19.01.2015 Views

Protein A - esonn

Protein A - esonn

Protein A - esonn

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Advanced biophysics for micro-system design<br />

Learning from nature the future of nanobiotechnology<br />

Ruud Hovius & Joachim Piguet<br />

Laboratoire de Chmie Physique des Polymères et Membranes<br />

Ecole Polytechnique Fédérale<br />

Lausanne<br />

Ruud.Hovius@epfl.ch<br />

Joachim.Piguet@epfl.ch<br />

1


Structure of course<br />

Part I - Molecules and Labeling<br />

• Introduction<br />

÷ Molecular interactions<br />

÷ Molecular machines<br />

÷ Fluorescence<br />

• Labeling proteins<br />

÷ During biosynthetic<br />

Green fluorescent protein<br />

Non-natural amino acids<br />

÷ After biosynthesis<br />

Enzyme or substrate fusion<br />

Binding partners<br />

Chemical reactivity<br />

÷ Covalent vs reversible<br />

Part II - Single molecule imaging and<br />

spectroscopy<br />

• Single molecule detection<br />

÷ Theory<br />

÷ Experiment<br />

• Wide-field imaging<br />

÷ Molecular motions<br />

÷ Interactions & catalysis<br />

• Confocal detection<br />

÷ Fluctuation analysis<br />

÷ Multi-parameter fluorescence<br />

• Nano-devices<br />

2


What does one see in a living cell<br />

What changes<br />

• Activity<br />

• Structure<br />

• Location<br />

• Concentration<br />

• Diffusion<br />

• Transport<br />

• Interactions<br />

3


Molecular interactions - Biological networks<br />

• The cell is extremely complex<br />

many intertwined signaling and metabolic multi-dimensional networks<br />

a strong spatial-temporal organization<br />

4


Cells - Very complicated reaction conditions<br />

• Highly heterogeneous - compartments with very different contents<br />

• Transport and separation<br />

• Size-dependent effects on diffusion, kinetics and thermodynamics<br />

• Non-equilibrium state<br />

• Many components - 5’000 different gene products<br />

- many proteins have similar functions<br />

=> Systems biology :<br />

Description in space (x,y,z) and time (t) of a cell, an organism or even biotope<br />

Goodsell, Nat Chem Biol 3 (2007) p.681<br />

5


Cells - Highly crowded<br />

6


Molecular interactions - Reductionist’s approach<br />

• The cell is extremely complex<br />

⇒ Simplification, e.g.<br />

⇒ Isolated membranes<br />

⇒ Purified proteins<br />

⇒ Bio-inspired systems<br />

7


Biological networks - Molecular interactions<br />

• Interacting neurons<br />

• Synaptic organization<br />

Signaling events within a cell<br />

⇒ Right place<br />

⇒ Right time<br />

⇒ Proper arrangement<br />

⇒ Specificity & right partners<br />

Hammond “Cell & Mol Neurobiology”<br />

Kim, Nat Rev Neurosci 5 (2004) 772<br />

through reversible and adjustable<br />

molecular interactions.<br />

8


<strong>Protein</strong>s - Modular assembly of functional domains<br />

• <strong>Protein</strong>s must be multi-functional<br />

- specific interaction<br />

- regulation of interaction<br />

- effector<br />

• <strong>Protein</strong>s are in general not monolithic globules<br />

but rather have a beads-on-a-string multi-domain structures,<br />

where each domain has a specific function<br />

• Domains: small (70-140 amino acids) autonomously folding sequences<br />

specific function e.g. catalysis or binding<br />

> 1’000 type of domains present in human genome<br />

• Linear combination of a few domains yields an infinite variation of proteins<br />

with each unique properties<br />

“Modular <strong>Protein</strong> Domains” Cesareni e.a. (Eds) 2005 Wiley<br />

9


Reversible & adjustable protein interactions<br />

M-M Zhou, Bhattacharyya Ann Rev Bc 2006<br />

10


Reversible & adjustable protein interactions<br />

Example 1: The SH2 domain family<br />

- binds specifically to the protein sequence: ….-pY-x-x-hydrophobic-…<br />

where pY is a tyrosine phosphorylated by the action of a specific kinase:<br />

- The domains have a conserved structure and<br />

- The ligands are positioned similarly.<br />

- Specificity is detemined by the 3rd amino acid<br />

after -pY- determines specificity<br />

11


Reversible & adjustable protein interactions<br />

Growth factor receptors are also called receptor tyrosine kinases. They are present<br />

on the surface of cells as monomers.<br />

Upon ligand binding the receptors dimerize and trans-phosphorylate eachother’s<br />

tyrosines => activation of cellular signalling<br />

12


Reversible & adjustable protein interactions<br />

Example 2: The PH domain family<br />

- the human genome encodes about 250 PH domains<br />

some bind to PIP 2 ,<br />

an abundant lipid in the plasma membrane of cells<br />

13


Imaging PIP 2 in vivo using PH-GFP chimeras<br />

• PIP 2<br />

is rapidly broken down upon activation of e.g. the angiotensin receptor<br />

• A fusion protein PH_GFP, composed of a green fluorescent protein (GFP) and a<br />

PH domain binds to PIP 2<br />

in the plasma membrane<br />

• Angiotensin addition leads to PIP 2<br />

breakdown<br />

=> PH-GFP can not bind to the membrane anymore<br />

PI(4,5)P 2<br />

specific domain:<br />

- [PI(4,5)P 2<br />

] high in membrane<br />

- Angiotensin promotes breakdown<br />

Balla, TiPS 2000<br />

14


Domain combination - Variations on a theme<br />

“Combinatorial” protein design to create proteins with new properties<br />

15


Molecular interactions exploiting domains<br />

• Organizing molecules<br />

• Scaffolds allow regulation and integration of signals and<br />

organization of signaling molecules in space and time<br />

• Coincidence of events is important for both control and out-put<br />

16


Scaffolds - regulation and integration<br />

17


Modified scaffolds => modified output<br />

Comparison of pheromone and osmo-sensing in yeast<br />

organisation by different scaffolds => different cellular response<br />

INPUT<br />

Chimeric scaffold<br />

OUTPUT<br />

18


<strong>Protein</strong> interactions: Genome wide approaches<br />

• Classical methods to determine protein-protein interactions:<br />

e.g. 2-hybrid, GST-pull down, phage display<br />

⇒ protein interaction maps<br />

⇒“simplistic” view of proteins<br />

19


<strong>Protein</strong> interactions: Genome wide approaches<br />

• Domains:<br />

- approx 1’000 types of domains in genome<br />

÷ for about 750 types, 1 or more structures known<br />

- about 10’000 types of domain-domain interactions are predicted<br />

÷ 20% have been structurally characterized<br />

=> Use functional and structural information to predict<br />

- interactions between domains, and thus between proteins<br />

- identify interactions that<br />

÷ can happen simultaneously<br />

÷ are sterically overlapping, and thus excluding<br />

- estimate by modeling<br />

÷ affinities<br />

÷ rate constants<br />

20


<strong>Protein</strong> interactions: Genome wide approaches<br />

21


<strong>Protein</strong> interactions: Genome wide approaches<br />

• An example for the protein Ras:<br />

22


Interacting molecules - Nanoscopic building blocks<br />

Constructing supra-molecular functional entities using nature’s components.<br />

=> in solution or on surfaces<br />

Commonly used constructing materials:<br />

Streptavidin<br />

Biotin<br />

Immunoglobulins Antigens <strong>Protein</strong> A or G<br />

Oligonucleotides<br />

23


Interacting molecules: Streptavidin<br />

• Tetrameric protein from Streptomyces avidinii, about 65 kDa (approx 5x5x5 nm)<br />

• each monomer binds very tightly to biotin : K d<br />

~ 10 -14 M or ΔG ~ 32 kT.<br />

Biotin, also known as vitamin H or B7<br />

O<br />

H<br />

HN<br />

NH<br />

H<br />

S<br />

COOH<br />

• Avidin is a glycoprotein from bird eggs with comparable structure and properties.<br />

It prevents biotin absorption in the gastrointestinal tract.<br />

• Biotin can easily be linked chemically to many substances.<br />

24


Interacting molecules: Monovalent streptavidin<br />

Streptavidin is a tetrameric protein<br />

- Danger of cross-linking biotinylated molecules<br />

=> Design a “Monovalent streptavidin” using<br />

“dead” subunits carrying mutations N23A,S27D &S45A => K a = 10 3 M -1<br />

1”alive” + 3 “dead” => K d<br />

~ 2.10 -13 M<br />

Howarth, Nature Meth 3 (2006) 267<br />

25


Interacting molecules: Streptavidin<br />

How to bind proteins to streptavidin<br />

=> biotinylation either chemical of biosynthetically<br />

=> fusion with a Streptavidin-tag<br />

Analysis of peptide libraries identified peptide with good affinities for streptavidin<br />

• Strep-tag WSHPQFEK-COOH K d<br />

= 72 µM<br />

K d<br />

= 1 µM to engineered streptavidin<br />

Voss & Skerra, <strong>Protein</strong> Eng 10 (1997) 975<br />

• SBP-tag :<br />

K d<br />

= 2.5 nM<br />

MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP<br />

Keefe, Prot Exp Purif 23 (2001) 440<br />

26


Interacting molecules: Immunoglobins<br />

A binding partner to almost anything, the immune system uses immunoglobins,<br />

also called antibodies:<br />

• the antigen is bound to the variable regions<br />

• genetic recombination yield infinite variations<br />

Antibody of IgG class<br />

• Each domain is approx 50 kDa and 5 nm long.<br />

• Dissociation constants are nM for good antibodies.<br />

27


Interacting molecules: Immunoglobins<br />

Potential disadvantages:<br />

• large size (150 kDa) steric problems<br />

• 2 binding sites<br />

cross-linking<br />

Solution: make it smaller!!<br />

=> Enzymatic treatment => Genetic engineering<br />

F ab<br />

- fragments<br />

scFV-fragments<br />

28


Interacting molecules: Antibody-binders<br />

• Bacterial have developed antibody-binding proteins as a means of defense<br />

<strong>Protein</strong> A is a cell wall protein found in Staphylococcus aureus,<br />

4 binding sites for heavy chain on F c<br />

with a K d<br />

= 10 -8 M<br />

<strong>Protein</strong> G is a cell wall protein from G. streptococci,<br />

2 F c<br />

binding sites<br />

<strong>Protein</strong> L is from Peptostreptococcus magnus,<br />

binds to Ig’s with a particular kappa-light chain<br />

These proteins are often used to coat surfaces for further antibody Y<br />

immobilization.<br />

Y Y Y Y<br />

29


Interacting molecules: Oligonucleotides<br />

Oligonucleotides are polymers made of the 4 (ribo)nucleobases : A C G T<br />

Complementary antiparallel strands hybridize through base pairing and sequence<br />

recognition<br />

30


Interacting molecules: Oligonucleotides<br />

Complementary strands are kept together with many weak H-bonds<br />

=> temperature sensitive<br />

DNA double strands dissociate at a ginven temperature: the melting temperature T m<br />

GATC<br />

|||| melts at 12 °C<br />

CTAG<br />

31


Interacting molecules: Oligonucleotides<br />

Base pairing & sequence recognition can be used e.g. to construct<br />

complicated structures:<br />

165x165 nm<br />

Rothemund, Nature 440 (2006) 297<br />

Scale: 1 to 2.10 14<br />

32


Interacting molecules - Nanoscopic building blocks<br />

Alternative new proteins: See reviews<br />

•<br />

•<br />

Advantages are:<br />

• small<br />

• easier to optimize against any target<br />

• can be expressed in large amounts<br />

33


Interacting molecules - Nanoscopic building blocks<br />

Organic molecules specifically recognizing oxide surfaces:<br />

=> Selective Molecular Assembly Patterning (SMAP)<br />

e.g. - alkane phosphates (DDP) => Nb 2<br />

O 5<br />

or Ta 2<br />

O 5<br />

- Poly-l-lysine-PEG (PLL-PEG) => SiO 2<br />

N. Spencer, ETH-Zürich<br />

34


Interacting molecules: LEGO for the advanced<br />

35


Interacting molecules: LEGO for the advanced<br />

• The cell is extremely complex<br />

36


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

Motors walk on filament<br />

Kinesin on microtuble<br />

Filament slide on immobilized motors<br />

Myosin on Actin<br />

Typical speed:<br />

Step size:<br />

about 1 µm/s<br />

about 10 nm<br />

37


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

Bacterial flagella<br />

Energy conversion: Electro-chemical >> mechanical<br />

Number of H + per revolution: ~ 1000 (~ 6000 kT)<br />

Maximum rotation rate: 300 Hz (H + ) or 1700 Hz (Na + )<br />

Maximal speed:<br />

1 µm/s<br />

Diameter:<br />

50 nm<br />

38


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

ATPase uses H +- gradient to produce ATP: 3-5 H + needed per ATP<br />

Energy conversion: Electro-chemical >> mechanical >> chemical<br />

Dimensions:<br />

Diameter about 10 nm<br />

Rotations:<br />

> 3000 rpm => >10’000 ATP/min<br />

39


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

Energy conversion:<br />

Speed:<br />

Chemical => chemical<br />

Few residues per second<br />

40


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

In vitro<br />

Energy conversion:<br />

Speed:<br />

In vivo<br />

Chemical => motion<br />

µm/s<br />

41


Molecular machines<br />

⇒ Linear motors<br />

⇒ Rotational motors<br />

⇒ Energy conversion<br />

⇒ <strong>Protein</strong> factories<br />

⇒ Transport systems<br />

⇒ Channels<br />

closed ⇔ open<br />

Kuo, Structure 13 (2005) 1463<br />

Voltage-gated potassium channels<br />

Permeability:<br />

10 6 ions/s<br />

Selectivity:<br />

only potassium<br />

Conversion:<br />

potential => current<br />

42


Biomolecular nanotechnology => Nanomachines<br />

÷ Molecular interactions<br />

÷ Molecular machines<br />

=> Nanobiomachines<br />

NASA/Rutgers<br />

Arizona<br />

43


Biomolecular nanotechnology => Nanomachines<br />

Nanobiomachines: A recent example of a miniaturized flee circus<br />

Hiratsuka, PNAS 103 (2006) 13618<br />

44


Where to study the biological objects<br />

• In vitro<br />

+ Purified, well controlled system<br />

+ Easy to label<br />

- Out of cellular matrix/context<br />

• In vivo<br />

+ In the cellular context<br />

+ Can be labelled biosynthetically<br />

- Hard to access<br />

- Very complex<br />

- Difficult to control<br />

45


Method of choice: Fluorescence<br />

• Non-invasive => in vivo<br />

• Sensitive => down to a single molecule<br />

• On line => direct info from ns to days<br />

• High information content<br />

– Location, movement & distance<br />

– Microenvironment<br />

– Molecular interaction<br />

• Many parameters<br />

– Intensity<br />

– Spectral shape<br />

– Lifetime<br />

– Anisotropy<br />

– Position<br />

46


Method of choice: Fluorescence<br />

What is needed<br />

• Molecular and cellular biology<br />

Design, engineering, expression, purification of desired molecules<br />

• Instrumentation and methodology<br />

Acquisition and data treatment, interpretation<br />

• Labeling<br />

Specific introduction of non-perturbing probes<br />

47


Labeling is needed for identification<br />

=> Discriminate from matrix and between molecules of interest<br />

- Cells are full of fluorescent molecules<br />

=> Detect the parameter of interest<br />

Ideal:<br />

• Specific labeling of molecular of interest within a living cell<br />

• Stoichiometric<br />

• Non-perturbing<br />

• Bright and stable labels<br />

48


What kind of molecules to label<br />

• Sugars Glycomics<br />

– Cell recognition<br />

– Protection<br />

• Lipids Lipidomics<br />

– Membrane barrier<br />

– Signaling<br />

• Nucleic acids Genomics<br />

– Genetic information<br />

– Catalysis<br />

• <strong>Protein</strong>s Proteomics<br />

– Catalysis<br />

– Machines<br />

• Small molecules Metabolomics<br />

Pharmacolomics<br />

49


A classical fluorophore:<br />

Fluorescein<br />

Some basics on fluorescence<br />

• Wavelength of excitation < emission => Stokes’ shift<br />

• Lifetime τ of the excited state ns - ms<br />

• Extinction coefficient: probability of absorbance 10 4 - 10 6 M -1 cm -1<br />

• Quantum yield q : photons emitted/absorbed 0 - 1<br />

• Total number of photons before photo-damage 10 4 - 10 6<br />

• Rate of emission ≤ 2.5 10 6 s -1<br />

50


Photoselection and anisotropy of fluorescence<br />

Steady-state anisotropy r is defined by:<br />

with the rotational correlation time<br />

=> r depends also on mass.<br />

51


Photoselection and anisotropy of fluorescence<br />

• Applications: • Binding of small ligand A to big receptor B:<br />

A* + B A*B<br />

• Rotation & orientation of molecules<br />

e.g. ATPase or flagella<br />

52


Some basics on fluorescence<br />

Fluorescence Resonance Energy Transfer (FRET) efficiency E depends<br />

on:<br />

- Overlap of emission D and absorption A<br />

- Distance between D and A<br />

=> E = 0.5 at the Föster radius R o<br />

5 Å < R o<br />

< 80 Å<br />

53


Some basics on fluorescence<br />

• Applications: • Molecular interactions: D* + A° D*A°<br />

• Structural changes:<br />

D*-A° D* ---A°<br />

S. Weiss, Science (1999)<br />

54


Labeling, with what<br />

The probe should be:<br />

- Small is beautiful<br />

- Bright<br />

- Stable<br />

- Non-perturbing<br />

- ..<br />

The labelling should be/allow:<br />

- Specific<br />

- Stoichiometric<br />

- Inside or on surface of cell<br />

- Permanent or reversible<br />

Both should match the lifetime of the<br />

process of interest<br />

E. A. Jares, Nat BioTech 21 (2003) 1387<br />

55


Labeling, with what<br />

- unspecific<br />

- unspecific<br />

- blinking<br />

+ specific<br />

• <strong>Protein</strong>s + (bio)synthetically - large<br />

+ specific - post-labeling<br />

56


Labeling with organic dyes<br />

Very large choice of (reactive) dyes commercially available from e.g.<br />

Invitrogen (Molecular Probes )(Alexa)<br />

GE (Amersham) (Cy dye)<br />

Toronto Research Chemicals<br />

Chromeon<br />

Atto-tec (Atto)<br />

Biotium<br />

Dyomics<br />

FluoProbes<br />

57


Labels: Organic dyes<br />

Hard to choose form the many dyes available => try many!!<br />

Important points:<br />

• Wavelengths of excitation & emission<br />

• Type of matrix, e.g. living cell or silicon waver<br />

• Interference with functionality of the molecule to be labeled<br />

e.g. labelled acetylcholine<br />

depending on spacer length<br />

either agonist or antagonist<br />

Baindur, Drug Development Research 33 (1994) 373<br />

58


Labels: Organic dyes<br />

Hard to choose form the many dyes available => try many!!<br />

Important points:<br />

• Stability of dye &<br />

observation time needed<br />

www.atto-tec.com<br />

• Hydrophobicity of probe<br />

Dye molecules contain large conjugated, aromatic systems<br />

=> aggregation<br />

=> unspecific binding<br />

• “Bad ones” Bodipy’s, Dy-655, rhodamines, ATTO647N<br />

• Nonspecific interactions<br />

with membranes e.g. Cy5<br />

with mitochondria e.g. Atto647N<br />

59


Labels: Quantum dots<br />

Semiconductor crystals of nm-size show:<br />

• Size dependant absorption and emission wavelengths<br />

=> colors can be tuned by varying size<br />

• Great brightness<br />

• Narrow emission spectra<br />

• Highly photostability<br />

• Broad absorption spectra => allows multiplexing.<br />

CdSe/CdS<br />

- Large size & stoichiometry of modification<br />

Bruchez, Science 281 (1999) 2012<br />

60


How to get them<br />

• Home made<br />

Labels: Quantum dots<br />

=> quite tedious<br />

• Commercial sources<br />

available with e.g. streptavidin or -COOH surface modification<br />

=> batch to batch variations,<br />

especially in blinking properties<br />

Where to get them from<br />

Invitrogen (Quantum dot)<br />

Evident<br />

Biopixels<br />

61


Labels: Quantum dots in imaging<br />

• Single AMPA receptor imaging on neurons<br />

- post-biosynthetic labeling upon bionylation.<br />

PSD-95-YFP & AMPA receptors with QD605<br />

1- PSD-95-YFP, then overlaid with DIC image<br />

2- plus QD605 movie (speeded up 3-fold)<br />

3- QD605 alone.<br />

Howarth, PNAS (2005) 1388<br />

62


Quantum dots for supra-molecular entities<br />

• Scaffold<br />

• Multi-functional building block<br />

Medintz, Nat Materials 2 (2003) 630<br />

Geissbuehler, Angew. Chem. 44 (2005) 1388<br />

63


How to label<br />

Methods:<br />

Modality:<br />

• Biosynthetically • Covalent<br />

- GFP<br />

- Non-natural amino acids • Reversible<br />

• Post-biosynthetically<br />

- Enzymes<br />

- Small tags<br />

- Ligands<br />

• Chemically<br />

- Reactive functional groups<br />

64


Reviews<br />

• General<br />

Marks & Nolan “Chemical labeling strategies for cell biology”<br />

Nature Methods 3 (2006) 591<br />

Prescher & Bertozzi “Chemistry in living systems”<br />

Nature Chem Biol 1 (2005) 13<br />

Hovius e.a. “Fluorescent Labelling of Membrane <strong>Protein</strong>s in Living Cells”<br />

in "Structural Genomics on Membrane <strong>Protein</strong>s” CRC Press (2006) 199<br />

• Fluorescent proteins<br />

Tsien, R.Y. The green fluorescent protein.<br />

Annu. Rev. Biochem., 67, 509–544,1998.<br />

Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related<br />

photophysical behavior.<br />

Chem. Rev., 102, 759–781,2002.<br />

• Nonnatural amino acidsand suppressor tRNA<br />

Wang, Xie & Schultz “Expanding the genetic code”<br />

Annu Rev Biophys Biomol Struct 35 (2006) 225<br />

65


Biosynthetic labeling<br />

• Labeling during biosynthesis of the protein<br />

Advantages:<br />

- in the cell<br />

- can be targeted to compartment of wish<br />

- on the protein of wish<br />

- site-specific<br />

Disadvantages:<br />

- limited choice of labels<br />

- limited quality<br />

- compatibility with protein<br />

- incomplete targeting<br />

66


Biosynthetic labeling: Fluorescent proteins<br />

Green Fluorescent <strong>Protein</strong> from the<br />

jellyfish Aequorea victoria<br />

• 26 kDa protein with a β-barrel structure<br />

• Chromophore within barrel => very stable!!<br />

R. Y. Tsien<br />

M. Zimmer, Chem Rev (2002)<br />

67


Biosynthetic labeling: Fluorescent proteins<br />

• Many color variants either by mutagenesis or from other species<br />

=> Very differing spectroscopic properties !!<br />

Ex (nm) Em (nm) Abs coeff (M - Q τ (ns) r o φ (ns) brillance<br />

1<br />

cm -1 )<br />

eCFP 434 477 26'000 0.4 1-1.5 (50 %)<br />

0.2<br />

3.3-4.0<br />

eBFP 380 440 31'000 0.18 3 0.11 Bleaches fast<br />

eYFP 514 527 84'000 0.61 3.7 1.0 Bleaches fast !<br />

Long dark states<br />

eGFP 489 508 55'000 0.6 2.5 0.33 24 0.64 pH sensitive<br />

DsRed 558 583 22'5 - 27'000 0.25-0.4 4 ±0.15 Aggregates<br />

far reds ±590 ±640<br />

A. Miyawaki, Nat. Neurosci Sept 2003, S1<br />

68


Biosynthetic labeling: Fluorescent proteins<br />

• Fusion to protein of interest<br />

N- or C-terminal, internal<br />

• Can be targetted to all organelles<br />

Clontech<br />

• Not (too) toxic<br />

R. Y. Tsien<br />

69


Biosynthetic labeling: Fluorescent proteins<br />

Combination of several spectral variants facilitates multi-color-imaging<br />

up to 6 colors in parallel<br />

• E.g. using an LSM510 equipped with a 32 channel META detector<br />

and excitation at 458 nm.<br />

T. Kogure, Nat Biotech 24 (2006) 577<br />

70


Biosynthetic labeling: Fluorescent proteins<br />

Timer, a mutant red fluorescent protein, which slowly changes color.<br />

In vitro<br />

In vivo: Following protein expression<br />

and transport in time<br />

A. Terskikh, Science 290 (2000) 1585<br />

71


Fluorescent proteins : Photoactivation<br />

• GFP Mutant T203H: Irradiation at 413nm => inversed absorbance spectrum<br />

=> has a 100-fold contrast upon excitation at 480 nm!!<br />

• In vitro: Immobilized GFP<br />

Excitation at 488 nm<br />

Activation at 413<br />

=> Photo-lithography<br />

G. H. Patterson, Science 297 (2002) 1873<br />

72


Fluorescent proteins : Switching<br />

• mCherry mutant can be switched on and off repetitively!!<br />

Experiment: live E. coli’s expressing the proteins & using a Hg-lamp.<br />

Stiel (2008) Biophys J 2989<br />

73


Biosynthetic labeling: Fluorescent proteins<br />

Molecular interactions or conformational changes can be detected by FRET.<br />

Combining fluorescent proteins one can fine-tune the distance dependence<br />

of FRET to the system under investigation.<br />

G. H. Patterson, Anal Bc 284 (2002) 438<br />

74


Biosynthetic labeling: Fluorescent proteins<br />

Molecular interactions or conformational changes can be detected by FRET.<br />

e.g. a sensor of tyrosine phosphorylation:<br />

Sato, Nat Biotech (2002) 278<br />

75


Fluorescent proteins: Transducers in sensors<br />

Variations on a theme to detect molecular interactions, changes of<br />

conformation or of analyte concentrations.<br />

J. Zhang, Nat Rev MolCelBiol 3 (2002) 906<br />

76


Biosynthetic labeling: Fluorescent proteins<br />

Fluorescent protein based sensors have been used to measure:<br />

[Ca 2+ ] A. Miyawaki. Nature 388 (1997) 882<br />

[H + ] J. Llopis, PNAS 95 (1998) 6803<br />

[Cl - ] S. Jayaraman, JBC 275 (2000) 6047<br />

cAMP M. Zaccolo, Nature Cell Biology 2 (2000) 25<br />

[Zn 2+ ] K. K. Jensen, Bc 40 (2001) 938<br />

PK-C activity J. D. Violin. J Cell Biol 161 (2003) 899<br />

Tyr-kinase Sato, Nat Biotech (2002) 278<br />

Redox potential C. T. Dooley, JBC 279 (2004) 22284<br />

Androgens Awais, Angew Chem 45 (2006) 2707<br />

and many, many other analytes!!<br />

77


Biosynthetic labeling: Fluorescent proteins<br />

GFP analogues have revolutionized life sciences.<br />

But they are not perfect:<br />

Non-ideal fluorophores<br />

Wrongly targeted proteins<br />

Stoichiometry of co-expressed interacting fusion proteins<br />

Moreover, many fluorescent proteins and their use have been patented<br />

=> commercial applications need permission &<br />

license fees have to be paid.<br />

Fortunately monthly new fluorescent proteins are being found in<br />

different species !!<br />

78


Biosynthetic labeling: Nonnatural amino acids<br />

Normal protein synthesis<br />

DNA<br />

mRNA<br />

Stop codon<br />

Stop codon<br />

Each amino acid is encoded in the DNA by 3<br />

bases forming a codon.<br />

The end of a protein is indicated by the stopcodons.<br />

P. G. Schultz, D. Dougherty<br />

79


Biosynthetic labeling: Nonnatural amino acids<br />

Site-specific introduction of artificial amino acids<br />

with a suppressor tRNA complementary to the stop codon “AUC”<br />

UGA<br />

Stop codon<br />

P. G. Schultz, D. Dougherty<br />

80


Biosynthetic labeling: Nonnatural amino acids<br />

Sofar, only small, relatively<br />

weak fluorophores could be<br />

introduced directly:<br />

• Dansyl<br />

• NBD<br />

• Coumarine<br />

• Bodipy FL<br />

Wang, Annu Rev Biophys Biomol Struct 35 (2006) 225<br />

81


Biosynthetic labeling: Nonnatural amino acids<br />

Site-specific incorporation of NBD-amino acids in a G protein-coupled receptor.<br />

• In vivo NBD was introduced at different sites<br />

• A rhodamine labeled ligand was bound to the receptor<br />

• Distances between labels was measured by FRET<br />

=> A model of the ligand-receptor complex.<br />

G. Turcatti, JBC 271 (1996) 19991<br />

82


Biosynthetic labeling: Nonnatural amino acids<br />

Problems<br />

• nnaa-tRNA<br />

- difficult to synthesis<br />

- hydrolysis in cell<br />

- low yield<br />

- high background<br />

• Only in vitro or in oocyte<br />

- tedious<br />

- mammalian cell system wished<br />

• Only small, no so ideal fluorophores<br />

- limited scope of application<br />

however:<br />

• Biotin-containing nnaa’s => labeled streptavidin<br />

• Chemo-selective nnaa’s<br />

83


Biosynthetic labeling: Nonnatural amino acids<br />

Introduction of a chemo-selective aldehyde containing nnaa:<br />

- reacts specifically with hydrazine derivatives of fluorophores.<br />

In vivo demonstration: m-acetyl-L-phenylalanine<br />

was introduced in LamB using suppressor tRNA<br />

methods in E. coli, and post-biosynthetically<br />

labeled with 3 hydrazine derivatives.<br />

Z. Zhang, Bc 42 (2003) 6735<br />

84


Biosynthetic labeling: Nonnatural amino acids<br />

Introduction of a chemo-selective alkynyl amino acids, which react specifically<br />

with azido-derivatives. (or the inverse!):<br />

+<br />

Met Phe Azido-coumarine<br />

In vivo demonstration:<br />

labeling of barnstar in expressed E. coli,<br />

and post-biosynthetically<br />

• - o/n labeling<br />

• - random<br />

Beatty, J Am Chem Soc 127 (2005) 14150<br />

85


Post-biosynthesis labeling of a genetic tag<br />

The protein of interest can be genetically modified to contain a<br />

sequence that can be labelled once the protein has been made.<br />

Such a sequence can be:<br />

<strong>Protein</strong><br />

Enzyme<br />

Substrate<br />

Binding site<br />

Peptide<br />

Binding partner<br />

Substrate<br />

86


Post-biosynthesis labeling: Enzyme tag - hAGT<br />

• O 6 -Alkylguanine-DNA Alkyltransferase (hAGT) is a DNA-repair “enzyme”.<br />

• The nucleotide-modifying LABEL is covalently bound to AGT.<br />

-/+ Not all substrates are membrane permeable.<br />

- Cells need to be devoid of endogenous interfering AGTs => Mutant versions of AGT<br />

Keppler, Nat BioTech 21 (2003) 86 Commercially available as SNAP-tag from<br />

87


Post-biosynthesis labeling: Enzyme tag - hAGT<br />

• Development of AGT-mutants:<br />

- no more interference of endogenous AGT<br />

- “CLIP” recognizing cytosine-based substrates<br />

Keppler (2003)Nat BioTech; (2004)PNAS; Juillerat (2005) ChemBioChem; Gautier (2008)Chem & Biol<br />

88


Post-biosynthesis: Substrate protein - Carrier proteins<br />

Intermediates in cellular biosynthesis are in several cases attached to so-called<br />

“carrier proteins” (CP) to enhanced their solubility or preserve reactive form.<br />

÷ Carrier proteins are small 70-100 residues, compact and fold autonomously.<br />

÷ Enzymes couple the CoA-activated intermediates () to the carrier proteins<br />

+<br />

CP<br />

PPTase<br />

CP<br />

4’-phosphopantetheine (PP) group of coenzyme A (CoA) is coupled covalently to<br />

an OH-group of a serine on CP by PP-transferase (PPTase).<br />

Modification of the SH-group of CoA has no or little effect on the reaction.<br />

± Only cell surface molecules<br />

Examples are:<br />

Peptide Carrier <strong>Protein</strong>s (PCP) J. Yin, Chem & Biol 12 (2005) 999<br />

Acyl Carrier <strong>Protein</strong>s (ACP) George, JACS 126 (2004) 8896<br />

89


Post-biosynthesis: Substrate protein - Carrier proteins<br />

Important for labeling:<br />

• Genetically fuse CP to protein of interest<br />

• Express in cells<br />

• Incubate with fluorescently labeled CoA and PPTase<br />

• Wash out free substrate before imaging<br />

-+ Surface protein labeling only<br />

as labeled CoA and PPTase are membrane impermeable.<br />

+- CoA-fluorophores nicely water-soluble.<br />

Commercially available from<br />

90


Post-biosynthesis: Substrate protein - ACP<br />

Two-color labeling for FRET: Comparison with fluorescent proteins<br />

NK1_eCFP NK1_EYFP Merge<br />

FPs:<br />

Co-transfect<br />

mixed DNA<br />

ACP:<br />

Label with<br />

mixed CoA’s<br />

ACP-NK1_Cy3 ACP-NK1_Cy5 Merge<br />

=> ACP is by far better for investigations on cell surface proteins.<br />

Meyer, PNAS 103 (2006) 2138 & FEBS (2006)<br />

91


Post-biosynthesis: Substrate protein - Carrier proteins<br />

Possibility for specific labeling of several proteins using both ACP and PCP fusions,<br />

employing specific PPT enzymes:<br />

AcpS from E. coli will only modify ACP<br />

Sfp from B. subtilis will modify both ACP & PCP<br />

Example: cell wall proteins in yeast labeled with Cy3 on ACP and Cy5 on PCP.<br />

Vivero-Pol, JACS 127 (2005) 12770<br />

92


Post-Biosynthetic labeling: Peptide substrate - Biotin-ligase<br />

• Fusion of biotin acceptor sequence GLNDIFEAQKIEWHE to protein of<br />

interest<br />

• Enzymatic coupling of a biotin analogue which reacts specifically with<br />

O<br />

hydrazine derivatives of fluorophores.<br />

O<br />

N<br />

N<br />

H<br />

S<br />

S<br />

Biotin ligase<br />

Ketone 1<br />

ATP<br />

H 2 N<br />

pH 6-7<br />

N<br />

H<br />

O<br />

+ Highly specific for Biotin tag<br />

+ Only surface exposed proteins<br />

- Hydrazine coupling slow<br />

- Bond can hydrolyse<br />

Chen, Nature Meth (2005)<br />

93


Post-Biosynthetic labeling: Peptide substrate - Biotin-ligase<br />

Alternatively, coupling with normal biotin and labelling with QD-streptavidin<br />

- Huge size of label<br />

Howarth, PNAS (2005)<br />

94


Post-Biosynthetic labeling: Peptide tags - Epitopes<br />

Epitopes are sequences of 5 to about 20 amino acids against<br />

which antibodies can be raised or engineered. These<br />

sequences can be introduce into protein of wish.<br />

Examples are:<br />

HA Tyr - Pro - Tyr - Asp - Val - Pro - Asp -Tyr - Ala<br />

VSV Tyr - Thr - Asp - Ile - Glu - Met - Asn - Arg - Leu - Gly - Lys<br />

FLAG Asp -Tyr -Lys -Asp - Asp - Asp - Asp - Lys<br />

His6 His - His - His - His - His - His<br />

Fluorescently labelled specific & high affinity antibodies are<br />

commercially available.<br />

+ Small tags<br />

+ Specific & high affinity<br />

+ Any color<br />

+- Multiple labels per antibody<br />

- Antibodies are huge<br />

95


Post-Biosynthetic labeling: Peptide tags - FlAsH binding<br />

• The biarsenical FlAsH is virtually non-fluorescent<br />

• Binding to a CCxxCC motif results in a 100-fold fluorescence increase<br />

• Reversed by addition of ethylenedithiol (EDT)<br />

+ Works also in vivo<br />

- Binding is slow and has a low affinity<br />

- Need for high concentration of EDT and non-fluorescent dyes.<br />

B. A. Griffin, Science 281 (1998) 269<br />

96


Post-Biosynthetic labeling: Peptide tags - FlAsH binding<br />

FlAsH labelling, an example:<br />

Dual color pulse labeling of CCxxCC-connexin using<br />

- 1 st pulse of FlAsH<br />

- 2 nd pulse of ReAsH later in time<br />

J. Zhang, Nat Rev MolCelBiol 3 (2002) 906 &<br />

G. Gaietta, Science 296 (2002) 503<br />

97


Post-Biosynthetic labeling: Peptide tags - FlAsH binding<br />

Improvement of peptide tag<br />

1998: Initial ..CC-xx-CC.. peptide α-helix<br />

=> background = specific needed a lot of thiol reagents<br />

2002: Then ..CC-PG-CC.. loop<br />

=> less non specific<br />

2005: Now: ..FLN CC-PG-CC-MEP..<br />

=> 1.7-fold increase quantum yield<br />

=> 20-fold increased resistance dithiol reagents<br />

- can be washed with 0.75 mM dimercaptopropanol to<br />

suppress non-specific binding<br />

- Always tested on highly expressed proteins<br />

e.g. actin or concentrated proteins like connexins<br />

- Still very slow 1-2 hours<br />

Martin, Nat Biotech 23 (2005)1308<br />

98


Post-Biosynthetic labeling: Peptide tags - FlAsH binding<br />

Improvement of the system:<br />

2007: Development of AsCy3<br />

+ more stable and brighter than previous probes<br />

+ binds specifically to ..CC-AEAA-CC..<br />

and not to ..CC-xx-CC..<br />

+ binds faster than FlAsH and ReAsH<br />

+ orthogonal double labeling possible by using both AsCy3 and FlAsH<br />

and their respective peptide tags CC-xx-CC and CC-AEAA-CC<br />

Cao, JACS 129 (2007) 8672<br />

99


Post-Biosynthetic labeling: Peptide tags - NTA-Probes<br />

Principle: Selective binding of NTA-Ni 2+ to oligohistidine sequences<br />

+ Wide choice of chromophores: Quenching, co-localisation, FRET,<br />

membrane permeability..<br />

+ Small label<br />

-+ Moderate affinity<br />

Guignet (2004) Nature Biotech<br />

100


Post-Biosynthetic labeling: Peptide tags - NTA-Probes<br />

NTA-I binding to a His 6 -tagged GFP is demonstrated in vitro by FRET.<br />

+ Fast binding and disociation constant K d = 3 µM<br />

+- Fully reversible by EDTA<br />

Guignet (2004) Nature Biotech<br />

101


Post-Biosynthetic labeling: Peptide tags - NTA-Probes<br />

Reversible labelling of proteins on oligo-histidine tags by NTA-conjugates<br />

Lata<br />

2005 JACS<br />

K d : t 1/2 :<br />

mono-NTA 5’000 nM 5 sec fits to endurance of Cy5<br />

tris-NTA 0.1 nM 30 min need a quantum dot<br />

or a good organic dye<br />

102


Imaging single 5HT3R receptors using NTA-probes<br />

• NTA-Atto 647<br />

Different modes of diffusion were observed<br />

Guignet, ChemPhysChem 2007<br />

103


Labeling of receptors with fluorescent ligands<br />

Example: Conjugation of acetylcholine with dansyl to probe the<br />

muscle-type acetylcholine receptor<br />

104


Reversible Sequential single cell ligand binding assays<br />

A single cell expressing the acetylcholine receptor is pulse labeled &<br />

washed repeatedly many times<br />

Schreiter, ChemBioChem 2005<br />

105


Reversible Sequential labeling with receptor ligands<br />

A single cell is pulse labeled repeatedly under different conditions,<br />

e.g. changing concentrations of competing non-fluorescent ligand<br />

=> Pharmacological profiling on a single cell<br />

Schreiter, ChemBioChem 2005<br />

106


Post-Biosynthetic: Chemical labelling<br />

Reactive groups in proteins:<br />

• -SH of Cys<br />

• ε-NH 2<br />

of Lys or N-terminus<br />

• -OH of Ser<br />

• -COOH of C-terminus,<br />

Asp or Glu<br />

Abundance of amino acids:<br />

• Cys low on outside<br />

• Lys high<br />

• Ser + Thr high<br />

• Asp + Glu high<br />

Special cases:<br />

• N-terminal Ser<br />

• N-terminal Cys<br />

Accessibility<br />

• Surface exposed<br />

• Burried<br />

+ large choice of dyes<br />

- limited site-specificity, especially in vivo<br />

⇒ Often performed in vitro using purified proteins!!<br />

⇒ the only option is Cys labeling !!<br />

107


Chemical labeling of cysteines<br />

Maleimide and methylthiosulfonates (MTS) are usefull to react<br />

with SH-groups in aqueous conditions and on live cells.<br />

+ large commercial offer<br />

- bulky thioeter linkage<br />

+- in general slow to react<br />

- require large excess of reagent<br />

- unwanted side reactions<br />

Methylthiosulfonate<br />

OH<br />

S<br />

O<br />

- limited commercial offer<br />

- hydrolyses in water<br />

+ react extremely rapid<br />

+ highly selective<br />

+ quantitative without excess<br />

+ reversible<br />

108


Post-Biosynthetic: Site-specific single Cys-labeling<br />

.Strategy:<br />

i) Remove native Cys<br />

ii) Introduce single Cys<br />

iii) Fluorescence labeling of Cys<br />

iv) Fluorescence measurements<br />

NB: - step i) is not always needed<br />

- steps i) and ii) might kill protein<br />

- step iii) too!!<br />

109


Post-Biosynthetic: Cys-labeling of cell surface receptor<br />

Rhodamine-MTS labeling of a single Cys-mutant in channel of the receptor.<br />

• red:<br />

• green:<br />

rhodamine labeling<br />

fluorescent receptor ligand<br />

=> Specific labeling.<br />

Guignet<br />

110


Channel gating monitored by fluorescence<br />

Addition of agonist induces a reversible change in fluorescence intensity.<br />

1.4x10 6<br />

Agonist<br />

Wash<br />

Fluorescence intensity<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0<br />

100<br />

200<br />

300<br />

Time (s)<br />

400<br />

500<br />

600<br />

=> Structural rearrangements during channel gating.<br />

Guignet<br />

111


Post-Biosynthetic labeling: Comparison<br />

Method Tag Partner In cell Rev Fast<br />

HaloTag 33 kDa < 1 kDa Y N m - h<br />

hAGT 207 aa < 1 kDa Y N m<br />

DHFR 18 kDa < 1 kDa Y Y m - d<br />

FKBP 12 kDa < 1 kDa Y N/Y m - h<br />

ACP (PCP) 77 aa < 1 kDa + E N N m - h<br />

Epitope 5-30 aa 150 kDa N N/Y m - h<br />

Biotin-ligase 15 aa < 1 kDa + E N N m - h<br />

NTA 6-10 aa < 1 kDa Y N/Y s<br />

FlAsh 6-10 aa < 1 kDa Y N/Y m - d<br />

React (nn)AA 1 aa < 1 kDa N N m - h<br />

Ligand - 1 - 1000 kDa Y Y s - m<br />

112


Reversible vs covalent labeling<br />

Covalent<br />

+ once it’s there it is there to stay<br />

- upon photo bleaching your labeled molecule is invisible<br />

Reversible<br />

Depending on affinity and off rate complexes can have a<br />

• short lifetime of seconds to minutes<br />

- Cannot wash or label in advance<br />

+ Upon photobleaching can be replaced<br />

+ Repetitive labeling under same or different conditions<br />

• long lifetime of hours to days => almost as covalent labeling<br />

113


Labeling<br />

The ideal label and labeling method do not exist.<br />

=> What do you would like to learn and where<br />

÷ Localisation and movement ÷ In live cells<br />

÷ Molecular interactions ÷ Reconstituted systems<br />

÷ Structural changes<br />

=> Each protein & each process needs an individual approach.<br />

=> Combine orthogonal methods for multiple specific labeling.<br />

=> Beware of nonspecific labeling and artefacts.<br />

=> Combine measuring techniques.<br />

=> Do lots of careful experiments.<br />

114

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!