14.11.2012 Views

UV-RGB The integrated UV-RGB laser beam-combiner

UV-RGB The integrated UV-RGB laser beam-combiner

UV-RGB The integrated UV-RGB laser beam-combiner

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sponsored by the IOP Photonic Devices<br />

<strong>UV</strong>-<strong>RGB</strong><br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong><br />

Ger Folkersma<br />

“<strong>UV</strong>-<strong>RGB</strong>”: <strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong><br />

Prof. dr. ir. A.J. Huis in 't Veld<br />

Dr. ir. D.M. Brouwer<br />

Dr. ir. G.R.B.E. Römer


� Health and medicine<br />

– Confocal microscopy<br />

– Fluorescence microscopy<br />

– Flow cytometry<br />

� Lithography<br />

� Optical inspection<br />

� Consumer entertainment<br />

� Etc.<br />

Laser <strong>beam</strong> <strong>combiner</strong>: Applications<br />

Multiple wavelengths of <strong>laser</strong> light in one <strong>beam</strong><br />

BEST food sorting<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 2


XiO ILBC: Integrated Laser-Beam Combiner<br />

• Robust<br />

• Small<br />

• No (re)alignment<br />

• Convenient<br />

Laser <strong>beam</strong> <strong>combiner</strong>s<br />

Schäfter & Kirchhoff (D)<br />

MLC 400 monolithic <strong>laser</strong> <strong>combiner</strong>, Agilent (US)<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 3


� ILBC: Integrated Laser-Beam Combiner<br />

Introduction<br />

– Combine multiple wavelengths of <strong>laser</strong> light into one optical fiber<br />

– Beam <strong>combiner</strong> on a single optical chip from XiO Photonics<br />

Specs<br />

– Single mode, polarization maintaining<br />

– 100mW input power<br />

– Wavelength 375 – 785 nm<br />

– Low-loss (50% overall)<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 4


Fiber – fiber pluggable connectors<br />

Fiber – chip interconnect<br />

Research areas<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 5


� Current problems<br />

– Alignment requirements<br />

– Tolerances<br />

– Fixation/ bonding<br />

� Conceptual solution<br />

– Post-bond alignment<br />

– Laser adjusting<br />

� Future work<br />

Contents<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 6


� Experiment to validate model<br />

Coupling efficiency (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

– Two fibers, lateral offset<br />

– Spectral power measurement<br />

– First results show good agreement<br />

Power loss lateral offset<br />

Alignment requirements<br />

488nm measured<br />

561nm measured<br />

640m measured<br />

488nm theory<br />

561nm theory<br />

640nm theory<br />

Broadband<br />

lightsource<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

offset (�m)<br />

Spectral<br />

analyzer<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 8


Current fiber-chip connection<br />

Fiber Array Unit (FAU) � Bond multiple ports at once<br />

� Optical fibers<br />

� Tolerances ±0.5μm<br />

– Polarization maintaining, single mode<br />

– Core-Clad concentricity < 0.5 µm<br />

� Limited by micromachining process<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 9


� Alignment by power loss minimization<br />

� Adhesives bond FAU to chip<br />

Current fiber-chip connection<br />

– Shrinkage during curing problematic for alignment<br />

– Adhesives exposed to <strong>UV</strong> degrade<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 10


� Connectors from telecommunication<br />

– Widely used -> cheap<br />

– Too wide tolerances<br />

� Not suitable for <strong>UV</strong> wavelengths<br />

� High performance connectors<br />

– Expensive<br />

– Assembled and aligned at manufacturer<br />

Fiber connectors<br />

ST FC SC<br />

E2000<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 11


� Fiber – chip coupling<br />

– Required alignment accuracy


� Re-align after bonding<br />

– Less demanding alignment during bonding<br />

– Correction of shrinkage<br />

� Manipulator to move the fiber<br />

– Integrated in the product<br />

Post bonding alignment<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 13


� Deformation due to <strong>laser</strong> heating<br />

– Contactless<br />

– Good ‘resolution’<br />

– Suitable for miniaturization<br />

� Model required to predict “actuator”<br />

behavior<br />

� Design 5-DOF manipulator for aligning the<br />

fiber<br />

Laser adjusting<br />

M. Dirscherl (D), 2006<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 14


Laser adjusting, first model<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 15


� Design <strong>integrated</strong> manipulator<br />

– Modeling and experimenting with <strong>laser</strong> adjusting<br />

– Predictive model for <strong>laser</strong> adjustment<br />

� Investigate bonding methods<br />

– (<strong>laser</strong>) welding<br />

– Soldering<br />

� Perform bonding + alignment experiments<br />

– Bonding and aligning a fiber to a chip<br />

� Expand to generic method<br />

Future work<br />

<strong>The</strong> <strong>integrated</strong> <strong>UV</strong>-<strong>RGB</strong> <strong>laser</strong> <strong>beam</strong>-<strong>combiner</strong> 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!