03.01.2015 Views

Pharmacology

Pharmacology

Pharmacology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pharmacology</strong><br />

from the ancient Greek word for drug pharmakon<br />

A Frieze from the<br />

Palace of<br />

King Sargon II<br />

(8 th Century BC)<br />

1600 BC Earliest written document that<br />

mentions drugs is found in the<br />

Egyptian Medical Papyrus<br />

460-377 BC Hippocrates Ethics of Medicine and<br />

the cause of disease was due to an<br />

imbalance of humors<br />

Mandrake<br />

Flowers<br />

Poppy plants<br />

(opium)<br />

Poppy<br />

Capsules


57 AD Dioscorides - Materia Medica over 500 plants and<br />

remedies<br />

130-201 Galen - Theory of disease<br />

1493-1541 Paracelsus – Grandfather of <strong>Pharmacology</strong>, “All<br />

things are poisons…..depends upon the dose”<br />

1805 Serturner – Isolated Morphine<br />

1909 Ehrlich - Chemotherapy<br />

1935 Domagk – discover first sulfonamide<br />

1950’s Beyer – development of thiazides & others<br />

<strong>Pharmacology</strong><br />

The study of substances (drugs) on living systems<br />

Pharmacokinetics deals with the absorption, distribution, biotransformation and<br />

excretion of drugs<br />

Pharmacodynamics deals with the study of the biochemical and physiological<br />

effects of drugs and their mechanism of action<br />

Toxicology deals with adverse effects of drugs and chemicals<br />

Pharmacotherapeutics the use of drugs in the prevention and treatment of<br />

disease<br />

Virtually all drugs produce more than one effect yet one effect that<br />

predominates over a particular dose range is referred to the therapeutic<br />

window.<br />

1960/70’s<br />

development of Propanolol and Cimetidine<br />

Drugs are used to prevent, diagnose and/or treat disease. Drugs modify<br />

physiological processes-they DO NOT create new processes or effects<br />

General Drug Mechanism<br />

Drugs are used to correct defects in physiology<br />

Deficiency of some essential component – replacement therapy<br />

Most Drugs act at Receptors to produce and effect<br />

In order for drugs to interact “bind” with receptors they should have:<br />

-Shape<br />

-Size<br />

-Charge<br />

-Atomic Composition<br />

Affinity<br />

Excess Action of some normal or even essential ingredient –<br />

chemical antagonist or exogenous substances<br />

The Physiochemical Environment of the specific part of the body<br />

may be altered by a drug – “nonspecific”


Dose Response<br />

Lock & Key Theory of<br />

Drug Receptor Interaction<br />

Drug-Receptor<br />

Complex<br />

+ -<br />

Drug<br />

-<br />

+<br />

Receptor<br />

Lock & Key Theory of<br />

Drug Receptor Interaction<br />

Drug Receptor - Affinity<br />

How well a drug binds to a receptor is dictated<br />

by the affinity of the drug for the receptor<br />

Drug-Receptor<br />

Complex<br />

Dynamic<br />

Drug<br />

D + R<br />

k +1<br />

k -1<br />

DR<br />

+ -<br />

-<br />

+<br />

Receptor<br />

(Dissociation Constant)<br />

K A = k-1<br />

k +1<br />

Low K A =<br />

High Affinity


Receptors<br />

The majority of all Receptors are proteins<br />

Receptors bind with drugs & bring about<br />

change in cell function<br />

Evidence for Receptors<br />

1. Extreme Potency/Efficacy of Drugs<br />

2. Chemical Selectivity (i.e., similar molecules<br />

produce similar effects)<br />

Evidence for Receptors<br />

1. Extreme Potency/Efficacy of Some Drugs<br />

2. Chemical Selectivity (i.e., similar molecules<br />

produce similar effects)<br />

3. Stereoselectivity


L-Epinephrine<br />

D-Epinephrine<br />

L-Epinephrine<br />

D-Epinephrine<br />

OH<br />

H<br />

H<br />

CH 3<br />

OH<br />

OH<br />

H<br />

CH 3<br />

OH C C N<br />

OH<br />

H<br />

H<br />

OH C C N<br />

H<br />

H<br />

H<br />

Stereo-Selectivity<br />

OH<br />

H<br />

H<br />

CH 3<br />

OH<br />

OH<br />

H<br />

CH 3<br />

OH C C N<br />

OH C C N<br />

OH<br />

H<br />

H<br />

H<br />

H<br />

H<br />

Intracellular Effects<br />

Evidence for Receptors<br />

Targets for Drug Action<br />

1. Extreme Potency/Efficacy of Some Drugs<br />

2. Chemical Selectivity (i.e., similar molecules<br />

produce similar effects)<br />

3. Stereoselectivity<br />

4. Competitive Antagonists<br />

5. Cloning and Expression of Receptors


Drug<br />

G-protein Coupled Receptors<br />

Drug<br />

NT<br />

NT<br />

AC<br />

GDP<br />

G-protein Coupled Receptors<br />

G-protein Coupled Receptors<br />

NT<br />

GIRK<br />

NT<br />

K +<br />

GIRK<br />

AC<br />

AC<br />

NT NT<br />

NT NT<br />

βγ<br />

α βγ<br />

GDP<br />

α<br />

GTP<br />

K +<br />

GTP<br />

GDP


G-protein Coupled Receptors<br />

G-protein Coupled Receptors<br />

NT<br />

K +<br />

NT<br />

K +<br />

AC<br />

AC<br />

NT NT<br />

K +<br />

NT NT<br />

α<br />

GTP<br />

cAMP<br />

K +<br />

α<br />

GTP<br />

ATP<br />

GDP<br />

GDP<br />

amplification<br />

PKA<br />

cREB<br />

G-protein Coupled Receptors<br />

NT<br />

AC<br />

NT NT<br />

α<br />

GDP<br />

GTP<br />

P<br />

βγ<br />

PDE<br />

cAMP<br />

5’AMP<br />

amplification<br />

PKA<br />

cREB


G q -protein Coupled Receptors<br />

Cont. G q -protein Coupled Receptors<br />

G q Coupling<br />

(G q -protein)<br />

CAM<br />

kinase<br />

Ca 2+<br />

Ca 2+<br />

PKC<br />

PIP 2<br />

PLC<br />

IP3<br />

DAG


Tyrosine Kinase Receptors<br />

Kinase<br />

cascade<br />

2 nd Messenger linked Receptors (metabotropic)


Dose Response Curves<br />

Dose Response Curves<br />

Propionylcholine<br />

100 Acetylcholine<br />

Acetylcholine<br />

100<br />

% Response<br />

75<br />

50<br />

25<br />

Propionylcholine<br />

75<br />

50<br />

25<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dose ( μg/ml)<br />

arithmetic scale<br />

0<br />

0.001 0.01 1.0 10.0<br />

Dose ( μg/ml)<br />

logarithmic scale<br />

% Response<br />

100<br />

75<br />

50<br />

25<br />

Relevant Data on a Dose<br />

Response Curve<br />

80%<br />

20%<br />

Three Different Types of Dose<br />

Response Curves<br />

0<br />

0.001 0.01 1.0 10.0<br />

Log Dose (ug/ml)<br />

ED 50 = 0.05ug (x- intercept)


Quantal Dose Response Curve<br />

Graded Dose Response Curve<br />

100<br />

100<br />

# Responding<br />

75<br />

50<br />

25<br />

Variable:<br />

Dose<br />

Constant:<br />

Time<br />

Response<br />

% Response<br />

75<br />

50<br />

25<br />

Variable:<br />

Dose<br />

Response<br />

Constant:<br />

Time<br />

0<br />

0.001 0.01 1.0 10.0<br />

0<br />

0.001 0.01 1.0 10.0<br />

Log Dose ( μg/ml)<br />

Log Dose ( μg/ml)<br />

Time Action Curve<br />

Potency vs. Efficacy<br />

% Response<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1 mg/kg<br />

3 mg/kg<br />

10 mg/kg<br />

Variable:<br />

Dose<br />

Response<br />

Time<br />

% Response<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Efficacy A<br />

B<br />

Potency<br />

0.001 0.01 1.0 10.0<br />

C<br />

0<br />

0 15 30 45 60 75 90 105 120<br />

Log Dose (ug/ml)<br />

Time (min)


Dose Response Curves<br />

Dose Response Curves<br />

% Response<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Partial Agonist<br />

B<br />

C<br />

A<br />

Full Agonist<br />

Antagonist<br />

Potency: Left/Right shift of the dose response curve,<br />

Amount of drug required to produce a response<br />

Efficacy: The height of the dose response curve,<br />

-25<br />

D<br />

Inverse Agonist<br />

Ability of a drug to induce a maximal response<br />

0.001 0.01 1.0 10.0<br />

Log Dose (ug/ml)<br />

Dose Response Curves<br />

Does and Antagonist have Affinity<br />

Does and Antagonist have Efficacy<br />

Does and Antagonist have Potency<br />

YES<br />

NO<br />

YES<br />

Which has higher Efficacy<br />

Partial agonist<br />

Full agonist<br />

Partial agonist<br />

Which has higher Potency<br />

Full agonist<br />

Can’t tell without looking at a DRC


Shift in Potency<br />

No loss of Efficacy<br />

Competitive Antagonist<br />

Shift in Potency<br />

loss of Efficacy<br />

Drugs Often Result in<br />

Several Biological<br />

Responses


Drugs Produce More Than One Effect<br />

Drugs Produce More Than One Effect<br />

% Response<br />

100<br />

75<br />

50<br />

25<br />

constipation<br />

antitusive<br />

analgesia<br />

resp. depression<br />

death<br />

% Response<br />

100<br />

75<br />

50<br />

25<br />

Therapeutic Index “window”<br />

LD 50<br />

ED 50<br />

=<br />

50<br />

2<br />

= 25<br />

analgesia<br />

death<br />

0<br />

0.001 0.01 1.0 10.0<br />

100.0 1000.0<br />

0<br />

0.001 0.01 1.0 10.0<br />

100.0 1000.0<br />

Log Morphine (mg/kg)<br />

ED 50 (2mg/kg)<br />

LD 50 (50mg/kg)<br />

Log Morphine (mg/kg)<br />

Response According to Age Sex Health<br />

% Response<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Teenager Female Lance Armstrong<br />

Middle Male Todd Vanderah Age<br />

Elderly Dick Cheney<br />

0<br />

1 3 10 30 100 300<br />

Log [Drug]


Review<br />

Agonists: Affinity, Selectivity, Potency and Efficacy<br />

Antagonists: Affinity, Selectivity & Potency<br />

Competitive Antagonists: Decrease Potency<br />

Non-Competitive Antagonists: Decrease Potency<br />

Decrease Efficacy<br />

Drugs often produce more than one effect<br />

Drug Response depends on the tissue it acts on<br />

Review<br />

Categories of Receptors<br />

- Ion Channels (ionotropic)<br />

-Enzymes<br />

- Transporters<br />

-2 nd Messenger Receptors<br />

- Nuclear Receptors<br />

- Kinase receptors<br />

-G-proteins<br />

Activation of<br />

G-proteins<br />

Leads to<br />

G αs<br />

G αi<br />

G αq<br />

Decrease cAMP and PKA activity<br />

Activate the Kinase Cascade<br />

Increase cAMP and PKA activity<br />

PLA 2<br />

Tyrosine Kinase Receptors<br />

Adenylate Cyclase<br />

Increase Arachidonic Acid Release<br />

Increase IP3 and DAG<br />

Increase PKC and CAM kinase activity<br />

Decrease IP3 and DAG


Pain and Opioid Mechanisms<br />

Pain<br />

• Most common reason for seeking medical care<br />

• Everyone experiences pain…30% of Americans will<br />

suffer from chronic pain<br />

• Treatment of pain improves outcome;<br />

• Chronic pain is itself a disease which can and should<br />

be treated.<br />

Congenital Insensitivity to Pain


C & Aδ Fibers<br />

Pain Pathways<br />

Somatosensory<br />

Cortex<br />

Thalamus<br />

From<br />

Brain<br />

To<br />

Brain<br />

Spinal<br />

Cord<br />

Neural Steps in the Processing of Pain Signals<br />

1. Transduction - Noxious stimuli → electrical signals<br />

2. Transmission - Neural events from the periphery to the<br />

cortex<br />

3. Modulation - Nervous system can selectively inhibit or<br />

enhance pain signals<br />

4. Perception - subjective interpretation by the cortex<br />

Sensory component<br />

Affective component<br />

Nociceptive Transmission Pathway<br />

Sensory<br />

Receptor Periphery CNS<br />

Nociceptors:<br />

• C-polymodal<br />

small, non-myelinated<br />

• Aδ-mechanical<br />

thermal<br />

Medium, thinly-myelinated<br />

Spinal<br />

cord<br />

DRG<br />

Thalamus


C-Polymodal Nociceptors<br />

Pressure<br />

Nociceptors (C & Aδ fibers)<br />

Free nerve endings that do NOT adapt<br />

Heat<br />

Respond to many modalities<br />

Action Physical: heat, cold, force<br />

Potentials Chemical: capsaicin, protons, bradykinin, ATP, PGE 2<br />

Found Heat throughout body:<br />

Stimuli<br />

skin, muscle, joint, viscera, bone<br />

48 ºC<br />

Chemical<br />

Some are unresponsive “silent”<br />

only respond after injury or inflammation<br />

TRPV1 receptor<br />

ion channel<br />

Na +<br />

Ca +2<br />

outer<br />

Inner<br />

Heat<br />

Activation<br />

Peripheral Nociceptor Activation<br />

↓pH<br />

Receptor Potential<br />

Prostaglandins (PG)<br />

K +<br />

Bradykinin (BK)<br />

Capsaicin<br />

Used to identify nociceptors<br />

Trigger Zone


Peripheral Nociceptor Activation<br />

“Axon Reflex”<br />

Peripheral Nociceptor Activation<br />

“Recruitment of Surrounding Nociceptors”<br />

H<br />

mast cell<br />

PG SP<br />

H<br />

PG<br />

SP<br />

PG<br />

SP<br />

PG<br />

platelet<br />

BK<br />

Neuronal recruitment<br />

Trigger Zone<br />

Peripheral Nociceptor Activation<br />

“Actions of Pain Relievers”<br />

Sensitized Nociceptors<br />

Allodynia<br />

Hyperalgesia<br />

Opioids<br />

Neuronal recruitment<br />

H<br />

PG<br />

SP<br />

PG<br />

Opioids<br />

1) Opioids act to hyperpolarize the nociceptor<br />

2) Opioids act to reduce inflammatory mediators<br />

From immune cells (also the site of NSAIDs)<br />

Subjective Pain Intensity<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

41 43 45 47 49<br />

Stimulus Temperature ( o C)<br />

After<br />

injury<br />

Naive


C and Aδ Nociceptor Mediated Pain<br />

C-fiber<br />

Touch fibers<br />

DRG<br />

Dorsal<br />

Columns<br />

Spinothalamic<br />

Tract<br />

Periphery<br />

Spinal Cord<br />

Pain Fibers<br />

Aδ fiber<br />

Lisauer’s tract<br />

I<br />

Pain<br />

intensity<br />

First<br />

pain<br />

Second<br />

pain<br />

laminae<br />

II<br />

IV<br />

V<br />

Time<br />

Ventral<br />

Roots<br />

Burn<br />

Spinothalamic<br />

Projection to<br />

Thalamus<br />

Opioids Inhibit Noxious Input<br />

Nociceptive<br />

Input<br />

Flare<br />

ENK<br />

Ca ++<br />

Substantia<br />

gelatinosa<br />

Spinal<br />

Cord<br />

μ Opioid Receptors<br />

Pain Transmitters:<br />

Glutamate<br />

Substance P<br />

Dorsal Horn,<br />

Spinal Cord<br />

EPSP


Spinothalamic<br />

Projection to<br />

Thalamus<br />

Opioids Inhibit Noxious Input<br />

ENK<br />

Morphine / Fentanyl<br />

Nociceptive<br />

Input<br />

Ca ++ Conductance<br />

Substantia<br />

gelatinosa<br />

K + efflux (hyperpolarize)<br />

Afferent Pathways<br />

Underlying The Sensation<br />

of Pain<br />

MIDBRAIN<br />

MEDULLA<br />

THALAMUS<br />

STT<br />

Activation of μ<br />

Opioid Receptors<br />

Morphine / Fentanyl<br />

Pain Transmitters:<br />

Substance P<br />

Glutamate<br />

CGRP<br />

K + efflux (hyperpolarize)<br />

DRG<br />

Glutamate<br />

Substance P<br />

2º<br />

SPINAL CORD<br />

Descending<br />

Pain<br />

Pathways<br />

To thalamus<br />

Rostral<br />

midbrain<br />

From hypothalamus,<br />

amygdala, cortex<br />

Periaqueductal<br />

gray<br />

Descending Modulation of Spinal Nociceptive Input<br />

Opioid Disinhibition<br />

PAG<br />

CP/RM<br />

GABA A<br />

CL -<br />

GABA<br />

Caudal Pons<br />

Rostral Medulla<br />

Nucleus<br />

Raphe magnus<br />

From pain<br />

nociceptors<br />

Dorsolateralfuniculus<br />

(DLF)<br />

(Hyperpolarize)


Descending Modulation of Spinal Nociceptive Input<br />

PAG<br />

Opioid Disinhibition<br />

Morphine<br />

(Hyperpolarize)<br />

CP/RM<br />

Release<br />

5HT & NE<br />

Enk/End<br />

GABA A<br />

CL -<br />

(Hyperpolarize)<br />

X<br />

GABA<br />

release<br />

GABA<br />

K +<br />

DLF<br />

PAG<br />

CP/RM<br />

Release<br />

Enkephalins / Endorphins<br />

Serotonin / Norepinephrine<br />

Opioid Receptors<br />

• Three cloned opioid receptors<br />

– mu, delta and kappa<br />

• Opioid receptors are coupled to the G i /G o class of<br />

G-protein coupled receptors<br />

• Opioid agonist cause inhibition of adenylyl cyclase<br />

and decrease cAMP formation<br />

• Selective agonists:<br />

– Fentanyl<br />

– Morphine<br />

– Meperidine<br />

• Selective antagonists:<br />

– β-FNA<br />

N<br />

OH<br />

μ Opioid Receptor<br />

Mu<br />

• Most of the currently available opioids work<br />

through the mu opioid receptor<br />

HO<br />

O<br />

N<br />

H<br />

O<br />

O<br />

O


δ Opioid Receptor<br />

κ Opioid Receptor<br />

• Selective agonists:<br />

– DPDPE<br />

– SNC80<br />

– Deltorphin II<br />

• Selective antagonist:<br />

– Naltrindole<br />

• Selective agonists:<br />

– Butorphanol<br />

– Ketocyclazocine<br />

• Selective antagonist:<br />

– nor-BNI<br />

N<br />

OH<br />

N<br />

OH<br />

N<br />

HO<br />

HO<br />

O<br />

N<br />

H<br />

HO<br />

O<br />

N<br />

H<br />

O<br />

OH<br />

Mammalian Endogenous Opioid Peptides<br />

Opioid Receptor <strong>Pharmacology</strong><br />

Precursor Endogenous peptide Amino acid sequence<br />

Pro-opiomelanocortin β-Endorphin YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE<br />

Pro-enkephalin [Met]enkephalin YGGFM<br />

[Leu]enkephalin<br />

YGGFL<br />

YGGFMRF<br />

YGGFMRGL<br />

Metorphamide<br />

YGGFMRRV-NH2<br />

Pro-dynorphin Dynorphin A YGGFLRRIRPKLKWDNQ<br />

Dynorphin A(1-8)<br />

YGGFLRRI<br />

Dynorphin B<br />

YGGFLRRQFKVVT<br />

α-neoendorphin<br />

YGGFLRKYPK<br />

β-neoendorphin<br />

YGGFLRKYP<br />

Pro-nociceptin / OFQ Nociceptin FGGFTGARKSARKLANQ<br />

Pro-endomorphin* Endomorphin-1 YPWF-NH2<br />

Endomorphin-2<br />

YPFF-NH2<br />

•Different pharmacological effects are mediated by<br />

the different receptors<br />

CNS<br />

CNS<br />

Gut<br />

CNS<br />

CNS<br />

CNS<br />

CNS<br />

Pharmacological Effects of Opioid Receptor<br />

Activation<br />

Effect Mu (μ) Delta (δ) Kappa (κ)<br />

Analgesia +++ +++ +<br />

Respiratory Depression +++ 0 +<br />

Constipation +++ + 0<br />

Prolactin Release +++ 0 +<br />

Euphoria +++ 0<br />

Dependence Potential +++ + 0<br />

Dysphoria + +++<br />

*Presumed to exist, awaiting discovery


Main Effects of Opioids at Therapeutic Doses<br />

Physical Dependence<br />

Desirable Undesirable Mixed Desirability<br />

Analgesia Nausea, vomiting Sedation<br />

Relief of anxiety Urinary retention Euphoria<br />

Dysphoria<br />

Cough suppression<br />

Mental clouding ↓ Bowel motility<br />

Tolerance<br />

Drug dependence syndrome<br />

Respiratory depression<br />

Postoperative ileus<br />

Biliary spasm<br />

• Prolonged exposure to an opioid agonist can<br />

produce adaptations at the cellular and systems<br />

levels which oppose the drug effect<br />

– the patient has become physically dependent on the<br />

drug<br />

• physical dependence does not equal addiction!!!<br />

• The discontinuation or sudden reduction in drug<br />

levels, or the administration of an antagonist, can<br />

lead to a withdrawal syndrome<br />

Symptoms and Signs of Opioid Withdrawal<br />

Addiction Liability<br />

Symptoms<br />

restlessness<br />

irritability<br />

increased sensitivity to pain<br />

nausea<br />

abdominal cramps<br />

myalgia<br />

dysphoria<br />

insominia<br />

anxiety<br />

drug craving<br />

Signs<br />

pupillary dilation<br />

sweating<br />

tachycardia<br />

vomiting<br />

diarrhea<br />

hypertension<br />

yawning<br />

fever<br />

rhinorrhea<br />

piloerection<br />

• Studies in the 1920s and 1950s were influential in<br />

setting opioid analgesia policy in the later part of<br />

the 20 th century<br />

– chronic opioid therapy leads to addiction<br />

– Kathleen Foley quote<br />

• These studies had methodological flaws and more<br />

recent reports have suggested that the risk of<br />

iatrogenic opioid addiction is very low<br />

– the incidence of addiction in chronic pain patients<br />

parallels the lifetime prevalence rates in the general<br />

population (Fishbain et al., 1992)


Addiction Liability<br />

Dopaminergic Disinhibition<br />

VTA<br />

Mesolimbic & Mesocortical<br />

Dopaminergic Pathway<br />

Mesolimbic & Mesocortical<br />

Dopaminergic Pathway<br />

Dopamine<br />

Release<br />

GABA A<br />

CL -<br />

(Hyperpolarize)<br />

GABA A<br />

CL -<br />

(Hyperpolarize)<br />

(Hyperpolarize)<br />

Morphine<br />

X<br />

GABA<br />

release<br />

GABA<br />

GABA<br />

K +<br />

Respiratory Depression<br />

• Respiratory depression is the most lifethreatening<br />

of the side-effects associated with<br />

opioid analgesics<br />

– major cause of fatal opioid overdoses<br />

• Opioid receptors are located on chemoreceptors<br />

and ventral respiratory group neurons in the<br />

medulla<br />

– diminished sensitivity to changes in O 2 and CO 2 levels<br />

– changes in tidal volume and frequency of respiration<br />

Constipation<br />

• One of the biggest concerns with chronic opioid<br />

administration is severe constipation<br />

– occurs in almost all patients receiving chronic opioids<br />

• In many cases, constipation is the primary reason<br />

for the patient discontinuing opioid therapy<br />

– development of opioid antagonists that do not cross<br />

the blood-brain barrier<br />

Oral<br />

Peristalsis Produced by Coordinated<br />

Contraction and Relaxation of Muscle Coats<br />

Longitudinal muscle<br />

*****<br />

*****<br />

Bolus<br />

*****<br />

*****<br />

Myenteric plexus<br />

(Auerbach’s)<br />

***** *****<br />

***** *****<br />

Anal<br />

Contracted<br />

Relaxed<br />

Circular muscle<br />

Submucous plexus<br />

(Meissner’s)


Opioids and Intestinal Motility<br />

Segmenting Contractions<br />

Normal<br />

Reduced Contractions<br />

{<br />

Diarrhea<br />

Propulsive Contractions<br />

Segmenting Contractions<br />

Opioids<br />

Loperamide (Imodium)<br />

Normal<br />

Flow<br />

Increased<br />

Flow<br />

Increased<br />

Flow<br />

Decreased<br />

Flow<br />

Drug Interactions<br />

• Many other CNS depressants can act in an additive or<br />

synergistic manner with opioid analgesics<br />

– benzodiazepines<br />

–barbiturates<br />

–alcohol<br />

– antipsychotics<br />

• MAO inhibitors with opioids may produce hyperpyrexic<br />

coma and hypertension<br />

– especially with meperidine<br />

• Stimulants have sometimes been used to counteract the<br />

CNS depressant effects of opioids<br />

Morphine<br />

Methadone<br />

• Prototypical mu opioid agonist<br />

– still isolated from raw opium<br />

• Multiple preparations available<br />

–parenteral<br />

– oral and sustained release (MS Contin)<br />

–rectal<br />

• Indicated for moderate to severe pain<br />

• Full opioid agonist<br />

– efficacy similar to morphine<br />

– good oral bioavailability<br />

– long half-life and duration of action<br />

• The compound has antagonist actions at the<br />

NMDA receptor complex<br />

– decreased development of tolerance and physical<br />

dependence<br />

– role in treatment of neuropathic pain<br />

• Used in the treatment of heroin addiction


Fentanyl and Analogues<br />

Meperidine<br />

• Relatively selective mu opioid agonists<br />

– typically more potent than morphine<br />

– shorter duration of action (e.g., remifentanil)<br />

– high efficacy compounds<br />

• Fentanyl can be given by various routes<br />

– transdermal patch<br />

– fentanyl lozenge (lollipop)<br />

• Moderate efficacy opioid agonist<br />

– used for moderate pain<br />

• The compound has antimuscarinic effects<br />

– cardiovascular effects possible<br />

– limited constriction of the pupil<br />

• Accumulation of metabolite (normeperidine) can<br />

produce seizures<br />

– caution with high doses and in patients with renal<br />

insufficiency<br />

Codeine<br />

Oxycodone<br />

• Codeine is a weak opioid analgesic<br />

– has limited affinity for opioid receptors<br />

– considered a prodrug<br />

• Needs to be demethylated to morphine<br />

– approximately 10% of Caucasians lack the cytochrome<br />

P450 isozyme (CYP 2D6)<br />

– these patients will get no relief from even high doses<br />

of codeine<br />

• Opioid agonist with moderate efficacy<br />

• Recent controversy with this drug<br />

– sustained release preparation-OxyContin<br />

– pellets can be crushed and a solution injected<br />

• Purdue Pharma has tried to reformulate the<br />

compound with naloxone<br />

– oral administration would still be effective<br />

– parenteral administration would result in blockade of<br />

opioid actions


Propoxyphene<br />

Diphenoxylate/Loperamide<br />

• Very weak opioid agonist<br />

– used in combination with aspirin and<br />

acetaminophen<br />

• Limited clinical utility<br />

• Diphenoxylate is a weak opioid agonist with low<br />

abuse liability<br />

– atropine added as a combination product for<br />

treatment of diarrhea and to discourage abuse<br />

• Loperamide is a weak opioid agonist that does not<br />

readily cross the blood-brain barrier<br />

– low abuse liability<br />

– common OTC antidiarrheal medication<br />

Mixed Opioid Agonists/Antagonists<br />

Tramadol<br />

• These compounds are characterized by different<br />

actions on each of the opioid receptors<br />

–nalbuphine-kappa agonist/mu antagonist<br />

–buprenorphine-partial mu agonist<br />

– pentazocine-kappa agonist, weak mu agonist<br />

• These agents are contraindicated in opioid<br />

dependent patients<br />

– severe withdrawal syndrome may develop<br />

• Novel analgesic action<br />

– weak mu opioid agonist<br />

– blocks reuptake of serotonin<br />

– blocks reuptake of norepinephrine<br />

• Marketed as a compound with efficacy similar to<br />

codeine with less side-effects<br />

– no addiction liability<br />

– less GI effects<br />

– efficacy in neuropathic pain states<br />

–expensive


Naloxone<br />

Naltrexone<br />

• Prototypical opioid antagonist<br />

• Used to treat opioid overdose<br />

– low oral bioavailability<br />

– short duration of action<br />

• Will precipitate a severe withdrawal syndrome in<br />

opioid dependent patients<br />

• New evidence suggests that this compound has<br />

inverse agonist actions in opioid dependent states<br />

– increase in withdrawal symptoms<br />

• Prototypical opioid antagonist<br />

• Used to treat heroin addicts<br />

– good oral bioavailability<br />

– long duration of action<br />

• New evidence suggests that this compound has<br />

inverse agonist actions in opioid dependent states<br />

– role in patient compliance<br />

• Approved for the treatment of alcoholism<br />

– decreases binge type drinking<br />

Conclusions<br />

Tucson, Arizona Pain Group<br />

• Pain is mediated by nociceptors and perceived by the<br />

brain.<br />

• Multiple sites where opioids work to relieve pain.<br />

• Opioids produce multiple effects.<br />

• Opioids are abused for their euphoric effects by<br />

indirectly causing an increase in dopamine release.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!