 3 mm/s. This relation concerns both particleboards with the willow and pine<br />

core layer. MOE and MOR <strong>of</strong> particleboards pressed with the press closing speed <strong>of</strong> 3 mm/s<br />

are on average greater by 11 and 10% respectively than those <strong>of</strong> particleboards pressed with<br />

the press closing speed <strong>of</strong> 1 mm/s. IB <strong>of</strong> particleboards pressed with the press closing speed<br />

<strong>of</strong> 3 mm/s is on average smaller by 23% than that <strong>of</strong> particleboards pressed with the press<br />

closing speed <strong>of</strong> 1 mm/s.<br />

Fig.1. Modulus <strong>of</strong> elasticity <strong>of</strong> particleboards pressed with different press closing speeds<br />

169


Fig.2. Modulus <strong>of</strong> rupture <strong>of</strong> particleboards pressed with different press closing speeds<br />

Fig.3. Internal bond <strong>of</strong> particleboards pressed with different press closing speeds<br />

Mechanical properties in bending <strong>of</strong> particleboards with the core layer made from<br />

willow are worse than those <strong>of</strong> particleboards with the core layer from pine. MOE and MOR<br />

are on average smaller by 5%. IB <strong>of</strong> particleboards with the core layer from willow is better<br />

than that <strong>of</strong> particleboards with the core layer from pine, its value is on average greater by<br />

3%.<br />

CONCLUSIONS<br />

Mechanical properties <strong>of</strong> three-layer particleboards with the core layer made from<br />

basket willow particles depend on the press closing speed. The press closing speed <strong>of</strong> 3 mm/s<br />

provides better MOE and MOR, and worse IB than the speeds <strong>of</strong> 1 and 2 mm/s. Compared<br />

with three-layer particleboards with the core layer made from industrial pine particles, the<br />

mechanical properties in bending <strong>of</strong> particleboards with this layer made from willow particles<br />

are slightly smaller, and IB is slightly greater.<br />

REFERENCES<br />

1. DUBAS J., TOMCZYK A. (2005) Establishment, care and protection <strong>of</strong> energetic<br />

willow plantation (in Polish). <strong>SGGW</strong> Warszawa.<br />

2. EN 310 (1993) Wood-based panels. Determination <strong>of</strong> modulus <strong>of</strong> elasticity in bending<br />

and <strong>of</strong> bending strength.<br />

3. EN 312 (2003) Particleboards. Specifications.<br />

170


4. EN 319 (1993) Particleboards and fiberboards. Determination <strong>of</strong> tensile strength<br />

perpendicular to the plane <strong>of</strong> the board.<br />

5. FRĄCKOWIAK I., 2007: From studies on using alternative lignocellulosic raw<br />

materials for particleboard production (in Polish). Technologia Drewna - Wczoraj,<br />

Dziś, Jutro, Poznań: 285-294.<br />

6. FRĄCKOWIAK I., FUCZEK D., KOWALUK G., 2008: Impact <strong>of</strong> different<br />

lignocellulosic materials used in core <strong>of</strong> particleboard on modulus <strong>of</strong> elasticity and<br />

bending strength. DREWNO-WOOD 51, 180: 5-13.<br />

7. SEAN S.T., LABRECQUE M. (2006) Use <strong>of</strong> short-rotation coppice willow clones <strong>of</strong><br />

Salix viminalis as furnish in panel production. Forest Products Journal 56 (9): 47-52.<br />

8. SZCZUKOWSKI S., TWORKOWSKI J., STOLARSKI M. (2006) Energetic willow<br />

(in Polish). Plantpress, Kraków.<br />

9. WARMBIER K., WILCZYŃSKI A., DANECKI L. (2010) Particle size dependent<br />

properties particleboards with the core layer made from willow (Salix viminalis).<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>. Forestry and Wood Technology 71:<br />

405-409.<br />

10. WILCZYŃSKI A., WARMBIER K., DANECKI L., MROZEK M. (2011) Properties<br />

<strong>of</strong> experimental particleboards with the core layer made from willow (Salix viminalis).<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>. Forestry and Wood Technology 74.<br />

Streszczenie: Wpływ prędkości zamykania prasy na właściwości mechaniczne płyt wiórowych<br />

z warstwą wewnętrzną wykonaną z wierzby Salix viminalis. Wykonano trzywarstwowe płyty<br />

wiórowe stosując wióry wierzby wiciowej (Salix viminalis) na warstwę wewnętrzną i<br />

przemysłowe wióry sosnowe na warstwy zewnętrzne. Badano wpływ prędkości zamykania<br />

półek prasy (1, 2 i 3 mm/s - od grubości maty do trzpienia dystansowego) na moduł<br />

sprężystości (MOE), wytrzymałość na zginanie (MOR) i wytrzymałość na rozciąganie<br />

poprzeczne (IB). Większa prędkość zapewniała lepsze MOE i MOR oraz gorsze IB. Dla<br />

porównania badano właściwości płyt z warstwą wewnętrzną wykonaną z wiórów sosnowych.<br />

MOE i MOR płyt wiórowych z warstwą wewnętrzną z wiórów wierzbowych były<br />

nieznacznie mniejsze, a IB nieznacznie większe.<br />

Acknowledgement: This research project has been supported by the Polish Ministry <strong>of</strong><br />

Science and Higher Education, grant number N N309 133535.<br />

Corresponding authors:<br />

Krzyszt<strong>of</strong> Warmbier, Arnold Wilczyński<br />

Institute <strong>of</strong> Technology,<br />

Kazimierz Wielki <strong>University</strong><br />

Chodkiewicza 30 str.<br />

85-064 Bydgoszcz, Poland<br />

e-mail: warm@ukw.edu.pl<br />

e-mail: wilczar@ukw.edu.pl<br />

Leszek Danecki, Mirosława Mrozek<br />

Research and Development Centre for Wood-Based Panels Industry in Czarna Woda<br />

Mickiewicza 10 str.<br />

83-262 Czarna Woda, Poland<br />

e-mail: leszek.danecki@obrppd.com<br />

171


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 172-175<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Productivity <strong>of</strong> wood cutting process<br />

ROMAN WASIELEWSKI<br />

Department <strong>of</strong> Manufacturing Engineering and Automation, Mechanical Engineering Faculty,<br />

Gdansk <strong>University</strong> <strong>of</strong> Technology.<br />

Abstract: Productivity <strong>of</strong> wood cutting process. The paper presents analysis <strong>of</strong> productivity for sample wood<br />

cutting line.<br />

Keywords: wood cutting, circular sawing machine<br />

INTRODUCTION<br />

Assessment <strong>of</strong> production processes including wood cutting is being <strong>of</strong>ten conducted<br />

based on their productivity. The productivity is defined as sum <strong>of</strong> achieved effects in relation<br />

to total investment. Due to difficulty with keeping the same units for the effects and<br />

investments as well as difficulty with correct determination <strong>of</strong> all effects and investments,<br />

there are many measures <strong>of</strong> partial productivity which are relations <strong>of</strong> effect to chosen type <strong>of</strong><br />

investment in production.<br />

In relation to wood cutting operation, the productivity (similarly to efficiency) can be<br />

determined based on many factors, and their choice depends on target <strong>of</strong> the analysis<br />

[ORŁOWSKI, WASIELEWSKI].<br />

PRODUCTIVITY OF WOOD CUTTING MACHINE<br />

During wood cutting process, the productivity <strong>of</strong> cutting machine together with<br />

accompanying devices feeding and receiving material is an important factor. Such<br />

productivity measure shows first <strong>of</strong> all the utilization degree for whole line <strong>of</strong> machines<br />

related to the cutting process. Sample analysis shows wood cutting line where two-spindle<br />

multi-saw circular cutting machine is used together with devices for feeding and receiving<br />

material (fig.1). The material in form <strong>of</strong> prism is taken from buffer stock 1 and delivered to<br />

transporter 2. There its position is being set by means <strong>of</strong> jaws 3. Time <strong>of</strong> this operation is<br />

constant and equals t u =6 s. Next, the material is pressed by means <strong>of</strong> roll 4, jaws 3 are<br />

released and material travels towards the cutting machine. Feeding speed on the transporter is<br />

v f , and is supported by feeding system <strong>of</strong> the cutting machine. When end surface <strong>of</strong> the prism<br />

5 passes by the sensor 6 mounted on the transporter, the cycle repeats.<br />

2<br />

1<br />

4<br />

3<br />

6 5<br />

Fig. 1. Scheme <strong>of</strong> the material feeding system<br />

172


Used material feeding system causes that between following prisms <strong>of</strong> material coming into<br />

the cutting machine there is a separation, which is a reason <strong>of</strong> not full utilization <strong>of</strong> the cutting<br />

machine (fig.2).<br />

vf<br />

vf<br />

tu vf<br />

L<br />

l<br />

Fig. 2. Work cycle <strong>of</strong> material feeding system<br />

In case <strong>of</strong> cutting prisms with length L, the cycle time is<br />

L<br />

T t<br />

u<br />

<br />

vf<br />

(1)<br />

and expressed by the prism’s travel it is:<br />

l t<br />

u<br />

vf<br />

L<br />

(2)<br />

Productivity <strong>of</strong> the wood cutting machine, as utilization degree <strong>of</strong> whole cutting line can be<br />

determined percentage-wise as ration <strong>of</strong> prism’s length to prism’s travel resulting from work<br />

cycle <strong>of</strong> the cutting machine<br />

L L<br />

P 100<br />

100<br />

%<br />

l t<br />

u<br />

vf<br />

L<br />

(3)<br />

Productivity can be also determined as relation between apparent feed velocity under 100%<br />

P<br />

productivity v f<br />

, to real feed velocity v f .<br />

P<br />

vf<br />

P 100<br />

%<br />

vf<br />

(4)<br />

P<br />

Apparent feed velocity under 100% productivity v f<br />

is actual linear efficiency <strong>of</strong> the cutting<br />

machine determining length <strong>of</strong> the material machined in period <strong>of</strong> time. From that, the<br />

relation is :<br />

l L<br />

<br />

P<br />

vf v f<br />

(5)<br />

therefore:<br />

P L L<br />

vf<br />

vf<br />

vf<br />

<br />

l t<br />

u<br />

vf<br />

L<br />

(6)<br />

Samples <strong>of</strong> calculated productivity and actual linear efficiency <strong>of</strong> the cutting system<br />

presented in fig. 1 is shown in fig. 3a and fig. 4a [MINKE].<br />

173


a)<br />

P, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L = 2 m<br />

L = 4 m<br />

L = 6 m<br />

0 10 20 30 40 50<br />

v f , m/min<br />

b)<br />

P, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

L = 2 m<br />

L = 4 m<br />

L = 6 m<br />

0 10 20 30 40 50<br />

v f , m/min<br />

Fig. 3. Productivity <strong>of</strong> cutting system from fig. 1, for: a) t u =6 s, b) t u =2 s<br />

a)<br />

vf p , m/min<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

L = 2 m<br />

L = 4 m<br />

L = 6 m<br />

0 10 20 30 40 50<br />

v f , m/min<br />

b)<br />

vf p , m/min<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

L = 2 m<br />

L = 4 m<br />

L = 6 m<br />

0<br />

0 10 20 30 40 50<br />

v f , m/min<br />

Fig. 4. Actual linear efficiency <strong>of</strong> cutting system from fig. 1<br />

for: a) t u = 6 s, b) t u = 2 s<br />

As it is seen, productivity <strong>of</strong> the system significantly depends on feed velocity v f and<br />

length <strong>of</strong> cut prisms L (fig. 3a) and increasing <strong>of</strong> feed speed v f is not equal to the same<br />

increase in length <strong>of</strong> prisms (fig. 4a).<br />

Productivity increase <strong>of</strong> line to cut is possible by shortening the time needed to fix<br />

prism’s position on the transporter t u , what is shown in fig. 3b and fig. 4b. Shortening <strong>of</strong><br />

fixing time t u can be used not only to increase cutting efficiency. In many cases it is worth<br />

decreasing feed velocity, keeping the same actual length <strong>of</strong> cut prisms. For example, when<br />

P<br />

cutting prism with L = 4m length, in order to keep real linear efficiency <strong>of</strong> v f<br />

= 20 m/min<br />

with t u = 6s the cutting process needs to be conducted with feed velocity <strong>of</strong> v f = 40 m/min (fig.<br />

4a), shortening the time to fix prism t u down to 2s, the same length <strong>of</strong> cut prism can be<br />

achieved with v f = 25 m/min (fig. 4b). Therefore the same amount <strong>of</strong> production can be<br />

achieved with lower feed velocity. Such solution brings many machining advantages. Lower<br />

feed velocity can help with lower machining speed (with the same thickness <strong>of</strong> layers<br />

machined by the teeth) what increases durability <strong>of</strong> the saw, or lower thickness <strong>of</strong> layers what<br />

leads to decreasing machining forces and increased precision <strong>of</strong> cutting, etc.<br />

174


SUMMARY<br />

In every given case, the analysis <strong>of</strong> time efficiency and productivity <strong>of</strong> whole cutting<br />

system shows weak points <strong>of</strong> cutting process. Therefore it is possible to minimize them what<br />

leads to efficient cutting.<br />

REFERENCES<br />

1. ORŁOWSKI K., WASIELEWSKI R., 2007: Analiza produktywności operacji przecinania<br />

drewna piłami. W: Obróbka skrawaniem : Wysoka produktywność, pod red. P. Cichosza.<br />

Wrocław : Ofic. Wydaw. Politech. Wroc., - (Szkoła Obróbki Skrawaniem ; 1). s. 369-376,<br />

ISBN 978-83-7493-343-8.<br />

2. MINKE M., 2011: Produktywność wielopiłowych przecinarek tarczowych. Projekt<br />

dyplomowy, promotor R. Wasielewski. Politechnika Gdańska, Wydział Mechaniczny,<br />

masz. Gdańsk.<br />

Streszczenie: Produktywność procesu przecinania drewna. W niniejszym artykule<br />

przedstawiono analizę produktywności przykładowej linii przecinania drewna.<br />

Corresponding author:<br />

Roman Wasielewski<br />

Department <strong>of</strong> Manufacturing Engineering and Automation,<br />

Mechanical Engineering Faculty,<br />

Gdansk <strong>University</strong> <strong>of</strong> Technology,<br />

Narutowicza 11/12, 80-952 Gdańsk, Poland<br />

E-mail address: rwasiele@pg.gda.pl<br />

175


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 176-179<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Examination <strong>of</strong> influence <strong>of</strong> fixing circular saw on its stiffness<br />

ROMAN WASIELEWSKI<br />

Department <strong>of</strong> Manufacturing Engineering and Automation, Mechanical Engineering Faculty,<br />

Gdansk <strong>University</strong> <strong>of</strong> Technology.<br />

Abstract: Examination <strong>of</strong> influence <strong>of</strong> fixing circular saw on its stiffness. This article shows impact <strong>of</strong> the shape<br />

<strong>of</strong> fixing disc on blade stiffness <strong>of</strong> chosen saws. Results <strong>of</strong> research present impact <strong>of</strong> size, shape and surface<br />

quality in point <strong>of</strong> contact <strong>of</strong> fixing discs on blade stiffness.<br />

Keywords: wood cutting, circular sawing machine<br />

INTRODUCTION<br />

Own stiffness <strong>of</strong> circular saws, like the stiffness <strong>of</strong> each component depends on the<br />

shape, method <strong>of</strong> attachment and properties <strong>of</strong> material it is made <strong>of</strong>.<br />

In circular saws, a decisive influence on the stiffness are factors arising from the shape<br />

<strong>of</strong> the saw. These factors include: a diameter <strong>of</strong> the saw, body thickness, saw geometry<br />

(amount, shape and size <strong>of</strong> the groove boards, as well as cuts: compensatory, cooling,<br />

soundpro<strong>of</strong>ing, scraping) [WASIELEWSKI].<br />

Besides shape, the stiffness <strong>of</strong> the blade is significantly affected by the method <strong>of</strong><br />

fixing the saw blade on the cutter spindle. The fixing method <strong>of</strong> saw, results from size, shape<br />

and quality <strong>of</strong> the contact surface <strong>of</strong> the mounting plates between this plates and the corp.<br />

EXAMINATION OF INFLUENCE OF FIXING CIRCULAR SAW ON ITS STIFFNESS<br />

An example <strong>of</strong> impact <strong>of</strong> shape <strong>of</strong> mounting plates on the stiffness on the selected saw<br />

blades are shown below.<br />

Two saws were tested (fig. 1) the main difference was the thickness <strong>of</strong> the body (s =<br />

2,5 mm, s = 1,2 mm). These saws were mounted in the grips <strong>of</strong> constant external diameter <strong>of</strong><br />

the mounting discs Dt = 125 mm, but with a different shape and size <strong>of</strong> the contact surface<br />

with the body <strong>of</strong> the saw (fig. 2). In the studies were used: flat surfaces, differing only with<br />

the contact surface (fig. 2A, B, C, D), surfaces with circumferential grooves (fig. 2E) and the<br />

surfaces with circumferential grooves which the rubber rings embedded (fig. 2F). The results,<br />

as the average stiffness <strong>of</strong> saw blades mounted in individual shields are shown in fig. 3<br />

[MAJCHRZAK].<br />

176


a) b)<br />

D = 350 D = 367<br />

s = 2,5 s = 1,2<br />

z = 18 z = 12<br />

Fig. 1. Saws used in research<br />

A B C D E F<br />

125<br />

30<br />

80<br />

100<br />

120<br />

113<br />

100<br />

80<br />

Fig. 2. Type <strong>of</strong> mounting plates used in research<br />

a) b)<br />

80<br />

78<br />

6,5<br />

6,4<br />

ksr, N/mm<br />

76<br />

74<br />

ksr, N/mm<br />

6,3<br />

6,2<br />

72<br />

6,1<br />

70<br />

A B C D E F<br />

rodzaj tarcz mocujących<br />

6<br />

A B C D E F<br />

rodzaj tarcz mocujących<br />

Fig. 3. The average value <strong>of</strong> stiffness <strong>of</strong> blades depending on type <strong>of</strong> mounting discs, for: a)<br />

saw from fig. 1a, b) saw from fig. 1b<br />

Comparing the results from fig. 1a and fig. 1b we can see that, regardless <strong>of</strong> the<br />

stiffness <strong>of</strong> blades (stiffness used in the experiment vary more than ten times), the influence <strong>of</strong><br />

the type <strong>of</strong> mounting plates is similar. The mounting discs with flat surfaces (fig. 2A, B, C,<br />

D), there is a specific value <strong>of</strong> contact surface at which the saw stiffness is greatest (fig. 2C).<br />

Too big surface (fig. 2A) impoverish the accuracy <strong>of</strong> contact, which reduces the stiffness <strong>of</strong><br />

177


the connection, and too little surface (fig. 2D), with a transverse load <strong>of</strong> saws, resulting in<br />

large forces on the edges <strong>of</strong> the mounting plates resulting from the moment <strong>of</strong> consolidate,<br />

which conduct to deformation and thus significantly reduces the stiffness.<br />

We can find interesting about pressure surfaces with circumferential grooves (fig. 2E)<br />

[WASIELEWSKI, ORŁOWSKI]. Such discs have a limited value <strong>of</strong> the contact surface, such<br />

as C-type discs, while retaining the large difference in the largest and smallest diameter <strong>of</strong> the<br />

mount, as the B-type disc. This ensures even distribution <strong>of</strong> pressure, eliminating the negative<br />

side <strong>of</strong> D-type shields. As a result, such type <strong>of</strong> mounting plates assure maximum rigidity <strong>of</strong><br />

saw blades. Mounting plates with circumferential grooves also allow to maintain the purity <strong>of</strong><br />

contact surfaces, what improves stiffness and also improves the accuracy <strong>of</strong> mounting saws.<br />

Additionally, in discs with circumferential grooves, the grooves can be used to embed in them<br />

damping elements such as rubber rings (fig. 2F). Such a solution, as a result <strong>of</strong> dumping the<br />

vibration, also improves the dynamics <strong>of</strong> the saw.<br />

An example <strong>of</strong> commonly used in multi-saw cut-<strong>of</strong>f machine disc dividers with flat<br />

surfaces and plates with circumferentially grooved contact surfaces are shown in fig. 4.<br />

Quality <strong>of</strong> mounting circular saws, apart from size and shape <strong>of</strong> the contact surface <strong>of</strong> the<br />

mounting plates (dividers) in the body <strong>of</strong> the saw, to a large extent depends on the quality <strong>of</strong><br />

their surface. In industrial practice, in many cases, there are used mounting plates (dividers),<br />

the surface quality is far from satisfactory (fig. 4a), which obviously reduce the stiffness and<br />

accuracy positioning <strong>of</strong> saw.<br />

a) b)<br />

SUMMARY<br />

Fig. 4. An example <strong>of</strong> dividers to saws: a) with flat surfaces (commonly used),<br />

b) with circumferential grooved contact surfaces<br />

Method <strong>of</strong> fixing the saw resulting from the size, shape and quality <strong>of</strong> contact surface<br />

mounting plates with the body has an impact on the saw stiffness.<br />

Studies have shown that saws with circumferential grooves have limited value <strong>of</strong><br />

contact surface, maintaining a big difference between the largest and smallest diameter <strong>of</strong> the<br />

mounting. This ensures even distribution <strong>of</strong> pressure, maintaining a higher purity <strong>of</strong> contact<br />

surface, beyond the improvement in stiffness, improves the accuracy <strong>of</strong> mounting saws.<br />

REFERENCES<br />

1. MAJCHRZAK J., 2011: Wpływ sposobu mocowania piły tarczowej na jej sztywność<br />

statyczną. Praca dyplomowa, promotor R. Wasielewski. Politechnika Gdańska, Wydział<br />

Mechaniczny, masz. Gdańsk.<br />

178


2. WASIELEWSKI R., 2010: Stanic stiffness <strong>of</strong> blades in circular saw. Wood Machining<br />

and Processing - Product and Tooling Quality Development / eds. J. Górsk, M. Zbieć. -<br />

Warszawa : WULS-<strong>SGGW</strong> Press. - 59-70. ISBN 978-83-7583-237-2.<br />

3. WASIELEWSKI R., ORŁOWSKI K., 2009: Sposób mocowania pił na pilarkach<br />

tarczowych. Politechnika Gdańska, Gdańsk (PL) Zgłoszenie patentowe nr P.388340 z dnia<br />

22.06.2009.<br />

Streszczenie: Badanie wpływu mocowania piły tarczowej na jej sztywność. W niniejszym<br />

artykule przedstawiono badania wpływu kształtu tarcz mocujących na sztywność ostrzy<br />

wybranych pił. Wyniki badań wykazały wpływ wielkości, kształtu i jakości powierzchni<br />

styku tarcz mocujących z korpusem piły na sztywność ostrzy piły.<br />

Corresponding author:<br />

Roman Wasielewski<br />

Department <strong>of</strong> Manufacturing Engineering and Automation,<br />

Mechanical Engineering Faculty,<br />

Gdansk <strong>University</strong> <strong>of</strong> Technology,<br />

Narutowicza 11/12, 80-952 Gdańsk, Poland<br />

E-mail address: rwasiele@pg.gda.pl<br />

179


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 180-183<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

The new construction the exhaust fan for woodworking machine dedusting<br />

GRZEGORZ WIELOCH 1 RAFAŁ MOSTOWSKI 2<br />

1 /<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> <strong>of</strong> Poznań,<br />

2 /Institute <strong>of</strong> Combustion Engines and Transport, Poznań <strong>University</strong> <strong>of</strong> Technology<br />

Abstract: Every woodworking production process creates chips that have to be extracted. As a rule the same<br />

amount <strong>of</strong> energy is required to collect and extract the chips as it takes to produce them. It does not matter<br />

whether you are processing solid wood or panels – uncollected chips have a negative impact on added value.<br />

They reduce the product quality, they make additional tool cleaning necessary, they increase the machine<br />

downtime or and can cause machine breakdowns through wear. Leitz's answer to this problem is DFC® (Dust<br />

Flow Control) tooling. A new solution that is DFC®-tool which gives nearly total dust extraction (up to 95%)<br />

from working area was described.<br />

Keywords: chips, dust, dedusting, system DFC, exhaust fan<br />

INTRODUCTION<br />

Project <strong>of</strong> dedusting system and exhaust fan – is an element <strong>of</strong> woodworking machine<br />

which significantly influences its functioning accuracy. Its construction and affixing nearby<br />

the working stand is complicated and needs significant experience. Each model <strong>of</strong> equipment<br />

has particular demand <strong>of</strong> air needed for extraction <strong>of</strong> chips reated during machining. [1,2,3].<br />

The most frequent mistakes in such constructions are: inappropriate choice <strong>of</strong> pipes<br />

diameters, overwork and too weak exhauster. An example <strong>of</strong> bad choice <strong>of</strong> exhaust fans is<br />

particle board machining on CNC moulding machine with diamond milling cutter.<br />

Dust or chips which results in quick blunting <strong>of</strong> edges. What is more dust and chips emitted<br />

by a tool because <strong>of</strong> their partial pneumatic conveying, may cause damage <strong>of</strong> shields or even<br />

whole machine body – if it is for example particle board machining.<br />

Application <strong>of</strong> milling cutter made in DFC technology, directs the flow <strong>of</strong> chips up to<br />

exhaust fan.Clogging <strong>of</strong> installations can be also caused by choice <strong>of</strong> wrong tool, which is<br />

frequent at machining <strong>of</strong> wood veneered boards. Extras <strong>of</strong> veneer are so big that conventional<br />

grinder may not grind arising straps <strong>of</strong> veneer and they may clog installation and in longer<br />

time may even be source <strong>of</strong> after-firing <strong>of</strong> veneer in hoods.<br />

Milling cutters which do not direct dust to exhaust fan can cause dustiness <strong>of</strong> whole<br />

working stand which is frequent problem connected with wood machining on CNC machines.<br />

Leitz <strong>of</strong>fers in such a case DFC technology together with new handle Its worth to know that<br />

this German producer <strong>of</strong> tools in cooperation with several other firms constructed for CNC<br />

machines special shields which additionally direct dust up to exhaust fan.[5,6,7].<br />

DUST FLOW CONTROL<br />

The philosophy behind DFC® is to control the chips by using the kinetic energy in the chip<br />

flow to direct the chips away from the work piece, away from the tool cutting edge and into<br />

the extraction system.<br />

This improved method <strong>of</strong> chip collection has the following advantages:<br />

• Energy savings:<br />

The extraction airflow no longer has to capture the chips, only transport them into the<br />

extraction system. This reduces the required air volume flow and in winter saves on<br />

heating costs, as the heated air is not being taken out <strong>of</strong> the factory.<br />

• Improved product quality:<br />

180


Transporting systems are not impaired in any way by adherent chips or glue spillage.<br />

• Higher productivity:<br />

Clean machines means continuous production without stoppages.<br />

Clean workpieces do not need additional cleaning before packaging.<br />

• Reduced servicing costs<br />

The abrasive chips are directed away from expensive machine elements releasing their<br />

energy against replaceable wear parts such as lead shoes, dust hoods or extraction pipes.<br />

LEITZ – DFC EXHAUST FAN<br />

DFC®-tool and matched extraction hood. The<br />

largest part <strong>of</strong> chips is collected and wear is kept<br />

away <strong>of</strong> the machine. The below shown hoods<br />

(Fig.5) considerably bigger than classical exhaust<br />

fans used up till now with machines. Their<br />

characteristic feature is shape reminding box with<br />

irregular sides and big rounded corners<br />

[www.leitz.de].<br />

Fig.1. DFC® Exhaust fan<br />

Their performance is show in Fig. 2-6.<br />

tool<br />

Machined wood<br />

Dust and<br />

chips<br />

Fig.2. Cross section <strong>of</strong> exhaust fan<br />

Typical situations<br />

05.07. DFC-Extraction Hood 2007 4<br />

v Air = 30…35 m / s<br />

L<br />

H<br />

v c = 60…80 m / s<br />

Dust and chips<br />

■ Overpressure in the<br />

area <strong>of</strong> chips inflow<br />

■ Underpressure in the<br />

area <strong>of</strong> chips inflow<br />

■ Chips and dust with<br />

smaller kinetic energy<br />

bounce from air<br />

coushionand are not<br />

picked out<br />

■ Air flow stops when<br />

material cloggs the<br />

machine whole<br />

Fig.3. Conventional chip exhaust<br />

Ein Unternehmen des Leitz-Firmenverbandes<br />

181


■ Multidimentional air<br />

stream without<br />

pressure differences<br />

■ Air whirl creates<br />

underpressure<br />

■ Air is sucked contrary<br />

to tool movement which<br />

limits creation <strong>of</strong> dust<br />

and chips<br />

05.07. DFC-Extraction Hood 2007 5<br />

patented<br />

■ One side is left open to<br />

facilitate constant air<br />

access<br />

Ein Unternehmen des Leitz-Firmenverbandes<br />

Fig.4. Innovative exshaust fan solution<br />

Outflow <strong>of</strong> chips;link<br />

stub tube to instalation<br />

Whole for tool<br />

Air flow direction<br />

device<br />

„working whole” <strong>of</strong><br />

tool – inflow <strong>of</strong> chips<br />

Fig.5. Example <strong>of</strong> exhaust fan<br />

Inflow <strong>of</strong> sucked<br />

i<br />

Air directing<br />

device<br />

Fig.6. Exhaust fans produced by Martin new innovative solution<br />

Traditional and modernized<br />

exhaust fan used in two swing<br />

machines models T60 andT74.<br />

by Martin.<br />

For many years now, all<br />

MARTIN sliding-table saws<br />

have easily held their dust<br />

emission levels well under the<br />

stipulated dust emission limit <strong>of</strong><br />

2 mg/m³, in some cases as much<br />

as 90% below the limit<br />

From June 2008 all MARTIN<br />

sliding-table saws will be<br />

equipped with the LEITZ Dust<br />

Flow Control.<br />

182


Further improvements can be achieved with relatively little effort, a DFC - reduces emissions<br />

by another 75%.[www.martin-usa.com]<br />

CONCLUSION<br />

The above shown innovation activity by Leitz proves that there is possibility <strong>of</strong><br />

considerable lowering <strong>of</strong> chips and dust quantity created in working area when machining<br />

which a big threat both for stuff and working environment.<br />

REFERENCES<br />

1. DOLNY S. 1999: Transport pneumatyczny i odpylanie w przemyśle drzewnym.<br />

Wyd. Akademii Rolniczej w Poznaniu, Poznań.<br />

2. DZURENDA L., 2007: Sypka drevna hmota, vzduchotechnicka doprawa a<br />

odlucovanie. Technicka Universita vo Zvolene. Zvolen.<br />

3. KOPECKŶ Z., 2007: Vybrané aspekty vysokorychlostniho obrabani dreva.<br />

Habilitaćni prace. Mendelova zemedelská a lesnicka univerzita v Brně. Brno.<br />

4. SOKOŁOWSKI W. 1996: Analiza procesu rozpraszania i usuwania wiórów w<br />

strefie obróbki przy frezowaniu drewna i tworzyw drzewnych. Rozprawy Naukowe<br />

i Monografie - Szkoła Główna Gospodarstwa Wiejskiego nr 186, Warszawa, 104.<br />

5. WIELOCH G., KOWALSKI M., OSAJDA M., 2011: Intensyfikacja odpylenia<br />

stanowiska pracy poprzez narzędzia nowej generacji stosowane przy obróbce<br />

drewna i tworzyw drzewnych. Wybrane Kierunki Badań Ergonomicznych w 2011<br />

roku. Wyd. Polskiego Tow. Ergonomicznego PTErg. Oddział we Wrocławiu.<br />

6. WIELOCH G. 2010: Dedusting <strong>of</strong> wooden material machining area during milling<br />

with specials constructions tool. Chapter VIII. in: Wood Machining and Procesing –<br />

Product and Tooling Quality Development. Wuls – <strong>SGGW</strong> Press Warszawa.<br />

7. WIELOCH G., KOPECKY Z., MOSTOWSKI R., 2008: Narzędzia z systemem „i”<br />

z wewnętrznym odprowadzeniem wiórów. Rozdział w monografii „Obróbka<br />

skrawaniem, innowacje”, pod red. J.Stosa, Wydawnictwo Instytutu<br />

Zaawansowanych Technologii Wytwarzania – IOS, Kraków, 417-425.<br />

http://www.leitztooling.com/<br />

http://www.martin-usa.com/cms/_main/whats-new/martin-informs.html<br />

Streszczenie: Nowa konstrukcja ssawy do odpylania obrabiarek do drewna. Każdy proces<br />

produkcyjny oparty o narzędzia skrawające tworzy pył i wióry niezależnie od gałęzi<br />

przemysłu. Rozdrobniony materiał, który powstaje w wyniku skrawania jest odciągany ze<br />

strefy skrawania przez system odwiórowania. Jego sprawność jest zależna od wielu<br />

czynników między innymi od konstrukcji ssaw, wytworzonego podciśnienia, wielkości<br />

wiórów i ich wilgotności itp. Z reguły dużo energii musi być zaangażowane do odwiórowania<br />

aby sprostać wymogom środowiska pracy. Pomimo najnowocześniejszych systemów<br />

odwiórowania stosowanych w przemyśle drzewnym, nie wszystkie pyły są zbierane ze strefy<br />

obróbki. Skutkować to może obniżeniem jakości produktu, a niezbędne staje się użycie<br />

dodatkowego narzędzia, lub czyszczenia miejsca pracy co zwiększa czas przestoju maszyny.<br />

Próbą rozwiązania tego problemu przez f-mę Leitz jest system DFC ® (Dust Flow Control)<br />

stosowany przy obróbce, który zastosowany przez f-mę Martin daje niemal całkowite<br />

odwiórowanie (do 95%) strefy skrawania.<br />

Corresponding authors:<br />

Grzegorz Wieloch: <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> <strong>of</strong> Poznań, 60-638 Poznań,<br />

E-mail address: obrawiel@up.poznan.pl<br />

Rafał Mostowski: Institute <strong>of</strong> Combustion Engines and Transport, Poznań <strong>University</strong> <strong>of</strong> Technology<br />

ul. Piotrowo 3, 60-965 Poznań, Poland, E-mail address: Rafal.Mostowski@put.poznan.pl<br />

183


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 184-188<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Prefabrication for production purposes <strong>of</strong> skeleton furniture<br />

WIERUSZEWSKI MAREK, GOTYCH VIKTOR<br />

Department <strong>of</strong> Mechanical Wood Technology<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Prefabrication for production purposes <strong>of</strong> skeleton furniture. In the described experiments,<br />

quantitative efficiency obtained during the manufacture <strong>of</strong> furniture semi-finished products from the selected<br />

type <strong>of</strong> beech sawn timber was adopted as the basic optimisation criterion. Using the internal factory material<br />

data together with material prices for beech sawn timber for individual quality classes and the semi-finished<br />

products obtained for further processing in 2007, efficiency indices <strong>of</strong> their production were determined taking<br />

into consideration the quality classes <strong>of</strong> sawn timber materials<br />

Keywords: wood, semi-finished products,<br />

INTRODUCTION<br />

Semi-finished products intended for needs <strong>of</strong> furniture industry are manufactured in a<br />

way ensuring optimal productivity and economical results. In the described investigations, the<br />

adopted productivity parameters <strong>of</strong> obtaining semi-finished elements for the production <strong>of</strong><br />

skeletal furniture were those typical in domestic conditions. For this purpose, dimensionalqualitative<br />

structure <strong>of</strong> sawn timber as well as dimensional-assignment structure <strong>of</strong> the<br />

manufactured furniture semi-finished articles were investigated for selected timber-processing<br />

enterprises. Qualitative characteristics <strong>of</strong> sawn timber were established and effectiveness <strong>of</strong><br />

obtaining semi-finished articles within individual dimensional and quality groups was<br />

determined.<br />

The initial raw material for the investigations <strong>of</strong> furniture semi-finished articles in<br />

production conditions was unedged beech sawn timber in three quality classes and quality and<br />

dimensional parameters complying with standard recommendations in accordance with the<br />

PN-72/D-96002 standard.<br />

The main products comprised such furniture semi-finished articles as: joiner’s elements –<br />

battens, curvilinear joiner’s elements as well as elements intended for bending.<br />

The term ‘woodwork elements’ referred to semi-finished square timber clean on all<br />

four sides and free from defects. Elements intended for bending included semi-finished square<br />

timber <strong>of</strong> higher quality. The third group <strong>of</strong> the examined semi-finished elements included<br />

semi-finished curvilinear products obtained in the process <strong>of</strong> laying out and fretting.<br />

The elements <strong>of</strong> the manufacturer’s own production and those obtained from cooperating<br />

parties were divided into the following four length classes: short elements not exceeding the<br />

length <strong>of</strong> l=699 mm, medium length – l=700 to 1349 mm and long elements l=1350 to 2149<br />

mm. The fourth group included special elements with the length exceeding 2150 mm and not<br />

longer than 2700 mm.<br />

The main factor affecting the optimal utilization <strong>of</strong> beech wood raw material in the course<br />

<strong>of</strong> its processing into furniture semi-finished products is the choice <strong>of</strong> appropriate technology<br />

(Buchholz 1990, Hruzik 1993, 2006, Gotycz W., Hruzik G. J. 1995, 1996).<br />

The basic criterion <strong>of</strong> optimisation in the processing <strong>of</strong> selected kinds <strong>of</strong> beech sawn<br />

wood adopted in the presented investigations was material output during the production <strong>of</strong><br />

184


furniture semi-finished articles. This index depended on many factors, among others, on the<br />

type <strong>of</strong> raw material, its quality and form <strong>of</strong> the processed sawn timber. Such factors as the<br />

dimensional structure <strong>of</strong> the obtained semi-finished articles as well as the applied method and<br />

available machine park all exert a very strong impact.(Hruzik 2006).<br />

RESULTS AND THEIR ANALYSIS<br />

On the basis <strong>of</strong> the data obtained in the course <strong>of</strong> industrial processing, the qualitativequantitative<br />

structure <strong>of</strong> the processed sawn timber as well as thickness proportions in the<br />

quality classes according to the PN-72/D-96002 standard were determined. Analysing data<br />

collated in Figure 1, it is possible to observe a tendency for the application in the course <strong>of</strong><br />

processing <strong>of</strong> sawn timber <strong>of</strong>, primarily, the 1 st and 2 nd quality classes. This is understandable<br />

in view <strong>of</strong> the need to obtain high material efficiency <strong>of</strong> processing in the course <strong>of</strong><br />

production <strong>of</strong> high quality semi-finished products.<br />

Fig.1 Proportion <strong>of</strong> beech sawn timber<br />

Semi-finished elements <strong>of</strong> all pre-destined groups were divided into four length<br />

classes. It is evident from data presented in Figure 2 that medium-sized and short elements<br />

were most popular.<br />

185


Fig. 2. Proportion <strong>of</strong> elements in length intervals in annual production <strong>of</strong><br />

furniture semi-finished products<br />

The performed studies also included investigations <strong>of</strong> sawn timber processing into semifinished<br />

products combined with the analysis <strong>of</strong> productivity indices which allowed<br />

determination <strong>of</strong> the most appropriate principles <strong>of</strong> processing. On the basis <strong>of</strong><br />

methodological assumptions as well as empirical investigations in industrial conditions, it was<br />

possible to determine the productivity <strong>of</strong> semi-finished articles from sawn timber <strong>of</strong><br />

individual quality classes in the course <strong>of</strong> a year-long processing as well as values <strong>of</strong> mean<br />

efficiency <strong>of</strong> semi-finished products (Table 1-3).<br />

Tab.1<br />

Material efficiency <strong>of</strong> semi-finished products during processing <strong>of</strong> beech sawn timber <strong>of</strong> different quality taking<br />

into account its quantitative shares<br />

Type <strong>of</strong> furniture elements<br />

- dimensions in [mm]<br />

Efficiency <strong>of</strong> obtained semi-finished<br />

products<br />

Wp [m 3 /m 3 ]<br />

I II III Medium<br />

Short joiner’s 25-45 0.64 0,50 0,13 0,38<br />

Short for bending 25-45 0.55 0,44 - 0,49<br />

Medium joiner’s 25-45 0.65 0,52 0,04 0,46<br />

Medium for bending 25-45 0.65 0,30 - 0,48<br />

Medium for bending 50-100 0.56 0,25 - 0,41<br />

Long joiner’s 25-45 0.50 0,42 - 0,47<br />

Special for bending 25-45 0.50 0,42 - 0,48<br />

Special for bending 50-100 0.51 0,21 - 0,45<br />

Short joiner’s 50-100 0.55 0,40 - 0,46<br />

Short for bending 50-100 0.58 0,50 0,19 0,42<br />

Medium joiner’s 50-100 0.62 0,53 0,44 0,53<br />

Long for bending 50-100 0.56 0,39 - 0,49<br />

Short curvilinear 25-45 0.64 0,50 0,27 0,45<br />

Short curvilinear 50-100 0.58 0,50 0,24 0,44<br />

Medium curvilinear 25-45 0.65 0,53 0,11 0,51<br />

Medium curvilinear 50-100 0.62 0,47 0,16 0,47<br />

186


Tab. 2<br />

Material efficiency <strong>of</strong> semi-finished products during <strong>of</strong> beech sawn timber <strong>of</strong> different quality<br />

taking into account its lang shares<br />

Plant’s own<br />

production <strong>of</strong><br />

different<br />

lengths<br />

Efficiency <strong>of</strong> obtained semi-finished products<br />

Wp [m 3 /m 3 ]<br />

I II III<br />

max min max min max min<br />

Short 0,740 0,376 0,640 0,268 0,500 0,126<br />

Medium 0,648 0,292 0,534 0,174 0,382 0,042<br />

Long and Short 0,496 0,260 0,424 0,080 0,248 0,000<br />

Tab. 3<br />

Material efficiency <strong>of</strong> semi-finished products during <strong>of</strong> beech sawn timber <strong>of</strong> different quality<br />

taking into account its lang shares<br />

Plant’s own<br />

production <strong>of</strong><br />

different<br />

Efficiency <strong>of</strong> obtained semi-finished products<br />

Wp [m 3 /m 3 ]<br />

I II III<br />

lengths max min max min max min<br />

Short 0,690 0,426 0,580 0,274 0,500 0,214<br />

Medium 0,618 0,360 0,528 0,250 0,444 0,158<br />

Long and Short 0,558 0,270 0,458 0,210 0,380 0,130<br />

On the basis <strong>of</strong> Table, it can be said that, in the case <strong>of</strong> processing <strong>of</strong> sawn timber <strong>of</strong><br />

the first class into furniture semi-finished products, mean values in the entire thickness and<br />

length interval ranging from 0.50 to 0.65 m 3 /m 3 can be adopted. Beech sawn timber <strong>of</strong> the<br />

second quality class allows obtaining mean efficiency in the entire thickness and length<br />

interval ranging from 0.21 to 0.53 m 3 /m 3 . Beech sawn timber <strong>of</strong> the third quality class is<br />

utilised only to manufacture short- and medium-length elements. For this raw material, the<br />

semi-finished product efficiency interval ranges from 0.04 to 0.44 m 3 /m 3 .<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> the performed investigations and the applied analysis <strong>of</strong> secondary<br />

processing <strong>of</strong> beech sawn timber into furniture semi-finished products, the following general<br />

conclusions can be drawn:<br />

1. Following the analysis <strong>of</strong> quality and dimensional data <strong>of</strong> sawn beech timber directed<br />

to processing it was found that unedged sawn timber 25-70 mm thick was used,<br />

primarily, for processing. The performed analysis <strong>of</strong> the thickness structure revealed<br />

that semi-finished products 25-50 mm thick were processed most frequently with<br />

elements 38 mm thick constituting 30.8% and those <strong>of</strong> 32 mm – 19.1% <strong>of</strong> all<br />

processed elements.<br />

187


2. The highest efficiencies were found in the processing <strong>of</strong> the first class quality sawn<br />

timber ranging from 0.50% to 0.65%. Raw material <strong>of</strong> the second quality class yielded<br />

efficiencies ranging from 0.21% to 0.53%, whereas that <strong>of</strong> the third quality class –<br />

from 0.04% to 0.44%.<br />

3. The optimization results obtained allow to conclude that in the production process <strong>of</strong><br />

semi-finished furniture elements - both joinery, to bending and curved, it is reasonable<br />

to use better quality grades <strong>of</strong> sawnwood. Pay attention to the use <strong>of</strong> second<br />

sawnwood grade.<br />

LITERATURE<br />

1. Buchholz J. (1990): Technologia tartacznictwa. AR, Poznań<br />

2. Gaik A. (2007): Optymalizacja przerobu tarcicy bukowej na półfabrykaty<br />

przeznaczeniowe w warunkach ZMG Fameg. KMTD Poznań 2007, praca magisterska<br />

3. Hruzik G. J. (1993): Technologiczna optymalizacja przerobu drewna bukowego na<br />

materiały tarte i półfabrykaty przeznaczeniowe. Roczniki Akademii Rolniczej w<br />

Poznaniu, z 236<br />

4. Hruzik G. J.(2006): Zużycie surowca i materiałów drzewnych wyrobach przemysłu<br />

tartacznego. Drewno-Wood 2006, vol49, nr175, 25-44<br />

5. PN-72/D-96002 – Tarcica liściasta ogólnego przeznaczenia<br />

Streszczenie:Prefabrykacja dla potrzeb produkcji mebli szkieletowych. W badaniach za<br />

podstawowe kryterium optymalizacji w przerobie wybranego rodzaju tarcicy bukowej<br />

przyjęto wydajność pozyskania półfabrykatów bukowych do produkcji mebli szkieletowych.<br />

Surowcem do badań właściwości technologicznych półfabrykatów meblowych była tarcica<br />

bukowa. W oparciu wykazy materiałowe w powiązaniu z cenami materiałowymi tarcicy<br />

bukowej poszczególnych klas jakości i pozyskiwanych do dalszego przerobu półfabrykatów<br />

za 2007 rok, ustalono wskaźniki wydajności ich produkcji przy uwzględnieniu klasy jakości<br />

materiałów tartych.<br />

Corresponding author:<br />

Department <strong>of</strong> Mechanical Wood Technology<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-627 Poznań<br />

Ul. Wojska Polskiego 38/42<br />

Tel./fax (061)8487437<br />

E-mail: kmtd@up.poznan.pl<br />

188


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 189-193<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Research qualitative <strong>of</strong> coniferous assortments solid wood for wood<br />

construction<br />

WIERUSZEWSKI MAREK, GOTYCH VIKTOR, HRUZIK GINTER J., GOŁUŃSKI<br />

GRZEGORZ, MARCINKOWSKA AGNIESZKA<br />

Faculty <strong>of</strong> Wood Technology <strong>of</strong> the <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> in Poznań, Department <strong>of</strong> Mechanical Wood<br />

Technology<br />

Abstract: Research qualitative <strong>of</strong> coniferous assortments solid wood for wood construction. The physical and<br />

mechanical properties with respect to the relevant standards were defined and large samples with the application<br />

<strong>of</strong> three different adhesives were obtained. Physical examination included figured, density and moisture content<br />

<strong>of</strong> normative samples obtained from samples <strong>of</strong> large size. The study <strong>of</strong> mechanical properties <strong>of</strong> the samples<br />

included the determination <strong>of</strong> elasticity <strong>of</strong> the average large-size module.<br />

Keywords: wood, solid timber, construction<br />

INTRODUCTION<br />

Timber mechanical and physical properties are among the principal parameters<br />

affecting suitability <strong>of</strong> timber material for its application, especially in building industry. They<br />

are utilised both in the form <strong>of</strong> solid as well as glued elements. Attempts are being made to<br />

achieve maximal quantitative efficiency <strong>of</strong> full-value elements as the most desirable, as<br />

confirmed by numerous investigations in the field <strong>of</strong> timber quality and its suitability for<br />

further processing, for example the study by Pachelski, Żytecki, Iskra (1966), Buchholz,<br />

Hruzik (1970), Cegiel, Hruzik (1974), Hruzik (1979) and co-workers.<br />

The aim <strong>of</strong> the study was to determine physical and mechanical properties <strong>of</strong><br />

harvested timber and glued timber assortments intended for building industry. The performed<br />

investigation made it possible to obtaining data about strength parameters and suitability <strong>of</strong><br />

harvested sawn materials upgraded for production purposes by defect elimination and gluing.<br />

RESULTS AND THEIR ANALYSIS<br />

A total <strong>of</strong> 36 (A, B, C) 40x120mm, and 30 (I. J, K) 40x150mm missive pine samples<br />

were prepared for purposes <strong>of</strong> this experiment. They were allocated into groups which<br />

differed regarding the applied glue and cross-section<br />

The investigations <strong>of</strong> the elasticity modulus were carried out in accordance with the<br />

PN-EN 408 standard.<br />

During the performed experiments, in order to determine basic features <strong>of</strong> pine wood<br />

for purposes <strong>of</strong> experiments, such physical properties as: annual increment, proportion <strong>of</strong> late<br />

and early wood in annual increments, density (in accordance with the PN-82/D-94021 PN-<br />

77/D-4101 standard) as well as absolute moisture content (in accordance with the PN-EN<br />

13183-1:2004 standard) were determined.<br />

Tables 1 and 2 illustrate high width variability <strong>of</strong> annual wood increments from which<br />

sample were obtained. This may have exerted some influence on the observed negative strain<br />

distribution in the course <strong>of</strong> mechanical loading and may have caused wood warping<br />

following different desorption strains in the neighbouring layers <strong>of</strong> the element. The minimal<br />

measured annual width increment in pine wood amounted to 1,0 mm, whereas the maximal<br />

one – up to 4,2 mm.<br />

189


Characteristic values <strong>of</strong> annual increment widths for whole samples “h120”<br />

Table 1.<br />

annual ring width [mm]<br />

Sample symbol: A B C<br />

Min 1,8 1,2 1,1<br />

Middle 3,0 2,4 1,9<br />

Max 4,1 3,6 2,7<br />

Characteristic values <strong>of</strong> annual increment widths for whole samples “h150”<br />

annual ring width [mm]:<br />

Table 2.<br />

Sample symbol: I J K<br />

Min 1,0 1,2 1,6<br />

Middle 1,9 2,7 2,2<br />

Max 2,8 4,2 2,8<br />

A, I – core sample,<br />

B, J – inherent to the sample <strong>of</strong> radial,<br />

C, K – inherent to the sample <strong>of</strong> tangential.<br />

The obtained research results confirmed significant variations in widths <strong>of</strong> annual<br />

increments in neighbouring layers. Increment widths in relation to the layer <strong>of</strong> sample origin<br />

and averaged results <strong>of</strong> all samples from a given batch were itemised and the difference in<br />

ring distribution/graining was apparent. So, in the case <strong>of</strong> radial sample pine timber, the mean<br />

width <strong>of</strong> annual increments ranged from 1,3 mm to 2,4 in group “h120” and from 1,9 mm to<br />

2,7 mm in group “h150”. For tangential sample timber, the above intervals ranged from to<br />

2,7 mm in group.<br />

The proportion <strong>of</strong> late wood in the timber <strong>of</strong> coniferous species was found to influence<br />

timber mechanical properties. The mean late wood proportion in group “h120” in solid pine<br />

wood samples amounted to 43%. In the case <strong>of</strong> group “h150”, the mean share <strong>of</strong> late wood in<br />

solid pine wood samples amounted to 40%. The obtained results confirmed mean proportions<br />

<strong>of</strong> late wood in solid pine wood – at 42%.<br />

The results <strong>of</strong> absolute moisture content investigations <strong>of</strong> large-sized timber samples<br />

so they fell within the acceptable interval <strong>of</strong> 10-12%.<br />

Density is one <strong>of</strong> the basic factors determining timber mechanical strength. The results<br />

obtained in the course <strong>of</strong> the performed experiments revealed that the material obtained from<br />

pine timber was characterised by the density <strong>of</strong> 567 kg/m 3 .<br />

Table 3 collates characteristic values <strong>of</strong> the elasticity modulus for individual sample<br />

batches.<br />

190


Characteristic values <strong>of</strong> the elasticity modulus at 12% moisture content<br />

elasticity module<br />

Sample symbol [N/mm 2 ]<br />

s * V**<br />

Middle<br />

A 10702 2844 27<br />

B 12114 2708 22<br />

C 12600 2237 15<br />

I 11568 3795 33<br />

J 10352 1868 18<br />

K 12694 2168 15<br />

* - standard deviation<br />

** - variation coefficient mean value [%]<br />

Table 3.<br />

It can be concluded from the research results on large-sized timber samples that the<br />

variability coefficient <strong>of</strong> solid timber samples reached 21.6%.<br />

In addition, when large-sized timber samples were bent, the elasticity modulus<br />

(Figure 1.) decreased with the increase <strong>of</strong> sample cross section. The obtained mean values for<br />

solid timber were found to be at the level <strong>of</strong> 11671N/mm 2 . When the above values were<br />

compared with the results given by Krzysik (1974) E=12 000 N/mm 2 , it was found that the<br />

elasticity modulus <strong>of</strong> the examined solid wood was 3% lower.<br />

Figure1. Characteristic values <strong>of</strong> the modulus <strong>of</strong> elasticity at 12% moisture content<br />

In addition, the elastic modulus in the course <strong>of</strong> bending <strong>of</strong> large-sized samples<br />

decreased together with the increase <strong>of</strong> the sample cross section. Mean values for pine<br />

samples tangential 1182 N/mm 2 and those for radial samples - 12650 N/mm 2 .<br />

191


CONCLUSIONS<br />

The following conclusions were drawn on the basis <strong>of</strong> the performed investigations<br />

and measurements and the obtained results:<br />

1. Large-sized, solid, tangential samples reached values <strong>of</strong> the elasticity modulus<br />

which were, on average, by 1460 N/mm 2 higher than samples containing the pith,<br />

in other words they were characterised by 13% better parameters than pithcontaining<br />

wood. On average, pith-containing samples were by 26 kg/m 3 lighter in<br />

comparison with samples which did not contain a pith on their cross section.<br />

2. Basic physical properties for the examined raw material were determined. Mean<br />

ring annual increment <strong>of</strong> solid pine elements was found to be at the level <strong>of</strong> 2,7<br />

mm. The examined raw material was narrow-ringed. The mean proportion <strong>of</strong> late<br />

wood in pine wood amounted to 42% . Mean absolute moisture content at the time<br />

<strong>of</strong> measurement was 10%. Mean timber density <strong>of</strong> solid pine samples was<br />

determined at 573 kg/m 3 . The obtained mean results were similar to those found in<br />

literature on the subject..<br />

3. The elastic modulus <strong>of</strong> the examined large-sized samples was as follows: solid<br />

pine samples –11670 N/mm 2 . The above results were lower than literature data<br />

respectively by 3% in the case <strong>of</strong> solid pine samples.<br />

4. Modulus allows the classification <strong>of</strong> structural timber strength classes for high C22<br />

– C30.<br />

LITERATURE<br />

1. Buchholz J., Hruzik J.G.(1970): Z badań nad ustaleniem wymiernej zależności<br />

pomiędzy jakością sosnowego drewna tartacznego i produkowanych z niego materiałów<br />

tartych. Roczniki WSR w Poznań.<br />

2. Buchholz J., Hruzik J.G.(1973): Wpływ jakości sosnowego drewna tartacznego na<br />

strukturę jakościowo-wymiarową produkowanych kłód. Pr. Kom. Techn. Drewna tom<br />

IV.<br />

3. Cegiel E., Hruzik G.J. (1974): „Przydatność tarcicy jodłowej do produkcji<br />

półfabrykatów przeznaczeniowych”, Przemysł Drzewny nr 4.<br />

4. Hruzik J.G. (1979): Jakość sosnowego surowca tartacznego jako kryterium<br />

optymalizacji produkcji elementów przeznaczeniowych. Fol. Forest Polonica, zeszyt 13.<br />

5. Krzysik F. (1974): Nauka o Drewnie.<br />

6. Pachelski M., Żytecki J., Iskra M. (1966): Wydajność materiałowa w produkcji<br />

elementów meblowych. Prace ITD, nr 3.<br />

7. PN-77/D-4101 „Drewno. Oznaczanie gęstości”.<br />

8. PN-82/D-94021 „Tarcica iglasta konstrukcyjna sortowana metodami<br />

wytrzymałościowymi”<br />

9. PN-EN 13183-1:2004 „Wilgotność sztuki tarcicy -- Część 1: Oznaczanie wilgotności<br />

metodą suszarkowo-wagową”.<br />

10. PN-EN 408 „Drewno konstrukcyjne lite i klejone warstwowo. Oznaczanie niektórych<br />

właściwości fizycznych i mechanicznych”.<br />

192


Streszczenie: Badania jakościowe iglastych sortymentów litych dla potrzeb budownictwa<br />

drewnianego.Określono właściwości fizyczne i mechaniczne w odniesieniu do właściwych<br />

norm przedmiotowych. Właściwości fizyczne obejmowały badania słoistości, gęstości i<br />

wilgotności normatywnych próbek laboratoryjnych pozyskanych z próbek<br />

wielkogabarytowych. Badanie właściwości mechanicznych próbek wielkogabarytowych<br />

obejmowało określenie średniego modułu sprężystości.<br />

Corresponding authors:<br />

Department <strong>of</strong> Mechanical Wood Technology<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-627 Poznań<br />

Ul. Wojska Polskiego 38/42<br />

Tel./fax (061)8487437<br />

E-mail: kmtd@up.poznan.pl<br />

193


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 194-198<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Properties <strong>of</strong> experimental particleboards with the core layer made from<br />

willow (Salix viminalis)<br />

ARNOLD WILCZYŃSKI 1) , KRZYSZTOF WARMBIER 1) , LESZEK DANECKI 2) ,<br />

MIROSŁAWA MROZEK 2)<br />

1) Institute <strong>of</strong> Technology, Kazimierz Wielki <strong>University</strong> in Bydgoszcz<br />

2) Research and Development Centre for Wood-Based Panels Industry in Czarna Woda<br />

Abstract: Properties <strong>of</strong> experimental particleboards with the core layer made from willow (Salix viminalis).<br />

Three-layer experimental particleboards were prepared using basket willow (Salix viminalis) particles for the<br />

core layer and industrial pine particles for the face layers. Three particleboard densities: 620, 660 and 700 kg/m 3<br />

were assumed. The modulus <strong>of</strong> elasticity (MOE), modulus <strong>of</strong> rupture (MOR), internal bond (IB), and thickness<br />

swelling (TS) were investigated. Mechanical properties <strong>of</strong> tested particleboards increase gradually with<br />

increasing board density from 620 to 700 kg/m 3 . For comparison, the properties <strong>of</strong> particleboards with the core<br />

layer made from pine particles and <strong>of</strong> the same densities were studied. Properties <strong>of</strong> particleboards with the core<br />

layer from willow and pine particles differed slightly. MOE and IB <strong>of</strong> particleboards with the core layer from<br />

willow meet the requirements <strong>of</strong> the EN 312 standard for the particleboard <strong>of</strong> type P2, and MOR <strong>of</strong> the boards <strong>of</strong><br />

densities <strong>of</strong> 660 and 700 kg/m 3 meets the requirements <strong>of</strong> the EN 312 standard for the particleboard <strong>of</strong> type P1.<br />

Keywords: particleboard, willow, mechanical properties, density<br />

INTRODUCTION<br />

The wood composite industry is looking for other lignocellulosic materials. One <strong>of</strong><br />

possible raw materials can be fast growing shrubs. Such a shrub being cultivated for energetic<br />

purposes is willow Salix viminalis called the basket willow or energetic willow. In Poland it is<br />

cultivated on about 800 plantations covering an area <strong>of</strong> almost 10,000 ha (Dubas and<br />

Tomczyk 2005, Szczukowski et al 2006). Sean et al (2006) studied the usefulness <strong>of</strong> Quebec<br />

clones <strong>of</strong> willow Salix viminalis for particleboard manufacturing and demonstrated that the<br />

mechanical properties <strong>of</strong> particleboards with a density <strong>of</strong> 720 kg/m 3 , with up to 30% willow<br />

particles were generally greater than those <strong>of</strong> particleboards made from industrial wood<br />

particles. Frackowiak et al (2008) stated that replacement <strong>of</strong> 25% pine particles by willow<br />

ones improved mechanical properties in bending <strong>of</strong> the particleboards having a density <strong>of</strong> 680<br />

kg/m 3 . Warmbier et al (2010) founded out that the properties <strong>of</strong> the particleboards with a<br />

density <strong>of</strong> 700 kg/m 3 and with the core layer made from willow particles were slightly smaller<br />

compared to those with the core layer made from pine particles.<br />

Considering the needs <strong>of</strong> the Polish particleboard industry, it is recommended to<br />

continue investigations into the properties <strong>of</strong> particleboard made <strong>of</strong> willow Salix viminalis<br />

particles. The objective <strong>of</strong> this study was to evaluate the suitability <strong>of</strong> this willow for<br />

manufacturing the core layer <strong>of</strong> three-layer particleboards with different densities.<br />

MATERIALS AND METHODS<br />

Raw material for this study consisted <strong>of</strong> willow (Salix viminalis) stems and industrial<br />

wood particles. Willow stems were collected from the plantation in Mieścisko in<br />

Wielkopolska (Poland). Industrial wood particles were supplied by Pfleiderer Prospan<br />

Wieruszów (Poland). Chips <strong>of</strong> about 1.5 cm length were produced from willow stems. They<br />

were air-dried at room temperature to about 12% moisture content and reduced to a particle<br />

form using a hammer-mill. To obtain particles for the core layer <strong>of</strong> experimental<br />

194


particleboards, particles from the hammer-mill were screened and those which passed through<br />

the sieve <strong>of</strong> 5 mesh (4 mm) and remained on the sieve <strong>of</strong> 18 mesh (1 mm) were used (Fig. 1).<br />

The particles were dried to achieve moisture content <strong>of</strong> less than 3%. Urea-formaldehyde<br />

(UF) resin was used as a binder. Its density was 1.26 g/cm 3 at 60% solids. As a hardener, 35%<br />

ammonium chloride solution which was 1% <strong>of</strong> the oven dry weight <strong>of</strong> particles was used. No<br />

hydrophobic agent was added. The resin content <strong>of</strong> 8% for the core layer was assumed. The<br />

raw material for the face layers <strong>of</strong> experimental particleboards was industrial fine particles<br />

made from pine wood. These particles were dried like the willow ones, and the UF resin<br />

content was set to 10% for the face layers.<br />

b)<br />

10 mm<br />

Fig. 1. Pine (a) and willow (b) particles used for the core layer<br />

10 mm<br />

The shelling ratio (face layers:core layer) was 40:60%, the target board thickness was<br />

16 mm. Three particleboard densities were assumed: 620, 660 and 700 kg/m 3 . After spraying<br />

the adhesive on particles in a drum blender, a particleboard mat was manually formed inside a<br />

40x40 cm box. The pressing conditions were: temperature <strong>of</strong> 180 0 C, maximum pressure <strong>of</strong><br />

2.5 MPa and pressing time <strong>of</strong> 4 min. Four experimental boards were manufactured for each<br />

particleboard density.<br />

For comparison, three-layer particleboards with the core layer made from industrial<br />

pine particles supplied by Pfleiderer Prospan Wieruszów were prepared. Particle sizes, resin<br />

contents, board construction, board densities and pressing conditions were the same as for the<br />

particleboard with the willow core layer.<br />

Prior to testing all the boards were stored in controlled conditions (50% relative<br />

humidity and 20 o C) for two weeks. The following properties <strong>of</strong> produced particleboards were<br />

determined according to EN standards: modulus <strong>of</strong> elasticity (MOE) and modulus <strong>of</strong> rupture<br />

(MOR) according to EN 310: 1994, internal bond (IB) according to EN 319: 1999, and<br />

thickness swelling (TS) after 24 h according to EN 317: 1999. Test specimens for IB and TS<br />

were prepared from the specimens that were formerly tested for MOE and MOR. Twenty<br />

replicates were run for each test.<br />

RESULTS<br />

Results <strong>of</strong> the tests are given in Figs 2-5. Error bars represented ±standard deviation<br />

based on twenty specimens. Mechanical properties <strong>of</strong> tested particleboards (Figs 2-4)<br />

increase gradually with increasing board density from 620 to 700 kg/m 3 . This relation<br />

concerns both particleboards with the willow and pine core layer. MOE, MOR and IB <strong>of</strong><br />

particleboards <strong>of</strong> density <strong>of</strong> 700 kg/m 3 are on average greater by 27, 20 and 24% respectively<br />

than those <strong>of</strong> particleboards <strong>of</strong> density <strong>of</strong> 620 kg/m 3 . Mechanical properties in bending (Figs 2<br />

and 3) <strong>of</strong> particleboards with the core layer made from willow are worse than those <strong>of</strong><br />

particleboards with the core layer made from pine. MOE is on average smaller by 7% and<br />

MOR by 4%. IB <strong>of</strong> particleboards (Fig. 4) with the core layer made from willow is better than<br />

195


that <strong>of</strong> particleboards with the core layer made from pine, its value is on average greater by<br />

4%.<br />

Fig. 1. Modulus <strong>of</strong> elasticity <strong>of</strong> particleboards<br />

with different densities<br />

Fig. 2. Modulus <strong>of</strong> rupture <strong>of</strong> particleboards<br />

with different densities<br />

Fig. 3. Internal bond <strong>of</strong> particleboards with<br />

different densities<br />

Fig.4. Thickness swelling after 24 h <strong>of</strong> particleboards<br />

with different densities<br />

The MOE values are considerably higher, for board <strong>of</strong> each density, than the<br />

requirement <strong>of</strong> the EN 312 standard for the particleboard <strong>of</strong> type P2 (1600 MPa) while the<br />

MOR values meet the requirement <strong>of</strong> this standard for the particleboard <strong>of</strong> type P1 (11.5<br />

MPa) only for the willow particleboards with densities <strong>of</strong> 660 and 700 kg/m 3 . The IB values<br />

are considerably higher than the requirement <strong>of</strong> the EN 312 standard for the particleboard <strong>of</strong><br />

type P2 (0.35 MPa).<br />

TS <strong>of</strong> tested particleboards (Fig. 5) increases gradually with increasing board density<br />

from 620 to 700 kg/m 3 . This relation concerns both particleboards with the willow and pine<br />

196


core layer. TS <strong>of</strong> particleboards with the core layer from willow is smaller, on average by 8%,<br />

than that <strong>of</strong> particleboards with this layer from pine.<br />

Differences between properties <strong>of</strong> particleboards with the willow and pine core layers<br />

could be brought about by the dimensions <strong>of</strong> used particles. The length and width <strong>of</strong> 200<br />

randomly selected willow and pine particles were measured. The mean length was 14.3 and<br />

17.8 mm for the willow and pine particles, respectively, and the mean width was 2.3 and 1.9<br />

mm for the willow and pine particles, respectively. The willow particles were therefore<br />

shorter and wider than the pine ones. Longer pine particles resulted in greater bending<br />

properties, and wider willow particles resulted in a greater gluing area and thus in greater IB<br />

and smaller TS.<br />

CONCLUSIONS<br />

The particles made from willow Salix viminalis are suitable to substitute the industrial<br />

wood particles for manufacturing the core layer <strong>of</strong> three-layer particleboards. Mechanical<br />

properties <strong>of</strong> particleboards with the core layer made from willow and industrial pine particles<br />

are almost the same. MOE and IB <strong>of</strong> these boards meet the requirements <strong>of</strong> the EN 312<br />

standard for the particleboard <strong>of</strong> type P2 (boards for interior fitments, including furniture, for<br />

use in dry conditions). MOR <strong>of</strong> the boards <strong>of</strong> densities <strong>of</strong> 660 and 700 kg/m 3 meets the<br />

requirements <strong>of</strong> the EN 312 standard for the particleboard <strong>of</strong> type P1 (general purpose boards<br />

for use in dry conditions).<br />

REFERENCES<br />

1. DUBAS J., TOMCZYK A. (2005) Establishment, care and protection <strong>of</strong> energetic<br />

willow plantation (in Polish). <strong>SGGW</strong> Warszawa.<br />

2. EN 310 (1993) Wood-based panels. Determination <strong>of</strong> modulus <strong>of</strong> elasticity in bending<br />

and <strong>of</strong> bending strength.<br />

3. EN 312 (2003) Particleboards. Specifications.<br />

4. EN 317 (1993) Particleboards and fiberboards. Determination <strong>of</strong> swelling in thickness<br />

after immersion in water.<br />

5. EN 319 (1993) Particleboards and fiberboards. Determination <strong>of</strong> tensile strength<br />

perpendicular to the plane <strong>of</strong> the board.<br />

6. FRĄCKOWIAK I., FUCZEK D., KOWALUK G. (2008) Impact <strong>of</strong> different<br />

lignocellulosic materials used in core <strong>of</strong> particleboard on modulus <strong>of</strong> elasticity and<br />

bending strength. DREWNO-WOOD 51, 180: 5-13.<br />

7. SEAN S.T., LABRECQUE M. (2006) Use <strong>of</strong> short-rotation coppice willow clones <strong>of</strong><br />

Salix viminalis as furnish in panel production. Forest Products Journal 56 (9): 47-52.<br />

8. SZCZUKOWSKI S., TWORKOWSKI J., STOLARSKI M. (2006) Energetic willow<br />

(in Polish). Plantpress, Kraków.<br />

9. WARMBIER K., WILCZYŃSKI A., DANECKI L. (2010) Particle size dependent<br />

properties particleboards with the core layer made from willow (Salix viminalis).<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>. Forestry and Wood Technology 71:<br />

405-409.<br />

197


Streszczenie: Właściwości eksperymentalnych płyt wiórowych z warstwą wewnętrzną<br />

wykonaną z wierzby Salix viminalis. Wykonano trzywarstwowe płyty wiórowe stosując wióry<br />

wierzby wiciowej (Salix viminalis) na warstwę wewnętrzną i przemysłowe wióry sosnowe na<br />

warstwy zewnętrzne. Założono trzy gęstości płyt: 620, 660 i 700 kg/m 3 . Badano moduł<br />

sprężystości (MOE), wytrzymałość na zginanie (MOR), wytrzymałość na rozciąganie<br />

poprzeczne (IB) i spęcznienie na grubość (TS). Właściwości mechaniczne badanych płyt<br />

wzrastają stopniowo ze wzrostem gęstości płyt od 620 d0 700 kg/m 3 . Dla porównania badano<br />

właściwości płyt o tej samej gęstości, z warstwą wewnętrzną wykonaną z wiórów sosnowych.<br />

Właściwości płyt wiórowych z warstwą wewnętrzną z wiórów wierzbowych i sosnowych<br />

różnią się nieznacznie. MOE i IB płyt z warstwą wewnętrzną z wiórów wierzbowych<br />

spełniają wymagania normy EN 312 dla płyt typu P2 a MOR, za wyjątkiem płyt o gęstości<br />

620 kg/m 3 , dla płyt typu P1.<br />

Acknowledgement: This research project has been supported by the Polish Ministry <strong>of</strong><br />

Science and Higher Education, grant number N N309 133535.<br />

Corresponding authors:<br />

Arnold Wilczyński, Krzyszt<strong>of</strong> Warmbier<br />

Institute <strong>of</strong> Technology,<br />

Kazimierz Wielki <strong>University</strong><br />

Chodkiewicza 30 str.<br />

85-064 Bydgoszcz, Poland<br />

e-mail: wilczar@ukw.edu.pl<br />

e-mail: warm@ukw.edu.pl<br />

Leszek Danecki, Mirosława Mrozek<br />

Research and Development Centre for Wood-Based Panels Industry in Czarna Woda<br />

Mickiewicza 10 str.<br />

83-262 Czarna Woda, Poland<br />

e-mail: leszek.danecki@obrppd.com<br />

198


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 199-202<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Cutting forces during drilling <strong>of</strong> thermally modified ash wood<br />

JACEK WILKOWSKI 1) , MAREK GRZEŚKIEWICZ 2) , PAWEŁ CZARNIAK 1) , MICHAŁ<br />

WOJTOŃ 1)<br />

1) Wood Mechanical Processing Department<br />

2) Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

Faculty <strong>of</strong> Wood Technology; <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

Abstract: Cutting forces during drilling <strong>of</strong> thermally modified ash wood. Influence <strong>of</strong> thermal modification <strong>of</strong><br />

ash wood on cutting forces during drilling was anylized in this work. In experiments there were made through<br />

holes for differentiate cross sections (for horizontal and vertical placement <strong>of</strong> annual rings) by means <strong>of</strong> CNC<br />

machine. Simultanously, there was carried out acquisition <strong>of</strong> thrust force and torque signals with measuerement<br />

chain equipped with piezoelectric sensors. Results proved increase <strong>of</strong> thrust force and decrease <strong>of</strong> torque during<br />

drilling <strong>of</strong> ash wood which was thermally modified.<br />

Keywords: thermally modified wood, ash, drilling, thrust force, torque<br />

INTRODUCTION<br />

Numerous <strong>of</strong> methods which are focused on improvement <strong>of</strong> natural materials such as<br />

wood, is known in our civilization for a very long time. In 50-ten years <strong>of</strong> XX century there<br />

were undertaken attempts to increase resistance <strong>of</strong> wood by means <strong>of</strong> chemicals in respect <strong>of</strong><br />

biodegradation. Researches which concern injection <strong>of</strong> monomers and impregnation resins<br />

were developed the most intensively [Siwek, Warzecha 1982]. Wood was exposed to<br />

treatment <strong>of</strong> another physical factors, among others raised temperature or steam, too. In range<br />

<strong>of</strong> this procedure, modification <strong>of</strong> wood was carried out in hot oil. From this point <strong>of</strong> view,<br />

especially relevant are conditions which are kept during process. Therefore given temperature<br />

ordered during modification decided about places where new material can be used. From<br />

wood qualified as first class where temperature <strong>of</strong> treatment amounts about 180 o C can be<br />

produced furniture and floor panels (due to minimized shrinkage). However, wood belongs to<br />

second class (temperature <strong>of</strong> treatment about 210 o C) is intended for buildings work and<br />

garden furniture (much better resistance to mould). Unfortunately, modification process<br />

besides unbeneficial consequences such as problems with color stability [Zawadzki et al.<br />

2007], decreases some <strong>of</strong> mechanical properties [Grześkiewicz, Dąbrowski 2004]. Due to<br />

various effects followed from modification process, further investigations in area <strong>of</strong><br />

vulnerability <strong>of</strong> this materials to mechanical working is indispensable. The researches with<br />

oak wood which referred to effects <strong>of</strong> process modification in high temperature were carried<br />

out by Wilkowski et al. [2010]. In mentioned above experiments oak wood was subjected to<br />

performance <strong>of</strong> overheated steam with temperature 165 o C. In this work, workpieces were<br />

drilled with CNC machine with one edge drill made from polycrystalline diamond. It turned<br />

out that thermal modification hadn’t any influence on thrust force level. However, it can be<br />

observed decrease <strong>of</strong> torque.<br />

MATERIALS AND METHODS<br />

In work were used workpieces <strong>of</strong> ash parquets. Two sets <strong>of</strong> work pieces with primary<br />

dimensions 325x105x22mm (in each 20 pc) which differentiated with arrangement <strong>of</strong> annual<br />

rings, were taken to experiment. In one set annual rings were parallel to the top surface and in<br />

second perpendicular to the top surface <strong>of</strong> element. Then, these elements were separated<br />

199


across the fibres on two counterparts groups. One group <strong>of</strong> them was subjected to thermal<br />

modification and the second left unmodified. Workpieces were thermally machined in<br />

industry conditions with usage <strong>of</strong> streamer W-10 (Hamech). Cycle <strong>of</strong> thermal modification in<br />

atmosphere <strong>of</strong> overheated steam consisted <strong>of</strong> five stages:<br />

Stage I – intensively heating up to temperature about 110 o C connected with wood<br />

drying in air atmosphere,<br />

Stage II – slowed down heating in overheated steam up to temperature correspond to<br />

right process <strong>of</strong> modification and to additional drying;<br />

Stage III – right modification process in overheated steam in temperature 165 o C, 4<br />

hours,<br />

Stage IV – cooling by usage <strong>of</strong> vaporized water or exceptionally wet stream up to about<br />

80 o C and wood moistening,<br />

Stage V – further cooling to the final process temperature and aclimatization in wet air<br />

atmosphere.<br />

The whole process <strong>of</strong> thermal wood modification in chamber last 24 to 26 hours. Wood with<br />

humidity, equivalent for typical climate conditions was used in experiments and amounts for<br />

unmodified in range 10÷12%, for modified in range 4÷6%. One edge drill with diameter 10<br />

mm (LEITZ) made from polycrystalline diamond was used in experiment. Range <strong>of</strong> cutting<br />

parameters with highlighted optimal values was showed in Fig.2. Cutting parameters listed in<br />

Tab.1. were chosen for experiments.<br />

Fig.1. Placement <strong>of</strong> annul rings against direction <strong>of</strong> tool feed during drilling parallel (a) and perpendicular (b) to<br />

annual rings<br />

Fig.2. Range and optimum values <strong>of</strong> cutting parameters<br />

200


Tab.1. Cutting parameters used in experiment<br />

Thickness <strong>of</strong> workpieces<br />

s[mm]<br />

Feed speed<br />

u[m/min]<br />

Rotational speed<br />

n[rpm]<br />

Feed per rev.<br />

[mm]<br />

Drill diameter<br />

d[mm]<br />

25 1 3000 0,33 10<br />

RESULTS AND DISCUSSION<br />

Statistical significance between different variants (unmodified and modified wood) and<br />

between drilling parallel and perpendicular against annual rings was examined by means <strong>of</strong><br />

test t-student. Influence <strong>of</strong> modification on thrust force level F z was showed in Fig. 3÷4.<br />

However for comparison, in Fig.5÷6 was presented influence <strong>of</strong> wood modification on torque.<br />

Fig.3. Influence <strong>of</strong> wood modification on thrust force<br />

during drilling in direction perpendicular to annual<br />

rings<br />

Fig.4. Influence <strong>of</strong> wood modification on thrust force<br />

during drilling in direction parallel to annual rings<br />

Fig.5. Influence <strong>of</strong> wood modification on torque<br />

during drilling in direction perpendicular to annual<br />

rings<br />

Fig.6. Influence <strong>of</strong> wood modification on torque<br />

force during drilling in direction parallel to annual<br />

rings<br />

201


CONCLUSION<br />

Obtained results allow to formulate following conclusions:<br />

1. Torque during drilling <strong>of</strong> thermally modified ash wood was on statistically significant<br />

lower level than during drilling <strong>of</strong> unmodified wood.<br />

2. Thermal modification <strong>of</strong> ash wood caused increase <strong>of</strong> thrust force during drilling .<br />

3. Direction <strong>of</strong> tool feed due to annual rings has no statistically significant influence on<br />

thrust force and torque.<br />

REFERENCES<br />

1. GRZEŚKIEWICZ M., DĄBROWSKI P., 2004: Badanie wybranych właściwości<br />

fizycznych i mechanicznych drewna modyfikowanego - ThermoWood®. Przem.<br />

Drzew. Nr5, s.33-35.<br />

2. SIWEK K., WARZECHA J., 1982: Lignamin – drewno modyfikowane żywicami<br />

aminowymi. Przem. Drzew. Nr 6, s35-36.<br />

3. WILKOWSKI J., GRZEŚKIEWICZ M., CZARNIAK P., LITWA M., 2010: Influence<br />

<strong>of</strong> wood thermal modification on cutting resistance during drilling. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>- <strong>SGGW</strong> Forestry and Wood Technology No 72: 480-484.<br />

4. ZAWADZKI J., GRZEŚKIEWICZ M., GAWRON J., ZIELENKIEWICZ T., 2007:<br />

Chemical behavior <strong>of</strong> pine wood (Pinus silvestris L.) modified by heat. <strong>Annals</strong> <strong>of</strong><br />

<strong>Warsaw</strong> Agricultural <strong>University</strong> – Forestry and Wood Technology 72, s.480-484.<br />

Streszczenie: Siły skrawania podczas wiercenia drewna jesionu modyfikowanego termicznie.<br />

W pracy przeanalizowano wpływ termicznej modyfikacji drewna jesionu na siły skrawania podczas wiercenia.<br />

Mając do dyspozycji próbki o zróżnicowanych przekrojach porzecznych (dla leżącego oraz stojącego układu<br />

słojów) wywiercono w nich otwory przelotowe przy zastosowaniu obrabiarki CNC. Jednocześnie dokonywano<br />

rejestracji siły osiowej i momentu obrotowego z użyciem toru pomiarowego opartego na czujniku<br />

piezoelektrycznym. Wyniki wskazują na wzrost poziomu siły osiowej oraz spadek poziomu momentu<br />

obrotowego skrawania podczas wiercenia drewna jesionu modyfikowanego termicznie.<br />

Corresponding authors:<br />

Jacek Wilkowski<br />

e-mail : jacek_wilkowski@sggw.pl<br />

Marek Grześkiewicz<br />

e-mail : marek_grzeskiewiczi@sggw.pl<br />

Paweł Czarniak<br />

e-mail : pawel_czarniak@sggw.pl<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong><br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

202


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 203-207<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Influence <strong>of</strong> thermal modification <strong>of</strong> oak wood on cutting forces during<br />

milling<br />

JACEK WILKOWSKI 1) , MAREK GRZEŚKIEWICZ 2) , PAWEŁ CZARNIAK 1) , IRENEUSZ<br />

SIWEK 1) , LUBOMIR JAVOREK 3) , DUSAN PAULINY 3)<br />

1) Wood Mechanical Processing Department<br />

2) Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

Faculty <strong>of</strong> Wood Technology; <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

3) Department <strong>of</strong> Woodworking Machines and Equipment<br />

Faculty <strong>of</strong> Environmental and Manufacturing Technology; Technical <strong>University</strong> in Zvolen<br />

Abstract: Influence <strong>of</strong> thermal modification <strong>of</strong> oak wood on cutting forces during milling. This work concerns<br />

the influence <strong>of</strong> thermal modification <strong>of</strong> oak wood on cutting forces. Modified workpieces used in experiments<br />

were beforhand subjected to high temperature performance in atmosphere <strong>of</strong> overheated steam. Machining was<br />

conducted as well with usage <strong>of</strong> conventional tenoning machine as with CNC machine. In both cases acquisition<br />

<strong>of</strong> cutting forces signal was realized with piezoelectric sensors. Decrease <strong>of</strong> cutting forces was observed in<br />

milling <strong>of</strong> modified wood.<br />

Keywords: thermally modified wood, cutting force, oak, milling<br />

INTRODUCTION<br />

The aim <strong>of</strong> wood modification is first <strong>of</strong> all improvement <strong>of</strong> defined wood properties in<br />

order to obtain among others more resistance to performance <strong>of</strong> biotic factors or darker color.<br />

Wood distinguishes by this advantages is nowadays especially desired as raw material for<br />

floor, terraces or garden furniture production. First scientific coverages which concern<br />

applications <strong>of</strong> discussed below process were published in 40-ten years <strong>of</strong> XX century<br />

[Grisard and Baptist 1935]. At present, method developed by VTT (Technical Research<br />

Center <strong>of</strong> Finland) became so advanced that is used in industry. Overall production in<br />

factories which belong to FinnForest Thermowood reached 150 000 m 3 yearly [Dobrowolska<br />

2009]. The most frequently, wood species such as spruce, pine, oak, ash, beech, birch, poplar<br />

are subjected to process <strong>of</strong> thermal modification [Ala-Vikikari 2008]. Precise specification<br />

and performance procedure used in this technology were showed in [Thermowood®<br />

Handbook 2003]. Apart from many benefits due to application <strong>of</strong> this method, emerged<br />

relevant problems which are connected with changes in mechanical properties <strong>of</strong> modified<br />

wood. Among others decrease <strong>of</strong> strength in shearing perpendicular to grains was noticed by<br />

Chorowiec [2009]. Moreover, another mechanical indicators such as elasticity modulus in<br />

bending are changed unbeneficial [Grześkiewicz and Krawiecki 2008]. Thus, examinations in<br />

range <strong>of</strong> machinability which inform about vulnerability to mechanical working <strong>of</strong> modified<br />

wood are necessary. Effect followed from changes which take place during modification<br />

process in high temperature was investigated by Orłowski and Grześkiewicz [2010]. Wood<br />

machining with frame saw in order to estimate specific cutting resistance was carried out.<br />

Modified oak wood was sawed in these experiments. It was noticed that the decrease <strong>of</strong><br />

cutting resistance appeared only at low values <strong>of</strong> feed per teeth.<br />

MATERIALS AND METHODS<br />

In preliminary stage <strong>of</strong> researches beforehand prepared oak frieze were ripped on two<br />

parts. One <strong>of</strong> them was subjected to modification process in high temperature steaming<br />

203


chamber PW 10 from firm HAMECH in Hajnówka according to procedure described in<br />

Wilkowski et al. [2010]. Second part <strong>of</strong> work pieces (unmodified) was used as base material<br />

in order to compare with modified workpieces. 20 workpieces unmodified and 20 modified<br />

with dimensions showed in Fig.1. were examined in this work.<br />

Fig.1. Dimensions <strong>of</strong> workpieces and tools<br />

First stage <strong>of</strong> machining was conducted on standard machine (tenoning machine)<br />

GOMAD. Cutter head GP-01 HSS FABA (Fig.1) was mounted during experiments. This tool<br />

was equipped with two blades. However, only one <strong>of</strong> them was working. Unused blade makes<br />

balance <strong>of</strong> cutter head easier. Dimensions <strong>of</strong> blades were as follows: 40x50x8. Measurement<br />

platform had three piezoelectric sensors which register as well cutting force as normal force.<br />

Data was gathered due to acquisition card NiDaQ PCI-9112 and saved in s<strong>of</strong>tware DASYLab<br />

v 5.02.20. Scheme <strong>of</strong> measurement chain was showed in Fig.2.<br />

Fig.2. Scheme <strong>of</strong> measurement chain to measure cutting resistance during milling with tenoning machine<br />

204


Second stage <strong>of</strong> machining was carried out on working centre CNC Busellato Jet 130<br />

with usage <strong>of</strong> router bit FTS-07 (40/20x29,5mm) with replaceable blades made from sintered<br />

carbides with dimensions 29,5x12x1,5 (Fig.1). Measurement and registering was realized<br />

with measurement chain showed in Fig.3. Measurement chain consists <strong>of</strong> two-component<br />

force sensor Kistler 9601A31 coupled with amplifier 5034A. Acquisition card NI PCI-6034E<br />

sampled signals with frequencies 50kHz. Registered signals were projected and processed in<br />

LabVIEW 8,6 environment. Cutting parameters listed in Tab.1. were chosen for experiments.<br />

Fig.3. Scheme <strong>of</strong> measurement chain mounted on CNC machine<br />

Tab.1. Cutting parameters used during milling on both machines<br />

Rotational speed Feed speed Number <strong>of</strong> cutting<br />

Machine<br />

[ rpm]<br />

[m/min] blades [pc.]<br />

Tenoning<br />

machine<br />

CNC<br />

machine<br />

Feed per teeth<br />

[mm]<br />

Height <strong>of</strong> cutting<br />

[mm]<br />

3000 3 1 1 2<br />

18000 5,4 1 0,3 2<br />

RESULTS AND DISCUSSION<br />

In case <strong>of</strong> milling on CNC, square mean F w was calculated, from two component forces<br />

perpendicular to each other (F x and F y ) gathered on measurement platform. Subsequently,<br />

significance <strong>of</strong> differences in forces between unmodified and modified wood was tested with<br />

usage <strong>of</strong> t-Student test. Mean value <strong>of</strong> RMS for resultant force in case <strong>of</strong> milling with CNC<br />

showed Fig.4., whereas Fig.5÷7 show mean values <strong>of</strong> RMS for cutting and normal forces and<br />

power consumed by working unit during milling on tenoning machine. It can be remarked<br />

that as well mean values <strong>of</strong> RMS in case <strong>of</strong> F w (machine CNC) as cutting and normal force<br />

(tenoning machine) are lower for modified wood. This differences are statistically relevant,<br />

too. Moreover, power consumption <strong>of</strong> working unit in tenoning machine was in case <strong>of</strong><br />

modified wood lower.<br />

205


Fig.4. RMS <strong>of</strong> F w during milling <strong>of</strong> unmodified and<br />

thermally modified wood with CNC machine<br />

Fig.5. RMS <strong>of</strong> cutting force during milling <strong>of</strong><br />

unmodified and thermally modified wood with<br />

tenoning machine<br />

Fig.6. RMS <strong>of</strong> normal force during milling <strong>of</strong><br />

unmodified and thermally modified wood with<br />

tenoning machine<br />

Fig.7.Power consumption <strong>of</strong> working unit during<br />

milling <strong>of</strong> unmodified and thermally modified wood<br />

with tenoning machine<br />

CONCLUSION<br />

Obtained results allow to formulate following conclusions:<br />

1. It was proved decrease <strong>of</strong> resultant cutting force during milling with CNC after<br />

thermal modification <strong>of</strong> oak wood.<br />

2. Oak wood thermal modification induce decrease <strong>of</strong> cutting and normal force and<br />

power consumption <strong>of</strong> working unit during milling with tenoning machine.<br />

206


REFERENCES<br />

1. ALA-VIKIKARI J., 2008: Thermally Modified Timber (TMT)-ThermoWood®.<br />

COST E 37.<br />

2. CHOROWIEC A., 2009: Badanie właściwości mechanicznych i fizycznych drewna<br />

dębowego modyfikowanego termicznie pokrytego powłokami. Praca inżynierska<br />

wykonana pod kierunkiem dr inż. Marka Grześkiewicza w Katedrze Technologii<br />

Organizacji i Zarządzania w Przemyśle Drzewnym <strong>SGGW</strong> w Warszawie.<br />

3. DOBROWOLSKA., 2009: Influence <strong>of</strong> thermal processing <strong>of</strong> wood strength and<br />

compressive modulus <strong>of</strong> elasticity. Górski J., Zbieć M., 2009: Wood machining and<br />

processing product quality and waste characteristics. WULS-<strong>SGGW</strong> Press.<br />

4. GRISARD J., BAPTIST F., 1935: Procede de vieillissement arificel des bois. French<br />

Patent FR 784378.<br />

5. GRZEŚKIEWICZ M., KRAWIECKI J., 2008: Thermally modified ash and oak wood<br />

as materials for parquets – mechanical properties <strong>of</strong> the wood and its resistance for<br />

different kinds <strong>of</strong> wood finishing. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>-<br />

<strong>SGGW</strong> Forestry and Wood Technology No 65: 93-97.<br />

6. ORŁOWSKI K., GRZEŚKIEWICZ M., 2009: Effect <strong>of</strong> heat treatment <strong>of</strong> hardwood<br />

on the specific cutting resistance. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> –<br />

Forestry and Wood Technology 69, s.147-151.<br />

7. ThermoWood® Handbook 2003: Chapter 3. ThermoWood® process 1-3. Finnish<br />

Thermowood Association.<br />

8. WILKOWSKI J., GRZEŚKIEWICZ M., CZARNIAK P., LITWA M., 2010: Influence<br />

<strong>of</strong> wood thermal modification on cutting resistance during drilling. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>- <strong>SGGW</strong> Forestry and Wood Technology No 72: 480-48.<br />

The contribution was created during the solution <strong>of</strong> project CEEPUS network CII-SK-0310-03-<br />

1011 as a result <strong>of</strong> activity and cooperation <strong>of</strong> authors.<br />

Streszczenie: Wpływ termicznej modyfikacji drewna dębu na siły skrawania podczas<br />

frezowania. Celem pracy było zbadanie wpływu termicznej modyfikacji drewna dębowego na<br />

siły skrawania podczas frezowania. Zastosowano konwencjonalną frezarko-pilarkę jak<br />

również centrum frezarskie CNC. W obu przypadkach dokonywano rejestracji sił skrawania<br />

za pomocą czujników piezoelektrycznych. Zaobserwowano spadek sił skrawania w<br />

przypadku drewna modyfikowanego.<br />

Corresponding authors:<br />

Jacek Wilkowski<br />

e-mail : jacek_wilkowski@sggw.pl<br />

Marek Grześkiewicz<br />

e-mail : marek_grzeskiewiczi@sggw.pl<br />

Paweł Czarniak<br />

e-mail : pawel_czarniak@sggw.pl<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong><br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

Lubomir Javorek<br />

e-mail: lubomir.javorek@vsld.tuzvo.sk<br />

Dusan Pauliny<br />

e-mail: pauliny@vsld.tuzvo.sk<br />

Faculty <strong>of</strong> Environmental and Manufacturing Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T.G.Masaryka 24, 960-53 Zvolen, Slovakia<br />

207


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 208-211<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Surface roughness after sanding <strong>of</strong> thermally modified oak wood<br />

JACEK WILKOWSKI 1) , MAREK GRZEŚKIEWICZ 2) , PAWEŁ CZARNIAK 1) , PIOTR<br />

KLECZKOWSKI 1)<br />

1) Wood Mechanical Processing Department<br />

2) Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

Faculty <strong>of</strong> Wood Technology; <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

Abstract: Surface roughness after sanding <strong>of</strong> thermally modified oak wood. In this work influence <strong>of</strong> thermal<br />

oak wood modification on quality surface after sanding with machine CNC equipped with loaf grinding bit was<br />

examined. Assesment <strong>of</strong> surface roughness parameters was realized by mean <strong>of</strong> contact pr<strong>of</strong>ilometer. Results<br />

show that thermall modification is beneficial to surface quality after sanding. Lower values <strong>of</strong> roughness<br />

parameters were obtained for modified wood.<br />

Keywords: thermally modified wood, oak, surface roughness, sanding<br />

INTRODUCTION<br />

In the latest years exotic wood distinguishes by dark color is increasingly common used.<br />

However relevant limitation which make access to this row material difficult is among others<br />

high level <strong>of</strong> prices. Mentioned above phenomena inclines towards efforts which are focused<br />

on development <strong>of</strong> innovative substitutes. One <strong>of</strong> the possibilities is to explore domain wood<br />

species which subjected to thermal modification process enable imitation <strong>of</strong> exotic species.<br />

Due to these reasons, this problem became main subject <strong>of</strong> numerous scientific researches. In<br />

general, during modification process come up a lot <strong>of</strong> relevant changes in structure and<br />

physical properties <strong>of</strong> wood. This changes result in improvement <strong>of</strong> dimensional stability,<br />

decrease <strong>of</strong> hygroscopic, increase <strong>of</strong> resistance to fungi or homogenity <strong>of</strong> colors [Hill 2006].<br />

From machining point <strong>of</strong> view extremely relevant is fact that heating wood up in high<br />

temperature cause strength decrease in compressing, lower hardness or resistance to<br />

scrubbing. These conclusions were showed in work <strong>of</strong> Grześkiewicz and Krawiecki [2008].<br />

Authors proved that as well elasticity modulus in bending as strength in bending decreased.<br />

Thus, emerges the question how changes <strong>of</strong> mechanical properties <strong>of</strong> material influence on<br />

its vulnerability to machining. Especially relevant for customers is finishing operation i.e.<br />

sanding. This aspect <strong>of</strong> machinability was the subject <strong>of</strong> work Wieloch et al. [2009]. Authors<br />

focused on sanding <strong>of</strong> robinia (Robinia pseudoacacia L). Modification process consist on<br />

thermal treatment <strong>of</strong> wood in overheated steam with temperature 185-190C, according to<br />

Finnforest technology. During experiments paper with granulation 40 was used. However,<br />

force <strong>of</strong> clamping and cutting speed were variable. Results showed that modification <strong>of</strong><br />

robinia result in deterioration <strong>of</strong> surface quality <strong>of</strong> machined element. Probably, such effect in<br />

this case can be caused by higher hardness <strong>of</strong> modified wood. In consequence, on surface <strong>of</strong><br />

wood are more clearly reflected grains <strong>of</strong> abrasive belts.<br />

MATERIALS AND METHODS<br />

Workpieces were earlier prepared according to procedure described in work <strong>of</strong><br />

Wilkowski et al. [2010]. Overall was examined 40 workpieces made from oak wood, 20<br />

unmodified and 20 thermally modified. These elements were mounted to basement from<br />

MDF. During one cycle simultaneously were clamped four workpieces (Fig.1). However,<br />

whole stand was fitted to the rails <strong>of</strong> CNC machine with vacuum system. In first stage <strong>of</strong><br />

experiments were conducted sanding <strong>of</strong> lateral surface along whole length, in all workpieces.<br />

208


Parameters <strong>of</strong> leaf grinding bit (Fig.2.) were following: granulation <strong>of</strong> abrasive paper 40,<br />

dimensions <strong>of</strong> grinding bit 30/60mm. Tool immersed itself in material on depth <strong>of</strong> 1mm. Feed<br />

speed amounted 1m/min and rotational spindle speed was set on 2000rpm. Tools were<br />

changed every five passages in order to avoid the influence <strong>of</strong> tool wear. Subsequently, yet<br />

once workpieces were sanded but to the half <strong>of</strong> the length (to compare the influence <strong>of</strong><br />

abrasive paper granulation ) with grinding bit 120 at the same cutting parameters.<br />

Workpieces were chosen in so way that machining was carried out as well in horizontal as<br />

vertical placement <strong>of</strong> annual rings (Fig.3).<br />

Fig.1. View <strong>of</strong> workpieces clamped to basement from MDF<br />

Fig.2. View <strong>of</strong> loaf grinding bit<br />

Fig.3. Scheme <strong>of</strong> annual rings placement<br />

RESULTS AND DISCUSSION<br />

Influence <strong>of</strong> modification, placement <strong>of</strong> annual rings and granulation <strong>of</strong> abrasive paper<br />

on surface roughness parameter Ry, was showed in Fig.4÷6. Influence <strong>of</strong> modification,<br />

direction <strong>of</strong> sanding and granulation <strong>of</strong> abrasive paper on surface roughness parameter R z ,<br />

was showed in Fig.7÷9. Statistical significance <strong>of</strong> particular factors was estimated according<br />

to analysis <strong>of</strong> variance (ANOVA). Summary <strong>of</strong> particular factors influence show Tab.1. From<br />

this list follows that statistically significant turned out only wood modification (only in case<br />

<strong>of</strong> roughness parameters R y i R z ).<br />

209


Fig.4. Influence <strong>of</strong> modification on surface roughness<br />

parameter R y<br />

Fig.5. Influence <strong>of</strong> placement <strong>of</strong> annuals rings on<br />

surface roughness parameter R y<br />

Fig.6. Influence <strong>of</strong> abrasive paper granulation on surface roughness parameter R y<br />

Fig.7. Influence <strong>of</strong> modification on surface roughness<br />

parameter R z<br />

Fig.8. Influence <strong>of</strong> sanding direction on surface<br />

roughness parameter R z<br />

Fig.9. Influence <strong>of</strong> abrasive paper granulation on surface roughness parameter R z<br />

210


Tab.1. Statistical significance <strong>of</strong> particular factors<br />

Factor<br />

Surface roughness parameter<br />

R a R y R z<br />

Modification Irrelevant Relevant Relevant<br />

Placement <strong>of</strong> annual rings Irrelevant Irrelevant Irrelevant<br />

Abrasive paper granulation Irrelevant Irrelevant Irrelevant<br />

CONCLUSION<br />

Obtained results allow to formulate following conclusions:<br />

1. Thermally modified oak wood distinguishes by lower surface roughness after sanding<br />

than unmodified.<br />

2. Differences in surface roughness between horizontal and vertical placement <strong>of</strong> annual<br />

rings turned out statistically irrelevant.<br />

3. Influence <strong>of</strong> abrasive paper granulation on surface roughness after sanding was<br />

irrelevant.<br />

REFERENCES<br />

1. HILL C., 2006: Wood Modification: Chemical, Thermal and Other Processes. John<br />

Wiley & Sons, Ltd., 99-130.<br />

2. GRZEŚKIEWICZ M., KRAWIECKI J., 2008: Thermally modified ash and oak wood<br />

as materials for parquets – mechanical properties <strong>of</strong> the wood and its resistance for<br />

different kinds <strong>of</strong> wood finishing. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>-<br />

<strong>SGGW</strong> Forestry and Wood Technology No 65: 93-97.<br />

3. WIELOCH G., ADAMSKI Z., MOSTOWSKI R., 2009: The interaction <strong>of</strong> abrasive<br />

grains on the thermally modified surface <strong>of</strong> acacia wood during grinding. <strong>Annals</strong> <strong>of</strong><br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – Forestry and Wood Technology 69, s.409-414.<br />

4. WILKOWSKI J., GRZEŚKIEWICZ M., CZARNIAK P., LITWA M., 2010: Influence<br />

<strong>of</strong> wood thermal modification on cutting resistance during drilling. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>- <strong>SGGW</strong> Forestry and Wood Technology No 72: 480-48.<br />

Streszczenie: Chropowatość powierzchni po szlifowaniu termicznie modyfikowanego drewna<br />

dębu. W pracy przeanalizowano wpływ procesu termicznej modyfikacji drewna dębu na<br />

jakość obrobionej powierzchni po szlifowaniu. Szlifowano na obrabiarce CNC ściernicami<br />

listkowymi. Oceny chropowatości powierzchni dokonywano przy pomocy pr<strong>of</strong>ilometru<br />

stykowego. Wyniki wskazują, że modyfikacja termiczna drewna wpływa korzystnie na jakość<br />

powierzchni po szlifowaniu. Uzyskiwano niższe wartości parametrów chropowatości<br />

powierzchni drewna dębu modyfikowanego.<br />

Corresponding author:<br />

Jacek Wilkowski<br />

e-mail : jacek_wilkowski@sggw.pl<br />

Marek Grześkiewicz<br />

e-mail : marek_grzeskiewiczi@sggw.pl<br />

Paweł Czarniak<br />

e-mail : pawel_czarniak@sggw.pl<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong><br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

211


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 212-217<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

The effect <strong>of</strong> chemicals addition on improvement <strong>of</strong> sack paper strength<br />

properties<br />

AGNIESZKA WYSOCKA-ROBAK, KONRAD OLEJNIK<br />

The Institute <strong>of</strong> Papermaking and Painting, Technical <strong>University</strong> <strong>of</strong> Łódź<br />

Abstract: Taking into account economic and environmental aspects, it can be assumed that the majority <strong>of</strong><br />

packagings will be made <strong>of</strong> paper products in the future. Packaging paper grades require good strength<br />

properties. This can be obtained by paper production from primary material, to be precise from unbleached kraft<br />

pulp, most <strong>of</strong>ten based on s<strong>of</strong>twood. To provide desired strength level to sack paper, some chemicals were used.<br />

Tests proved that addition <strong>of</strong> chemical agents in the production <strong>of</strong> sack paper brings satisfactory results<br />

enhancing its strength properties in this way. Synthetic agents showed better effectiveness then natural agents.<br />

Keywords: papermaking, sack paper, chemical agents, strength properties<br />

INTRODUCTION<br />

A consequence <strong>of</strong> paper popularity, as cheap and easily available material produced<br />

mainly from natural resources, is its continuous growth in production and consumption.<br />

A role <strong>of</strong> paper products is objectively reflected by their consumption per person<br />

annually (in kgs). Per capita consumption is <strong>of</strong>ten used to show the development level <strong>of</strong> a<br />

given country. For instance, in Poland it was 32 kg/p/y in 1995, whereas in 2008 it was over<br />

100 kg/p/y.<br />

Taking into account economic and environmental aspects, it can be assumed that the<br />

majority <strong>of</strong> packagings will be made <strong>of</strong> paper products in the future. Manufactured from<br />

natural material, packaging paper is environmentally friendly. Its aesthetic aspect can be<br />

enhanced by coating or printing techniques.<br />

Sack paper is a grade <strong>of</strong> wrapping paper <strong>of</strong> high strength properties, used for<br />

production <strong>of</strong> sacks. To manufacture sack paper, unbleached kraft pulp is used, mainly from<br />

s<strong>of</strong>twood. This paper grade has to be characterized by high puncture, breaking, tearing<br />

strength, elongation at rapture and air permeability. Paper strength depends on the strength <strong>of</strong><br />

separate fibres, number and structure <strong>of</strong> bonds. Addition <strong>of</strong> binding agents can improve paper<br />

strength. The strength improvement mechanism through a binding substance is based on<br />

increase <strong>of</strong> binding force between fibres - 60%, increase <strong>of</strong> specific surface - 15% and<br />

improvement <strong>of</strong> web formation - 25%.<br />

Fig. 1. Improvement mechanisms <strong>of</strong> strength properties with binding substance<br />

Strength <strong>of</strong> fibre structure can be increased mechanically by more intensive refining. There<br />

are numerous reasons for increased interest in chemical agents in refining process. As the<br />

212


process consumes large amounts <strong>of</strong> energy, addition <strong>of</strong> an agent improving strength properties<br />

can reduce refining time and save energy.<br />

MATERIALS AND METHODS<br />

The purpose <strong>of</strong> this research project was to evaluate effectiveness <strong>of</strong> selected chemical<br />

agents improving strength properties <strong>of</strong> sack paper and choose the most effective one.<br />

The unbleached kraft pulp was used in the project. The following chemical agents<br />

were used (in each case thee dosages were used):<br />

Carboxymethyl cellulose (CMC): 0,5; 1,0; 1,5;<br />

Cationic starch: 0,5; 1,0; 1,5;<br />

Agent made by company A: 0,1; 0,3; 0.5;<br />

Agent made by company B: 0,2; 0,4; 0,6;<br />

Agent made by company C: 2,5; 4,0; 5,5;<br />

Agent made by company D: 0,5; 1,0; 2,5;<br />

To compare the results, sheets without binding agents were also prepared. Chemical<br />

composition <strong>of</strong> tested agents had not been known due to manufacturing secrets. Since the tests<br />

were done for a given company, substance names were kept confidential.<br />

The pulp was soaked and disintegrated. The chemicals were added in adequate<br />

dosages. And from the stock prepared in this way, sheets <strong>of</strong> 75 g/m 2 were formed. They were<br />

made in laboratory conditions in the Rapid – Köthen apparatus according to PN-EN ISO<br />

5259-2:2001 standard.<br />

Before the tests, paper samples were conditioned according to PN-EN 20187:2000<br />

„Paper, board and pulp – standard atmosphere for conditioning and testing and procedure for<br />

monitoring the atmosphere and conditioning <strong>of</strong> samples”. The following strength properties<br />

were tested:<br />

- Breaking length and elongation at rapture – the test was performed in the Instron<br />

5564 tensile tester according to PN-EN ISO 1924-2:1998 standard.<br />

- Tear strength – the test was carried out in the Elmendorf 0019 apparatus according to<br />

PN-EN 21974:2002 standard.<br />

- Bursting strength – the test was performer in the Mullen apparatus from Lorentzen &<br />

Wettre according to PN-EN ISO 2758:2005.<br />

RESULTS<br />

When being used, the paper product is exposed to numerous external forces, that is<br />

why the strength properties are among the most important parameters. The paper resistance to<br />

the external forces depends mainly from fibre length and forces binding fibres. The strength<br />

properties are determined in conditions reflecting product operating conditions. Fig. 2 shows<br />

results for breaking length for tested papers with added chemicals. The breaking length is the<br />

length beyond which a strip <strong>of</strong> paper <strong>of</strong> uniform width would break under its own weight if<br />

suspended from one end.<br />

213


Fig. 2. Changes in breaking length <strong>of</strong> sack paper with added chemicals<br />

Each <strong>of</strong> tested dosages <strong>of</strong> cationic starch improved significantly breaking length from<br />

17% to 35% depending on the dosage used. Using higher dosages, agent A also improved<br />

breaking length by almost 15%. Addition <strong>of</strong> agent B improved breaking length by 19% with<br />

the smallest dosage and even by 36% with the highest dosage. The best result was obtained<br />

for the highest dosage <strong>of</strong> agent C (51%). Only dosage <strong>of</strong> CMC did not increase breaking<br />

length. Similar changes were observed for elongation at rapture (Fig. 3). Addition <strong>of</strong> CMC<br />

also caused decrease in this parameter. Satisfactory results were achieved for cationic starch –<br />

an increase to 24% (with the highest dosage), agent B which improved elongation at rapture<br />

by 39% (with the highest dosage), and agent C – medium dosage improved the result by 36%.<br />

Fig. 3. Changes in elongation at rapture for sack paper with added chemicals<br />

Bursting is a very important parameter for sack papers. It helps to evaluate usefulness<br />

<strong>of</strong> paper and its behaviour when forces perpendicular to its surface are applied. Bursting index<br />

214


depends on elasticity <strong>of</strong> fibres contained in paper, fibre length and bonding degree between<br />

fibres. Majority <strong>of</strong> chemicals used increased this strength property. The best results were<br />

obtained with agent B. Each dosage increased bursting, by 22% with the lowest dosage, and<br />

79% with the highest dosage <strong>of</strong> the agent. The highest dosage <strong>of</strong> agent C improved this<br />

parameter by 60%. Whereas all the dosages <strong>of</strong> carboxymethyl celluloze decreased bursting<br />

strength.<br />

Fig. 4. Changes in bursting for sack paper with added chemicals<br />

Another parameter tested was tear strength. It is particularly important when<br />

evaluating usefulness <strong>of</strong> sack paper that is exposed to tearing stresses during its usage. This<br />

measurement describes the force which is needed to tear paper sample cut initially. It depends<br />

mainly on fibres length and strength as well as compactness <strong>of</strong> a paper product. Fig. 5 shows<br />

the effect <strong>of</strong> chemicals addition on changes in tear strength for sack paper. All the CMC<br />

dosages improved this parameter by 5.2 % with the lowest dosage, and almost 7% with 1.5 %<br />

dosage. The best results were obtained with the 0.2 % dosage <strong>of</strong> agent B. The other agents<br />

decreased tear strength.<br />

215


Fig.5. Changes in tear strength <strong>of</strong> sack paper with added chemicals<br />

SUMMARY<br />

The tests proved that application <strong>of</strong> chemical agents in the production <strong>of</strong> sack paper<br />

brings satisfactory results enhancing its strength properties in this way. Synthetic agents<br />

showed higher effectiveness then natural agents. Among the synthetic agents the best results<br />

were obtained for agent B and the highest dosage (1.5%) <strong>of</strong> cationic starch (natural binding<br />

agent). The application <strong>of</strong> carboxymethyl cellulose was ineffective. It can be concluded then<br />

that it is possible to improve the strength parameters using chemical agents.<br />

REFERENCES<br />

1. NEIMO L., 1999: Papermaking chemistry, Helsinki<br />

2.SZWARCSZTAJN E., 1991: Przygotowanie masy papierniczej, Wydawnictwa Naukowo -<br />

Techniczne, Warszawa<br />

3. LAINE J., LINDSTROM T., NORDMARK G.G., RISINGER G., 2000: “Sudies on<br />

topochemical modification <strong>of</strong> cellulosic fibers. Part 1. Chemical conditions for the attachment<br />

<strong>of</strong> carboxymethyl cellulose onto fibres ”, Nordic Pulp and Paper Research Journal, 15, 5, 520-<br />

526<br />

4. LAINE J., LINDSTROM T., NORDMARK G.G., RISINGER G., 2000: “Sudies on<br />

topochemical modification <strong>of</strong> cellulosic fibers. Part 2. The effect <strong>of</strong> carboxymethyl cellulose<br />

attachment on fibre swelling and paper strength”, Nordic Pulp and Paper Research Journal,<br />

17, 1, 50-56<br />

216


Streszczenie: Wpływ dodatku środków chemicznych na poprawę właściwości<br />

wytrzymałościowych papieru workowego. Biorąc pod uwagę względy ekonomiczne i<br />

ekologiczne można przypuszczać, że w przyszłości większość opakowań produkowanych<br />

będzie z wytworów papierowych. Papier na opakowania musi charakteryzować się dobrymi<br />

właściwościami wytrzymałościowymi. Zapewnia je produkcja papieru z surowców<br />

pierwotnych, a dokładnie z niebielonej masy celulozowej typu kraft, najczęściej z drewna<br />

sosnowego. Aby zapewnić odpowiedni poziom wytrzymałości papieru workowego<br />

zastosowano różne środki chemiczne w celu poprawy tych właściwości. Wykonane badania<br />

wykazały że, zastosowanie środków chemicznych w produkcji papierów workowych przynosi<br />

zadawalające rezultaty podnosząc jego właściwości wytrzymałościowe. Środki syntetyczne<br />

wykazały większą skuteczność działania niż środki naturalne.<br />

Corresponding author:<br />

Agnieszka Wysocka-Robak,<br />

agnieszka.wysocka-robak @p.lodz.pl<br />

Institute <strong>of</strong> Papermaking and Printing,<br />

Technical <strong>University</strong> <strong>of</strong> Lodz,<br />

Wólczańska 223, 903-924 Łódź<br />

217


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 218-222<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Thickness changes <strong>of</strong> cyclical pressed veneer<br />

ZEMIAR JAN, ZBONČÁK RÓBERT, GAFF MILAN<br />

Technical <strong>University</strong> in Zvolen, Faculty <strong>of</strong> Wood Science and Technology, Department <strong>of</strong> Furniture and Wood<br />

Products<br />

Abstract: The article is oriented at investigation <strong>of</strong> beech veneer compression by cyclical pressing. We selected<br />

different methods <strong>of</strong> cyclical pressing (procedures A, B, and C), which differed in pressing and releasing <strong>of</strong><br />

compressive force. Also we selected different initial moisture content <strong>of</strong> veneers (8 % and 16 %) and pressing<br />

temperature (20 °C, 100 °C, 150 °C). We investigated veneer thickness and its change after pressing at degree <strong>of</strong><br />

pressing <strong>of</strong> 30 %. All selected factors influence veneer thickness significantly.<br />

Keywords: pressing, compression, thickness, pressing procedure<br />

INTRODUCTION<br />

Aim <strong>of</strong> pressing – compression <strong>of</strong> wood is to modify wood properties – improve wood<br />

hardness, strength, resistance against abrasion and others. Wood treated by pressing does not<br />

loose its natural appearance what, connected with changed properties enlarge areas for its<br />

application when compared with non-treated wood (Zemiar, at al, 2009).<br />

Pressing – compression <strong>of</strong> wood can be technically realised by various methods, most<br />

<strong>of</strong>ten by flat pressing and rolling. At flat pressing, wood is subjected to static loading with<br />

gradually increasing force, or to dynamic, usually cyclically repeated loading (Kafka, at al,<br />

1989).<br />

Aim <strong>of</strong> the research was to verify the influence <strong>of</strong> three ways <strong>of</strong> flat cyclical pressing on<br />

thickness changes <strong>of</strong> thin wood materials – veneers, at the stage after pressing (after<br />

dimensional stabilisation), in connection with chosen selected factors (wood species, wood<br />

moisture content, pressing temperature). Ratio <strong>of</strong> thickness changes, at the stage after<br />

dimensional stabilisation, to the initial dimension – thickness <strong>of</strong> the veneer determines a<br />

degree <strong>of</strong> permanent pressing.<br />

MATERIALS AND METHODS<br />

Influence <strong>of</strong> chosen ways <strong>of</strong> pressing was evaluated experimentally on beech veneers <strong>of</strong><br />

dimensions 100 × 100 mm and thickness 2 mm, at wood moisture content 8 % and 16 %, and<br />

pressing temperature 20 °C, 100°C, and 150 °C. Common characteristic for all the tested<br />

procedures <strong>of</strong> pressing (marked A, B, or C) was 6-cyclic pressing with total time 3 minutes<br />

and total compression by about 30 % when compared to initial veneer thickness (Zbončák,<br />

2011).<br />

(Note: Formulation <strong>of</strong> degree <strong>of</strong> pressing “by about 30 %“ results from the fact that<br />

initial veneer thickness 2 mm was in real tolerance; that, at pressing to given thickness <strong>of</strong> 1.4<br />

mm, does not give constant value <strong>of</strong> degree <strong>of</strong> pressing.)<br />

Particular pressing procedures can be characterised as follows:<br />

Procedure A – at this way <strong>of</strong> pressing, veneer was pressed in every cycle to final level<br />

(pressing by about 30 % when compared to initial thickness) with pressing time 15<br />

seconds followed by release <strong>of</strong> compressive force for 15 seconds. The cycle was<br />

repeated for 6 times.<br />

218


Procedure B – The mode is characterised by progressive pressing by 5, 10, 15, 20, 25, and 30<br />

% when compared to initial thickness always lasting for 15 seconds at every degree <strong>of</strong><br />

pressing followed by release <strong>of</strong> compressive force for 15 seconds.<br />

Procedure C – The mode is similar to the mode B with the difference that at every level <strong>of</strong><br />

pressing, the press performs for 30 seconds with no releasing <strong>of</strong> compressive force<br />

during whole pressing process.<br />

The veneer thickness was the researched parameter; it was measured before pressing, after<br />

pressing, and at the state <strong>of</strong> conditioning in times 0.5, 1, 4, and 24 hours after pressing.<br />

RESULTS<br />

Veneer thicknesses and changes <strong>of</strong> them are given in graphical form. As the range <strong>of</strong><br />

the paper is limited, we aim at the analysis <strong>of</strong> pressing ways (fig. 1) and influence <strong>of</strong><br />

temperature (fig. 2) at chosen studied factors.<br />

From all the represented curves it follows that all <strong>of</strong> them have basically similar course.<br />

Initial veneer thickness, the dimension little exceeded 2 mm, was lowered during pressing to<br />

final constant thickness <strong>of</strong> 1.4 mm (degree <strong>of</strong> pressing by about 30 %) and consequently, after<br />

release <strong>of</strong> compressive force, it was gradually increasing. (Note: At particular ways <strong>of</strong> cyclical<br />

pressing, at the pressing stage – time interval t0 – t1, no course <strong>of</strong> changing thickness is<br />

recorded; only initial and final values <strong>of</strong> thickness are recorded.) The ideal state, from the<br />

point <strong>of</strong> view <strong>of</strong> our intentions, is the state when the curve in time interval t1 – t6, at<br />

untouched properties <strong>of</strong> pressed material, is not changed; it means that the thickness change<br />

was exclusively due to plastic deformations. This type <strong>of</strong> change can only be at ideal plastic<br />

material. The curves, which course is more similar to the ideal course, shows to more proper<br />

pressing procedure – they guard higher degree <strong>of</strong> permanent pressing.<br />

Based on analysis in fig. 1 it follows that almost in all cases, the highest permanent<br />

deformations are present at pressing procedure A; it means at the procedure, when veneer is<br />

a) b)<br />

c) d)<br />

219


e) f)<br />

Fig. 1 Thickness changes <strong>of</strong> veneers during and after pressing, at different pressing<br />

procedures, ( A, B, C), different pressing temperature and veneer<br />

moisture content.<br />

a) temperature 20 °C, moisture 8 %, b) temperature 20 °C, moisture 16 %,<br />

c) temperature 100 °C, moisture 8 %, d) temperature 100 °C, moisture 16 %,<br />

e) temperature 150 °C, moisture 8 %, f) temperature 150 °C, moisture 16 %.<br />

Time symbols indexing the time <strong>of</strong> measurement <strong>of</strong> thickness<br />

t0 – before pressing, t1 – after pressing, t2 – t6 – during conditioning (stabilisation) at time<br />

points <strong>of</strong> 0.5, 1, 4, and 24 hours.<br />

a) b)<br />

c) d)<br />

220


e) f)<br />

Fig. 2 Thickness changes <strong>of</strong> veneers during and after pressing, at different pressing<br />

temperature, ( 20 °C, 100 °C, 150 °C), different pressing procedures<br />

and veneer moisture content.<br />

a) pressing procedure A, moisture 8 %, b) pressing procedure A, moisture 16 %,<br />

c) pressing procedure, moisture 8 %, d) pressing procedure B, moisture 16 %,<br />

e) pressing procedure C, moisture 8 %, f) pressing procedure C, moisture 16 %.<br />

Time symbols indexing the time <strong>of</strong> measurement <strong>of</strong> thickness<br />

t0 – before pressing, t1 – after pressing, t2 – t6 – during conditioning (stabilisation) at time<br />

points <strong>of</strong> 0.5, 1, 4, and 24 hours.<br />

pressed at each cycle to the level <strong>of</strong> maximal degree <strong>of</strong> pressing, in our case 30 %. Between<br />

modes B and C (besides the exception at 16 % wood moisture content and pressing<br />

temperature 100 °C), stronger differences were not registered.<br />

Considering the wood moisture content <strong>of</strong> pressed veneers and pressing process at<br />

higher temperature than ambient temperature, thickness changes were influenced not only by<br />

pressing and relaxing but also by wood drying, eventually swelling during conditioning.<br />

Based on this fact we can explain lowering <strong>of</strong> thickness under the level <strong>of</strong> maximal<br />

compression.<br />

Pressing temperature influences the thickness changes markedly, in consequence <strong>of</strong><br />

drying <strong>of</strong> veneers or heaving during conditioning. Fig. 2 clearly shows the fact that at the<br />

highest tested temperature (150 °C), the curves are best approximating to the theoretical limit<br />

<strong>of</strong> 1.4 mm. Influence <strong>of</strong> temperature was more markedly manifested at higher initial wood<br />

moisture content (16 %); that matches higher shrinkage <strong>of</strong> the veneers compared to drier ones<br />

(moisture <strong>of</strong> 8 %).<br />

CONCLUSION<br />

By the research we aimed to know the influence <strong>of</strong> various ways <strong>of</strong> cyclical pressing on<br />

thickness <strong>of</strong> pressed wood – veneer. It was shown that among chosen procedures <strong>of</strong> pressing,<br />

the most permanent degree <strong>of</strong> pressing – compression was achieved at procedure A (pressing<br />

based on repetition <strong>of</strong> pressing process to chosen maximal degree <strong>of</strong> pressing) and the highest<br />

chosen temperature (150 °C), when drying is most intensive. Higher initial wood moisture<br />

content contributes to the shrinkage as well – in the experiment chosen 16 % compared to<br />

moisture <strong>of</strong> 8 %.<br />

221


REFERENCES<br />

1. KAFKA, E. a kol., 1989: Dřevařska přiručka I. Praha: STNL, 484 s. ISBN 80-03-<br />

00009-2.<br />

2. ZBONČÁK, R., 2011: Rozmerová stabilita cyklicky lisovaného bukového dreva.<br />

Diplomová práca, Zvolen: TU, 94 s.<br />

3. ZEMIAR, J. a kol., 2009: Technológia výroby nábytku. Zvolen: TU, 287 s. ISBN 978-<br />

80-228-2064-6.<br />

Streszczenie: Zmiany grubości forniru prasowanego cyklicznie. Artykuł skupia się na<br />

współczynniku kompresji forniru bukowego przy prasowaniu cyklicznym. Wybrano różne<br />

procedury prasowania (procedury A, B, oraz C), które rózniły się ściskaniem i<br />

odpuszczaniem. Testowano także rózne wyjściowe wilgotności forniru (8 % i 16 %) i<br />

temperatury prasowania (20 °C, 100 °C, 150 °C). Mierzono grubość forniru oraz jej zmiany<br />

po sprasowaniu o 30 %. Wszystkie testowane czynniki oddziaływują znacząco na grubość<br />

forniru.<br />

This examined problematic is part <strong>of</strong> research project No. 1/0329/09 from grant project <strong>of</strong><br />

VEGA.<br />

Corresponding authors:<br />

pr<strong>of</strong>. Ing. Ján Zemiar, PhD.<br />

Ing. Milan Gaff, PhD.<br />

Ing. Róbert Zbončák<br />

Technical <strong>University</strong><br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Masarykova 24<br />

960 53 Zvolen<br />

Slovakia<br />

222


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 223-228<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Variation <strong>of</strong> anatomical properties <strong>of</strong> shoots tall wheatgrass in the aspect <strong>of</strong><br />

their utilization as a substitute <strong>of</strong> wood biomass<br />

WALDEMAR ZIELEWICZ 1) , STANISŁAW KOZŁOWSKI 1) , EWA FABISIAK 2)<br />

1) Department <strong>of</strong> Grassland and Natural Landscape Science, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

2)<br />

Department <strong>of</strong> Wood Science, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: The paper reports on variation anatomical properties <strong>of</strong> tall wheatgrass at different levels <strong>of</strong> shoot<br />

height. Anatomical measurements included the determination <strong>of</strong> stem cross-section area and area taken up by the<br />

stem walls. The all measured parameters <strong>of</strong> stem structure exhibit varied values depending on their location on<br />

the shoot. Variation <strong>of</strong> these parameters is <strong>of</strong> significance for the height and date <strong>of</strong> mowing in case <strong>of</strong><br />

plantations <strong>of</strong> this species. The thickness <strong>of</strong> stem walls decreases from the shoot base to the inflorescence by<br />

approx. 20%. The area taken up by the walls accounts for almost 80% <strong>of</strong> stem cross-section area over the entire<br />

height <strong>of</strong> the shoot.<br />

Keywords: anatomical properties, tall wheatgrass, substitute <strong>of</strong> wood biomass<br />

INTRODUCTION<br />

The deficit <strong>of</strong> wood supplies observed in recent years, growing prices for timber as<br />

well as concern for the natural environment have resulted in a situation when the interest <strong>of</strong><br />

researchers is focused on the identification <strong>of</strong> rapidly growing plants, which may be used as<br />

substitutes <strong>of</strong> timber. The use <strong>of</strong> these plants in board industry or power engineering requires<br />

comprehensive studies aiming at the determination <strong>of</strong> their properties, assessing their<br />

suitability for specific applications as well as pr<strong>of</strong>itability <strong>of</strong> their production (Dragan 2011).<br />

An important position in this group is occupied by grasses (Celińska 2009). Among<br />

the species alien to the Polish native flora we need to mention those <strong>of</strong> genus Miscanthus<br />

(Kochanowska, Gamrat 2007), while among native grasses such important species include<br />

reed canary grass (Księżak and Faber 2007) and wood small-reed (Patrzałek et al. 2011).<br />

Advantages <strong>of</strong> these plants are connected with their rapid growth and minimal requirements<br />

concerning irrigation and fertilization.<br />

Evaluation <strong>of</strong> grasses in terms <strong>of</strong> their utilization as a substitute <strong>of</strong> wood biomass<br />

requires insight into a broad spectrum <strong>of</strong> their properties. Additionally, the dynamic<br />

development <strong>of</strong> the biomass energy market results in a situation, when new plant species are<br />

being searched for to serve as renewable energy sources (Niedziółka and Zuchniarz 2006,<br />

Dragon 2011, Łęski 2011). We need to mention here that the amount <strong>of</strong> electric energy<br />

generated from combustion <strong>of</strong> biomass in the years 2006 - 2010 increased almost three-fold.<br />

The main incentive for the biomass market in Poland is connected with the system enforcing<br />

the use <strong>of</strong> renewable energy sources (the Ordinance <strong>of</strong> the Minister <strong>of</strong> Economy <strong>of</strong><br />

14.08.2008 specifies the share <strong>of</strong> electric energy from renewable energy sources in the<br />

consumption <strong>of</strong> energy sold to final users at 12.9% in 2017).<br />

Among characteristics determining the above mentioned use <strong>of</strong> plants we need to<br />

mention e.g. yielding capacity <strong>of</strong> a given species (Rogalski et al. 2005), the chemical<br />

composition (Majtkowski 2008), as well as macrostructural and morphological parameters.<br />

The Institute <strong>of</strong> Plant Breeding and Acclimation at Radzików near Warszawa,<br />

conducting studies on the recreation and extension <strong>of</strong> biodiversity <strong>of</strong> native plant resources,<br />

carries out research on a new species, tall wheatgrass (Agropyron elongatum) (Martyniak and<br />

Martyniak 2009, Martyniak et al., 2010). This species is found in south-eastern Europe and<br />

Asia, in arid and salinated localities. It is characterized by high persistence and non-invasive<br />

character. Its aboveground shoots reach the height <strong>of</strong> as much as 2 m. This taxon does not<br />

223


produce underground rhizomes and its root system is well-developed. After wintering it starts<br />

vegetation early (Martyniak and Martyniak 2009).<br />

Studies conducted to date on tall wheatgrass at IPBA at Radzików have led to the<br />

generation <strong>of</strong> breeding materials, which have been used in the creation <strong>of</strong> a cultivar currently<br />

included in the registry procedure. Results obtained in the course <strong>of</strong> breeding works are<br />

promising and indicate the potential for this plant to be used e.g. for energy purposes. Thus<br />

multifaceted investigations have been undertaken in order to comprehensively determine<br />

properties <strong>of</strong> tall wheatgrass. This paper concerning the anatomical aspect is a part <strong>of</strong> this<br />

research.<br />

METHODS<br />

Anatomical studies <strong>of</strong> tall wheatgrass were carried out on the material collected for<br />

previously conducted biological and chemical analyses. It came from experimental<br />

plantations in the fields <strong>of</strong> IPBA at Radzików. The field trials were established in 2009 on<br />

sandy silt soil <strong>of</strong> the agronomic quality class II. Anatomical measurements included the<br />

determination <strong>of</strong> stem cross-section area and area taken up by the stem walls. Moreover, the<br />

thickness <strong>of</strong> stem walls and the area formed as a result <strong>of</strong> dying <strong>of</strong> the parenchyma, i.e. lumen<br />

<strong>of</strong> shoots. For this purpose 2 microscopic specimens each were prepared from randomly<br />

selected generative shoots. Measurements were taken on samples collected from eight height<br />

levels <strong>of</strong> each shoot denoted in this paper with symbols from A to H, corresponding to the<br />

location <strong>of</strong> individual internodes starting from the lowest. A total <strong>of</strong> 320 slides were prepared,<br />

on which the stem cross-section area and the area <strong>of</strong> stem lumen were determined. A<br />

computer image analyzer powered by the Motic 2000 s<strong>of</strong>tware was used in these analyses.<br />

RESULTS<br />

Conducted anatomical analyses showed that all measured parameters <strong>of</strong> stem structure<br />

exhibit varied values depending on their location on the shoot. It turned out that the thickness<br />

<strong>of</strong> stem walls decreases from the shoot base to the inflorescence (by approx. 20%) and its<br />

mean value was 0.78 mm. The coefficient <strong>of</strong> variation was 19%. An important<br />

macrostructural trait is the cross-section area <strong>of</strong> wall stems at different levels <strong>of</strong> shoot height.<br />

Variation in this parameter is presented in Fig. 1.<br />

12<br />

mean ± standard error ± standard deviation<br />

Cross-sectional area <strong>of</strong> walls (mm 2 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

F(7,148) = 10,7016, p = 0,0000<br />

A B C D E F G H<br />

Level <strong>of</strong> shoots height<br />

Fig. 1. Variation in cross-section area <strong>of</strong> wall stems at different levels <strong>of</strong> shoot height (A – level I, B – level II, C<br />

– level III, D – level IV, E – level V, F – level VI, G – level VII, H – level VIII)<br />

224


The conducted analysis <strong>of</strong> variance ANOVA for the analyzed trait at different shoot height<br />

levels indicates that these differences are statistically significant. The value <strong>of</strong> the tested<br />

statistic F for the area <strong>of</strong> their walls was 10.7017. The critical value F (7;148;0.0001) = 0.0422, and<br />

thus it is lower than the calculated value. Histograms <strong>of</strong> the distribution <strong>of</strong> cross-section area<br />

<strong>of</strong> stems taken up by the walls are presented jointly for all analyzed height levels <strong>of</strong> shoots<br />

(Fig. 2). It results from this figure that they are characterized by a distribution close to normal<br />

and the mean area is 5.3 mm 2 .<br />

32%<br />

50<br />

Frequency<br />

26%<br />

19%<br />

13%<br />

6%<br />

40<br />

30<br />

20<br />

10<br />

Number <strong>of</strong> measurements<br />

0%<br />

-2 0 2 4 6 8 10 12 14 16 18<br />

0<br />

Cross-sectional area <strong>of</strong> walls (mm 2 )<br />

Fig. 2. Histogram <strong>of</strong> distribution <strong>of</strong> walls cross-section area for all levels <strong>of</strong> shoot height jointly<br />

Since couch grass stems are usually hollow, the variation with height was also determined for<br />

area lumens <strong>of</strong> examined shoots <strong>of</strong> tall wheatgrass (Fig. 3). Although the arithmetical<br />

difference in the value <strong>of</strong> this parameter may be observed over the entire shoot height and its<br />

mean value is approx. 1.2 mm 2 it is statistically non-significant (F (7;148;0.01) = 2.7623).<br />

Cross-sectional area <strong>of</strong> lumen (mm 2 )<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

mean ± standard error ± standard deviation<br />

F(7,148) = 2,2728, p = 0,0316<br />

-1<br />

A B C D E F G H<br />

Level <strong>of</strong> shoots height<br />

Fig. 3. Variation in cross-sectional area <strong>of</strong> lumen shoots at different levels height (A – level I, B – level II, C –<br />

level III, D – level IV, E – level V, F – level VI, G – level VII, H – level VIII)<br />

225


It results from a comparison <strong>of</strong> the total cross-section area <strong>of</strong> stems and lumen area presented<br />

in Fig. 4 that area taken up by the walls accounts for almost 80% <strong>of</strong> stem cross-section<br />

area<br />

Cross-sectional area (mm 2)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

area <strong>of</strong> stems<br />

area <strong>of</strong> walls<br />

area <strong>of</strong> lumens<br />

I II III IV V VI VII VIII<br />

Level <strong>of</strong> shoots height<br />

Fig. 4. The effect <strong>of</strong> the location <strong>of</strong> specimen collection along the height <strong>of</strong> shoot (from the base – level A to the<br />

inflorescence – level H) on the cross-section area <strong>of</strong> the stem, walls and lumen <strong>of</strong> the shoot<br />

over the entire height <strong>of</strong> the shoot. Thus the thickness <strong>of</strong> shoot walls is practically constant<br />

from the base to the inflorescence. These results confirm field observations, from which it<br />

results that shoots <strong>of</strong> tall wheatgrass are strong and resistant to breaking or damage.<br />

As it was previously mentioned, the analyzed couch grass species has been the subject<br />

<strong>of</strong> earlier studies, aiming at the determination <strong>of</strong> its biological and chemical characteristics.<br />

Martyniak et al. (2011) stated that the average length <strong>of</strong> shoots was 175 cm and the range <strong>of</strong><br />

this value did not exceed 50 cm. When evaluating the suitability <strong>of</strong> plants for specific<br />

applications the essential value is the yield <strong>of</strong> biomass, i.e. the yield <strong>of</strong> aboveground parts <strong>of</strong><br />

shoots. When sowing seeds <strong>of</strong> tall wheatgrass at a spacing <strong>of</strong> 25 cm the annual yield<br />

harvested from four second growths was 164 dt ha -1 . It needs to be added here that the yield<br />

<strong>of</strong> the first second growth was 80 dt ha -1 and it was obtained within 55 days <strong>of</strong> vegetation. An<br />

important characteristic <strong>of</strong> cultivated grasses is their response to fertilization. In this case it<br />

was found that the height <strong>of</strong> generative shoots is slightly modified (by approx. 7%) by<br />

fertilization. Still the level <strong>of</strong> fertilization had an effect on the volume <strong>of</strong> phytomass. Nitrogen<br />

fertilization gave by approx. 38% higher yields in comparison to non-fertilized crops.<br />

In case <strong>of</strong> chemical analyses it is crucial to state that this species contained over 500 g<br />

cellulose and hemicelluloses, and 26.5 g lignin in 1 kg d.m. Such contents <strong>of</strong> structural<br />

carbohydrates need to be considered a highly advantageous trait for this group <strong>of</strong> plants in<br />

terms <strong>of</strong> the application <strong>of</strong> couch grass as a substitute <strong>of</strong> wood biomass in many applications,<br />

which was also stressed by Kozłowski et al. (2007) and Wróblewska et al. (2009). The tested<br />

species contained slight amounts <strong>of</strong> crude ash, which is a characteristic typical <strong>of</strong> grasses.<br />

Sometimes it may accumulate their higher amounts in the aboveground mass <strong>of</strong> shoots, which<br />

may not be considered a positive trait in terms <strong>of</strong> its energy crop utilization.<br />

CONCLUSIONS<br />

1. Thickness <strong>of</strong> walls in generative shoots and the area take up by the walls at the stem<br />

cross-section in tall wheatgrass need to be considered characteristic traits <strong>of</strong> this<br />

226


species. These parameters may be significant in case <strong>of</strong> the use <strong>of</strong> this species as an<br />

energy crop.<br />

2. Analyzed anatomical traits <strong>of</strong> stems in tall wheatgrass, i.e. wall thickness and the area<br />

which they take up at the stem cross-section, indicate high variability depending on<br />

their location on the shoot. Variation <strong>of</strong> these parameters is <strong>of</strong> significance for the<br />

height and date <strong>of</strong> mowing in case <strong>of</strong> plantations <strong>of</strong> this species.<br />

3. When undertaking anatomical analyses it is advisable to remember that the greatest<br />

variation is found in shoots <strong>of</strong> couch grass at their mid-height, which requires an<br />

increased number <strong>of</strong> measurements.<br />

4. Tall wheatgrass is characterized by numerous traits indicating that this species may be<br />

a substitute <strong>of</strong> wood biomass. However, in order to fully determine its suitability as an<br />

energy crop these investigations need to be extended to include the determination <strong>of</strong><br />

heat <strong>of</strong> combustion and heating value. It is also advisable to conduct comparative<br />

studies, also in terms <strong>of</strong> anatomical analyses <strong>of</strong> other grass species.<br />

REFERENCES<br />

1. CELIŃSKA A., 2009: Charakterystyka różnych gatunków upraw energetycznych w<br />

aspekcie ich wykorzystania w energetyce zawodowej. Polityka Energetyczna, 12, 2,1;<br />

59-71.<br />

2. DRAGAN J., 2011: Inwestycja w zakład produkcji pelletu z biomasy „Agro”.<br />

Przemysł Drzewny 5; 27-31.<br />

3. KOCHANOWSKA R., GAMRAT R., 2007: Uprawa miskanta cukrowego<br />

(Miscanthus sacchariflorus (Maxi.) Hack) – zagrożeniem dla polskich pól i lasów<br />

Łąkarstwo w Polsce, 10; 223-228.<br />

4. KOZŁOWSKI S., ZIELEWICZ W., LUTYŃSKA A., 2007: Określenie wartości<br />

energetycznej Sorghum sacharatum, Zea mays i Malva verticilata. Łąkarstwo w<br />

Polsce, 10;131-140.<br />

5. KSIĘŻAK J., FABER A., 2007: Ocena możliwości pozyskania biomasy z mozgi<br />

trzcinowatej na cele energetyczne. Łąkarstwo w Polsce, 10; 141-148.<br />

6. ŁĘSKI P., 2011: Rynek biomasy w Europie. Przemysł Drzewny, 5;15-26.<br />

7. NIEDZIÓŁKA I., ZUCHNIARZ A., 2006: Analiza energetyczna wybranych rodzajów<br />

biomasy pochodzenia roślinnego. Motorol, 8A; 232-237.<br />

8. MAJTKOWSKI W., 2008: Wydmuchrzyca wydłużona. Aeroenergetyka, 3; 12-16.<br />

9. MARTYNIAK D., MARTYNIAK J., 2009: Nowa energetyczna trawa. Farmr, 18; 28-<br />

29.<br />

10. MARTYNIAK D., MARTYNIAK L., ŻUREK G., 2010: Miejsce nowej trawy<br />

energetycznej w infrastrukturze obszarów wiejskich i możliwości technologicznego jej<br />

wykorzystania. Materiały XV Konferencji naukowo-technicznej nt. „Rola<br />

infrastruktury i techniki rolniczej w zrównoważonym rolnictwie, Kielce 11-<br />

12.03.2010.<br />

11. MARTYNIAK D., ZIELEWICZ W., FABISIAK E. 2011: Morfologiczne,<br />

anatomiczne, biologiczne i chemiczne właściwości perzu wydłużonego (Agropyron<br />

elongatum Host., Beauv.) w aspekcie możliwości jego wykorzystania w<br />

fitoenergetyce. Biuletyn IHAR (w druku).<br />

12. PATRZAŁEK A., KOZŁOWSKI S., SWĘDRZYŃSKI A., TRĄBA CZ., 2011:<br />

Trzcinnik piaskowy jako potencjalna roślina energetyczna. Wyd. Politechniki Śląskiej,<br />

Gliwice.<br />

13. ROGALSKI M., SAWICKI B., BAJONKO M., WIECZOREK A., 2005:<br />

Wykorzystanie rodzimych gatunków traw jako odnawialnych źródeł energii. W:<br />

227


Alternatywne źródła energii. Dobrodziejstwa i zagrożenia (red. M. Cieciura) Szczecin-<br />

Wisełka.<br />

14. WRÓBLEWSKA H., CIESIÓŁKA M., PAWŁOWSKI J., CICHY W., 2009:<br />

Właściwości chemiczne wybranych surowców lignocelulozowych. Postęp w<br />

badaniach surowców lignocelulozowych i produktów ich konwersji; 26-28.<br />

Streszczenie: Zmienność cech anatomicznych pędów perzu wydłużonego w aspekcie jego<br />

wykorzystania jako substytutu biomasy drzewnej. W pracy przedstawiono wyniki pomiarów<br />

cech anatomicznych perzu wydłużonego (Agropyron elongatum). Mierzone cechy określano<br />

na ośmiu poziomach wysokości pędów od podstawy do kwiatostanu. Z każdego poziomu<br />

skrawano po dwie mikrotomowe próbki i określano na nich pole powierzchni przekroju<br />

poprzecznego źdźbeł, grubości ścian i pole świateł pędów. Wykazano, iż mierzone parametry<br />

struktury źdźbeł perzu wydłużonego wykazują zróżnicowane wartości w zależności od<br />

miejsca położenia preparatu wzdłuż wysokości pędu. Średnia grubość ścian źdźbeł wynosiła<br />

ok. 0.8 mm i stanowiła prawie 80 % powierzchni przekroju poprzecznego źdźbła na całej<br />

wysokości pędu. Stwierdzono, iż perz wydłużony odznacza się wieloma cechami<br />

wskazującymi na możliwości jego zastosowania jako substytutu biomasy drzewnej. Jednak,<br />

by w pełni określić jego przydatność jako surowca energetycznego badania te należy<br />

poszerzyć m.in. o właściwości cieplne.<br />

Corresponding authors:<br />

1)<br />

Department <strong>of</strong> Grassland and Natural Landscape Science<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-627 Poznań, Poland<br />

Wojska Polskiego38/42<br />

e-mail: walziel@up.poznan.pl<br />

2) Department <strong>of</strong> Wood Science<br />

Poznań <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-627 Poznań, Poland<br />

Wojska Polskiego38/42<br />

e-mail: knod@up.poznan.pl<br />

228


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 229-233<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Технологическая оценка древесины дуба Одесской области для<br />

виноделия<br />

СЕРГЕЙ ЗРАЖВА, МАРИЯ КОСТЕНКО<br />

Кафедра технологии деревообработки Национального университета биоресурсов и природопользования<br />

Украины – НУБиП Украины<br />

Abstract: In clause results <strong>of</strong> researches <strong>of</strong> oak wood from typical forests <strong>of</strong> Odessa region forest enterprises for<br />

oenological a cooperage <strong>of</strong> Ukraine are presented. The peculiarities <strong>of</strong> grain structure and chemical properties,<br />

possibilities <strong>of</strong> average lumbering are estimated. The most part <strong>of</strong> clapboard logs are suitable for processing <strong>of</strong><br />

vine barrels.<br />

Keywords: oak logs, volumes <strong>of</strong> cutting, сlapboard, lumber yield, barrels<br />

В бондарной промышленности Украины до настоящего времени<br />

использовалась древесина неизвестного происхождения, без предварительной оценки<br />

анатомического строения, химических и физических свойств. Бондарные фирмы<br />

Франции, Италии, Испании и США, доминирующие на международном рынке, уже в<br />

конце ХХ века перешли к целенаправленной заготовке древесины дуба для выдержки<br />

определенных сортов виноматериалов и коньячных спиртов в специально отобранных<br />

насаждениях с паспортизированными свойствами древесины [4, 12, 13, 14]. В работах<br />

российских исследователей отмечены регионы с наиболее перспективной для бочек<br />

древесиной дуба [4, 5, 6, 7].<br />

Одесская и соседние области: Херсонская, Николаевская, а также республика<br />

Молдова являются лесодефицитными районами с интенсивным виноделием.<br />

Традиционно в Одесской области работали десятки бондарных предприятий. Своего<br />

сырья, обычно, не хватало. Больше половины объема потребляемой клепки<br />

приходилось завозить из Винницкой, Хмельницкой, Тернопольской, Харьковской<br />

областей. Рациональное использование местного сырья позволит не только снизить<br />

себестоимость бондарной продукции, но и создать новые рабочие места.<br />

Отсутствие научного обоснования в подборе сырья для винных и коньячных<br />

бочек снижает конкурентоспособность украинского винопроизводства. Следовательно,<br />

данные исследования актуальны для возрождения национальных бондарных<br />

предприятий.<br />

В большинстве случаев современные производственники отбирают древесину<br />

для бочек (в пределах выделенных ими для виноделия сырьевых районов) методом<br />

експресс-оценки по макростуктуре древесины, поскольку химические анализы<br />

древесины долговременные и дорогостоящие. Некоторые исследователи считают, что<br />

наилучшими для выдержки вин являются бочки из древесины с мелкими годичными<br />

слоями из сухих условий местопроизрастания, т.к. они меньше испаряют содержимое<br />

через стенки [2, 3, 5]. По другим данным такая древесина придает виноматериалам<br />

лучшие органолептические свойства [5, 6].<br />

Французские виноделы подразделяют бондарную древесину на крупно-,<br />

средне- и мелкослойную. Древесину с крупными годичными кольцами, мелкими<br />

сосудами и оптимальным содержанием дубильных веществ они используют для<br />

винных дистиллятов, т.к. она обеспечивает более богатый аромат и лучшие вкусовые<br />

229


качества при длительной выдержке. Средне- и мелкослойной древесине с крупными<br />

сосудами отдают предпочтение при выдержке вин, поскольку она обеспечивает более<br />

интенсивную экстракцию и не оставляет «тяжелого» привкуса бочки. [6, 12, 13, 14].<br />

С целью оценки качества клепочного кряжа и технологических свойств<br />

древесины в хозяйствах, которые обеспечивают 70 % объема заготовок дубовой<br />

древесины в области: Савранском, Балтском и Кодымском лесхозах на участках рубок<br />

главного пользования было заложено 7 пробных площадей, где по общепринятым<br />

методикам определены основные таксационные характеристики насаждений,<br />

сортиментный выход круглых лесоматериалов по ГОСТ 9462-88 [9], выход<br />

высококачественного клепочного кряжа для винных и коньячных бочек - в<br />

соответствии с требованиями европейского рынка. На каждой пробной площади было<br />

отобрано по 7 модельных деревьев, соответствующих средним таксационным<br />

показателям данных насаждений. Из каждого модельного дерева со стороны пневого<br />

среза были заготовлены 3-х метровые бревна клепочного кряжа, из которых отбирались<br />

образцы древесины для определения макроструктуры и анализов физических и<br />

химических свойств. Число годичных слоев в 1 см диаметра и процент поздней<br />

древесины определяли по ГОСТ 16483.18-72 [11]. Ширину годичного слоя – по<br />

евростандарту ДСТУ ЕN 1310:1997[8]. Влажность древесины – по ГОСТ 16483.7-71<br />

[10] . Содержание фенольных веществ в водных и спиртовых вытяжках на ФЕК.<br />

Содержание эвгенола, ванилина и душистых лактонов – методами газо-жидкостной<br />

хроматографии на модифицированном газовом хроматографе "Кристалл-2000",<br />

каппилярная колонка ВИТОКАП – АL – 0.3 СП, фаза – VITOWAX–F (имоб.), длина 50<br />

м, внутренний диаметр 0.32 мм.<br />

Дубравы Украины представлены насаждениями дуба черешчатого, скального,<br />

пушистого и австрийского. В лесонасаждениях Одесской области встречаются дуб<br />

черешчатый и дуб скальный, на незначительных площадях – дуб пушистый. Общая<br />

площадь насаждений дуба черешчатого в гослесхозах области составляет 45,20 тис. га,<br />

а дуба скального – 1,75 тис. га. Суммарный запас насаждений дуба черешчатого 7201<br />

тис. м 3 , а дуба скального – 392 тис. м 3 . Запас спелых и перестойных насаждений<br />

составляет 13-15 % от суммарного. Большая часть покрытых лесом земель области<br />

относится к условиям свежей и сухой дубравы. Преобладают дубовые насаждения 2–го<br />

и 3–го бонитетов. Насаждения дуба черешчатого и дуба скального сосредоточены,<br />

преимущественно, в северной части области на территории Савранского, Балтского и<br />

Кодымского лесхозов, которые относятся к лесостепной зоне области. Уже на 30 км<br />

южнее их, в Котовском лесхозе, производительность дуба падает до 3-4 бонитета.<br />

Такие насаждения не представляют интереса с точки зрения заготовки клепочного<br />

кряжа. Южнее Котовска, в условиях сухого степного климата дуб черешчатый<br />

формирует низкопроизводительные насаждения и редко доживает до возраста<br />

технологической спелости. Дуб скальный в этой зоне области уже не встречается.<br />

Местами можно встретить небольшие куртины дуба пушистого 4-5 бонитетов. Эти<br />

насаждения выполняют защитные функции и промышленного значения не имеют.<br />

В 2000 г. все насаждения области сильно пострадали от обледенения и массового<br />

облома деревьев. Наиболее сильно повреждены приспевающие, спелые и перестойные<br />

насаждения. За последние 10 лет поражения древесины гнилью распространились от<br />

мест облома крупных веток на 6-12 м вниз по стволу, что привело к суховершинности<br />

поврежденных деревьев. Были проведены интенсивные санитарные рубки, которые<br />

привели к снижению полноты до 0,6 и запасов спелых и перестойных насаждений на<br />

20–50 м 3 /га. В связи с этим в ближайшие 20-30 лет предусмотрено сокращение рубок<br />

главного пользования. Предполагаемые объемы расчетной лесосеки по главному<br />

пользованию и санитарным рубкам в спелых и перестойных насаждениях составляют<br />

230


70 и 25 тыс. м 3 /год для дуба черешчатого и скального соответственно. Возможные<br />

среднегодовые объемы заготовки высококачественного клепочного кряжа – 600 и 270<br />

м 3 /год для дуба черешчатого и скального соответственно.<br />

При сортировке круглых лесоматериалов на пробных площадях 82 %<br />

клепочного кряжа, отобрано из 1-го и 28 % – из 2-го сорта пиловочника. Средний<br />

диаметр клепочного кряжа составил 36±3 см. Пробная распиловка 14,3 м 3 клепочного<br />

кряжа дала следующий выход продукции: 19,2 % – высококачественной клепки для<br />

бочек, 7,6 % – клепки для выдержки коньячных спиртов и виноматериалов в больших<br />

резервуарах [1], 5,4 % – микроклепки, 18,6 % – щепы из ядровой древесины (которая<br />

после ферментации и термообработики может быть использована для выдержки<br />

коньячных спиртов и виноматериалов в больших резервуарах), 22,9 % – опилок, 26,3<br />

% – кусковых отходов с заболонью, гнилыми сучками, загнившими участками ядра.<br />

Как видно из баланса выхода пилопродукции использование для выдержки<br />

дистиллятов и виноматериалов только бочек слишком расточительно. Стоимость<br />

марочной винопродукции, коньячных спиртов и бренди, выдержанных в бочках, в<br />

большинстве случаев является малодоступной для среднего класса. Не случайно в<br />

большинстве стран мира, в отличие от Украины, для выдержки винопродукции<br />

разрешено использовать не только бочки, буты, клепку и микроклепку для больших<br />

резервуаров, но и специально обработанные щепу, микрощепу и стружку.<br />

Большая часть дубовой древесины из лесхозов Одесской области по<br />

макроструктуре соответствует требованиям для винных бочек. Так, на пробных<br />

площадях было отобрано 86–92 % винного клепочного кряжа и 8–14 % - коньячного.<br />

Средняя ширина годичного слоя винного клепочного кряжа находилась в<br />

пределах 1,1±0,2 – 1,9±0,4 мм, а коньячного – 2,4±0,3 – 2,6±0,4 мм (рис. 1). Процент<br />

поздней древесины находился в пределах 58±4 – 67±5 %.<br />

Наименьшая ширина годичного слоя и минимальные значения поздней<br />

древесины отмечены на 1-й и 2-й пробных площадях, расположенных на сухих склонах<br />

южной экспозиции. Максимальные значения ширины годичного слоя, процента<br />

поздней древесины, а также наличие коньячного клепочного кряжа определены на 3-й,<br />

8-й и 7-й пробных площадях, которые находились в нижней части склонов югозападной<br />

экспозиции.<br />

Химические свойства древесины дуба черешчатого из клепочного кряжа на<br />

пробных площадях свидетельствуют о том, что по комплексу свойств она уступает<br />

лучшим французским образцам только по содержанию душистых лактонов (табл. 1).<br />

231


3<br />

Ширина годичного<br />

слоя, мм<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

1 2 3 4 5 6<br />

7<br />

Номера пробных площадей<br />

коньячный кряж винный кряж<br />

Рис.1. Средняя ширина годичного слоя древесины клепочного кряжа на пробных площадях<br />

Таблица 1. Содержание фенольных и ароматобразующих веществ в древесине<br />

клепочного кряжа дуб а черешчатого на пробных площадях<br />

Наименование Единицы<br />

Содержание в ядровой древесине:<br />

химических веществ измерения винного клепочного коньячного клепочного<br />

кряжа<br />

кряжа<br />

Фенольные вещества мг/г 52±11 74±13<br />

Ванилин мкг/г 42±6 68±15<br />

Эвгенол мкг/г 0,4±0,1 0,7±0,2<br />

Душистые лактоны мкг/г 6±2 11±3<br />

Для обогащения ароматические свойства дубовых бочек из клепочного кряжа,<br />

заготовленного в Одесской области, душистыми лактонами целесообразно добавлять к<br />

клепке из дуба черешчатого 20–40 % клепки из дуба скального, который отличается в<br />

несколько раз большим содержанием душистых лактонов, хотя уступает дубу<br />

черешчатому по содержанию других ароматобразующих веществ.<br />

Выводы.<br />

1. Основные запасы клепочного кряжа для винных и коньячных бочек в<br />

Одесской области сосредоточены в Савранском, Балтском и Кодымском лесхозах.<br />

2. Ежегодно в Одесской области можно заготавливать не менее 870 м 3<br />

высококачественного дубового клепочного кряжа.<br />

3. Ожидаемый выход высококачественной клепки для винных и коньячных<br />

бочек составляет 19,5 %, клепки и микроклепки для выдержки коньячных спиртов и<br />

виноматериалов в крупных резервуарах 7,6 % и 5,4 %, соответственно.<br />

4. Средняя ширина годичного слоя в древесине винного клепочного кряжа<br />

находится в пределах 1,1–1,9 мм, а коньячного – 2,4–2,6 мм. Процент поздней<br />

древесины – в пределах 58–67 %.<br />

5. Химический состав древесины дуба черешчатого из одесских лесхозов (за<br />

исключением содержания душистых лактонов) не уступает лучшим французским<br />

образцам.<br />

232


REFERENCES<br />

1. Агабальянц Г.Г., 1958: Способ выдержки коньячного спирта в эмалированных<br />

резервуарах с дубовой клепкой. - А. С. СССР № И2561.<br />

2. Гамбашидзе А.К.,1963:Технологические емкости для вина.–М.:ЦИНТИпищепром-<br />

116 с.<br />

3. Герасимов М. А., 1964: Технология вина. Г.: Пищевая пром-сть, - 640 с.;<br />

4. Б. Кордье, П. Шатонне, Н.Г. Саришвили, Оганесянц Л.А., 1993: Использование<br />

древесины дуба для виноделия // Виноград и вино России . № 5. - С. 15-16.<br />

5. Оганесянц Л.А., Коровин В.В., Телегин Ю.А., 1995:Анатомические аспекты качества<br />

дубовой клепки для производства винодельческой продукции. /Виноград и вино<br />

России, Специальный выпуск. - C. 33-34.<br />

6. Оганесянц Л.А., 1998: Дуб и виноделие. - М.: Пищевая промышленность,- 256 с.<br />

7. Писарницкий А.Ф., Рубения Т. Ю., 2006:Выбор древесины дуба для производства<br />

винодельческой продукции./Виноделие и виноградарство, -№2. -C. 17.<br />

8. ДСТУ ЕN 1310:1997 "Измерения характеристик лесоматериалов".<br />

9. ГОСТ 9462-88 Лесоматериалы круглые лиственных пород. Технические условия.<br />

10. ГОСТ 16483.7-71 Древесина. Методы определения влажности.<br />

11. ГОСТ 16483.18-72 Древесина. Метод определения числа годичных слоев в 1 см и<br />

содержания поздней древесины в годичном слое.<br />

12. Marshe M., Joseph T. 1975:Etude theorіtіque sur le cognac, sa composіtіon et don<br />

vіellsement naturel an tuts de cheme. Statіon vіtіcola de Cognac \\ Revue Francaіs<br />

d'Oenologіe.- # 57. - PP. 1-96.<br />

13. Nepun. G. 1982:Varіabіlіte clonale de lіnfadensіte chez Quercus petraea. Premіers<br />

resultants obtenus sur bjnіture dun orme // Ann/ Scі. forest, V39. N2.- P.P. 151-164.<br />

14. Transaud J. 1976:Le lіvre dela tonnellerіe. La roue a Lіvre. (Ed).-Parіs.- 68 p.<br />

Streszczenie: Badano drewno dębowe z typowych lasów okręgu odeskiego. Sprawdzono<br />

osobliwości struktury włókien, własności chemiczne, oraz potencjalne możliwości<br />

zastosowania. Większość kłód okazała się odpowiednia do produkcji beczek do wina.<br />

Corresponding authors:<br />

Sergey Zrazhva, Maria Kostenko<br />

Department od Wood Processing<br />

National <strong>University</strong> <strong>of</strong> <strong>Life</strong> and Environmental <strong>Sciences</strong> <strong>of</strong> Ukraine,<br />

Kyiv,vul.Geroiv Oborony 15,03041, Ukraine<br />

zrazhva@inbox.ru<br />

233


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 76, 2011: 234-242<br />

(Ann. WULS-<strong>SGGW</strong>, Forestry and Wood Technology 76, 2011)<br />

Ageing resistance <strong>of</strong> paint coats applied on eucalyptus wood<br />

EWA SUDOŁ, ANNA POLICIŃSKA−SERWA<br />

Department <strong>of</strong> Structures and Building Elements, Building Research Institute − ITB<br />

Abstract: Ageing resistance <strong>of</strong> paint coats applied on eucalyptus wood. Introducing a new type <strong>of</strong> wood to a<br />

woodwork production process should be preceded by the throughout analysis <strong>of</strong> different features influencing<br />

the reliability and durability <strong>of</strong> the coating system, in order to ensure that the final product has satisfactory<br />

technical and decorative characteristics. Coating properties may be verified during the natural ageing according<br />

to the guidelines defined in PN-EN 927-3:2008 requiring at least 12-month observations, or alternatively<br />

according to PN-EN 927-6:2007 with observation period <strong>of</strong> 12 weeks in conditions <strong>of</strong> artificial ageing i.e. UV<br />

environment, increased temperature and humidity. This document presents results <strong>of</strong> studies on the resistance to<br />

accelerated ageing <strong>of</strong> coatings applied on eucalyptus wood - these results are compared with chosen results <strong>of</strong><br />

tests on resistance to natural ageing . These results are part <strong>of</strong> works performed by Building Research Institute<br />

(ITB) within its own development project no. 04 0001 06. entitled: “The usefulness <strong>of</strong> selected species <strong>of</strong> exotic<br />

wood for window production”<br />

Keywords: wood, eucalyptus, coating, water-based coating system, windows, artificial ageing, natural ageing,<br />

colour, gloss, adhesion <strong>of</strong> paint coating, paints and varnishes.<br />

INTRODUCTION<br />

Durability and functionality <strong>of</strong> paint coats have a significant impact on the<br />

functionality <strong>of</strong> the wood joinery and indirectly on the level <strong>of</strong> user satisfaction. Increasingly,<br />

users note that the quality <strong>of</strong> coating depends on the applied coating system and the type <strong>of</strong><br />

substrate in terms <strong>of</strong> type and duration <strong>of</strong> environmental impact.<br />

Paint systems based on solvents that were widely used until recently, with properties<br />

known thanks to the numerous studies [Pecina, Paprzycki, Proszyk, Kedzierski], are being<br />

replaced in recent years with water-based systems [Proszyk, Mateńko-Nożewnik, Kedzierski<br />

and others]. The properties <strong>of</strong> these systems - especially since they are constantly modified<br />

need to be tested in terms <strong>of</strong> their efficient application on different types <strong>of</strong> wood and woodbased<br />

materials, particularly in relation to external conditions <strong>of</strong> use.<br />

Introducing a new type <strong>of</strong> wood to a production process should be preceded by the<br />

throughout analysis <strong>of</strong> different features influencing the reliability and durability <strong>of</strong> the final<br />

product, in order to ensure its satisfactory technical and decorative characteristics.<br />

Coating properties may be verified in field tests, involving the observation <strong>of</strong> their<br />

behaviour under conditions <strong>of</strong> natural ageing. Detailed guidelines in this regard are defined in<br />

PN−EN 927−3:2008. However, these procedures are time-consuming – they last for at least<br />

12 months. Alternatively, quickened methods may be applied as they use artificial ageing,<br />

simulating the atmospheric effects. These methods are implemented in accordance with<br />

PN−EN 927−6:2007 standard, requiring 12-week exposure <strong>of</strong> coats to light, including UV<br />

produced by fluorescent lamps and to increased temperature, alternating with water spraying.<br />

Periodic moistening through condensation is also included.<br />

The criteria used for evaluating the resistance to ageing, whether natural or artificial,<br />

include the changes in the following features:<br />

appearance,<br />

thickness,<br />

234


gloss,<br />

colour,<br />

adhesion.<br />

This document presents results <strong>of</strong> studies on the resistance to accelerated ageing <strong>of</strong><br />

coatings applied on eucalyptus wood - these results are compared with chosen results <strong>of</strong> tests<br />

on resistance to natural ageing (the exposure has not been finished yet). These results are part<br />

<strong>of</strong> works performed by Building Research Institute (ITB) within its own development project<br />

no. 04 0001 06, entitled “The usefulness <strong>of</strong> selected species <strong>of</strong> exotic wood for window<br />

production”<br />

EXPERIMENTAL PART<br />

Eucalyptus timber (Eukaliptus grandis) was bought from an importer <strong>of</strong> exotic wood.<br />

For the purposes <strong>of</strong> this study, the wood was cut into slats with dimensions <strong>of</strong> 20861200<br />

mm. The wood used in the experiment was <strong>of</strong> quality equivalent to class J2 according to<br />

PNEN 942:2008 and average density <strong>of</strong> 540 kg/m 3 . Wood slats, immediately before<br />

application <strong>of</strong> the coating system, were treated with abrasive paper <strong>of</strong> grit size 150.<br />

For the tests, two water-based, transparent coating systems were selected, from the<br />

current market <strong>of</strong>fer. They consisted <strong>of</strong> an impregnant, tinted primer, intermediate layer and a<br />

topcoat. Selected technical features <strong>of</strong> the products are presented in Table 1, basing on<br />

catalogue datasheets provided by manufacturers.<br />

Table 2. Basic features <strong>of</strong> coating system components<br />

Feature, unit<br />

System component<br />

impregnant primer intermediate topcoat<br />

layer<br />

System A<br />

Density, g/cm 3 1,00 1,00 1,03 1,04<br />

Viscosity, Ford cup no. 4,<br />

10 50 14 no data<br />

20C, sec.<br />

Dry matter content, % 6 10 32 36<br />

System B<br />

Density, g/cm 3 no data no data no data no data<br />

Viscosity, Ford cup no. 4, no data 12 13 no data<br />

20(C, sec.<br />

Dry matter content, % 5 12 33 35<br />

Coating systems - system A and system B - were applied in the same way, in industrial<br />

conditions, onto the face surfaces and side edges <strong>of</strong> the wood slats (excluding the top<br />

surfaces). Basic parameters <strong>of</strong> the application are shown in Table 2.<br />

235


Table 2. Basic parameters <strong>of</strong> application <strong>of</strong> coating systems<br />

Parameter, unit<br />

System component<br />

impregnant primer intermediate topcoat<br />

layer*<br />

Applying method pouring pouring pouring spraying<br />

Wet coat thickness, m 60 60−80 125−150 275−300<br />

* After applying this layer, the wood was treated with a sandpaper <strong>of</strong> grit size 180<br />

When the treatment described above was completed, samples were taken from wood<br />

slats in order to perform accelerated ageing tests – these samples had dimensions <strong>of</strong><br />

3007520 mm, whereas samples taken for natural ageing tests had dimensions <strong>of</strong><br />

3007820 mm. All cut edges <strong>of</strong> samples were secured with alkyd paint.<br />

The coats before undergoing ageing process were checked in terms <strong>of</strong> appearance,<br />

colour, gloss and their thickness was measured. On separate samples taken from the same<br />

wood batch, the adhesion <strong>of</strong> coats was tested.<br />

Samples assigned for the artificial ageing were placed in an ageing apparatus <strong>of</strong> “UV<br />

test” type, according to PN−EN 927−6:2007 and treated with 12 cycles <strong>of</strong> ageing, lasting for<br />

12 weeks. Each cycle included:<br />

24 h <strong>of</strong> condensation, T45±3C,<br />

168 h <strong>of</strong> further exposures:<br />

2,5 h <strong>of</strong> UV exposure with UVA−340 lamp, light intensity <strong>of</strong> 0,89 W/m 2 (for 340<br />

nm bandwidth), T60±3C,<br />

0,5 h sprinkling with demineralised water, without UV exposure, sprinkling<br />

intensity: 6−7 l/min.<br />

After 6 weeks <strong>of</strong> exposure, control checks were performed, including assessment <strong>of</strong><br />

the external appearance and colour/gloss measurements. Similar checks (with additional<br />

thickness and adhesion measurements) were performed on the samples when accelerated<br />

ageing cycles were completed.<br />

Samples assigned for the natural ageing were placed, horizontally, on racks inclined at<br />

45 and their exposed surface was directed towards the equator. After 3 and 7 months <strong>of</strong><br />

exposure, control checks were performed, including assessment <strong>of</strong> the external appearance<br />

and colour/gloss measurements.<br />

Measurements were conducted using methods presented in Table 3. All methods,<br />

excluding adhesion tests, were non-destructive methods.<br />

236


Table 3. Methods <strong>of</strong> testing the coats<br />

Feature Testing method Detailed test conditions<br />

Appearance, in<br />

terms <strong>of</strong>:<br />

blistering<br />

PN−EN ISO<br />

4628−2:2005<br />

cracks<br />

PN−EN ISO<br />

4628−4:2005<br />

flaking<br />

PN−EN ISO<br />

4628−5:2005<br />

Thickness, PNEN ISO 2808:2008 measurements with ultrasonic<br />

thickness meter, method no. 10<br />

5 measurements for each sample<br />

Gloss PN−EN ISO 2813:2001 measurements with a glossmeter,<br />

measurement angle <strong>of</strong> 60, light beam<br />

directed in parallel to fibres,<br />

5 measurements for each sample<br />

Colour PN ISO 7724−1:2003<br />

PN ISO 7724−2:2003<br />

PN ISO 7724−3:2003<br />

measurements with a<br />

spectrophotometer, in the following<br />

measurement conditions: lighting d/8,<br />

observer 10, normal illuminator D65,<br />

without gloss trap<br />

10 measurements for each sample<br />

Adhesion PNEN ISO 2409:2008 measurement with a multi-blade<br />

device with blade distance <strong>of</strong> 3 mm<br />

3 measurements for each sample<br />

TEST RESULTS<br />

Test results (average values) <strong>of</strong> selected samples are presented in Tables 4−7.<br />

Table 4. Test results (average values) for thickness measurements<br />

Coat thickness*, m<br />

Artificial ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 weeks 12 weeks<br />

System A<br />

EUA1 153 118<br />

EUA2 156 126<br />

System B<br />

EUB1 125 117<br />

EUB2 169 130<br />

The thickness <strong>of</strong> tested coats after exposure to artificial ageing was reduced by 30−25<br />

m in System A and by 8−39 m in System B, but it remained on the level above 100 m,<br />

which is the level assumed to provide proper durability.<br />

237


Table 5. Test results (average values) for gloss measurements<br />

Coat gloss<br />

Artificial ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 weeks 6 weeks 12 weeks<br />

System A<br />

EUA1 29,6 41,3 10,3<br />

EUA2 31,3 39,3 7,3<br />

System B<br />

EUB3 23,8 20,0 17,6<br />

EUB4 25,1 21,4 22,2<br />

Natural ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 months 3 months 7 months<br />

System A<br />

EUA3 32,3 27,5 32,6<br />

EUA4 32,1 24,4 33,6<br />

System B<br />

EUB3 26,5 23,3 22,8<br />

EUB4 27,5 23,5 23,3<br />

Non-aged coats <strong>of</strong> systems A and B, have the reflectivity <strong>of</strong> 23.8 – 32.3 and according<br />

to PN−EN 927−1:2000 they may be classified as semi-mat.<br />

Under the influence <strong>of</strong> the artificial ageing the gloss <strong>of</strong> coats in system A first<br />

increased - after 6 weeks the reflectivity was 39.3-41.3, which is the typical value <strong>of</strong> semigloss<br />

coats, but then it decreased - after 12 weeks the reflectivity was 7.3-10.3 which is<br />

typical for mat coats. In the natural ageing , the gloss values <strong>of</strong> coats in System A initially<br />

slightly decreased to the value 24.4-27.5 and then slightly increased close to the initial values.<br />

The gloss <strong>of</strong> coats in System B turned out to be more stable. Both in the artificial and<br />

natural ageing , tarnishing process was observed on the coats, however it was in a much lesser<br />

extent than on the coats <strong>of</strong> System A. The gloss <strong>of</strong> coats in System B decreased after 6 weeks<br />

<strong>of</strong> artificial ageing by 3.7 units. After 12 weeks the gloss <strong>of</strong> EUB3 sample decreased by<br />

another 2.4 units, while in EUB4 sample it increased by 0.8. After 12 weeks the gloss<br />

decreased from initial values by 2.9−6.2 units. Final reflectivity value enables us to classify<br />

the coat as semi-mat. The coats <strong>of</strong> System B, subjected to natural ageing behaved similarly. A<br />

light tarnishing was observed and after 7 months <strong>of</strong> exposure it resulted in the reflectivity<br />

decreases by 3.7-4.2 units when compared to initial values. The coats remained their semi-mat<br />

features.<br />

238


Table 6. Test results (average values) for colour measurements<br />

Colour coordinates - CIE 1976<br />

L* a* b* L* a* b* L* a* b*<br />

Artificial ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 weeks 6 weeks 12 weeks<br />

System A<br />

EUA1 37,76 19,97 48,00 44,38 12,77 20,37 44,18 12,30 19,79<br />

EUA2 37,76 19,90 47,05 41,80 12,44 17,75 41,17 11,60 16,60<br />

System B<br />

EUB1 45,77 20,34 45,97 43,99 14,15 21,01 42,31 14,04 20,80<br />

EUB2 42,25 20,79 41,59 43,22 13,16 19,03 42,59 14,37 19,64<br />

Natural ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 months 3 months 7 months<br />

System A<br />

EUA3 46,15 15,31 28,91 44,30 14,01 25,83 45,22 13,51 25,48<br />

EUA4 44,78 15,56 27,07 43,62 14,34 25,08 45,62 14,06 25,60<br />

System B<br />

EUB3 49,30 17,02 28,81 47,58 16,32 27,07 45,47 14,18 24,82<br />

EUB4 47,67 17,28 27,57 45,70 15,95 25,29 45,28 13,96 24,11<br />

Basing on data presented in Table 6, the change in colour was determined in<br />

accordance with BS ISO 7724-3:2003 and it was expressed as E*ab. For artificial ageing<br />

changes in colour were calculated after 6 and 12 weeks and compared to the initial values. In<br />

case <strong>of</strong> natural ageing, the changes were calculated after 3 and 7 months and compared to the<br />

initial values. Results are presented in charts 1a and 1b.<br />

Data presented in charts 1a and 1b indicate that the colour changes in samples<br />

artificially aged exceeded significantly the corresponding values in samples aged under<br />

natural conditions, regardless <strong>of</strong> the coating system type. Values E*ab after 6 weeks <strong>of</strong><br />

ageing exposure settled at the level <strong>of</strong> 29.3−30.5 in System A and 23.8−25.7 in coats <strong>of</strong><br />

System B. After further 6 weeks, obtained values were as follows: 29.9−31.7 and 22.9−26.2.<br />

Slight differences between the values <strong>of</strong> E*ab after 6 and 12 weeks indicate that the most<br />

significant changes occurred in the early stage <strong>of</strong> ageing process. The colour change values,<br />

expressed as E*ab, in samples exposed to natural conditions, after 3 months were 2.6-3.8 for<br />

System A and 2.5-3.3 for System B, whereas after 7 months, these values settled at 2.3−4.0<br />

and 5.4−6.2 respectively. Differences between the colour change values observed in<br />

accelerated ageing (after 12 weeks <strong>of</strong> exposure) and the values obtained in natural ageing<br />

(after 7 months <strong>of</strong> exposure) amounted to averaged value <strong>of</strong> 30 units for System A and 19<br />

units for System B. These differences are significant, but it should be noted that further<br />

observations <strong>of</strong> naturally aged samples are still under way and final comparative analysis will<br />

be carried out after they are completed.<br />

239


a)<br />

6 weeks 12 weeks<br />

b) 3 months 7 months<br />

Chart 1. Colour changes in coats<br />

a) artificial ageing b) natural ageing<br />

Table 7. Test results (average values) for adhesion measurements<br />

Adhesion, degrees according to PN−EN ISO 2409:2009<br />

Artificial ageing<br />

sample<br />

Time <strong>of</strong> ageing exposure<br />

marking 0 weeks 12 weeks<br />

System A<br />

EUA1 0 0<br />

EUA2 0 0<br />

System B<br />

EUB1 0 0<br />

EUB2 0 0<br />

Coats <strong>of</strong> Systems A and B, both non-aged and after 12-week ageing showed the<br />

highest adhesion prescribed by the standard. The ageing exposure did not decrease the<br />

adhesion <strong>of</strong> tested coats.<br />

Analysing the results <strong>of</strong> the appearance check, it may be stated that the impact <strong>of</strong><br />

ageing (both artificial and natural) did not cause any damage in the form <strong>of</strong> blistering, cracks<br />

and flaking in both systems. Such results are highly satisfying.<br />

SUMMARY<br />

1. The coats exposed to the described conditions showed no blistering, cracking or<br />

flaking.<br />

2. The adhesion <strong>of</strong> tested coats did not change.<br />

3. Decorative features <strong>of</strong> the tested coats were influenced by the ageing process. The<br />

coats <strong>of</strong> System A significantly tarnished, while the gloss <strong>of</strong> coats in System B<br />

decreased insignificantly. The colour <strong>of</strong> coats in both systems was significantly<br />

240


changed towards darker colours. It should be also noted that tested systems were<br />

transparent, so obtained results were influenced by the change <strong>of</strong> wood colour, which<br />

is a natural effect in this type <strong>of</strong> wood.<br />

4. The thickness <strong>of</strong> applied coats decreased, but it remained on a satisfactory level.<br />

Therefore the coating systems in long-term usage are able to adequately protect the<br />

wood against weathering, which causes its degradation.<br />

5. Observed behaviour <strong>of</strong> coats in System A and System B, applied to eucalyptus wood,<br />

indicates high stability <strong>of</strong> the technical properties <strong>of</strong> tested solutions.<br />

6. From a technical point <strong>of</strong> view, the tested coating systems (as indicated by obtained<br />

test results) may be considered as appropriate for finishing windows made <strong>of</strong><br />

eucalyptus wood, whereas the wood itself may be considered as suitable for window<br />

joinery in terms <strong>of</strong> paintability.<br />

REFERENCES<br />

1. PAPRZYCKI O.,PROSZYK S., PRZYBYLAK A., 1985, Wyd. AR Poznań Materiały<br />

do ćwiczeń z technologii wykańczania powierzchni drewna i tworzyw sztucznych;<br />

2. PECINA H., PAPRZYCKI O., Pokrycia lakierowe na drewnie PWRiL 1997;<br />

3. MATEŃKO-NOŻEWNIK M., PROSZYK S., „Influence the thermal aging exposition<br />

upon the properties <strong>of</strong> lacquer coating for Windows joinery, Part 1, Aesthetic –<br />

decorative features” <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, forest and Wood<br />

technology (55) 2004, 346 -349;<br />

4. GRZEŚKIEWICZ M., KĘDZIERSKI A., SWACZYNA I., ŚWIETLICZNY M.,<br />

“Evaluation <strong>of</strong> degradation <strong>of</strong> paint coatings due to exposure to natural climate” <strong>Annals</strong><br />

<strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, forest and Wood technology (56) 2004, 272-274;<br />

5. KĘDZIERSKI A., POLICIŃSKA – SERWA A., ”The effect <strong>of</strong> ageing in natural<br />

conditions on the basic properties <strong>of</strong> water based paint coating” <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong>, forest and Wood technology (71) 2010, 274-350;<br />

6. SUDOŁ E., „Odporność na starzenie powłok na drewnie eukaliptusa” Materiały<br />

Budowalne nr 8, 2011<br />

7. Normy:<br />

- PN−EN 927−3:2008 Farby i lakiery. Wyroby lakierowe i systemy powłokowe na<br />

drewno zastosowane na zewnątrz. Część 3: Badanie w naturalnych warunkach<br />

atmosferycznych;<br />

- PN−EN 927−6:2007 Farby i lakiery. Wyroby lakierowe i systemy powłokowe na<br />

drewno zastosowane na zewnątrz. Część 6: Ekspozycja powłok na drewno w sztucznych<br />

warunkach atmosferycznych z użyciem lamp fluorescencyjnych UV i wody;<br />

- PNEN ISO 2409:2008 Farby i lakiery. Badanie metodą siatki nacięć<br />

- PNEN ISO 2808:2008 Farby i lakiery. Oznaczanie grubości powłoki<br />

- PN−EN ISO 2813:2001 Farby i lakiery. Oznaczanie połysku zwierciadlanego<br />

niemetalicznych powłok lakierowych pod kątem 20 stopni, 60 stopni i 85 stopni<br />

- PN−EN ISO 4628−5:2005 Farby i lakiery. Ocena zniszczenia powłok. Określanie<br />

ilości i rozmiaru uszkodzeń oraz intensywności jednolitych zmian w wyglądzie. Część<br />

2: Ocena stopnia spęcherzenia;<br />

Część 4: Część 4: Ocena stopnia spękania; Część 5: Ocena stopnia złuszczenia;<br />

- PN ISO 7724−1:2003 Farby i lakiery. Kolorymetria. Część 1: Podstawy<br />

241


- PN ISO 7724−2:2003 Farby i lakiery. Kolorymetria. Część 2: Pomiar barwy<br />

- PN ISO 7724−3:2003 Farby i lakiery. Kolorymetria. Część 3: Obliczanie różnic barwy<br />

Streszczenie: Wprowadzenie do produkcji stolarki nowego rodzaju drewna, powinno być<br />

poprzedzone rozpatrzeniem szeregu cech, decydujących o niezawodności i trwałości systemu<br />

powłokowego, po to, aby produkt finalny posiadał zadawalające cechy techniczne i<br />

dekoracyjne. Właściwości powłok można zweryfikować podczas starzenie naturalnego wg<br />

wytycznych podanych w PN-EN 927-3: 2008 wymagających, co najmniej 12 miesięcznych<br />

obserwacji, lub alternatywnie wg PN-EN 927-6: 2007 skracających czas obserwacji do 12<br />

tygodni w warunkach starzenia sztucznego, w środowisku UV, oraz podwyższonych<br />

temperatury i wilgotności. W referacie przedstawiono rezultaty badań nad odpornością na<br />

przyśpieszone starzenie powłok na drewnie eukaliptusa, zestawione z cząstkowymi wynikami<br />

badań odporności na starzenie naturalne. Stanowią one fragment prac realizowanych w ITB w<br />

ramach projektu rozwojowego własnego NR 04 0001 06. Pt. “Przydatność wybranych<br />

gatunków drewna egzotycznego do produkcji okien”<br />

Corresponding author:<br />

Ewa Sudoł<br />

Anna Policińska−Serwa<br />

Building Research Institute<br />

Department <strong>of</strong> Structures and Building Elements<br />

02656 <strong>Warsaw</strong>, ul. Ksawerów 21<br />

email: e.sudol@itb.pl<br />

a.serwa@itb.pl<br />

242

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!