13.01.2015 Views

Chem 55 Exam 2 Solutions

Chem 55 Exam 2 Solutions

Chem 55 Exam 2 Solutions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: KEY<br />

Signature_________________________________ Date __________<br />

1. A trainee in a medical lab measured the six samples and compared her results with<br />

those of an experienced worker.<br />

Trainee:<br />

avg = 14.5 7 mM s = 0.5 3 mM n = 6 samples<br />

Experienced: avg = 13.9 5 mM s = 0.4 2 mM n = 5 samples<br />

Is there evidence at the 95% confidence level that the trainee’s measurements are<br />

different from those of the experienced worker Show all work for credit.<br />

5<br />

x av1 := 14.57 s 1 := 0.53 n 1 := 6 x av2 := 13.95 s 2 := 0.42 n 2 := 5<br />

n 1 ⋅n 2<br />

x av1 − x av2 ⋅<br />

n 1 + n 2<br />

t calc := degrees_of_freedom := n 1 + n 2 − 2<br />

2<br />

s 1 ⋅ n1<br />

+<br />

n 1 + n 2<br />

2<br />

s 2 ⋅ n2<br />

t calc = 2.119 t tab = 1.833<br />

since tcalc > ttab, the difference is judged significant<br />

at the 95% confidence level<br />

2. An unknown sample of Cu +2 gave an absorbance of 0.262 in an atomic absorption<br />

analysis. Then 1.00 mL of solution containing 100.0 ppm of Cu 2+ was mixed with 95.0<br />

mL of the Cu +2 unknown and diluted to the mark in a 100.0 mL volumetric flask. The<br />

absorbance of the new solution was 0.500.<br />

a. Denoting the unknown concentration as [Cu +2 ] i , write and expression for the<br />

concentration of [Cu +2 ] after dilution to 100 mL, denote this concentration [Cu +2 ] f<br />

b. Do the same for the spike concentration denoting it [S] i and [S] f .<br />

c. Calculate the concentration of [Cu] i in the original unknown solution.<br />

10<br />

I x := 0.262<br />

I xs := 0.500 S i := 100<br />

95<br />

1.00<br />

a. X f X i ⋅ b. S<br />

100<br />

f S i ⋅<br />

100<br />

I x<br />

X i<br />

I xs<br />

X f + S f<br />

0.262 0.500<br />

X i X i ⋅0.95<br />

+ 1.00<br />

0.5⋅ X i 0.262⋅<br />

0.95⋅ X i + 0.262 0.262⋅ 0.95 = 0.249<br />

0.5⋅<br />

X i<br />

0.249⋅ X i + 0.262 ( 0.5 − 0.249) ⋅ X i 0.262<br />

0.262<br />

X i := X<br />

( 0.5 − 0.249)<br />

i = 1.04 ppm


CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: Au,Hai Nguyen<br />

3. Calculate the molarity of La(IO 3 ) 3 at saturation in water (K SP (La(IO 3 ) 3 = 1.0x10 -11 ).<br />

Ksp<br />

⎛<br />

⎜<br />

⎝<br />

x⋅ ( 3x) 3 27x 4 x<br />

1.0⋅<br />

10 − 11<br />

27<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

4<br />

⎛<br />

⎜<br />

⎝<br />

Ksp<br />

27<br />

⎞ ⎟⎠<br />

1<br />

4<br />

= 7.801×<br />

10 − 4 = [La+3]<br />

5<br />

4. Calculate the molarity of La(IO 3 ) 3 at saturation in water containing 0.050 M LiIO 3 given<br />

K SP (LaIO 3 ) = 1.0x10 -11 .<br />

Ksp x⋅<br />

0.050 3<br />

1.0⋅<br />

10 − 11<br />

= 8×<br />

10 − 8 = [La+3]<br />

0.050 3<br />

5<br />

5. Repeat the above calculation but including the effects of ion activity and given that the<br />

ionic radius of La +3 is 900 pm and that of IO 3 - is 450 pm.<br />

5<br />

− 0.51⋅z 2 ⋅ μ<br />

1+<br />

α⋅ μ<br />

305<br />

z:= 3 α := 900<br />

γLa := 10<br />

γLa = 0.24<br />

− 0.51⋅z 2 ⋅ μ<br />

1+<br />

α⋅ μ<br />

305<br />

z:= −1<br />

α := 405<br />

γIO3 := 10<br />

γIO3 = 0.82<br />

Ksp<br />

x⋅ γLa⋅0.050 3 ⋅γIO3 3<br />

1.0⋅<br />

10 − 11<br />

0.050 3 ⋅γIO3 3 ⋅γLa<br />

= 6.1 × 10 − 7 = [La+3]


CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: Au,Hai Nguyen<br />

6. A solution of NaOH was standardized by titration of a known quantity of the primary<br />

standard potassium hydrogen phthalate (KHP, FM 204.221 g/mol).<br />

a. Titration of 0.824 g of potassium hydrogen phthalate required 38.314 mL of NaOH to<br />

reach the endpoint detected by phenolphthalein. Find the concentration of NaOH in<br />

molarity (M).<br />

10<br />

mol⋅<br />

KHP<br />

0.824⋅<br />

g⋅<br />

⋅<br />

204.221g ⋅ ⋅KHP<br />

1⋅<br />

NaOH<br />

1⋅KHP<br />

⋅<br />

1<br />

=<br />

38.31410 ⋅<br />

− 3 ⋅L⋅<br />

NaOH<br />

mol NaOH<br />

0.105 ⋅ L<br />

b. A 100.00 mL aliquot of H 2 SO 4 solution required 57.911 mL of the NaOH solution to<br />

reach the endpoint. Calculate the concentration of the H 2 SO 4 .<br />

5<br />

57.91110 ⋅<br />

− 3 0.1053mol ⋅ ⋅ NaOH 1⋅H2SO4<br />

1<br />

⋅L⋅<br />

NaOH⋅<br />

⋅ ⋅<br />

=<br />

L⋅<br />

NaOH 2⋅<br />

NaOH<br />

100.0⋅<br />

10 − 3 ⋅L⋅<br />

H2SO4<br />

mol H2SO4<br />

0.0305 ⋅ L


CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: Au,Hai Nguyen<br />

7. How many milliliters of 0.100 M KI are needed to react with 40.0 mL of 0.0400 M<br />

Hg 2 (NO 3 ) 2 if the reaction is Hg 2 2+ + 2I - Hg 2 I 2 (s)<br />

5<br />

40.0⋅<br />

10 − 3<br />

mol⋅<br />

Hg2NO32 2KI ⋅ 1L ⋅ ⋅KI<br />

⋅L⋅ Hg2NO32⋅<br />

0.0400⋅<br />

⋅ ⋅<br />

=<br />

L⋅<br />

Hg2NO32 Hg2NO32 0.100⋅<br />

mol⋅<br />

KI<br />

0.0320L⋅<br />

KI<br />

8.<br />

a. Find the activity coefficient of H + in a solution containing 0.010 M HCl plus 0.040 M<br />

KClO 4 . (H + = 900 pm)<br />

5<br />

0.010⋅ 1 2 + 0.010⋅( −1) 2 + 0.040⋅<br />

1 2 + 0.040⋅( −1) 2<br />

μ := μ = 0.050<br />

2<br />

− 0.51⋅z 2 ⋅<br />

1+<br />

α⋅<br />

μ<br />

305<br />

z:= 1 α := 900<br />

γH:= 10<br />

γH = 0.85<br />

μ<br />

b. What is the pH of this solution<br />

5<br />

( )<br />

pH := −log 0.010⋅<br />

γH pH = 2.069


CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: Au,Hai Nguyen<br />

Values of Student's t<br />

% confidence interval<br />

°freedom 50 80 95 99<br />

1 1.00 3.08 12.71 63.66<br />

2 0.82 1.89 4.30 9.92<br />

3 0.76 1.64 3.18 5.84<br />

4 0.74 1.53 2.78 4.60<br />

5 0.73 1.48 2.57 4.03<br />

6 0.72 1.44 2.45 3.71<br />

7 0.71 1.41 2.36 3.50<br />

8 0.71 1.40 2.31 3.36<br />

9 0.70 1.38 2.26 3.25<br />

10 0.70 1.37 2.23 3.17<br />

20 0.69 1.33 2.09 2.85<br />

50 0.68 1.30 2.01 2.68<br />

100 0.68 1.29 1.98 2.63<br />

∞ 0.67 1.28 1.96 2.58<br />

Values of Q for rejection of data:<br />

Q<br />

90% confidence<br />

Number of<br />

Observations<br />

0.76 4<br />

0.64 5<br />

0.56 6<br />

0.51 7<br />

0.47 8<br />

0.44 9<br />

0.41 10<br />

Average, Sample standard deviation<br />

and confidence interval formulae:<br />

x =<br />

n<br />

∑<br />

i=<br />

1<br />

n<br />

n<br />

x<br />

∑<br />

( xi<br />

− x)<br />

i=<br />

1<br />

s =<br />

n −1<br />

CI = x ±<br />

ts<br />

n<br />

( x − μ)<br />

t =<br />

s<br />

i<br />

n<br />

2<br />

Error propagation formulae:<br />

for : y = x1<br />

+ x2<br />

for : y = x1⋅<br />

x2<br />

for : y = log( x)<br />

for : y = 10<br />

for : y = ln( x)<br />

for : y = e<br />

for : y = x<br />

x<br />

a<br />

x<br />

e<br />

e<br />

y<br />

y<br />

% e<br />

y<br />

e<br />

y<br />

% e<br />

y<br />

=<br />

=<br />

ex<br />

ey<br />

=<br />

x<br />

= y ⋅e<br />

x<br />

e<br />

2<br />

x1<br />

= a ⋅%<br />

e<br />

% e<br />

x<br />

+ e<br />

2<br />

x1<br />

ex<br />

ey<br />

= 0.434<br />

x<br />

= 2.303⋅<br />

y ⋅e<br />

x<br />

2<br />

x2<br />

+ % e<br />

2<br />

x2


CHEM <strong>55</strong> Fall 2007 <strong>Exam</strong> 1 Copy # 1<br />

Name: Au,Hai Nguyen<br />

For standard additions:<br />

I<br />

X<br />

I<br />

S + X<br />

=<br />

[ X ] [ X ] + [ S]<br />

where<br />

[ X ]<br />

[ S]<br />

f<br />

i<br />

f<br />

f<br />

Vx<br />

= [ X ]<br />

i<br />

and<br />

V<br />

VS<br />

= [ S]<br />

i<br />

V<br />

f<br />

For Internal Standads:<br />

AX<br />

AS<br />

= F<br />

[ X ] [ S]<br />

where<br />

A<br />

A<br />

X<br />

S<br />

= Sample Signal<br />

= Internal S tan dard<br />

Signal<br />

Detection Limit:<br />

3s<br />

Cm<br />

=<br />

m<br />

and<br />

y<br />

DL<br />

= y<br />

BLANK<br />

+ 3s<br />

Spike Recovery<br />

C<br />

% recovery<br />

=<br />

spiked sample<br />

C<br />

− C<br />

added<br />

unspiked sample<br />

Ion activity in general:<br />

for<br />

aA + bB ↔ cC + dD<br />

K<br />

EQ<br />

c c d d<br />

[ C]<br />

γ<br />

C[<br />

D]<br />

γ<br />

D<br />

=<br />

a a b b<br />

[ A]<br />

γ [ B]<br />

γ<br />

A<br />

B<br />

pH<br />

= −log[<br />

H<br />

+<br />

] γ<br />

H +<br />

Ion activity coefficient:<br />

2<br />

− 0.51z<br />

μ<br />

log( γ ) =<br />

α μ<br />

1 +<br />

305<br />

Ionic strength:<br />

1<br />

μ =<br />

2<br />

∑<br />

i<br />

Ci z 2<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!