28.01.2015 Views

tivity on the carmel faul

tivity on the carmel faul

tivity on the carmel faul

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dating Paleo-seismic Ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Carmel Fault<br />

Using Damaged Cave Deposits from Denya Cave,<br />

Mt. Carmel.<br />

Yael Braun<br />

This work was submitted as M.Sc. Thesis to <strong>the</strong> Institute of earth Sciences,<br />

The Hebrew University of Jerusalem.<br />

The study was carried out under <strong>the</strong> supervisi<strong>on</strong> of:<br />

Prof. Amotz Agn<strong>on</strong>, Institute of Earth Sciences, Hebrew University of Jerusalem<br />

Dr. Miryam Bar-Ma<strong>the</strong>ws, Geological Survey of Israel<br />

Report GSI /23/2010 Jerusalem, October 2010


Acknowledgements<br />

I would like to thank first and foremost my advisors for <strong>the</strong>ir unending patience<br />

and understanding. I have learned a lot from <strong>the</strong>m and benefitted tremendously from<br />

<strong>the</strong>ir knowledge and experience.<br />

I would like to thank Dr. Avner Ayal<strong>on</strong> for guidance and invaluable advice<br />

through a lot of <strong>the</strong> work process. His knowledge and experience helped me<br />

pers<strong>on</strong>ally as well as professi<strong>on</strong>ally. I would also like to thank Elisa Kagan for<br />

sharing her knowledge with me and helping me out whenever she could with good<br />

advice and comforting words.<br />

Special thanks go to <strong>the</strong> diligent workers of <strong>the</strong> Geological Survey of Israel who<br />

simply do <strong>the</strong>ir work superbly and generously give of <strong>the</strong>ir time and experience: To<br />

Shlomo Ashkenazi, Yaakove Mizrachi and Chaim Chemo for <strong>the</strong>ir help with <strong>the</strong><br />

technically challenging work in <strong>the</strong> cave; To Natalya Tapliakov for her help with<br />

laboratory work and generous advice; To Dr. Irena Segal and Dr. Olga Yofe for<br />

guidance and help with mass spectrometric analyses; To Bat-Sheva Cohen, Nili<br />

Almog and Channa Nezer-Cohen for help with graphics and publicati<strong>on</strong>s; and to all<br />

<strong>the</strong> students who helped me learn <strong>the</strong> rudiments of lab work as well as helped me with<br />

field work: Neta Shalev, Gilad Garber, Yuval Burstein, Nitzan Sheny, Yael Neumieir<br />

and Eyal Merder. And to Mor Kanari for his help in field work as well as technical<br />

matters, which always came with a smile and good humor.<br />

I would also like to thank Dr. Moti Stein, Ant<strong>on</strong> Vaks, Uri Ryb and Tami<br />

Zilberman for very useful discussi<strong>on</strong>s which were valuable for <strong>the</strong> thinking process.<br />

Thanks also go to Gal Hartman for his valuable c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> processing of<br />

results in this study, both <strong>the</strong>oretically and practically.<br />

Special thanks go to my fa<strong>the</strong>r, Dr. Eliot Braun, who knows very little about<br />

geology but a very great deal about writing, for his endless patience and extremely<br />

valuable help in writing this <strong>the</strong>sis and all its subsequent publicati<strong>on</strong>s.<br />

Last but not least I would like to thank my good friends Leehi Magaritz and<br />

Michal Laskow, who gave of <strong>the</strong>ir time to help sort out <strong>the</strong> occasi<strong>on</strong>al mess in my<br />

head or help me out with computer programs and technical difficulties.<br />

This research would not have been possible without <strong>the</strong> financial support of <strong>the</strong><br />

Israel Science Foundati<strong>on</strong> (Grant #1006/2004).<br />

2


Abstract<br />

Mt Carmel is defined to its east by <strong>the</strong> NW-NNW Carmel <strong>faul</strong>t, a branch of <strong>the</strong> Dead<br />

Sea Transform System. Denya Cave, located <strong>on</strong> a spur of this mountain in Haifa,<br />

Israel, is a karstic formati<strong>on</strong>, in which broken speleo<strong>the</strong>ms, collapsed structures and<br />

cracks were observed, and appeared to be evidence of seismically induced damage.<br />

This study set out to determine whe<strong>the</strong>r broken and deformed cave deposits in Denya<br />

Cave are speoleo<strong>the</strong>m seismites from which informati<strong>on</strong> regarding <strong>the</strong> paleoearthquake<br />

record of <strong>the</strong> regi<strong>on</strong> during <strong>the</strong> Quaternary might be extracted.<br />

Following a process of mapping and investigating <strong>the</strong> cave and excluding n<strong>on</strong>-seismic<br />

causes for visible damage, possible samples were examined and extracted from those<br />

deposits deemed most likely to have recorded ancient earthquakes. Unc<strong>on</strong>formities in<br />

stalagmites, stalactites and flowst<strong>on</strong>e formati<strong>on</strong>s were identified as ‘seismic c<strong>on</strong>tacts’.<br />

Laminae in such broken or deformed speleo<strong>the</strong>ms were <strong>the</strong>n sampled for dating as<br />

close as possible to <strong>the</strong>ir seismic c<strong>on</strong>tacts. The ages of <strong>the</strong>se laminae, ei<strong>the</strong>r preseismic<br />

or post-seismic, define age c<strong>on</strong>straints of damaging events.<br />

A classificati<strong>on</strong> method for different types of seismites was added to speleo-seismite<br />

analysis in order to determine reliability of results. This was determined according to<br />

<strong>the</strong> type of speleo<strong>the</strong>m, <strong>the</strong> clarity of <strong>the</strong> seismic c<strong>on</strong>tact as a viable indicator for a<br />

seismic event, and <strong>the</strong> ability to adequately sample material.<br />

Samples were dated utilizing <strong>the</strong> U-Th (uranium decay) method, a process that is not,<br />

however, straightforward as <strong>the</strong> appearance of detrital matter within samples can alter<br />

age determinati<strong>on</strong>s. Such adulterati<strong>on</strong>s necessitate correcti<strong>on</strong>s in order to yield true<br />

ages. The ages obtained for Denya Cave seismite samples were corrected for detrital<br />

Th using an isochr<strong>on</strong> method based <strong>on</strong> isochr<strong>on</strong>s. Seismite samples, which were<br />

c<strong>on</strong>sidered to be of <strong>the</strong> same age when certain criteria were met, were plotted al<strong>on</strong>g<br />

isochr<strong>on</strong> lines and a single age was determined for <strong>the</strong>m. Criteria for plotting seismite<br />

samples al<strong>on</strong>g isochr<strong>on</strong> lines are based <strong>on</strong> stratigraphic c<strong>on</strong>siderati<strong>on</strong>s in <strong>the</strong> sample<br />

laminae and <strong>the</strong> amount of detrital matter within <strong>the</strong> dated sample.<br />

3


A total of 68 speleo<strong>the</strong>m samples was taken and inspected from Denya Cave, 37 of<br />

which were identified as seismites; of <strong>the</strong>m, 32 were processed. Ten seismites are<br />

severed stalagmites broken al<strong>on</strong>g sub-horiz<strong>on</strong>tal plains. Nine seismites of <strong>the</strong> 32 are<br />

severed stalactites of different shapes and sizes. The remaining seismites are<br />

flowst<strong>on</strong>e samples in which breaks and depositi<strong>on</strong>al unc<strong>on</strong>formities were found; some<br />

revealed soda straw speleo<strong>the</strong>ms embedded in <strong>the</strong>m.<br />

The isochr<strong>on</strong> calculated ages obtained for groups of speleo-seismite samples indicate<br />

that each group records a seismic event. Nine age clusters were determined for speleoseismites<br />

from Denya Cave, indicating <strong>the</strong> ages of seismic events which affected <strong>the</strong><br />

cave over <strong>the</strong> last 200ky: 4.8±0.80ka; 10.42±0.69ka; 20.8±3.0ka; 29.1±3.3;<br />

38.0±2.7ka; 57.9±5.2ka; 137±29ka; 147.6±5.4ka and 160±45ka.<br />

A comparis<strong>on</strong> with data available to date from o<strong>the</strong>r paleoseismological studies in <strong>the</strong><br />

regi<strong>on</strong> shows that all ages obtained for Denya Cave age clusters can potentially be<br />

compared to o<strong>the</strong>r ages obtained from o<strong>the</strong>r studies in Israel. The comparis<strong>on</strong><br />

indicates that <strong>the</strong> breaks identified in Denya Cave speleo<strong>the</strong>ms, are not random and<br />

lends supportive evidence to <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong>y represent seismic events. Some<br />

of <strong>the</strong> ages obtained from this study might coincide with ages of seismic events dated<br />

al<strong>on</strong>g <strong>the</strong> Dead Sea Transform, as well as those al<strong>on</strong>g <strong>the</strong> Carmel Fault. Therefore,<br />

future studies are required in order to determine <strong>the</strong> origin of paleo-earthquakes<br />

reported in this study.<br />

4


Table of c<strong>on</strong>tent<br />

1. Introducti<strong>on</strong>................................................................................................................8<br />

1.1 General introducti<strong>on</strong> ............................................................................................8<br />

1.2 Basic assumpti<strong>on</strong>s for paleoseismic research using speleo<strong>the</strong>ms........................9<br />

1.2.1 Previous studies ..........................................................................................10<br />

1.2.2 Basic assumpti<strong>on</strong>s for paleoseismic research in Denya Cave ....................12<br />

1.3 Dating of Speleo<strong>the</strong>ms.......................................................................................14<br />

1.4 Geological setting of Carmel regi<strong>on</strong>..................................................................16<br />

1.4.2 Geological features of Denya neighborhood <strong>on</strong> Mount Carmel.................25<br />

2. Research Objectives.................................................................................................32<br />

3. Methodology............................................................................................................32<br />

3.1 Mapping .............................................................................................................32<br />

3.2 Speleo<strong>the</strong>m sampling.........................................................................................32<br />

3.3 Dating of seismite samples ................................................................................35<br />

3.3.1 Multiple Collector Inductively Coupled Plasma Mass Spectrometer.........35<br />

3.3.2 Single sample dating...................................................................................36<br />

3.3.3 Cluster dating..............................................................................................45<br />

4.1 Single sample age analysis.................................................................................47<br />

4.2 Age cluster analysis ...........................................................................................54<br />

4.2.1 Seismic events in Denya Cave....................................................................64<br />

4.2.2 Isochr<strong>on</strong> age cluster dating .........................................................................65<br />

5. Discussi<strong>on</strong>................................................................................................................71<br />

5.1 Seismic events recorded in Denya Cave speleo<strong>the</strong>ms .......................................71<br />

5.2 Comparis<strong>on</strong> of results with o<strong>the</strong>r paleoseismic studies .....................................72<br />

5.2.1 C<strong>on</strong>siderati<strong>on</strong>s for comparis<strong>on</strong>s between paleoseismic studies..................77<br />

5.1.2 Suggesti<strong>on</strong>s for fur<strong>the</strong>r research .................................................................78<br />

6. C<strong>on</strong>clusi<strong>on</strong>s..............................................................................................................79<br />

7. References................................................................................................................79<br />

5


List of figures<br />

Figure 1: Geological map of Mt. Carmel. 19<br />

Figure 2: DEM map (Hall, 1996) illustrating <strong>the</strong> CF and GF (Gilboa Fault) and <strong>the</strong>ir relati<strong>on</strong> to<br />

<strong>the</strong> DST. 20<br />

Figure 3: Morphotect<strong>on</strong>ic mapping of displaced stream channels in a segment of <strong>the</strong> CF between<br />

Jalame and Yoqneam. 23<br />

Figure 4: Locati<strong>on</strong> of earthquake epicenters (M>2) in <strong>the</strong> vicinity of <strong>the</strong> CF system for <strong>the</strong> years<br />

1980-2000. 24<br />

Figure 5: Earthquakes for <strong>the</strong> years 1980-2007 al<strong>on</strong>g <strong>the</strong> CF and adjacent areas and <strong>the</strong> DST,<br />

and <strong>the</strong>ir respective magnitude distributi<strong>on</strong>. 25<br />

Figure 6: Topographic map (1:50,000) of NW Mt. Carmel. 26<br />

Figure 7: Geological map of <strong>the</strong> nor<strong>the</strong>astern side of Mt. Carmel (Karcz, 1958). 27<br />

Figure 8: Part of a preliminary <strong>faul</strong>t map of central and sou<strong>the</strong>rn Mt. Carmel (Segev and Sass,<br />

2006). 27<br />

Figure 9: Pictures from a quarry in Denya neighborhood, Haifa. 29<br />

Figure 10: Plan of upper chamber in Denya Cave, Haifa. 30<br />

Figure 11: Seismic features in Denya Cave. 31<br />

Figure 12: Pictures from <strong>the</strong> lower chamber of Denya Cave. 31<br />

Figure 13: Denya Cave seismite clasificati<strong>on</strong>. 34<br />

Figure 14: Sample DN-7 35<br />

Figure 15: Photographic ilustrati<strong>on</strong> of <strong>the</strong> locati<strong>on</strong> of drilling for isochr<strong>on</strong> samples: DN-4 Iso,<br />

DN-4 Iso2 and DN-17 Iso. 40<br />

Figure 16: Photographic ilustrati<strong>on</strong> of <strong>the</strong> locati<strong>on</strong> of drilling for isochr<strong>on</strong> samples: DN-16 Iso,<br />

DN-35 Iso, DN-53 Iso and DN-62 Iso. 41<br />

Figure 17: Dated seismite uncorrected ages. 51<br />

Figure 18: Sample stacking plot. 52<br />

Figure 19: U-series evoluti<strong>on</strong> diagram for Denya Cave seismite samples. 55<br />

Figure 20: 5ka sample age cluster. 56<br />

Figure 21: Age cluster ~5ka samples. 56<br />

Figure 22: 10.4ka sample age cluster. 57<br />

Figure 23: Age cluster ~10.5ka samples. 57<br />

Figure 24: 21ka sample age cluster. 58<br />

Figure 25: Age cluster ~21ka samples. 58<br />

Figure 26: 29ka sample age cluster. 59<br />

Figure 27: Age cluster ~29ka samples. 59<br />

Figure 28: 38ka sample age cluster. 60<br />

Figure 29: Age cluster ~38ka samples. 60<br />

Figure 30: 58ka sample age cluster. 61<br />

Figure 31: Age cluster ~58ka samples. 61<br />

Figure 32: 137ka sample age cluster. 62<br />

Figure 33: Age cluster ~137ka samples. 63<br />

Figure 34: 148ka sample age cluster. 63<br />

Figure 35: Age cluster ~147ka samples. 64<br />

Figure 36: 160ka sample age cluster. 64<br />

Figure 37: Age cluster ~160ka samples. 64<br />

Figure 38: U-series evoluti<strong>on</strong> diagram for Denya Cave seismite samples showing <strong>the</strong> projected<br />

data. 68<br />

Figure 39: U-series evoluti<strong>on</strong> diagrams for Denya Cave seismite samples showing uncorrected<br />

ages. 69<br />

Figure 40: Comparis<strong>on</strong> between Denya Cave cluster results and o<strong>the</strong>r paleoseismic studies in <strong>the</strong><br />

regi<strong>on</strong>. 76<br />

6


List of Tables<br />

Table 1: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples. 40<br />

Table 2: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples. 41<br />

Table 3: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples. 42<br />

Table 4: Results of an experiment in order to determine <strong>the</strong> nature of <strong>the</strong> detrital comp<strong>on</strong>ent<br />

found in samples from Denya Cave. 44<br />

Table 5: Denya Cave seismite I.D.'s 49<br />

Table 6: Dated seismite samples' isotopic ratios and uncorrected ages. 53<br />

Table 7: Comparis<strong>on</strong> between <strong>the</strong> ages obtained by different dating techniques for Denya Cave<br />

seismite samples. 70<br />

Table 8: Comparis<strong>on</strong> between Denya Cave cluster results and o<strong>the</strong>r paleoseismic studies in <strong>the</strong><br />

regi<strong>on</strong>. 75<br />

7


1. Introducti<strong>on</strong><br />

1.1 General introducti<strong>on</strong><br />

Mt. Carmel, a c<strong>on</strong>tinental uplift of more than 500m above sea level in <strong>the</strong> north of Israel,<br />

is a manifestati<strong>on</strong> of tect<strong>on</strong>ic movements. The uplift is defined by a NW to NNW <strong>faul</strong>t, which<br />

is a branch of <strong>the</strong> Dead Sea transform (DST) system that c<strong>on</strong>tinues into <strong>the</strong> Mediterranean<br />

c<strong>on</strong>tinental shelf (Hofstetter et al., 1989). The Carmel Fault (CF) is observed as a z<strong>on</strong>e of<br />

deformati<strong>on</strong>, ra<strong>the</strong>r than a single <strong>faul</strong>t trace (Rotstein et al., 1993). The <strong>faul</strong>t has been active<br />

since <strong>the</strong> Miocene and evidence for ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> during <strong>the</strong> Pleistocene has been documented; yet<br />

very little is known about <strong>the</strong> extent of seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> CF during <strong>the</strong> Quaternary<br />

(Gluck, 2002). On August 24 1984, an earthquake of a magnitude (M L ) of 5.3 caused slight<br />

damage in Haifa and adjacent towns (Hofstetter et al., 1996). That earthquake aroused <strong>the</strong><br />

interest of many since not much was known about <strong>the</strong> extent of seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> in <strong>the</strong> envir<strong>on</strong>s<br />

of Mt. Carmel. It also emphasized <strong>the</strong> importance of understanding <strong>the</strong> tect<strong>on</strong>ic regime of that<br />

part of Israel as noted by Hofstetter et al. (1989). In a later article Hofstetter et al., 1996<br />

presented data <strong>on</strong> a series of about 550 earthquakes (1.0≤M L ≤5.3) al<strong>on</strong>g <strong>the</strong> Carmel-Tirtza <strong>faul</strong>t<br />

during a ten year interval (1984-1994). Their analysis yielded informati<strong>on</strong> that fur<strong>the</strong>r indicates<br />

<strong>the</strong> significance for understanding this specific <strong>faul</strong>t system and <strong>the</strong> earthquakes it might<br />

produce.<br />

The record of paleo-earthquakes in <strong>the</strong> Israel regi<strong>on</strong> is based <strong>on</strong> many independent<br />

sources ranging from historical and archeological evidence to geomorphological and<br />

geological findings (e.g. Amiran et al., 1994; Marco et al., 1996; Ellenblum et al., 1998; Enzel<br />

et al., 2000; Migowski et al., 2004; Begin et al., 2005; Agn<strong>on</strong> et al. 2006). The possibility of<br />

extending that earthquake catalog, even if limited <strong>on</strong>ly to major earthquakes, can provide<br />

fundamental elements for seismotect<strong>on</strong>ic knowledge, seismogenic descripti<strong>on</strong>s and<br />

c<strong>on</strong>sequently, <strong>the</strong> evaluati<strong>on</strong> of seismic hazards of <strong>the</strong> area.<br />

Scholars (e.g. Becker et al., 2005, 2006; Kagan et al., 2005) agree that a fundamental<br />

aspect of a c<strong>on</strong>cise earthquake catalog is based <strong>on</strong> a multi-archival approach. Using different<br />

types of paleo-earthquake proxies not <strong>on</strong>ly enables c<strong>on</strong>firmati<strong>on</strong> of each of <strong>the</strong> separate<br />

findings, but allows for a better understanding of spatial influence of earthquakes <strong>on</strong> different<br />

geological envir<strong>on</strong>ments and <strong>the</strong>ir c<strong>on</strong>necti<strong>on</strong>s to tect<strong>on</strong>ic settings of <strong>the</strong> regi<strong>on</strong>.<br />

Broken or deformed cave deposits (speleo-seismites) can be used for paleoseismic<br />

research since <strong>the</strong>y can be dated with radiometric techniques (e.g. Forti, 1998; Davenport,<br />

8


1998; Lacave et al., 2004; Kagan et al., 2005; Panno et al., 2006). The dating of seismites<br />

c<strong>on</strong>tributes to an earthquake data base as an independent source of informati<strong>on</strong> and can also<br />

indicate frequency of major earthquakes (Kagan et al., 2005). Fur<strong>the</strong>rmore, an analysis of <strong>the</strong><br />

physical features of seismites could allow better understanding of <strong>the</strong> tect<strong>on</strong>ic mechanism<br />

which produces <strong>the</strong>m (e.g., Kostov, 2002). Anthropogenic, climatic, glacial movements and<br />

o<strong>the</strong>r n<strong>on</strong> seismic activities can cause deformati<strong>on</strong> and breaking of speleo<strong>the</strong>ms, and <strong>the</strong>refore<br />

it is required to eliminate <strong>the</strong>m as factors in determining seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> (Becker et al., 2006).<br />

In a study c<strong>on</strong>ducted in caves in <strong>the</strong> Judean Mountains (Kagan et al., 2005), earthquake<br />

sequences were corroborated by independent evidence, clearly showing that data derived from<br />

broken speleo<strong>the</strong>ms enables precise dating and in-depth analyses of ancient earthquakes. The<br />

Carmel regi<strong>on</strong> has some karstic features that can serve as a basis for a paleo-seismological<br />

study of <strong>the</strong> <strong>faul</strong>t system that defines it, enabling a fur<strong>the</strong>r enlargement of <strong>the</strong> data base<br />

currently available, and perhaps allowing for a better understanding of it. The U-Th dating<br />

method, which has a 350 to 500kyr limit, can vastly increase <strong>the</strong> length of <strong>the</strong> seismic record in<br />

<strong>the</strong> Quaternary.<br />

1.2 Basic assumpti<strong>on</strong>s for paleoseismic research using<br />

speleo<strong>the</strong>ms<br />

Special envir<strong>on</strong>ments in caves help to maintain seismic evidence in good c<strong>on</strong>diti<strong>on</strong>,<br />

protecting against erosi<strong>on</strong> and degradati<strong>on</strong>. Calcitic cave deposits grow in a laminar pattern<br />

and <strong>the</strong>refore preserve a very detailed record of events, namely climatic (e.g. Frumkin et al.,<br />

1999; Bar-Ma<strong>the</strong>ws et al, 2003), and some tect<strong>on</strong>ic <strong>on</strong>es. Speleo<strong>the</strong>ms can be dated with<br />

radiometric methods so it is possible to observe a sequence of this type of event (Kagan et al.,<br />

2005).<br />

Effects of earthquakes <strong>on</strong> caves and speleo<strong>the</strong>ms can come in different forms such as<br />

collapsed speleo<strong>the</strong>ms and rockslides due to earth movements or changes in growth axes due to<br />

tilting and closing or opening of cracks, depending up<strong>on</strong> <strong>the</strong>ir locati<strong>on</strong>s in relati<strong>on</strong> to stress<br />

fields (e.g., Forti, 1998; Muir-Wood and King, 1993; Morinaga et al., 1994; Gilli et al., 1999;<br />

Lemeille et al., 1999). Aside from dating, which can indicate a sequence of paleoseismic<br />

events (Kagan et al., 2005), analysis of <strong>the</strong>se elements can help c<strong>on</strong>strain locati<strong>on</strong>s and<br />

epicenters of earthquakes as well as <strong>the</strong>ir magnitudes (Forti, 1998) or peak ground accelerati<strong>on</strong><br />

(PGA) generated by <strong>the</strong>m (e.g. Lacave et al., 2004; Szeidovitz et al., 2008). With <strong>the</strong>se ideas in<br />

mind, many studies have been c<strong>on</strong>ducted <strong>on</strong> damaged caves in different places around <strong>the</strong><br />

9


world in order to chr<strong>on</strong>ologically rec<strong>on</strong>struct principal paleoseismic events and to estimate <strong>the</strong><br />

maximum earthquake possible in a given seismogenic area.<br />

1.2.1 Previous studies<br />

A number of studies are of particular relevance to this discussi<strong>on</strong>. Postpischl et al. (1991)<br />

took samples of growth anomalies in stalagmites from <strong>the</strong> “Grotta Del Cervo” and <strong>the</strong> “Grotta<br />

a Male” (caves in central Italy), and dated <strong>the</strong>m using 14 C and U/Th radiometric methods.<br />

Observing <strong>the</strong> anomalies, <strong>the</strong>y found <strong>the</strong>y are always related to earthquakes or o<strong>the</strong>r tect<strong>on</strong>ic<br />

events. They also found that collapsed stalagmites presented preferential azimuths,<br />

dem<strong>on</strong>strating an involvement of <strong>the</strong> entire karst area and <strong>the</strong>refore, <strong>the</strong> tect<strong>on</strong>ic character of<br />

<strong>the</strong> event which generated a particular collapse. They associated <strong>the</strong>se collapse formati<strong>on</strong>s with<br />

four different seismic periods of ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g>, <strong>the</strong> youngest of which is most probably related to <strong>the</strong><br />

December 1456 earthquake that occurred in central Italy.<br />

Morinaga et al. (1994) inferred paleo-seismicity from paleo-magnetic dating of<br />

speleo<strong>the</strong>ms in western Japan. Those researchers claimed that in areas of active seismicity,<br />

earthquakes can c<strong>on</strong>tribute to a c<strong>on</strong>diti<strong>on</strong> in which blocks are “ready to collapse”. Using data<br />

<strong>on</strong> weak, yet stable remnant magnetizati<strong>on</strong> of speleo<strong>the</strong>ms, <strong>the</strong>y determined <strong>the</strong> Paleo-Secular<br />

Variati<strong>on</strong> (PSV) of a geomagnetic field, which <strong>the</strong>y <strong>the</strong>n compared to a standard curve in order<br />

to establish <strong>the</strong> time of growth. In that study three stalagmites, which were perched <strong>on</strong><br />

collapsed limest<strong>on</strong>e blocks, yielded three ages interpreted to indicate dates of past earthquakes.<br />

In order to validate this research method, Lemeille et al. (1999) c<strong>on</strong>ducted research in<br />

regi<strong>on</strong>s where earthquakes are studied and known from historic based catalogues. A regi<strong>on</strong>al<br />

study was carried out in <strong>the</strong> vicinity of Basel (Switzerland), <strong>the</strong> area of <strong>the</strong> greatest damage<br />

during <strong>the</strong> historically dated earthquake of 1356 CE. They explored and analyzed growth<br />

anomalies and displacements of speleo<strong>the</strong>ms in two karstic caves. Battlerloch Cave yielded a<br />

fallen block from which dating samples of re-growth phases were taken in order to c<strong>on</strong>firm<br />

<strong>the</strong>ir seismic origins. Dieboldslochli Cave revealed a large number of broken stalagmites; <strong>the</strong><br />

offset of re-growth <strong>on</strong> <strong>the</strong> <strong>faul</strong>t plane is assumed to be related to a number of events, all of<br />

which could have been caused by earthquakes. Moreover, some preliminary data <strong>on</strong> ages of<br />

<strong>the</strong>se anomalies corresp<strong>on</strong>ded to <strong>the</strong> 1356 CE earthquake.<br />

Similar studies were carried out by Gilli et al. (1999), who investigated eight caves near<br />

St. Paul de Fenouille in <strong>the</strong> eastern Pyrenees (France), following an earthquake of magnitude<br />

5.2 in February 1996. That kind of study has <strong>the</strong> advantage of knowing <strong>the</strong> age of <strong>the</strong> damage<br />

and <strong>the</strong> accurate magnitude of an event. Collapsed soda straw stalactites and small rocks were<br />

observed and attributed to <strong>the</strong> earthquake. O<strong>the</strong>r more ancient damage was also noted. A<br />

10


statistical study indicated that <strong>the</strong> main directi<strong>on</strong> of <strong>the</strong> collapsed soda straws was in<br />

accordance with <strong>the</strong> E-W movement of <strong>the</strong> <strong>faul</strong>t associated with <strong>the</strong> earthquake. Numerical<br />

simulati<strong>on</strong>s c<strong>on</strong>firmed that soda straw stalactites are relatively str<strong>on</strong>g objects that may break<br />

during earthquakes under certain c<strong>on</strong>diti<strong>on</strong>s.<br />

Kostov (2002) identified deformati<strong>on</strong>s in speleo<strong>the</strong>ms, with possible co-seismic origin in<br />

two caves in <strong>the</strong> Balkan Range and Rhodope Mts. (Bulgaria). In Lepenitsa Cave, orientati<strong>on</strong> of<br />

68 broken stalagmites was measured and showed an expressed preference to be aligned with<br />

<strong>the</strong> directi<strong>on</strong> of <strong>the</strong> epicenters of <strong>the</strong> str<strong>on</strong>gest known earthquakes in <strong>the</strong> area. This directi<strong>on</strong><br />

did not coincide with <strong>the</strong> directi<strong>on</strong> of flow in <strong>the</strong> caves sediments, which precludes an<br />

assumpti<strong>on</strong> that <strong>the</strong>y might have been displaced by sediment creep (Gilli et al., 1999).<br />

Moreover, <strong>the</strong> stalagmites had fallen <strong>on</strong> a flat, stable, horiz<strong>on</strong>tal floor in a manner that excludes<br />

<strong>the</strong> possibility of sec<strong>on</strong>dary depositi<strong>on</strong>. Shepran Cave is situated about 55km to <strong>the</strong> southwest<br />

of <strong>the</strong> epicenter of a 1928 Ms=7 earthquake, during which <strong>the</strong>re were eyewitnesses to <strong>the</strong><br />

collapse of several speleo<strong>the</strong>ms. By 2001, several speleo<strong>the</strong>ms in this cave had a calcitic<br />

growth <strong>on</strong> <strong>the</strong>m. One of <strong>the</strong> maxima in <strong>the</strong> distributi<strong>on</strong> of directi<strong>on</strong>s of <strong>the</strong> fallen stalagmites<br />

corresp<strong>on</strong>ds to <strong>the</strong> epicenter of <strong>the</strong> earthquake.<br />

Kagan et al. (2005) introduced a rigorously dated record of earthquakes from an<br />

extensive number of well preserved pre- and post-seismic precipitates from caves located off<br />

<strong>the</strong> Dead Sea Transform (DST) in <strong>the</strong> Judean Hills, near Jerusalem. Covering an 185ky<br />

interval, <strong>the</strong>y dated 38 seismite samples which <strong>the</strong>y attributed to 13-18 earthquakes, with a<br />

mean recurrence interval of ~10-14ky. They also showed that <strong>the</strong>se events complement<br />

independent, near-<strong>faul</strong>t paleoseismic records. Seismites in <strong>the</strong> studied caves (at Har-Tuv and<br />

Soreq) include collapsed stalagmites, stalactites, speleo<strong>the</strong>m pillars and cave ceilings overlain<br />

by re-growth, as well as stalagmites with severed tops and collapsed objects imbedded in<br />

flowst<strong>on</strong>e. In additi<strong>on</strong> <strong>the</strong>y noted an abundance of predominantly horiz<strong>on</strong>tal fissures in<br />

speleo<strong>the</strong>ms and in <strong>the</strong> cave walls. Mapping of <strong>the</strong> Soreq Cave revealed preferential<br />

orientati<strong>on</strong>s of collapsed l<strong>on</strong>g-axis speleo<strong>the</strong>ms which were oriented N-S and E-W. Dating<br />

revealed <strong>the</strong> simultaneity of <strong>the</strong> collapses.<br />

More than two thirds of <strong>the</strong> ages of seismites c<strong>on</strong>cur with ages derived from o<strong>the</strong>r<br />

seismites presented in <strong>the</strong>ir study, which indicate that <strong>the</strong> record produced approximates <strong>the</strong><br />

actual distributi<strong>on</strong> of destructive earthquakes. Moreover, six paleoseismic events that occurred<br />

during <strong>the</strong> past 75ky are identified and dated by 20 damaged speleo<strong>the</strong>ms.<br />

In work which started in 2001, Panno et al. (2006) studied two caves in southwestern<br />

Illinois located within 250km of <strong>the</strong> New Madrid Seismic Z<strong>on</strong>e (NMSZ) and within 150km of<br />

11


epicenters of <strong>the</strong> 1811 and 1812 earthquakes. In those caves <strong>the</strong>y found geological features that<br />

appeared to be related to earthquake ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> including stalagmites with deviated growth axes,<br />

fallen stalactites in an isolated area in <strong>on</strong>e of <strong>the</strong> caves and hundreds of newly grown and still<br />

active speleo<strong>the</strong>ms growing <strong>on</strong> older speleo<strong>the</strong>ms and breakdowns. Using <strong>the</strong> U-Th mass<br />

spectrometry method, <strong>the</strong>y dated three new speleo<strong>the</strong>ms from both caves and c<strong>on</strong>cluded that a<br />

single event triggered <strong>the</strong>ir growth. They suggest two scenarios which could have reopened<br />

former flow paths to <strong>the</strong> caves: (1) <strong>the</strong> 1811-1812 NMSZ earthquake series or (2) <strong>the</strong><br />

beginning of agricultural ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> surface in <strong>the</strong> early 1840s.<br />

Following <strong>the</strong> Nia (Ind<strong>on</strong>esia) earthquake of 2005, Aydan (2008), in his study of <strong>the</strong><br />

Gunung Sitoli Cave noted quite a few earthquake related features, which he found to be newly<br />

formed and which he believes to be associated with that recent event (ruptured columns and<br />

stalactites, fallen stalactites and rock blocks and separated slabs with a new growth phase al<strong>on</strong>g<br />

<strong>the</strong>m). Some of <strong>the</strong>se features were newly formed <strong>on</strong> top of old ruptures and breaks, which he<br />

associates with o<strong>the</strong>r seismic events in that highly active regi<strong>on</strong>.<br />

All of <strong>the</strong> studies cited above are part of a growing body of evidence. They support <strong>the</strong><br />

growing belief that speleo<strong>the</strong>ms could be very good archives of seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> in <strong>the</strong>ir<br />

respective regi<strong>on</strong>s. Two main c<strong>on</strong>siderati<strong>on</strong>s should be taken when approaching this method of<br />

dating paleo-earthquakes, namely <strong>the</strong> various o<strong>the</strong>r mechanisms that could cause damage in<br />

speleo<strong>the</strong>ms, and <strong>the</strong> not yet fully understood mechanisms which allow for <strong>the</strong> rupture of most<br />

speleo<strong>the</strong>ms.<br />

1.2.2 Basic assumpti<strong>on</strong>s for paleoseismic research in Denya Cave<br />

Following <strong>the</strong> above menti<strong>on</strong>ed work of Kagan et al. (2005) in <strong>the</strong> Judean Hills, which<br />

provided ages c<strong>on</strong>sistent with independent evidence for str<strong>on</strong>g earthquakes, similar research<br />

techniques were applied to Denya Cave in order to examine paleoseismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> CF.<br />

While <strong>the</strong>re is some similarity between <strong>the</strong> two areas, <strong>the</strong>re is also <strong>on</strong>e major difference, which<br />

is <strong>the</strong> abundance of paleoseismic evidence for <strong>the</strong> DST. As noted above it c<strong>on</strong>tributes to <strong>the</strong><br />

credibility of results, whereas paleoseismic evidence <strong>on</strong> <strong>the</strong> CF for <strong>the</strong> Quaternary is virtually<br />

n<strong>on</strong> existent. The assumpti<strong>on</strong> is made for Denya Cave that success of a previous study allows<br />

for an attempt at rec<strong>on</strong>structing earthquake data in <strong>the</strong> Carmel regi<strong>on</strong> using <strong>the</strong> same methods.<br />

Fur<strong>the</strong>rmore, as cited above, studies of this kind from around <strong>the</strong> world validate this method of<br />

dating paleo-earthquakes (e.g. Postpischl et al., 1991; Lemeille et al., 1999; Panno et al., 2006)<br />

and evidence of broken speleo<strong>the</strong>ms due to recent earthquakes is likewise well documented<br />

(e.g. Gilli et al., 1999; Kostov, 2002; Aydan, 2008).<br />

12


The first step in establishing viability is <strong>the</strong> exclusi<strong>on</strong> of all o<strong>the</strong>r n<strong>on</strong>-seismic causes for<br />

damage in Denya Cave. Becker et al. (2006) compiled all n<strong>on</strong>-seismic alternative causes for<br />

damage, which needed to be refuted for Denya Cave:<br />

1. Anthropogenic sources—recent damage by c<strong>on</strong>structi<strong>on</strong> of <strong>the</strong> Denya neighborhood<br />

can be distinguished from less recent seismic events by morphological assessment<br />

(Crispim, 1999) and dating. Initial results indicate that ages of damage are within <strong>the</strong><br />

range of thousands of years or more. Human and animal ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> in <strong>the</strong> cave is ruled<br />

out as sources of damage since <strong>the</strong> cave was closed to <strong>the</strong> surface until its artificial<br />

opening in <strong>the</strong> twentieth century CE.<br />

2. Underground glaciers and ice creep or frost acti<strong>on</strong>—in this part of <strong>the</strong> Levant cave<br />

temperatures were significantly above freezing during <strong>the</strong> period investigated<br />

(Frumkin et al., 1999; Bar-Mat<strong>the</strong>ws et al., 2000; Ayal<strong>on</strong> et al., 2002).<br />

3. Erosi<strong>on</strong> and soil creep—water circulati<strong>on</strong> in <strong>the</strong> cave seems to be of a very low<br />

energy and no areas of <strong>the</strong> cave seem to have sediment fills that show any signs of<br />

creep.<br />

4. Flood and debris flow—as well as a lack of evidence of sediment fills, <strong>the</strong> overall<br />

structure of <strong>the</strong> cave does not seem to show any signs of flooding. Fur<strong>the</strong>rmore, <strong>the</strong>re<br />

doesn’t seem to be any c<strong>on</strong>venient water source that could cause a major flood in <strong>the</strong><br />

area or any aperture whereby a large amount of water could enter and/or exit <strong>the</strong> cave.<br />

5. Incati<strong>on</strong>s (cave instability that may result in rock fall or <strong>the</strong> collapse of whole cave<br />

secti<strong>on</strong>s)—<strong>the</strong>se occurrences may well be <strong>the</strong> result of earthquakes, but might also be<br />

due to gravitati<strong>on</strong>al effects caused by <strong>the</strong> instability of crevasses or <strong>the</strong> overall<br />

c<strong>on</strong>structi<strong>on</strong> of karstic cavities. There is some evidence of subsidence in Denya Cave.<br />

The lower chamber collapsed <strong>on</strong>to itself, but <strong>the</strong> cause or date of <strong>the</strong> event cannot be<br />

deduced from what we know. The assessment that <strong>the</strong> collapse was caused by seismic<br />

ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> is based <strong>on</strong> three assumpti<strong>on</strong>s: (1) in this chamber bedrock layers are still<br />

horiz<strong>on</strong>tal, c<strong>on</strong>firming that no tilting movements caused <strong>the</strong> incati<strong>on</strong>. (2) evidence for<br />

corroborative data can be found in o<strong>the</strong>r, nearby caves (see ch. 1.4.2 and Fig. 9); (3)<br />

<strong>the</strong> Carmel regi<strong>on</strong> is seismically active, and thus, affirms <strong>the</strong> likelihood of earthquake<br />

damage <strong>the</strong>re. Observati<strong>on</strong>s of this kind will be elaborated below (see ch. 1.4.1-<br />

Seismicity of Mt. Carmel).<br />

6. Slope movements—<strong>the</strong>se too can be triggered by earthquakes, but may also be<br />

c<strong>on</strong>sidered as expressi<strong>on</strong>s of comm<strong>on</strong> slope degradati<strong>on</strong> processes in rapidly uplifting<br />

terrains with deeply incised river valleys. Mt. Carmel is c<strong>on</strong>sidered to be an uplifting<br />

13


terrain (see ch. 1.4- Geological setting of Carmel regi<strong>on</strong>), yet no direct evidence of<br />

slope movement in <strong>the</strong> area of Denya Cave was found to date. Landslides were<br />

documented mostly <strong>on</strong> <strong>the</strong> nor<strong>the</strong>astern slopes of <strong>the</strong> Carmel.<br />

The eliminati<strong>on</strong> of <strong>the</strong>se points allows for <strong>the</strong> working hypo<strong>the</strong>sis that earthquakes<br />

caused <strong>the</strong> observed damage to speleo<strong>the</strong>ms in Denya Cave.<br />

1.3 Dating of Speleo<strong>the</strong>ms<br />

In <strong>the</strong> 238 U radioactive decay-series a state of secular equilibrium between parent and<br />

daughter nuclides is established in any naturally occurring material that has remained<br />

undisturbed for several milli<strong>on</strong> years because <strong>the</strong> half-life of <strong>the</strong> parent isotope is much greater<br />

than that of <strong>the</strong> intermediate daughters in <strong>the</strong> decay chain. The decay-series in sec<strong>on</strong>dary<br />

deposits formed from <strong>the</strong> dissoluti<strong>on</strong> and subsequent precipitati<strong>on</strong> of such material, however,<br />

will be in a state of disequilibrium at time of formati<strong>on</strong>, with ei<strong>the</strong>r an excess or deficiency of<br />

intermediate nuclides because of fracti<strong>on</strong>ati<strong>on</strong> processes. The extent to which it has returned to<br />

secular equilibrium in a closed system from an initial state of disequilibrium can be expressed<br />

by a straightforward functi<strong>on</strong> of time using <strong>the</strong> decay c<strong>on</strong>stants if <strong>the</strong> following criteria are<br />

satisfied: (1) intermediate and daughter decay products at time of formati<strong>on</strong> were absent, or if<br />

present, can be corrected for; (2) no gain or loss of <strong>the</strong> parent nuclide or daughter products<br />

occurred since <strong>the</strong> time of formati<strong>on</strong> (Richards and Dorale, 2003).<br />

U-series dating of speleo<strong>the</strong>ms is based <strong>on</strong> <strong>the</strong> extreme fracti<strong>on</strong>ati<strong>on</strong> of <strong>the</strong> parent 238 U<br />

isotope from its l<strong>on</strong>g-lived daughter 230 Th in <strong>the</strong> hydrosphere. The average abundances of U<br />

and Th in <strong>the</strong> earth’s c<strong>on</strong>tinental crust are 1.7 and 8.5 µg/g respectively (Wedepohl, 1995).<br />

Their relative abundances in <strong>the</strong> hydrosphere are different principally because of <strong>the</strong>ir differing<br />

solubility in surface and near surface envir<strong>on</strong>ments (Richards and Dorale, 2003).<br />

U is readily mobilized in <strong>the</strong> meteoric envir<strong>on</strong>ment, principally as <strong>the</strong> highly soluble<br />

Uranyl i<strong>on</strong> (UO 2+ 2 ). The l<strong>on</strong>g-lived daughter product Th exists in a +4 oxidati<strong>on</strong> state and is<br />

readily hydrolyzed and ei<strong>the</strong>r precipitated or absorbed <strong>on</strong> detrital particulates. It can <strong>the</strong>refore<br />

be readily transported with <strong>the</strong> result that waters feeding sec<strong>on</strong>dary calcite deposits will<br />

generally have negligible Th c<strong>on</strong>centrati<strong>on</strong>s. In a closed system, <strong>the</strong> extent to which 230 Th/ 238 U<br />

ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> (a) ratios have returned to unity is a functi<strong>on</strong> of time (t).<br />

Calcite speleo<strong>the</strong>ms can be dated accurately by U-series disequilibrium techniques under<br />

specific c<strong>on</strong>diti<strong>on</strong>s: (1) when <strong>the</strong> system remained closed to <strong>the</strong> additi<strong>on</strong> or removal of U or Th<br />

nuclides to <strong>the</strong> lattice; (2) when <strong>the</strong> deposit is younger than ~500,000y; (3) when <strong>the</strong>re is a<br />

sequential stratigraphic layering al<strong>on</strong>g <strong>the</strong> growth axis; (4) when <strong>the</strong>re is no initial Th in <strong>the</strong><br />

14


crystal lattice; (5) when detrital Th is known and corrected for (Kaufman et al., 1998); (6)<br />

when analytical and counting errors as well as decay c<strong>on</strong>stants are known.<br />

As menti<strong>on</strong>ed above, a U-series radi<strong>on</strong>uclide system should be closed to postdepositi<strong>on</strong>al<br />

migrati<strong>on</strong> or additi<strong>on</strong> c<strong>on</strong>stituent nuclides. Material analysis should be d<strong>on</strong>e in<br />

order to avoid working with <strong>the</strong> following materials: (1) Authigenic material that shows<br />

evidence of wea<strong>the</strong>ring. (2) Any sign of recrystallizati<strong>on</strong>, such as c<strong>on</strong>versi<strong>on</strong> from arag<strong>on</strong>ite to<br />

calcite, since it is indicative of potential nuclide migrati<strong>on</strong> (Bar-Mat<strong>the</strong>ws et al., 1997). Denya<br />

Cave speleo<strong>the</strong>ms are dense, macrocrystalline calcites, showing no wea<strong>the</strong>ring and<br />

recrystallizati<strong>on</strong> effects. In additi<strong>on</strong>, <strong>the</strong> cave was closed to <strong>the</strong> surface until <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> of<br />

Denya neighborhood. It is <strong>the</strong>refore assumed that Denya Cave is a closed system.<br />

In this study dating with <strong>the</strong> 230 Th/U method was c<strong>on</strong>ducted <strong>on</strong> a Multiple Collector<br />

Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS), which produces high<br />

analytical precisi<strong>on</strong> and enables work <strong>on</strong> a small sample (~0.1g) that in turn gives ages at a<br />

high resoluti<strong>on</strong>, due to <strong>the</strong> ability to sample individual laminae. Results may yield ages which<br />

have an error margin of ca. 1% or less.<br />

For reas<strong>on</strong>s which are explained bellow (ch. 3.3- Dating of seismite samples) two sets of<br />

ages are presented in this study;<br />

1. Based <strong>on</strong> age equati<strong>on</strong> [1] according to Broecker and Kaufman (1965):<br />

[1] [ 230 Th/ 234 U] = [ 238 U/ 234 U]*(1-e -λ230t ) + {1-[ 238 U/ 234 U]}*{λ 230 /(λ 230 -λ 234 )}*[1-e (-λ230-λ234)t ]<br />

The calculati<strong>on</strong> of age is d<strong>on</strong>e using <strong>the</strong> Newt<strong>on</strong>-Raphs<strong>on</strong> iterati<strong>on</strong> in which <strong>the</strong> final age and<br />

<strong>the</strong> analytical error (±2σ) is given. This equati<strong>on</strong> was used for dating single samples.<br />

2. Based <strong>on</strong> age equati<strong>on</strong> [2] according to Broecker (1963):<br />

[2] [ 230 Th/ 238 U] = (1-e -λ230t ) + {[ 238 U/ 234 U] - 1}*{λ 230 /(λ 230 -λ 234 )}*[1-e -(λ230-λ234)t ]<br />

The calculati<strong>on</strong> of age is d<strong>on</strong>e using Isoplot3.7 by Ludwig (2008) with a first derivative<br />

estimati<strong>on</strong> for samples of similar ages plotted <strong>on</strong> isochr<strong>on</strong> lines (sample age clusters). Here too<br />

<strong>the</strong> analytical error (±2σ) is given.<br />

In both equati<strong>on</strong>s <strong>the</strong> c<strong>on</strong>stants are:<br />

λ 230 = 9.195 x 10 -6 y -1 – 230 Th c<strong>on</strong>stant<br />

λ 234 = 2.835 x 10 -6 y -1 – 234 U c<strong>on</strong>stant<br />

t –years.<br />

All ratios presented here and in <strong>the</strong> following passages in brackets represent ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g><br />

ratios. Those equati<strong>on</strong>s are based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that no initial 230 Th is present in <strong>the</strong><br />

sample and that all of <strong>the</strong> U is derived from <strong>the</strong> water, ra<strong>the</strong>r than from detrital material or<br />

o<strong>the</strong>r sources. These assumpti<strong>on</strong>s hold well for speleo<strong>the</strong>m samples c<strong>on</strong>taining negligible<br />

amounts of detrital Th, but a correcti<strong>on</strong> must be made for it in all o<strong>the</strong>r samples. Initial 230 Th is<br />

15


generally c<strong>on</strong>sidered to be associated with a detrital comp<strong>on</strong>ent that becomes cemented, or<br />

occluded within <strong>the</strong> speleo<strong>the</strong>m. This comp<strong>on</strong>ent may be composed of clays, alumino-silicates<br />

or Fe-oxyhydroxides with str<strong>on</strong>gly absorbed Th 4+ . Th incorporated in speleo<strong>the</strong>ms may also<br />

have been transported in colloidal phases, attached to organic molecules or as carb<strong>on</strong>ate<br />

complexes in soluti<strong>on</strong> (Richards and Dorale, 2003 and references <strong>the</strong>rein).<br />

The extent of initial Th c<strong>on</strong>taminati<strong>on</strong> can be m<strong>on</strong>itored by measurement of 232 Th, which<br />

is <strong>the</strong> most abundant, extremely l<strong>on</strong>g lived isotope of Th with a half life of 1.401x10 10 y. Where<br />

232 Th c<strong>on</strong>tent is high, initial 230 Th c<strong>on</strong>centrati<strong>on</strong> is also expected to be significant. To a first<br />

approximati<strong>on</strong>, correcti<strong>on</strong> can be made for <strong>the</strong> detrital comp<strong>on</strong>ent of 230 Th by using <strong>the</strong> 232 Th<br />

c<strong>on</strong>centrati<strong>on</strong> as an index of c<strong>on</strong>taminati<strong>on</strong> and assuming an appropriate value of 230 Th/ 232 Th<br />

for <strong>the</strong> sedimentary c<strong>on</strong>text. By assuming that 232 Th was incorporated at <strong>the</strong> time of<br />

c<strong>on</strong>taminati<strong>on</strong>, and that <strong>the</strong> excess 230 Th associated with this 232 Th decayed over time since<br />

<strong>the</strong>n, in situ ingrowth within <strong>the</strong> authigenic carb<strong>on</strong>ate phase can be calculated. The<br />

c<strong>on</strong>centrati<strong>on</strong>s of 234 U and 238 U in <strong>the</strong> authigenic carb<strong>on</strong>ate are assumed to equal <strong>the</strong>ir<br />

c<strong>on</strong>centrati<strong>on</strong>s in <strong>the</strong> lechate that includes <strong>the</strong> porti<strong>on</strong> of detritus that has entered soluti<strong>on</strong><br />

(Richards and Dorale, 2003).<br />

Two methods of age correcti<strong>on</strong>s for initial 230 Th have been attempted in this study; (1)<br />

Finding a correcti<strong>on</strong> value for <strong>the</strong> Denya Cave depositi<strong>on</strong>al envir<strong>on</strong>ment. This was initially<br />

attempted by using <strong>the</strong> isochr<strong>on</strong> method suggested by Kaufman et al. (1998) as was d<strong>on</strong>e for<br />

Soreq Cave. Later <strong>on</strong> a direct approach to finding this correcti<strong>on</strong> value was applied. (2) Using<br />

<strong>the</strong> isochr<strong>on</strong> method based <strong>on</strong> Osm<strong>on</strong>d type isochr<strong>on</strong>s as suggested by Ludwig and Titteringt<strong>on</strong><br />

(1994), applied using Isoplot3.7 (Ludwig, 2008). Both methods and <strong>the</strong>ir c<strong>on</strong>sequent results<br />

are fur<strong>the</strong>r discussed below (ch’s. 3, 4- Methodology and Results).<br />

1.4 Geological setting of Carmel regi<strong>on</strong><br />

Studies based <strong>on</strong> geophysical evidence suggest <strong>the</strong> c<strong>on</strong>tinental margin west of <strong>the</strong> DST<br />

is divided into two major provinces, <strong>the</strong> boundary between which is <strong>the</strong> CF system and its<br />

postulated c<strong>on</strong>tinuati<strong>on</strong> offshore (Hofstetter et al. 1991; Ben-Avaham and Ginzburg, 1990;<br />

Garfunkel and Almagor, 1985).<br />

The nor<strong>the</strong>rn CF is part of a <strong>faul</strong>t system that begins at <strong>the</strong> Beth-Shean area of <strong>the</strong> DST<br />

and extends into <strong>the</strong> c<strong>on</strong>tinental shelf of <strong>the</strong> eastern Mediterranean (Fig. 2; Schattner et al.,<br />

2006; Ben-Avraham and Hall, 1977). This system is a sec<strong>on</strong>dary branching of <strong>the</strong> DST<br />

(Freund, 1965). Freund et al. (1970) found a c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong> DST and young <strong>faul</strong>ting<br />

trends in Eastern Galilee and in Leban<strong>on</strong>, and c<strong>on</strong>cluded that this intense <strong>faul</strong>ting trend is<br />

16


caused by curved segments al<strong>on</strong>g <strong>the</strong> DST. Geophysical studies suggest that <strong>the</strong> crust,<br />

including <strong>the</strong> c<strong>on</strong>tinental shelf is divided into two, and that <strong>the</strong> CF system is <strong>the</strong> boundary<br />

between <strong>the</strong>m. The sou<strong>the</strong>rn part includes central Israel and <strong>the</strong> nor<strong>the</strong>rn part includes Galilee<br />

and Leban<strong>on</strong> (Garfunkel and Almagor, 1985; Ben-Avraham and Gintzburg, 1990; Hofstetter et<br />

al., 1991).<br />

The CF, which follows a general NW to SE directi<strong>on</strong> (Fig. 1), is a set of many small <strong>faul</strong>t<br />

strands and has distinct tect<strong>on</strong>ic and morphological expressi<strong>on</strong>s (Hofstetter et al., 1996). The<br />

<strong>faul</strong>t z<strong>on</strong>e is quite complex with a terrestrial uplifting of about 500m above sea level. The CF<br />

and its c<strong>on</strong>tinuati<strong>on</strong> as <strong>the</strong> Gilboa Fault (GF) toge<strong>the</strong>r combine to create a seismically active<br />

z<strong>on</strong>e stretching for approximately 130km (Fig. 2; Hofstetter et al., 1996). Given that <strong>the</strong><br />

seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> in <strong>the</strong> Galilee coastal plain is c<strong>on</strong>nected to <strong>the</strong> c<strong>on</strong>tinuati<strong>on</strong> of <strong>the</strong> <strong>faul</strong>t in <strong>the</strong><br />

Mediterranean (R<strong>on</strong> et al., 1984; Achm<strong>on</strong>, 1986; Ben-Gai, 1989), <strong>the</strong> <strong>faul</strong>t z<strong>on</strong>e stretches more<br />

than 170km. Rotstein et al. (1993) carried out a series of high resoluti<strong>on</strong> seismic lines crossing<br />

<strong>the</strong> CF z<strong>on</strong>e, which permitted a detailed analysis of its shallow structure and nature. According<br />

to <strong>the</strong>ir analysis <strong>the</strong> CF is a wide z<strong>on</strong>e of intense deformati<strong>on</strong> ra<strong>the</strong>r than a single <strong>faul</strong>t trace. In<br />

<strong>the</strong> Jezreel Valley <strong>the</strong> deformati<strong>on</strong> is limited to an approximately 800m wide z<strong>on</strong>e and appears<br />

to be associated with pure strike-slip moti<strong>on</strong>. East of Mt. Carmel <strong>the</strong> <strong>faul</strong>t changes trend from<br />

NW-SE to about N-S, and coincides with a z<strong>on</strong>e of intense deformati<strong>on</strong> at least 3km wide.<br />

North of Mt. Carmel, where <strong>the</strong> <strong>faul</strong>t resumes its NW-SE trend, it is nearly vertical at depth.<br />

The development of movement al<strong>on</strong>g <strong>the</strong> CF system with time has been addressed by<br />

different studies. Ben-Avraham and Gintzburg (1990) suggested that <strong>the</strong> CF originates in a<br />

Paleozoic suture line between accreted terrains, which <strong>the</strong>y linked to <strong>the</strong> closure of <strong>the</strong> Paleo-<br />

Tethys. Achm<strong>on</strong> and Ben-Avraham (1997) suggested three major stages of tect<strong>on</strong>ic<br />

development: A Triassic-Jurassic rifting phase due to a N-S opening of <strong>the</strong> Neo-Tethys. A<br />

compressive phase of <strong>the</strong> Late Miocene, which <strong>the</strong>y suggest causes left lateral strike-slip<br />

movement al<strong>on</strong>g <strong>the</strong> CF z<strong>on</strong>e, where some of <strong>the</strong> older <strong>faul</strong>ts are reactivated. An uplifting<br />

phase during <strong>the</strong> Pliocene-Pleistocene, in which most of <strong>the</strong> <strong>faul</strong>ts are reactivated as normal<br />

<strong>faul</strong>ts, and <strong>the</strong> regi<strong>on</strong> of <strong>the</strong> Carmel, Umm-El-Fahm and <strong>the</strong> Gilboa are raised and tilted to <strong>the</strong><br />

southwest. The extent of <strong>the</strong> uplifting movement of Mt. Carmel during <strong>the</strong> Pliocene-<br />

Pleistocene to <strong>the</strong> present has not yet been clearly resolved.<br />

The Carmel regi<strong>on</strong> is an isolated mountain range in northwestern Israel (Fig. 1). Upper<br />

Cretaceous marine rocks are exposed (Kashai, 1966; Karcz, 1958) al<strong>on</strong>g with volcanic<br />

intercalati<strong>on</strong>s (Sass, 1980) and marine Paleogene rocks (Karcz, 1958). The stratigraphic<br />

sequence shows limest<strong>on</strong>es, dolomites, chalk and marls (Sass, 1957; Karcz, 1958; Kashai,<br />

17


1966), which are exposed throughout <strong>the</strong> area. These are indicative of a depositi<strong>on</strong>al<br />

envir<strong>on</strong>ment of a c<strong>on</strong>tinental shelf margin (Sass, 1980; Sass and Bein, 1982).<br />

Mt. Carmel, an uplifted block tilted to <strong>the</strong> southwest, is defined <strong>on</strong> its nor<strong>the</strong>astern side<br />

by <strong>the</strong> CF (Fig. 1; Achm<strong>on</strong>, 1986; Kafri, 1969,1970; Karcz, 1959). In general it is an<br />

asymmetrical anticline, about 50km l<strong>on</strong>g, with smaller anticlines and synclines that run parallel<br />

to <strong>the</strong> main anticline (Kashai, 1966; Picard and Kashai, 1958). To <strong>the</strong> north of Isfiya-Shalala<br />

Fault (Fig. 1), which has a generally E-W orientati<strong>on</strong>, <strong>the</strong> <strong>faul</strong>t pattern is different from that <strong>on</strong><br />

its south side. In <strong>the</strong> nor<strong>the</strong>rn area <strong>the</strong>re are a few individual <strong>faul</strong>t strands that show a vertical<br />

displacement of several meters. To <strong>the</strong> south, <strong>the</strong> <strong>faul</strong>t system spreads in a fan-like formati<strong>on</strong><br />

from a N-S directi<strong>on</strong> in <strong>the</strong> west to an E-W directi<strong>on</strong> in <strong>the</strong> east (Fig. 1; Kashai, 1966). The<br />

displacement <strong>on</strong> this system ranges between 1300 to 2900m (Sass, 1980; Sass et al., 1977).<br />

According to R<strong>on</strong> et al. (1990 and 1984) <strong>the</strong> movement al<strong>on</strong>g those <strong>faul</strong>ts is due to rotati<strong>on</strong>s of<br />

blocks of <strong>the</strong> sou<strong>the</strong>rn and nor<strong>the</strong>rn parts of Mt. Carmel. These scholars showed <strong>the</strong> sou<strong>the</strong>rn<br />

<strong>faul</strong>ts to have <strong>on</strong>e set of N-S trending left lateral strike-slip, and three minor sets of E-W<br />

trending right lateral strike-slip, NW trending normal and NW trending left lateral oblique<br />

normal <strong>faul</strong>ts. They c<strong>on</strong>clude that oblique displacement is superimposed <strong>on</strong> pre-existing<br />

normal <strong>faul</strong>ts.<br />

18


1<br />

2<br />

Yagur<br />

Jalame<br />

3<br />

4<br />

Yoqne’am<br />

Meggido<br />

Figure 1: Geological map of Mt. Carmel (Sneh et al., 1989). Denya Cave area is marked by a yellow<br />

frame. Blue arrows mark <strong>the</strong> research areas of: 1. Salam<strong>on</strong> et al. (2001) and Zilberman et al. (2006); 2.<br />

Feigin (1994) & Gluck (2002); 3. Gluck (2002); 4. Zilberman et al. (2006). DST and CF <strong>faul</strong>t map<br />

modified from Salam<strong>on</strong> et al., 2003.<br />

19


Denya<br />

Cave<br />

Hall, 1996<br />

Figure 2: DEM map (Hall, 1996) illustrating <strong>the</strong> CF and GF (Gilboa Fault) and <strong>the</strong>ir relati<strong>on</strong> to<br />

<strong>the</strong> DST.<br />

20


1.4.1 Seismicity and paleo-seismicity of Mount Carmel<br />

The recent ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> of <strong>the</strong> CF is evident in <strong>the</strong> steepness of its cliffs, displaced stream<br />

channels (e.g. Fig. 3) and its frequent micro-earthquakes (Marco et al., 2006). Ashkar et al.<br />

(2005) list some surface phenomen<strong>on</strong> indicating ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> al<strong>on</strong>g <strong>the</strong> CF and yet, <strong>the</strong>y<br />

c<strong>on</strong>clude that although <strong>the</strong>re are many, <strong>the</strong> pace and amount of movement <strong>on</strong> <strong>the</strong> <strong>faul</strong>t are<br />

still not clear.<br />

According to data collected by <strong>the</strong> Geophysical Institute of Israel, between <strong>the</strong> years<br />

1940 to 2007, 41 earthquakes (2.0


vertical offset. Dating of sand samples yielded an age of approximately 55ka (OSL<br />

method). This age was interpreted to suggest a normal <strong>faul</strong>ting at a rate of 0.2mm/y.<br />

Zilberman et al. (2006) found evidence for two tect<strong>on</strong>ically active periods in a trench<br />

dug perpendicular to <strong>the</strong> Nesher <strong>faul</strong>t (Fig. 1). Dating with <strong>the</strong> OSL method yielded <strong>the</strong><br />

following ages: (1) late, middle Pleistocene (ca. 176,000y) and (2) late Pleistocene<br />

(between 75,000 and 27,000y). The evidence from <strong>the</strong> Nesher <strong>faul</strong>t does not allow for a<br />

determinati<strong>on</strong> of <strong>the</strong> age or magnitude of seismic events, but does provide evidence for<br />

ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g>. Since <strong>the</strong> trench was dug al<strong>on</strong>g a sec<strong>on</strong>dary <strong>faul</strong>t, Zilberman et al. (2006) assumed<br />

that <strong>the</strong>ir findings represent <strong>on</strong>ly part of <strong>the</strong> paleoseismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> al<strong>on</strong>g <strong>the</strong> main <strong>faul</strong>t. No<br />

evidence for Holocene ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> was found, but it is noted that during that period <strong>the</strong><br />

research area was subjected to human ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> which did not allow sediments to accumulate<br />

and <strong>the</strong>refore preserve evidence of tect<strong>on</strong>ic movements. In <strong>the</strong> same study Zilberman et al.<br />

(2006) observed a shutter ridge across a stream valley between Yoqneam and Jalame that<br />

was formed by a left lateral movement of <strong>the</strong> N-S segment of <strong>the</strong> CF. At <strong>the</strong> back of <strong>the</strong><br />

ridge evidence of a slow stage of sedimentati<strong>on</strong> between <strong>the</strong> Late Pleistocene up until ca.<br />

24,500y ago was found. Ano<strong>the</strong>r, faster sedimentati<strong>on</strong> stage is dated to 3,500-2,500y. Both<br />

those ages were obtained using <strong>the</strong> OSL method as well. The authors c<strong>on</strong>sidered <strong>the</strong><br />

movement of <strong>the</strong> <strong>faul</strong>t as a possible cause for <strong>the</strong>se sedimentati<strong>on</strong> stages due to a temporary<br />

blockage of <strong>the</strong> stream valley.<br />

The site of Megiddo is situated close <strong>the</strong> <strong>the</strong> trace of <strong>the</strong> CF (Fig. 1) and has<br />

reas<strong>on</strong>ably well-dated archaeological strata. These attributes prompted an archeo-seismic<br />

study of <strong>the</strong> site by Marco et al. (2006). They reported structural damage of potentially<br />

seismic origin in several strata, two of which are particularly well dated. One is of <strong>the</strong> late<br />

4 th millennium BCE, where m<strong>on</strong>umental walls of an Early Br<strong>on</strong>ze (EB) I temple are<br />

fractured in several places al<strong>on</strong>g <strong>the</strong>ir strike as well as perpendicular to <strong>the</strong> strike. The<br />

overlying walls of <strong>the</strong> EB III temple were no fractured, which c<strong>on</strong>strains <strong>the</strong> age of <strong>the</strong><br />

earthquake. The o<strong>the</strong>r seismic event which caused structural damage is dated to <strong>the</strong> 9 th<br />

century BCE. This observati<strong>on</strong> is based <strong>on</strong> several findings throughout <strong>the</strong> site (e.g. tilted<br />

pillars, tilted buildings) all dated to Ir<strong>on</strong> II. They fur<strong>the</strong>r c<strong>on</strong>cluded that biblical indicati<strong>on</strong>s<br />

for a major earthquake in ca. 760 BCE seem to coincide with <strong>the</strong> damage found for 8 th<br />

century BCE buildings. All ages are based <strong>on</strong> accumulated evidence derived from chr<strong>on</strong>ocultural<br />

identificati<strong>on</strong> of archaeological c<strong>on</strong>texts determined from associated material<br />

culture and 14 C assays. They are expressed in a c<strong>on</strong>venti<strong>on</strong>al nomenclature for <strong>the</strong> sequence<br />

of late prehistoric and historic cultures of <strong>the</strong> sou<strong>the</strong>rn Levant (Stern et al., 2008). Specific<br />

22


eferences to Early Br<strong>on</strong>ze Age I and Ir<strong>on</strong> Age c<strong>on</strong>texts at <strong>the</strong> site of Megiddo are found in<br />

two site reports by Finklestein et al. (2000; 2006). It was noted by Marco et al. (2006) that<br />

<strong>the</strong> CF is <strong>the</strong> most plausible source of damage at Megiddo but <strong>the</strong>y did not preclude <strong>the</strong><br />

DST as its source.<br />

N<br />

Jalame<br />

Yoqneam<br />

Shutter ridge<br />

Figure 3: Morphotect<strong>on</strong>ic mapping of displaced stream channels (marked with yellow circles) in a segment of<br />

<strong>the</strong> CF between Jalame and Yoqneam. Dashed black lines indicate liniaments, which could indicate <strong>faul</strong>ts.<br />

Modified after Ashkar et al. (2005) and presented <strong>on</strong> an aerial photograph.<br />

23


GF<br />

Earthquakes<br />

2.0-2.9<br />

3.0-3.9<br />

4.0-4.9<br />

5.0-5.9 Hall, 1996<br />

Figure 4: Locati<strong>on</strong> of earthquake epicenters (M>2) in <strong>the</strong> vicinity of <strong>the</strong> CF system (white<br />

rectangle) for <strong>the</strong> years 1980-2000 (Earthquake data from <strong>the</strong> Geophysical Institute of Israel).<br />

Fault plain soluti<strong>on</strong> for <strong>the</strong> 5.3M earthquake of 1984 by Hofstetter et al., 1996.<br />

24


Figure 5: Earthquakes for <strong>the</strong> years 1980-2007 al<strong>on</strong>g <strong>the</strong> CF and adjacent areas and <strong>the</strong> DST,<br />

and <strong>the</strong>ir respective magnitude distributi<strong>on</strong>, as reported by <strong>the</strong> Geophysical Institute of Israel.<br />

Each point represents an earthquake.<br />

1.4.2 Geological features of Denya neighborhood <strong>on</strong> Mount Carmel<br />

The Denya neighborhood within <strong>the</strong> city of Haifa is situated <strong>on</strong> a spur sloping down<br />

from <strong>the</strong> summit of Mt. Carmel in a westward directi<strong>on</strong> towards Tirat Ha-Carmel, <strong>on</strong> <strong>the</strong><br />

south side of <strong>the</strong> mountain (Fig. 6). From <strong>the</strong> geological map drawn up by Karcz in 1958<br />

(Fig.7), it can be seen that <strong>the</strong> neighborhood is located <strong>on</strong> an area where chalk and chert<br />

rocks of <strong>the</strong> Shamir Formati<strong>on</strong> (Upper Cenomanian) and limest<strong>on</strong>es of <strong>the</strong> Mukhraka<br />

Formati<strong>on</strong> (Upper Cenomanian- Lower Tur<strong>on</strong>ian) are exposed. Denya Cave is situated at<br />

(Map Ref. Israel Grid) 1487/2413, an area where Mukhraka limest<strong>on</strong>e is exposed (Sass,<br />

2007-pers<strong>on</strong>al communicati<strong>on</strong>; Fig. 7).<br />

25


Denya Cave<br />

Figure 6: Topographic map (1:50,000) of NW Mt. Carmel. Denya Cave (blue dot) is situated in<br />

Denya Neighborhood <strong>on</strong> a spur sloping down to <strong>the</strong> town of Tirat Ha-Carmel al<strong>on</strong>g <strong>the</strong> Carmel<br />

coast to <strong>the</strong> west.<br />

26


15<br />

30<br />

Figure 7: Geological map of <strong>the</strong> nor<strong>the</strong>astern side of Mt. Carmel (Karcz, 1958). The inset<br />

indicates <strong>the</strong> locati<strong>on</strong> of Denya Cave, also marked by a blue dot. Two opposing dips, enhanced by<br />

purple marks and numbered, were measured in <strong>the</strong> area around Denya Cave at a distance no<br />

greater than 500m of each o<strong>the</strong>r. Green lines mark <strong>the</strong> locati<strong>on</strong>s of <strong>faul</strong>ts in <strong>the</strong> area of Denya<br />

Cave, <strong>the</strong> dashed green line is an inferred <strong>faul</strong>t.<br />

Mediterranean Sea<br />

Denya Fault<br />

Denya Cave<br />

Galim Fault<br />

Figure 8: Part of a preliminary <strong>faul</strong>t map of central and sou<strong>the</strong>rn Mt.<br />

Carmel (Segev and Sass, 2006).<br />

27


According to Karcz (1958) <strong>the</strong>re is a <strong>faul</strong>t stretching from NW-SE al<strong>on</strong>g <strong>the</strong> upward<br />

slope, east of Denya Cave (Fig. 7). It is estimated that displacement <strong>on</strong> this <strong>faul</strong>t is less than<br />

50m. North of <strong>the</strong> cave <strong>the</strong>re is an inferred <strong>faul</strong>t with a similar trend (Fig. 7). South of<br />

Denya Cave a <strong>faul</strong>t with an E-W directi<strong>on</strong> is estimated by Karcz (1958) to have a throw of<br />

50-150m (Fig. 7). In <strong>the</strong> area of exposed Mukhraka limest<strong>on</strong>e <strong>the</strong> dips measured show two<br />

different trends no more than 500m from each o<strong>the</strong>r (Fig. 7). Segev and Sass (2006) studied<br />

<strong>the</strong> geology of <strong>the</strong> central and sou<strong>the</strong>rn Carmel area and <strong>the</strong>ir preliminary <strong>faul</strong>t map (Fig. 8)<br />

defines two E-W trending <strong>faul</strong>ts in <strong>the</strong> area of Denya neighborhood; <strong>the</strong> Denya <strong>faul</strong>t to <strong>the</strong><br />

north, al<strong>on</strong>g <strong>the</strong> nor<strong>the</strong>rn slopes of <strong>the</strong> mountain spur (Fig. 6), which stretches to <strong>the</strong> east to<br />

c<strong>on</strong>nect with <strong>the</strong> normal Galim <strong>faul</strong>t to <strong>the</strong> south.<br />

Circa 500m NW of <strong>the</strong> cave opening (Map Ref. Israel Grid 1485/2413) <strong>the</strong>re is a<br />

quarry where Mukhraka limest<strong>on</strong>e is exposed and where a collapsed cave is quite evident,<br />

and where speleo<strong>the</strong>ms can be seen (Fig. 9a,b). In that same spot <strong>the</strong>re seems to be<br />

evidence of <strong>faul</strong>ting, while some of <strong>the</strong> limest<strong>on</strong>e layers are tilted (~15° dip to NW; Fig.<br />

9c). Fur<strong>the</strong>rmore, <strong>the</strong> collapsed cave seems to be situated <strong>on</strong> a <strong>faul</strong>t plane.<br />

Denya Cave is ca. 50m 2 in area with two main chambers. An upper chamber in which<br />

speleo<strong>the</strong>ms are quite abundant is partiti<strong>on</strong>ed into three (Fig. 10). Throughout this chamber<br />

evidence of collapses is seen in broken speleo<strong>the</strong>ms, fallen rocks and a tumbled segment of<br />

a cave wall (Fig. 11). In a lower chamber chalk and cherts are exposed with some<br />

speleo<strong>the</strong>ms found, predominantly below cracks (Fig 12). Cracks in <strong>the</strong> lower chamber<br />

show an oblique displacement of a few centimeters (Fig.12d).<br />

28


a<br />

b<br />

c<br />

Figure 9: Pictures from a quarry in Denya neighborhood, Haifa (Map Ref. Israel Grid<br />

1485/2413), ca. 500m from Denya Cave. a) Collaps formati<strong>on</strong> al<strong>on</strong>g a <strong>faul</strong>t strand. b) Exposed<br />

speleo<strong>the</strong>ms, indicating <strong>the</strong> locati<strong>on</strong> of a collapsed cave. c) Limest<strong>on</strong>e layers are tilted ~15° dip to<br />

NW and evidence of <strong>faul</strong>ting, which displaces chert lenses.<br />

29


Entrance<br />

A<br />

B<br />

C<br />

Figure 10: Plan of upper chamber in Denya Cave, Haifa.<br />

30


3<br />

1<br />

2<br />

4<br />

5<br />

Figure 11: Seismic features in Denya Cave; 1) Collapsed wall segment. 2) Severed stalagmite.<br />

3) An open crack. 4) Collapse cavity. 5) Broken stalactites.<br />

a<br />

b<br />

c<br />

d<br />

Figure 12: Pictures from <strong>the</strong> lower chamber of Denya Cave; a) The lower chamber show<br />

signs of incati<strong>on</strong> (collapsed <strong>on</strong>to itself) exposing eroded chalk. b) Rock layers are horiz<strong>on</strong>tal,<br />

indicating that <strong>the</strong>re are no tilting movements. c) Widening crack in <strong>the</strong> chamber ceiling. d)<br />

Cracks in <strong>the</strong> ceiling displace chert lenses and enable stalactite growth.<br />

31


2. Research Objectives<br />

The main objective of this study is to date paleo-earthquakes <strong>on</strong> <strong>the</strong> CF during <strong>the</strong><br />

Quaternary by means of damaged cave deposits.<br />

Particular aims:<br />

1. Dating collapses of speleo<strong>the</strong>ms by radiometric methods.<br />

2. Establishing a viable c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong>se collapse events and seismic events<br />

during <strong>the</strong> Quaternary.<br />

3. Exploring <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> between seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> CF and <strong>the</strong> above<br />

menti<strong>on</strong>ed events in order to increase <strong>the</strong> paleoseismic data base for <strong>the</strong> CF<br />

regi<strong>on</strong>.<br />

4. Exploring <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong> above menti<strong>on</strong>ed events and <strong>the</strong> DST in<br />

order to test <strong>the</strong> results of <strong>the</strong> main research objective.<br />

3. Methodology<br />

3.1 Mapping<br />

Figure 10 is a plan of <strong>the</strong> chamber and <strong>the</strong> structural features that could indicate<br />

seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> within it in Denya Cave. This plan was drawn up in a two dimensi<strong>on</strong>al<br />

method using <strong>the</strong> azimuth and distance of relevant points (samples, structural features and<br />

chosen points al<strong>on</strong>g <strong>the</strong> cave walls) from a central locati<strong>on</strong> (sample DN-1). It proved to<br />

be most accurate and useful for <strong>the</strong> purposes of this study.<br />

Each speleo<strong>the</strong>m sample was mapped and photographed and samples established as<br />

probable seismites were marked (Fig. 10). All samples obtained are from <strong>the</strong> upper<br />

chamber of Denya Cave. Speleo<strong>the</strong>ms in <strong>the</strong> lower chamber are not abundant and are<br />

very hard to reach. Therefore, for <strong>the</strong> purpose of this study <strong>the</strong>y were not sampled for<br />

seismites.<br />

3.2 Speleo<strong>the</strong>m sampling<br />

Speleo<strong>the</strong>ms assumed to be seismites were mapped, photographed and removed in as<br />

complete a state as possible. Photographs of all Denya Cave samples al<strong>on</strong>g with detailed<br />

descripti<strong>on</strong>s and <strong>the</strong> locati<strong>on</strong> of each sample <strong>on</strong> <strong>the</strong> plan created of <strong>the</strong> upper chamber of<br />

32


<strong>the</strong> cave can be viewed in Appendix I. At <strong>the</strong> Geological Survey of Israel (GSI) <strong>the</strong><br />

speleo<strong>the</strong>ms were sawed al<strong>on</strong>g <strong>the</strong>ir growth axes. The secti<strong>on</strong>s were photographed again<br />

and <strong>the</strong> seismic c<strong>on</strong>tact or c<strong>on</strong>tacts identified. A seismic c<strong>on</strong>tact is defined as <strong>the</strong><br />

unc<strong>on</strong>formity between what appears to be pre- and post-seismic laminae (Kagan et al.,<br />

2005). Some speleo<strong>the</strong>m samples were not seismites (Appendix I-I) while some yielded<br />

indicati<strong>on</strong>s of more than <strong>on</strong>e seismic event (e.g. DN-33 Appendix I-II). The variety of<br />

seismite samples required a means of classificati<strong>on</strong>, which was offered according to <strong>the</strong><br />

type of speleo<strong>the</strong>m, <strong>the</strong> clarity of <strong>the</strong> seismic c<strong>on</strong>tact as a viable indicator for a seismic<br />

event, and <strong>the</strong> ability to sample material (Fig. 13).<br />

Where a seismic c<strong>on</strong>tact was identified, material was extracted from laminae located<br />

as close as possible to it by a hand held pneumatic drill (e.g., Fig. 14). The last lamina<br />

preceding <strong>the</strong> break event was termed a pre-seismic sample, while <strong>the</strong> first <strong>on</strong>e to succeed<br />

<strong>the</strong> break event was termed a post-seismic sample. The material was <strong>the</strong>n analyzed using<br />

<strong>the</strong> MC-ICP-MS, which enables dating of small amounts of material (~0.3g), and<br />

<strong>the</strong>refore very accurate sampling of individual laminae. Where a seismic c<strong>on</strong>tact for<br />

speleo<strong>the</strong>ms was determined, material was extracted from laminae located as close as<br />

possible to <strong>the</strong> c<strong>on</strong>tact.<br />

Most samples do not have ei<strong>the</strong>r a pre- or a post- seismic phase of growth and so a<br />

c<strong>on</strong>straint <strong>on</strong> <strong>the</strong> age of <strong>the</strong> event is <strong>on</strong>e sided. Such samples are, never<strong>the</strong>less, significant<br />

if a number of <strong>the</strong>m show similar ages, and more so if <strong>the</strong> same age is obtained from postand<br />

pre-seismic samples (see ch. 4-Results).<br />

33


Type A seismites show a clear break which<br />

indicates an abrupt event where both pre and<br />

post-break phases yield datable samples.<br />

Type C seismites show a clear break which<br />

indicates an abrupt event where <strong>on</strong>ly a pre-break<br />

phase yields a datable sample.<br />

A-1<br />

Broken stalagmite with<br />

a re-growth phase after<br />

<strong>the</strong> break<br />

C-1<br />

Broken stalagmite in<br />

which a pre-break sample<br />

is dated<br />

A-2<br />

Broken stalactite with a<br />

re-growth phase after<br />

<strong>the</strong> break<br />

C-2<br />

Broken flowst<strong>on</strong>e in<br />

which a pre-break sample<br />

is dated<br />

A-3<br />

Broken speleo<strong>the</strong>m<br />

covered by flowst<strong>on</strong>e<br />

C-3<br />

Broken stalactite in which<br />

a pre-break sample is<br />

dated, which clearly<br />

indicates a seismic event.<br />

Type D seismites show fragments of un-datable<br />

material embedded in flowst<strong>on</strong>e which allows for<br />

<strong>the</strong> dating of pre or post-break samples.<br />

A-4<br />

Broken flowst<strong>on</strong>e<br />

covered by unbroken<br />

flowst<strong>on</strong>e<br />

D-1<br />

Broken fragments embedded<br />

<strong>on</strong> top of flowst<strong>on</strong>e in which<br />

a pre-break sample is datable<br />

A-5<br />

Broken speleo<strong>the</strong>ms<br />

embedded in and<br />

covered by flowst<strong>on</strong>e<br />

allowing for dating<br />

samples of all <strong>the</strong><br />

phases prior and post<br />

<strong>the</strong> break event<br />

Type B seismites show a noticeable change in<br />

sedimentati<strong>on</strong> patterns which might be related to<br />

an abrupt event where both pre and post break<br />

phases yield datable samples.<br />

B-1<br />

Flowst<strong>on</strong>e which shows a<br />

distinct sedimentati<strong>on</strong><br />

unc<strong>on</strong>formity<br />

D-2<br />

Broken fragments below<br />

flowst<strong>on</strong>e in which a postbreak<br />

sample is datable<br />

Type E seismites show a clear break which<br />

indicates an abrupt event where <strong>on</strong>ly a pre-break<br />

phase yields a datable sample but are of<br />

stalactites which as a rule are extremely fragile<br />

and <strong>the</strong>refore could have broken at any recent,<br />

n<strong>on</strong>-seismic event. These samples, <strong>the</strong>refore, can<br />

<strong>on</strong>ly be used as corroborative evidence if <strong>the</strong>y<br />

yield ages similar to those of o<strong>the</strong>r seismite types.<br />

E-1<br />

Broken stalactite in which a<br />

pre-break sample is dated<br />

B-2<br />

Flowst<strong>on</strong>e in which <strong>the</strong>re<br />

is an obstructi<strong>on</strong> of<br />

sedimentati<strong>on</strong> by a phase<br />

of broken fragments of undatable<br />

material<br />

Figure 13: Denya Cave seismite clasificati<strong>on</strong>. Red lines indicate seismic c<strong>on</strong>tac.<br />

34


Figure 14: Sample DN-7<br />

3.3 Dating of seismite samples<br />

3.3.1 Multiple Collector Inductively Coupled Plasma Mass<br />

Spectrometer<br />

In this study dating with <strong>the</strong> U-series decay method was c<strong>on</strong>ducted using <strong>the</strong> MC-<br />

ICP-MS (located at <strong>the</strong> geochemical laboratory of <strong>the</strong> Geological Survey of Israel in<br />

Jerusalem), which measures Uranium and Thorium isotopes after chromatographic<br />

separati<strong>on</strong> from <strong>the</strong> calcite samples in <strong>the</strong> laboratory. The protocol for <strong>the</strong><br />

chromatographic separati<strong>on</strong> of Uranium and Thorium from <strong>the</strong> calcite matrix is explained<br />

in detail in Appendix II-I. These measurements are <strong>the</strong>n used to calculate <strong>the</strong> isotopic<br />

ratios needed for U-series age equati<strong>on</strong>s (see below).<br />

35


3.3.2 Single sample dating<br />

Single sample dating was d<strong>on</strong>e using equati<strong>on</strong> [1] according to Broecker and<br />

Kaufman (1965):<br />

[1] [ 230 Th/ 234 U] = [ 238 U/ 234 U]*(1-e -λ230t ) + {1-[ 238 U/ 234 U]}*{λ 230 /(λ 230 -λ 234 )}*[1-e (-λ230-λ234)t ]<br />

As menti<strong>on</strong>ed above (ch. 1.3- Dating of speleo<strong>the</strong>ms), this equati<strong>on</strong> is based <strong>on</strong> <strong>the</strong><br />

assumpti<strong>on</strong> that no initial 230 Th is present in <strong>the</strong> sample. Any initial 230 Th is always<br />

accompanied by a much larger amount of 232 Th, <strong>the</strong>refore 232 Th is routinely m<strong>on</strong>itored<br />

during analysis, and samples c<strong>on</strong>taining less than an acceptable threshold of 230 Th/ 232 Th<br />

can be identified (Hellstrom, 2007). According to Kaufman et al. (1998) a sample is<br />

c<strong>on</strong>sidered to have a high detrital c<strong>on</strong>tent, which requires a correcti<strong>on</strong> for <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong><br />

of 230 Th by <strong>the</strong> decay of 232 Th, if this ratio is less than ~30, since for larger ratios <strong>the</strong><br />

correcti<strong>on</strong> becomes negligible compared to <strong>the</strong> analytical uncertainty. Richards and<br />

Dorale (2003) and Li et al. (1989) argued that thresholds of between 100 and 300 for <strong>the</strong><br />

case of mass spectrometric dating, due to <strong>the</strong> high-precisi<strong>on</strong> analysis of initial 230 Th.<br />

Hellstrom (2007) argued that even a value of 230 Th/ 232 Th=300 requires a correcti<strong>on</strong> for<br />

<strong>the</strong> derital fracti<strong>on</strong>.<br />

C<strong>on</strong>sidering <strong>the</strong>se higher values, most ages obtained for Denya Cave seismite samples<br />

need to be corrected for initial 230 Th, using as a correcti<strong>on</strong> factor <strong>the</strong> detrital molar ratio of<br />

232 Th/ 238 U. The most comm<strong>on</strong> correcti<strong>on</strong> factor for crust value rocks is 3.8 (Wedepohl,<br />

1995). Even higher values of 4.2 were determined (e.g. Kuperman, 2005). Haase-<br />

Schramm et al. (2003) reported a single sample correcti<strong>on</strong> factor for Lake Lisan<br />

arag<strong>on</strong>ites detritus of 232 Th/ 238 U atomic ratio=0.85 (i.e. 232 Th/ 238 U detrital molar ratio of<br />

0.83=0.27 ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratio*3.05). They also suggested that some initial 230 Th found in those<br />

samples was c<strong>on</strong>tributed by hydrogenous Th. In a carb<strong>on</strong>ate terrain <strong>the</strong> correcti<strong>on</strong> factor<br />

was calculated by Kaufman et al. (1998), using an isochr<strong>on</strong> method, yielding a value of<br />

1.8±0.25=detrital molar ratio (Soreq cave). In <strong>the</strong>ir study Kaufman et al. (1998) showed<br />

that all <strong>the</strong> Th in <strong>the</strong> speleo<strong>the</strong>ms from Soreq cave was associated with detrital material.<br />

In <strong>the</strong>ir method <strong>the</strong> slopes of isochr<strong>on</strong>s in a plot of ( 232 Th/ 234 U) vs. ( 230 Th/ 234 U) were used<br />

in order to calculate <strong>the</strong> detrital molar ratio of 232 Th/ 238 U. Those isochr<strong>on</strong> lines are<br />

essentially mixing lines between a clean sample (low detrital comp<strong>on</strong>ent) and <strong>the</strong> DEM<br />

within <strong>the</strong> lamina, since stalagmites often have observable differences in <strong>the</strong> quantity of<br />

detrital material al<strong>on</strong>g growth layers (Richards and Dorale, 2003). Following Kaufman et<br />

al. (1998) isochr<strong>on</strong> slopes and <strong>the</strong>ir intersects with <strong>the</strong> Y axis ( 230 Th/ 234 U) enables a<br />

calculati<strong>on</strong> of a correcti<strong>on</strong> factor as follows:<br />

36


[3] ( 230 Th)/( 232 Th) d = ( 234 U)/( 232 Th) d = Isochr<strong>on</strong> Slope/(1-Isochr<strong>on</strong> Y axis intersect)<br />

[4] ( 232 Th)/( 238 U) d = {1/( 230 Th)/( 232 Th) d } x 3.049<br />

d- value of <strong>the</strong> DEM in <strong>the</strong> sample.<br />

Isochr<strong>on</strong> slope and Y axis intersect were calculated using Isoplot3.7, in which errors<br />

are c<strong>on</strong>sidered for regressi<strong>on</strong> line calculati<strong>on</strong>s (Tables 1b, 2b, 3b).<br />

3.049- c<strong>on</strong>stant value for <strong>the</strong> transferring ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios to molar ratios.<br />

This method was applied to four laminae from Denya Cave speleo<strong>the</strong>ms, from which<br />

between four and five samples were drilled and dated in order to plot al<strong>on</strong>g <strong>the</strong> above<br />

menti<strong>on</strong>ed isochr<strong>on</strong> line (Fig. 15). After dissolving <strong>the</strong> samples with HNO 3 no insoluble<br />

matter remained and most yielded 230 Th/ 232 Th ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios higher than ~100, however,<br />

some speleo<strong>the</strong>ms also had lower values (i.e. between ~30 and ~100) (Table 1a). Their<br />

calculated ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios of 232 Th/ 234 U and 230 Th/ 234 U were plotted al<strong>on</strong>g isochr<strong>on</strong> lines<br />

(Table 1a,b). Those isochr<strong>on</strong>s yielded an average correcti<strong>on</strong> factor of less than 0.2 (Table<br />

1b). This value is much lower than <strong>the</strong> <strong>on</strong>e calculated for Soreq Cave (Kaufman et al.,<br />

1998) or even Lake Lisan (Haase-Schramm et al., 2003). Using this value means that a<br />

correcti<strong>on</strong> of measured ages is extremely high for Denya Cave. There was no reas<strong>on</strong> to<br />

believe that for samples with no detritus, such a correcti<strong>on</strong> should be applied. It is<br />

<strong>the</strong>refore suggested that <strong>the</strong>se related low 230 Th/ 232 Th ratios were not caused by detrital<br />

matter in <strong>the</strong> samples used for isochr<strong>on</strong>s, since such samples cannot yield a correcti<strong>on</strong><br />

factor for detrital Th if <strong>the</strong>y c<strong>on</strong>tain no detritus, and that <strong>the</strong> source for initial 230 Th is not<br />

solely from detrital material.<br />

Ano<strong>the</strong>r attempt at establishing a correcti<strong>on</strong> factor for Denya Cave was made by<br />

taking four samples, which after dissoluti<strong>on</strong> had large amounts of detritic matter. Between<br />

four and five samples from each lamina were drilled and dated (Fig. 16 and Table 2a). All<br />

of <strong>the</strong>se samples yielded 230 Th/ 232 Th calculated values of between ~60 to less than ~20.<br />

The average correcti<strong>on</strong> factor calculated for <strong>the</strong>se isochr<strong>on</strong> samples was ~0.6 (Table 2b).<br />

Those samples were taken from laminae that are close to <strong>the</strong> surfaces of speleo<strong>the</strong>m<br />

samples (Fig. 16). Results indicate that <strong>on</strong>ce <strong>the</strong> sample c<strong>on</strong>tains a higher detrital fracti<strong>on</strong>,<br />

<strong>the</strong> correcti<strong>on</strong> factor is lower than for samples with lower detrital c<strong>on</strong>tent. Yet, both<br />

correcti<strong>on</strong> factors are still much lower than <strong>the</strong> factors for crustal rocks or carb<strong>on</strong>ate<br />

rocks. This suggests that <strong>the</strong> origin of initial 230 Th in <strong>the</strong> speleo<strong>the</strong>ms is not <strong>on</strong>ly<br />

c<strong>on</strong>tributed by detrital matter but also from ano<strong>the</strong>r source (possibly hydrogenous).<br />

Dated samples from pre- and post-seismic event laminae of seismite samples were<br />

also used as isochr<strong>on</strong>s assuming <strong>the</strong>y are very close in age (i.e. DN-4 pre samples, DN-6c<br />

37


pre samples, DN-7 post samples and DN-9 pre samples- photographic view in Appendix<br />

I-II). Those samples yielded 230 Th/ 232 Th calculated values between ~200 and ~2 (Table<br />

3a). The correcti<strong>on</strong> factors established from <strong>the</strong>se samples varied between ~0.08 and<br />

~0.19 for five different calculati<strong>on</strong>s, yielding an average value of ~0.7 (Table 3b). These<br />

values are similar to <strong>the</strong> values obtained from detritus-rich speleo<strong>the</strong>m isochr<strong>on</strong> samples.<br />

These three attempts of creating isochr<strong>on</strong> plots in order to obtain correcti<strong>on</strong> values<br />

clearly show <strong>the</strong> complex nature of detrital matter within <strong>the</strong>m. The most likely cause of<br />

scatter in isochr<strong>on</strong>s is not <strong>the</strong> sampling methodology used in this study, but a combinati<strong>on</strong><br />

of more than <strong>on</strong>e source of initial Th; (1) detrital Th, (2) hydrogenous Th adsorbed to<br />

detritus and oxides (3) hydrogenous Th directly incorporated by carb<strong>on</strong>ates (Richards and<br />

Dorale, 2003 and references <strong>the</strong>rein). Different sources of initial Th may explain <strong>the</strong><br />

scattered isochr<strong>on</strong>s dem<strong>on</strong>strated in Tables 1b, 2b and 3b.<br />

There are several processes which may explain various Th sources in speleo<strong>the</strong>ms.<br />

During a depositi<strong>on</strong>al hiatus <strong>the</strong> outer lamina of a speleo<strong>the</strong>m is exposed to <strong>the</strong> cave<br />

envir<strong>on</strong>ment for an extended amount of time, allowing detrital matter to settle <strong>on</strong> it.<br />

C<strong>on</strong>sequently, that lamina may c<strong>on</strong>tain a large amount of detrital Th. These hiatuses<br />

could potentially be <strong>the</strong> result of a change in hydrological settings in a karstic cave due to<br />

seismic events. Such changes in hydrological settings might also allow for an<br />

incorporati<strong>on</strong> of hydrogenous Th into <strong>the</strong> cave system. Fur<strong>the</strong>rmore, when a cave<br />

undergoes an earthquake event, detrital material might rise up from <strong>the</strong> cave's walls and<br />

floor due to collapses, or it might enter more readily from <strong>the</strong> surface due to openings of<br />

cracks and ground shaking. This material may embed itself within <strong>the</strong> outer or broken<br />

laminae of speleo<strong>the</strong>ms. It is <strong>the</strong>refore not surprising that some seismite samples appear<br />

to have a higher detrital c<strong>on</strong>tent than <strong>the</strong> underlying laminae of <strong>the</strong> same speleo<strong>the</strong>ms.<br />

This however, is not <strong>the</strong> case with all seismite samples from Denya Cave, which do not<br />

all c<strong>on</strong>tain a noticeable amount of detrital matter (Table 4). It is <strong>the</strong>refore likely that <strong>the</strong><br />

amount and compositi<strong>on</strong> of detrital material in seismite samples varies quite significantly<br />

and that no single correcti<strong>on</strong> value can be found for <strong>the</strong>se samples.<br />

The above menti<strong>on</strong>ed correcti<strong>on</strong> values were deemed unusable for Denya Cave<br />

speleo-seismite age correcti<strong>on</strong>s, since <strong>the</strong> variati<strong>on</strong>s in factors are too great in such low<br />

values as to enable <strong>the</strong> use of an average factor. When applied, <strong>the</strong>y make an extremely<br />

significant difference to most of <strong>the</strong> calculated ages obtained in Denya Cave, making it<br />

crucial to be more accurate. Moreover, accurate calculati<strong>on</strong>s of <strong>the</strong> slopes and y-intersects<br />

of <strong>the</strong> isochr<strong>on</strong>s, using <strong>the</strong> errors of <strong>the</strong> isotopic ratios (with Isoplot3.7), yielded<br />

38


extremely high errors for <strong>the</strong>se values and make any calculati<strong>on</strong> for a correcti<strong>on</strong> factor<br />

highly suspicious (Tables 1b,2b,3b). Since <strong>the</strong>se correcti<strong>on</strong> factors vary between samples<br />

with high detrital c<strong>on</strong>tents (i.e. 230 Th/ 232 Th 100), it is possible that it is not indicative of a single phase or origin of<br />

detrital matter. It was <strong>the</strong>refore not possible to establish a unique correcti<strong>on</strong> factor for<br />

Denya Cave initial 230 Th.<br />

39


Iso-III<br />

Iso-IV<br />

Iso-II<br />

Iso-I<br />

Det-I<br />

Det-II<br />

Iso2-IV<br />

Iso-IV<br />

Iso-III<br />

Iso-II<br />

Iso-I<br />

Det-II<br />

Iso2-III<br />

Iso2-II<br />

Iso2-I<br />

Iso-V<br />

Det-III<br />

Det-I<br />

Figure 15: Photographic ilustrati<strong>on</strong> of <strong>the</strong> locati<strong>on</strong> of drilling for<br />

isochr<strong>on</strong> samples: DN-4 Iso, DN-4 Iso2 and DN-17 Iso (marked<br />

in red). Detritus samples for experiment with detrital matter are<br />

marked in black (results in Table 4).<br />

Table 1: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples: a. Calculated isotopic<br />

ratios and ages. b. Calculated slopes and y-axis intercepts for correcti<strong>on</strong> factor<br />

calculati<strong>on</strong>s. Isochr<strong>on</strong> plot: red-DN-4 Iso, green-DN-4 Iso 2, blue-DN-17 Iso. Unreliable<br />

results are marked in orange.<br />

a<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-4-ISO-I 0.27946 0.00251 3.57836 0.03210 0.001275 0.000002 219.25 1.99 35480 377 377<br />

DN-4-ISO-II 0.28716 0.00344 3.48239 0.04170 0.001146 0.000002 250.58 3.06 36661 525 522<br />

DN-4-ISO-III 0.28202 0.00284 3.54583 0.03565 0.001321 0.000001 213.56 2.35 35892 429 427<br />

DN-4-ISO-IV 0.28937 0.00234 3.45584 0.02791 0.001006 0.000001 287.64 2.40 37004 357 357<br />

DN-4-ISO-V 0.39892 0.01180 2.50676 0.07417 0.007947 0.000018 50.20 1.51 55006 2136 2096<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-4-ISO2-I 0.26888 0.00693 3.71919 0.09587 0.000581 0.000001 462.74 13.47 33953 1031 1022<br />

DN-4-ISO2-II 0.29913 0.00412 3.34303 0.04609 0.001058 0.000002 282.82 4.42 38495 640 636<br />

DN-4-ISO2-III 0.28498 0.00383 3.50900 0.04712 0.000810 0.000001 351.97 5.06 36336 582 578<br />

DN-4-ISO2-IV 0.30430 0.00456 3.28620 0.04926 0.003117 0.000005 97.64 1.64 39280 713 707<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-17 preIso 0.37245 0.00819 2.68493 0.05901 0.002773 0.000004 134.30 3.37 50381 1417 1399<br />

DN-17-ISO-I 0.39978 0.00867 2.50139 0.05424 0.012714 0.000021 31.44 0.71 55208 1571 1548<br />

DN-17-ISO-II 0.31416 0.00430 3.18309 0.04356 0.002171 0.000007 144.69 2.15 40823 687 681<br />

DN-17-ISO-III 0.35639 0.00610 2.80588 0.04806 0.005250 0.000008 67.88 1.26 47667 1029 1020<br />

DN-17-ISO-IV 0.42662 0.01077 2.34403 0.05918 0.009889 0.000018 43.14 1.15 60090 2041 2004<br />

DN-17 postIso 0.30416 0.00160 3.28769 0.01731 0.004288 0.000007 70.94 0.42 39269 250 250<br />

b<br />

DN-4 Iso Slope ± Intersect ± 230/232d 232/238d Av. 232/238d<br />

All 17 3.6 0.264 0.013 23.09783 0.132004 0.156161723<br />

I-IV -29.6 10 0.3193 0.012 -43.48465 -0.070117<br />

DN-4 Iso2 Slope ± Intersect ± 230/232d 232/238d<br />

All 16 38 0.267 0.062 21.8281 0.139682<br />

I-III 61.7 15 0.2343 0.014 80.57986 0.037838<br />

DN-17 Iso Slope ± Intersect ± 230/232d 232/238d<br />

All 11 16 0.29 0.13 15.49296 0.196799<br />

230 Th/<br />

234 U<br />

0.44<br />

0.40<br />

0.36<br />

0.32<br />

data-point error crosses are 2σ<br />

0.28<br />

0.24<br />

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014<br />

232 Th/ 234 U<br />

40


DN-62<br />

Iso-III<br />

Iso-II<br />

Iso-I<br />

Iso-V<br />

Iso-I<br />

Iso-II<br />

DN-35<br />

Iso-III<br />

Iso-IV<br />

Iso-IV<br />

Iso-I Iso-II Iso-III<br />

Iso-IV<br />

Iso-I<br />

Iso-II<br />

Iso-III<br />

Iso-IV<br />

Iso-V<br />

DN-53<br />

Figure 16: Photographic ilustrati<strong>on</strong> of <strong>the</strong> locati<strong>on</strong> of drilling for isochr<strong>on</strong> samples: DN-16 Iso,<br />

DN-35 Iso, DN-53 Iso and DN-62 Iso.<br />

Table 2: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples: a. Calculated isotopic ratios and<br />

ages. b. Calculated slopes and y-axis intercepts for correcti<strong>on</strong> factor calculati<strong>on</strong>s. Isochr<strong>on</strong> plot:<br />

red-DN-16 Iso, green-DN-53 Iso, blue-DN-35 Iso, yellow-DN-62. Unreliable results are marked in<br />

orange.<br />

a<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-16 Iso-I 0.59594 0.00665 1.67803 0.01873 0.043332 0.000079 13.75 0.16 97634 1804 1773<br />

DN-16 Iso-II 0.72886 0.01116 1.37201 0.02101 0.062474 0.000214 11.67 0.21 138980 4394 4223<br />

DN-16 Iso-III 0.55393 0.00855 1.80529 0.02786 0.023816 0.000049 23.26 0.37 86939 2084 2044<br />

DN-16 Iso-IV 0.50820 0.02346 1.96772 0.09084 0.009353 0.000022 54.33 2.67 76480 5215 4978<br />

DN-16 Iso-V 0.53010 0.00906 1.88644 0.03225 0.012159 0.000020 43.60 0.80 81325 2102 2061<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-35 Iso-I 0.28868 0.00512 3.46406 0.06147 0.027135 0.000054 10.64 0.20 36913 784 778<br />

DN-35 Iso-II 0.25748 0.00182 3.88376 0.02751 0.139039 0.000198 1.85 0.01 32256 267 267<br />

DN-35 Iso-III 0.25392 0.00167 3.93830 0.02596 0.016835 0.000045 15.08 0.10 31745 245 244<br />

DN-35 Iso-IV 0.53010 0.00906 1.88644 0.03225 0.012159 0.000021 43.60 0.80 81325 2102 2061<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-53 Iso-I 0.34136 0.00188 2.92947 0.01616 0.049020 0.000059 6.96 0.04 45334 314 314<br />

DN-53 Iso-II 0.34546 0.00134 2.89472 0.01120 0.022362 0.000023 15.45 0.07 45866 225 225<br />

DN-53 Iso-III 0.33195 0.00380 3.01252 0.03444 0.018581 0.000016 17.87 0.21 43664 619 615<br />

DN-53 Iso-IV 0.28812 0.00216 3.47084 0.02603 0.017057 0.000024 16.89 0.12 36822 332 332<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-62 Iso-I 0.29858 0.00230 3.34923 0.02577 0.023897 0.000064 12.49 0.10 38420 358 358<br />

DN-62 Iso-II 0.31629 0.00264 3.16167 0.02643 0.023659 0.000043 13.37 0.11 41170 423 421<br />

DN-62 Iso-III 0.32765 0.00303 3.05200 0.02824 0.030905 0.000028 10.60 0.10 43002 491 489<br />

DN-62 Iso-IV 0.24866 0.00240 4.02156 0.03883 0.012956 0.000032 19.19 0.19 30985 346 346<br />

DN-62 Iso-V 0.30091 0.00237 3.32323 0.02613 0.023423 0.000047 12.85 0.11 38777 366 366<br />

b<br />

DN-16 Iso Slope ± Intersect ± 230/232d 232/238d Av. 232/238d<br />

All 3.9 2 0.465 0.071 7.28972 0.41826 0.606166325<br />

I, III-V 2.18 0.32 0.5016 0.01 4.373997 0.697074<br />

DN-53 Iso Slope ± Intersept ± 230/232d 232/238d<br />

All 3 16 0.24 0.44 3.947368 0.772413<br />

I-III 1 43 0.3 1.3 1.428571 2.1343<br />

DN-62 Iso Slope ± Intersept ± 230/232d 232/238d<br />

All 4.7 2.5 0.19 0.06 5.802469 0.525466<br />

I-III,V 3.9 7.7 0.21 0.2 4.936709 0.617618<br />

DN-35 Iso Slope ± Intersect ± 230/232d 232/238d<br />

All -5 31 0.6 1.7 -12.5 -0.24392<br />

I-III -1 28 0.3 1.8 -1.428571 -2.1343<br />

230 Th/<br />

234 U<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

data-point error crosses are 2σ<br />

0.2<br />

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14<br />

232 Th/ 234 U<br />

41


Table 3: Isochr<strong>on</strong> sample's results of low detrital c<strong>on</strong>tent samples: a. Calculated isotopic ratios<br />

and ages. b. Calculated slopes and y-axis intercepts for correcti<strong>on</strong> factor calculati<strong>on</strong>s. Isochr<strong>on</strong><br />

plot: yellow-DN-4 pre, red-DN-6c pre, green-DN-7 pre, blue-DN-7 post. Unreliable results are<br />

marked in orange.<br />

a<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN-4 pre (top) 0.14265 0.00169 7.01033 0.08305 0.013535 0.000016 10.54 0.13 16717 214 214<br />

DN-4 pre II (post) 0.16915 0.00276 5.91195 0.09649 0.025442 0.000032 6.65 0.11 20132 362 361<br />

DN 4 pre 0.16814 0.00134 5.94752 0.04748 0.001572 0.000002 106.97 0.87 19981 175 175<br />

DN3y(dn4-pre) 0.20100 0.00267 4.97501 0.06616 0.006784 0.000008 29.63 0.41 24343 364 362<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN8y(dn6C pre) 0.14291 0.00280 6.99729 0.13702 0.023083 0.000026 6.19 0.12 16749 355 354<br />

DN7y(dn6C pre) 0.28225 0.00319 3.54296 0.04006 0.001928 0.000003 146.36 1.67 35921 483 481<br />

DN 6C pre 0.27134 0.00237 3.68536 0.03222 0.001525 0.000001 177.99 1.57 34300 352 352<br />

DN-6c pre I 0.18607 0.00207 5.37436 0.05989 0.019748 0.000027 9.42 0.11 22317 276 276<br />

DN-6c pre II 0.27851 0.00236 3.59048 0.03039 0.003278 0.000005 84.97 0.78 35363 354 354<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN 7 pre 0.20218 0.00145 4.94600 0.03553 0.010228 0.000011 19.77 0.15 24511 198 198<br />

DN-7-45 0.26418 0.00166 3.78527 0.02379 0.010182 0.000014 25.95 0.17 33202 245 245<br />

DN-7-43 0.29038 0.00254 3.44376 0.03012 0.001742 0.000002 166.70 1.50 37142 389 388<br />

DN-7-44 0.28619 0.00171 3.49419 0.02083 0.001982 0.000004 144.37 0.86 36515 262 262<br />

Sample name 230/234 err 234/230 err 232/234 err 230/232 err Age(y) + -<br />

DN 7 post 0.10624 0.00123 9.41238 0.10919 0.007832 0.000008 13.56 0.16 12206 150 150<br />

DN 7postB 0.09668 0.00067 10.34369 0.07126 0.007685 0.000008 12.58 0.09 11050 80 80<br />

DN-7-46 0.10627 0.00134 9.40958 0.11876 0.004735 0.000007 22.44 0.29 12208 163 163<br />

DN-7-46b-post 0.08100 0.00166 12.34566 0.25263 0.002975 0.000006 27.23 0.56 9181 196 196<br />

DN-7-47 0.09181 0.00134 10.89230 0.15885 0.002397 0.000002 38.30 0.56 10464 160 160<br />

b<br />

DN-4 pre Slope ± Intersect ± 230/232d 232/238d Av. 232/238d<br />

all -8 82 0.27 0.99 -10.9589 -0.278221 0.076689247<br />

No DN3y 31 9700 0 130 31 0.098355<br />

DN-6c Slope ± Intersect ± 230/232d 232/238d<br />

all -6 1.8 0.292 0.025 -8.474576 -0.359782<br />

partI -5.2 2.4 0.289 0.025 -7.313643 -0.416892<br />

partII 12 310 0.25 0.69 16 0.190563<br />

DN-7 pre Slope ± Intersect ± 230/232d 232/238d<br />

all 174 430 2.9 3 -91.57895 -0.033294<br />

DN-7 post Slope ± Intersect ± 230/232d 232/238d<br />

all 6 12 0.066 0.067 6.423983 0.009531<br />

230 Th/<br />

234 U<br />

0.30<br />

0.26<br />

0.22<br />

0.18<br />

0.14<br />

0.10<br />

data-point error crosses are 2σ<br />

No-47 7 26 0.05 0.16 7.368421 0.008309 0.06<br />

0.00 0.04<br />

232 Th/ 234 U<br />

In order to determine <strong>the</strong> nature of <strong>the</strong> detrital comp<strong>on</strong>ent found in samples from<br />

Denya Cave and to establish its origin, four different speleo<strong>the</strong>m samples were dissolved<br />

with two different methods. Part of <strong>the</strong> sample was dissolved with weak acetic acid,<br />

which <strong>on</strong>ly dissolves <strong>the</strong> carb<strong>on</strong>ate comp<strong>on</strong>ent and does not affect <strong>the</strong> clays, and <strong>the</strong> o<strong>the</strong>r<br />

underwent total dissoluti<strong>on</strong> with HNO 3 and HF (see Appendix II-I,II). The samples that<br />

were treated with acetic acid were <strong>the</strong>n placed in a centrifuge, which enabled <strong>the</strong><br />

separati<strong>on</strong> of all insoluble matter (Appendix II-I,II). A comparis<strong>on</strong> of 230 Th/ 232 Th ratios<br />

between <strong>the</strong> two methods can be seen in Table 4. Three observati<strong>on</strong>s can be discerned<br />

from <strong>the</strong> results of this experiment; (1) 230 Th/ 232 Th is quite low (


c<strong>on</strong>tributi<strong>on</strong> of 232 Th carried by detrital matter in Denya Cave samples. The carb<strong>on</strong>ate<br />

fracti<strong>on</strong> of <strong>the</strong> samples most probably carries hydrogenous 232 Th. It is possible that this<br />

hydrogenous 232 Th does not overly c<strong>on</strong>tribute to <strong>the</strong> abundance of 230 Th because it is not<br />

as old as 232 Th carried in clays, and <strong>the</strong>refore does not affect <strong>the</strong> age of <strong>the</strong> sample. Under<br />

this assumpti<strong>on</strong> an attempt to find a correcti<strong>on</strong> factor for each of <strong>the</strong> detrital samples was<br />

made, in order to correct <strong>the</strong>ir ages to that of <strong>the</strong> samples, which do not c<strong>on</strong>tain a detrital<br />

comp<strong>on</strong>ent. As can be seen in Table 4b, two of <strong>the</strong> samples yielded <strong>the</strong> same ages as <strong>the</strong>ir<br />

detrital free counterparts when a correcti<strong>on</strong> factor of ~0.4 was applied (DN-4 pre top and<br />

DN-14a pre). Sample [DN-4 pre II] did not need a correcti<strong>on</strong> factor at all. Sample [DN-<br />

37a post] is much older than its detrital free counterpart and a significant correcti<strong>on</strong> was<br />

needed in order for <strong>the</strong>m to be of <strong>the</strong> same age, yet <strong>on</strong>ce a correcti<strong>on</strong> factor lower than 0.6<br />

was applied <strong>the</strong> calculated ages were negative. This might mean that <strong>the</strong>oretically <strong>the</strong><br />

factor should be ~0.4 yet <strong>the</strong>re is no way to validate this assumpti<strong>on</strong>. These results<br />

indicate that an age correcti<strong>on</strong> is not always necessary, even when 230 Th/ 232 Th ratios in<br />

samples are low. However, a correcti<strong>on</strong> cannot be arbitrarily neglected and <strong>the</strong>refore <strong>the</strong><br />

single sample method of dating is not appropriate for speleo-seismites from Denya Cave.<br />

Ano<strong>the</strong>r approach to establishing <strong>the</strong> real ages of Denya Cave seismite samples was<br />

<strong>the</strong> Osm<strong>on</strong>d isochr<strong>on</strong> method modified by Ludwig and Titteringt<strong>on</strong> (1994; see below).<br />

43


Table 4: Results of an experiment in order to determine <strong>the</strong> nature of <strong>the</strong> detrital comp<strong>on</strong>ent found in samples from Denya Cave.<br />

Sample name DN-4top det.carb DN-4 pre (top) DN-4 pre II det.carb. DN-4 pre II det. DN-14a pre dert.carb DN-14a pre det. DN-37a post det.carb. DN-37a post det.<br />

238U ppm 0.2565 0.2380 0.2636 0.2529 0.2172 0.2245 0.2925<br />

0.4672<br />

err 0.00012 0.00012 0.00025 0.00031 0.00015 0.00025 0.00026 0.00036<br />

234/238 1.0570 1.0512 1.0752 1.0754 1.0787 1.0632 1.0966 0.8770<br />

err 0.00153 0.00122 0.00139 0.00229 0.00177 0.00280 0.00174 0.00137<br />

234U ppm 1.45838E-05 1.346E-05 1.52438E-05 1.46304E-05 1.26048E-05 1.2838E-05 1.72529E-05 2.20431E-05<br />

err 2.11285E-08 1.55631E-08 1.97779E-08 3.121E-08 2.06263E-08 3.37751E-08 2.73144E-08 3.4502E-08<br />

230Th ppb 0.00020 0.00058 0.00075 0.00068 0.00086 0.00130 0.00060 0.00544<br />

err 3.74357E-06 6.86007E-06 3.13787E-06 1.87992E-06 4.55549E-06 4.9666E-06 2.73174E-06 1.5893E-05<br />

232Th ppb 3.1085 10.6792 3.5884 3.9056 6.2344 12.8180 8.2122 194.2430<br />

err 0.00929 0.02735 0.00532 0.00604 0.01012 0.02310 0.00993 0.36148<br />

230/232 12.80 10.54 39.49 33.05 26.04 19.14 13.91 5.26<br />

err 0.24 0.13 0.18 0.10 0.14 0.08 0.07 0.02<br />

230/234 0.0454 0.1426 0.1624 0.1538 0.2239 0.3333 0.1151 0.8145<br />

err 0.00085 0.00169 0.00071 0.00054 0.00125 0.00155 0.00055 0.00270<br />

234/230 22.0169 7.0103 6.1576 6.5033 4.4658 2.9999 8.6904 1.2277<br />

err 0.41185 0.08305 0.02697 0.02267 0.02488 0.01394 0.04179 0.00407<br />

234/232 281.7367 73.8841 243.1749 214.9333 116.2839 57.4280 120.9191 6.4609<br />

err 0.41068 0.08591 0.31604 0.45902 0.19059 0.15127 0.19161 0.01013<br />

238/232 250.3183 67.6223 222.8317 196.4514 105.7076 53.1291 108.0534 7.2977<br />

err 0.75715 0.17667 0.39297 0.38883 0.18727 0.11256 0.16233 0.01469<br />

Age(y) 5053 16717 19233 18123 27483 43903 13272<br />

201137<br />

+ 97 214 93 70 175 258 68<br />

2405<br />

- -97 -214 -93 -70 -175 -258 -68<br />

-2337<br />

232/238 detr mol ratio 0.43 0.4 0.60<br />

Equiv (230/232) 7.29168 7.83855 5.22570<br />

detrital fracti<strong>on</strong> 0.10705 0.14646 0.71087<br />

(234/238) corr 1.05733 1.07403 0.57465<br />

err 0.00122 0.00283 0.00090<br />

(230/234) corr 0.04544 0.22683 0.02097<br />

err 0.00054 0.00105 0.00007<br />

Corrected age (y) 5117 27892 2324


3.3.3 Cluster dating<br />

Osm<strong>on</strong>d isochr<strong>on</strong> dating is based equati<strong>on</strong> [2] according to Broecker (1963):<br />

[2] [ 230 Th/ 238 U] = (1-e -λ230t ) + {[ 238 U/ 234 U] - 1}*{λ 230 /(λ 230 -λ 234 )}*[1-e -(λ230-λ234)t ]<br />

The calculati<strong>on</strong> of age is d<strong>on</strong>e using Isoplot3.7 (Ludwig, 2008) with a first derivative<br />

estimati<strong>on</strong> for samples of similar ages plotted <strong>on</strong> isochr<strong>on</strong> lines (sample age clusters)<br />

Here too <strong>the</strong> analytical error (±2σ) is given.<br />

The Isoplot program creates a three dimensi<strong>on</strong>al plot where x= 230 Th/ 238 U, y= 234 U/ 238 U<br />

and z= 232 Th/ 238 U. This plot, based <strong>on</strong> <strong>the</strong> U-series evoluti<strong>on</strong> diagram of 230 Th/ 238 U vs.<br />

234 U/ 238 U, incorporates <strong>the</strong> detrital end member (DEM) of <strong>the</strong> dated sample and using <strong>the</strong><br />

z-axis corrects for it and calculates an average age for all samples plotted <strong>on</strong> <strong>the</strong> isochr<strong>on</strong><br />

line (Ludwig and Titteringt<strong>on</strong>, 1994).<br />

Age clusters were determined for <strong>the</strong> seismite samples, which were <strong>the</strong>n plotted <strong>on</strong> an<br />

isochr<strong>on</strong> line. These clusters are derived from <strong>the</strong> ages of seismites from <strong>the</strong> cave, which<br />

tended to cluster at very specific intervals, as well as from criteria based <strong>on</strong> <strong>the</strong> amount of<br />

detrital matter within <strong>the</strong> dated sample, structural features within <strong>the</strong> cave and<br />

stratigraphic c<strong>on</strong>siderati<strong>on</strong>s in <strong>the</strong> sample laminae.<br />

Criteria for establishing a reas<strong>on</strong>able isochr<strong>on</strong> plot are as follows: Foremost is <strong>the</strong><br />

relati<strong>on</strong>ship between samples within speleo<strong>the</strong>ms. When dated samples came from <strong>the</strong><br />

same lamina, and yet yielded varying ages because of <strong>the</strong> varying amounts of detrital<br />

matter which <strong>the</strong>y c<strong>on</strong>tain, <strong>the</strong>y were c<strong>on</strong>sidered as being of <strong>the</strong> same age. Ano<strong>the</strong>r<br />

c<strong>on</strong>siderati<strong>on</strong> takes into account <strong>the</strong> very high detrital c<strong>on</strong>tent in a few of <strong>the</strong> samples<br />

observed during analysis. This indicated that <strong>the</strong>y might plot <strong>on</strong> an isochr<strong>on</strong> plot of<br />

younger ages. When <strong>the</strong> sample added to <strong>the</strong> accuracy of <strong>the</strong> plot and c<strong>on</strong>sequently <strong>the</strong><br />

age it yielded, it was c<strong>on</strong>sidered an indicati<strong>on</strong> that <strong>the</strong> correcti<strong>on</strong> <strong>the</strong> program gave for its<br />

age was valid.<br />

An important aspect of determining ages of seismic events is based <strong>on</strong> <strong>the</strong> types of<br />

seismites representing it (Table 5), as well as <strong>on</strong> <strong>the</strong>ir locati<strong>on</strong>s within <strong>the</strong> cave (Fig. 10).<br />

If all seismite samples of age clusters were found in <strong>the</strong> same place in <strong>the</strong> cave, <strong>the</strong>y<br />

might indicate a localized breaking event that might not be seismic in origin. By <strong>the</strong> same<br />

token, seismites of <strong>the</strong> same age, which are located in different parts of <strong>the</strong> cave,<br />

represent an event which affected <strong>the</strong> whole cave and is, <strong>the</strong>refore, most likely seismic in<br />

origin.<br />

45


A significant observati<strong>on</strong> of some seismite samples showed a low 230 Th/ 232 Th ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g><br />

value (


4. Results<br />

A total of 68 speleo<strong>the</strong>m samples was taken and inspected from Denya Cave, 37 of<br />

which were identified as seismites (Appendix I). 32 seismites were processed for dating<br />

(Table 5). Some show evidence of more than <strong>on</strong>e seismic event or have indicati<strong>on</strong>s of<br />

both pre- and post-seismic events. Ten seismites are severed stalagmites broken al<strong>on</strong>g sub<br />

horiz<strong>on</strong>tal plains, as are some described by Forti and Postpitchl (1980). These ten<br />

stalagmites vary in sizes and shapes and are not all broken at <strong>the</strong>ir bases, as Lacave et al.<br />

(2000) and Gilli et al. (1999) assumed <strong>the</strong>y would be due to <strong>the</strong> heterogeneity of <strong>the</strong>ir<br />

structures. This could indicate a great complexity in <strong>the</strong> earthquake induced break<br />

mechanisms which occur in cave envir<strong>on</strong>ments. Nine seismites of <strong>the</strong> 32 are severed<br />

stalactites in different shapes and sizes. Such seismites have been recorded in many caves<br />

after recent earthquakes (e.g. Gilli et al., 1999; Aydan, 2008). The remainders of <strong>the</strong><br />

seismites are flowst<strong>on</strong>e samples in which breaks and depositi<strong>on</strong>al unc<strong>on</strong>formities were<br />

found; some revealed embedded soda straw speleo<strong>the</strong>ms.<br />

4.1 Single sample age analysis<br />

Each seismite sample was drawn and classified according to its structure and type of<br />

break (Table 5 and photographic view in Appendix I-II).<br />

All samples of what appeared to be pre- and post-seismic events were dated with <strong>the</strong><br />

U-Th method, using equati<strong>on</strong> [1] according to Broeker and Kaufman (1965) (Table 6). As<br />

aforementi<strong>on</strong>ed, <strong>the</strong> samples were taken from laminae closest to <strong>the</strong> seismic c<strong>on</strong>tact (see<br />

ch. 3.2- Speleo<strong>the</strong>m sampling), allowing for <strong>the</strong> closest age c<strong>on</strong>straint to a seismic event.<br />

Each pre-seismite single sample age (marked in red- Table 6) potentially indicates <strong>the</strong><br />

time at which <strong>the</strong> speleo<strong>the</strong>m broke or in some cases (e.g. DN-48, Appendix I-II) abruptly<br />

changed its growth pattern due to a seismic event. Each post-seismite single sample age<br />

(marked in black- Table 6) potentially indicates <strong>the</strong> time of a speleo<strong>the</strong>m re-growth, ei<strong>the</strong>r<br />

right after a seismic event, which broke a speleo<strong>the</strong>m, or due to a seismic event, which<br />

created a change in <strong>the</strong> hydrological setting in <strong>the</strong> cave. When pre and post dated samples<br />

of <strong>the</strong> same seismite in a speleo<strong>the</strong>m have very close ages, and are not reversed in order<br />

(stratigraphically plausible), <strong>the</strong>y could very well indicate <strong>the</strong> precise time of a seismic<br />

event. O<strong>the</strong>r potential pairs have a l<strong>on</strong>g hiatus of depositi<strong>on</strong> between <strong>the</strong>m and can <strong>on</strong>ly<br />

indicate a <strong>on</strong>e sided c<strong>on</strong>straint <strong>on</strong> <strong>the</strong> age of a seismic event al<strong>on</strong>g with un-paired<br />

samples. Figure 17 illustrates <strong>the</strong> ages of each dated sample within <strong>the</strong> speleo<strong>the</strong>m<br />

47


seismites, and <strong>the</strong> relati<strong>on</strong>ships between <strong>the</strong>m (hiatus within each event are marked by a<br />

dashed line). This figure illustrates relati<strong>on</strong>s between dated samples in speleo<strong>the</strong>ms as<br />

well as a sense of <strong>the</strong> degree to which <strong>the</strong> samples cluster at specific ages. A cluster of<br />

such ages indicates a seismic event which caused damage to more than <strong>on</strong>e speleo<strong>the</strong>m<br />

and is <strong>the</strong>refore statistically more reliable than that indicated by just <strong>on</strong>e or two seismites.<br />

Examining <strong>the</strong> record of <strong>the</strong> last 200ka was an attempt to determine whe<strong>the</strong>r <strong>the</strong> dated<br />

samples cluster around specific ages in order to estimate when seismic events occurred. A<br />

plot stacking samples of approximately <strong>the</strong> same age (including <strong>the</strong>ir error margins) <strong>on</strong>e<br />

<strong>on</strong> top of <strong>the</strong> o<strong>the</strong>r can show peaks where ages cluster. Using <strong>the</strong> sample types noted in<br />

Table 5, each sample was qualified according to its type. Since some samples are more<br />

obviously seismites than o<strong>the</strong>rs, <strong>the</strong>y were ranked accordingly. Type A samples received<br />

a ranking of five, while Types B, C, D and E were ranked 4, 3, 2 and 1 respectively (Fig.<br />

18). The higher <strong>the</strong> ranking number <strong>the</strong> greater likelihood of <strong>the</strong> sample being a seismite.<br />

The value of each sample in this stacking plot was multiplied by its factor and <strong>the</strong> ranked<br />

value <strong>the</strong>n placed <strong>on</strong> <strong>the</strong> plot (Fig. 18), indicating peaks at specific ages associated with<br />

seismic events. Some seismite samples were dated more than <strong>on</strong>ce (i.e. seismite samples<br />

used for isochr<strong>on</strong> calculati<strong>on</strong>s. See Table 3). Those samples would cause biased peaks in<br />

this kind of plot because <strong>the</strong>y would multiply <strong>the</strong> amount of samples stacked at a specific<br />

age. Since <strong>the</strong> ages determined from single samples were not corrected (see ch. 3.3.2-<br />

Single sample dating), and <strong>the</strong>re was no way to determine <strong>the</strong>ir real age, an average age<br />

was applied for such samples. The lack of certainty of <strong>the</strong> corrected ages also means that<br />

it is not clear what <strong>the</strong> correct ages of <strong>the</strong> clusters are, and whe<strong>the</strong>r certain samples should<br />

actually be part of a different cluster since its true age should be younger due to high<br />

detrital comp<strong>on</strong>ent. Never<strong>the</strong>less, Figure 18 clearly indicates that groups of speleo<strong>the</strong>ms<br />

were damaged at specific times (i.e. ca. 29ka, 39ka, 43ka, 56ka, 138ka and 149ka). Some<br />

sample clusters may be inferred from groups of close ages (i.e. ca. 6-8ka, 11-12ka, 14-<br />

16ka, 19-22ka, and 25ka), c<strong>on</strong>sidering <strong>the</strong> error of <strong>the</strong> ages and <strong>the</strong> detrital factor in some<br />

of <strong>the</strong> samples, which may reduce <strong>the</strong>ir ages (indicated by low 230 Th/ 232 Th ratios in Table<br />

6).<br />

48


Table 5: Denya Cave seismite I.D.'s<br />

Sample name Descripti<strong>on</strong> Dated sample<br />

Type<br />

(Fig. 13-17)<br />

DEN-2 broken stalagmite DEN-2 pre C-1<br />

DN-2 broken stalagmite DN-2-1<br />

DN-2-2<br />

DN-2-3<br />

DN-2-4 A-1<br />

DN-4 broken stalagmite DN-4 pre (top)<br />

DN-4-pre I<br />

DN 4 pre II<br />

DN-4 pre III (post) C-1<br />

DN-6 flowst<strong>on</strong>e <strong>on</strong> fallen rock DN-6a pre (post) C-3<br />

stalactite <strong>on</strong> fallen rock DN-6b pre C-3<br />

stalactite <strong>on</strong> fallen rock DN-6c pre<br />

DN-6c pre<br />

DN 6c pre<br />

DN-6c pre I<br />

DN-6c pre II C-3<br />

DN-7 broken stalagmite DN-7 pre<br />

DN-7 post<br />

DN-7postb<br />

DN-7-45 (pre)<br />

DN-7-46 (post)<br />

DN-7-46b (post)<br />

DN-7-47 (post) A-1<br />

DN-9 broken stalagmite DN-9b pre (down)<br />

DN-9b pre (bottom)<br />

DN-9b pre (bottom)(post)<br />

DN 9b pre C-1<br />

DN-14 broken stalagmite DN-14a pre I<br />

DN-14a PRE-I C-1<br />

DN-17 broken stalagmite DN-17 pre<br />

DN-17 post A-1<br />

DN-19 broken stalagmite DN-19 pre I<br />

DN-19 pre II C-1<br />

DN-21 broken stalagmite DN-21pre I<br />

DN-21 pre II C-1<br />

DN-22 flowst<strong>on</strong>e core DN-22 pre I<br />

DN-22 pre II<br />

DN-22 post I<br />

DN-22 post II A-4<br />

DN-25 flowst<strong>on</strong>e cover DN-25 post I<br />

DN-25 post II D-2<br />

DN-26<br />

DN-26 top-pre I<br />

DN-26 top-post I A-4<br />

DN-27 flowst<strong>on</strong>e cover DN-27 post II D-2<br />

DN-33 broken stalactite DN-33c1 pre<br />

DN-33c1 post<br />

DN-33c2 pre<br />

DN-33c2 post A-2<br />

49


Table 1- c<strong>on</strong>tinuati<strong>on</strong><br />

DN-34 flowst<strong>on</strong>e core DN-34a pre I<br />

DN-34a pre II<br />

DN-34a pre III<br />

DN-34a post A-5<br />

DN-36 flowst<strong>on</strong>e core DN-36 pre I<br />

DN-36 post I A-4<br />

DN-36 pre II<br />

DN-36 post II A-5<br />

DN-36 pre III E-1<br />

DN-37 flowst<strong>on</strong>e core DN-37a pre D-1<br />

DN-37a post D-2<br />

DN-40 cracked flowst<strong>on</strong>e DN-40-pre I<br />

DN-40-post I B-2<br />

DN-40-pre II C-1<br />

DN-42 stalactite & stalagmite DN-42e-pre<br />

DN-42e-post A-2<br />

DN-44 flowst<strong>on</strong>e core DN-44 pre<br />

DN-44 post A-4<br />

DN-45 broken stalagmite DN-45 pre<br />

DN-45 post A-1<br />

DN-46 flowst<strong>on</strong>e core DN-46 pre I<br />

DN-46 pre II<br />

DN-46 post A-3<br />

DN-47 flowst<strong>on</strong>e core DN-47 pre I<br />

DN-47 post I A-4<br />

DN-47 pre II (seis.) E-1<br />

DN-48 flowst<strong>on</strong>e core DN-48 pre<br />

DN-48 post B-1<br />

DN-51 broken stalactites <strong>on</strong> f.s. DN-51 pre I A-4<br />

DN-51 pre II<br />

DN-51 pre III<br />

DN-51 pre IV<br />

DN-51 post I E-1<br />

DN-52 flowst<strong>on</strong>e core DN-52 pre<br />

DN-52 post A-3<br />

DN-62 flowst<strong>on</strong>e DN-62 pre I<br />

DN-62 post I A-4<br />

DN-62 post II D-2<br />

DN-63 cracked flowst<strong>on</strong>e DN-63 pre I<br />

DN-63 pre II<br />

DN-63 post A-5<br />

DN-65 flowst<strong>on</strong>e + bedrock DN-65 pre<br />

DN-65 post A-4<br />

DN-66 stalagmites & stalactites DN-66b pre E-1<br />

DN-66c pre I<br />

Dn-66c post I A-2<br />

DN-66c pre II<br />

DN-66c post II A-2<br />

DN-66c pre III E-1<br />

DN-68 broken stalagmite DN-68 pre C-1<br />

50


Figure 17: Dated seismite uncorrected ages. Red dots signify pre-seismic event samples and black<br />

indicate post-seismic event samples. Dashed lines indicate <strong>the</strong> hiatus of depositi<strong>on</strong> between<br />

c<strong>on</strong>nected samples. Green frames indicate where samples may cluster around specific ages, when<br />

c<strong>on</strong>sidering <strong>the</strong> error margin of <strong>the</strong> ages and <strong>the</strong> detrital comp<strong>on</strong>ent, which is present in some<br />

samples (see. Table 6) and may reduce <strong>the</strong>ir age. Green circles indicate sample pairs that have a<br />

minimal hiatus between <strong>the</strong> pre- and post-seismic event dated samples. Data for this plot may be<br />

found in Appendix III.<br />

51


(Number of samples) x (Quality of samples)<br />

Age (ka)<br />

(Number of samples) x (Quality of samples)<br />

Age (ka)<br />

Figure 18: Sample stacking plot; each sample is stacked <strong>on</strong> top of <strong>the</strong> samples with <strong>the</strong> same age to<br />

show a peak where ages cluster. Samples of a type A, B, C, D and E were multiplied by factors of 5, 4,<br />

3, 2 and 1 respectively to show <strong>the</strong> quality of <strong>the</strong> age cluster. The plot is based <strong>on</strong> sample’s<br />

uncorrected ages and since some of <strong>the</strong> samples c<strong>on</strong>tain detrital Th <strong>the</strong>ir age should be corrected,<br />

putting <strong>the</strong>m in o<strong>the</strong>r age clusters or creating different age clusters altoge<strong>the</strong>r. The large purple<br />

circles indicate clearly visible peaks and <strong>the</strong> small circles indicate ages of sample clusters within <strong>the</strong><br />

error margin or accounting for <strong>the</strong> detrital comp<strong>on</strong>ent, which is present in some samples (indicated<br />

by low 230 Th/ 232 Th ratios in Table 6).<br />

52


Table 6: Dated seismite samples' isotopic ratios and uncorrected ages. Samples are arranged by<br />

age for Isochr<strong>on</strong> calculati<strong>on</strong>s. Red samples are pre-seismic event and black samples are postseismic<br />

event. The detrital comp<strong>on</strong>ent of samples was established in <strong>the</strong> lab for most samples.<br />

Markings in blue are for samples that were established in <strong>the</strong> lab ex post facto as near as possible<br />

to <strong>the</strong> original sample. For all ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios obtained for <strong>the</strong>se samples see Appendix IV.<br />

Dated sample name 234/238 err 230/234 err 230/238 err 232/238 err 230/232 err Det. Age (y) + -<br />

DN-33c1-post 1.06245 0.00216 0.00428 0.00009 0.00454 0.00010 0.001112 0.000003 5.61 0.12 n 466 10 -10<br />

DN-42e-post 1.05686 0.00153 0.00708 0.00028 0.00749 0.00030 0.000517 0.000002 17.52 0.70 n 773 31 -31<br />

DN-51 pre III 1.04455 0.00108 0.04394 0.00116 0.04590 0.00121 0.004875 0.000019 10.15 0.27 y 4886 131 -131<br />

DN-2-3 1.04588 0.00237 0.04755 0.00220 0.04973 0.00230 0.002880 0.000022 22.50 1.05 n 5296 250 -250<br />

DN-2-4 1.04588 0.00152 0.05618 0.00197 0.05875 0.00206 0.004098 0.000024 16.88 0.60 y 6285 227 -227<br />

DN-51 pre II 0.99870 0.01697 0.07354 0.00230 0.07344 0.00261 0.011608 0.000087 6.63 0.18 y 8307 271 -271<br />

DN-66c-pre III 1.05658 0.00100 0.07948 0.00183 0.08397 0.00193 0.038891 0.000187 1.93 0.05 y 9000 1495 -1475<br />

DN-7-46b-post 1.04368 0.00212 0.08100 0.00166 0.08454 0.00174 0.003445 0.000010 27.23 0.56 9181 196 -196<br />

DN10y(dn9bpre down) 1.03678 0.00218 0.08820 0.00349 0.09144 0.00363 0.006492 0.000022 15.32 0.61 10036 418 -416<br />

DN-17-POST 1.05396 0.00139 0.09082 0.00108 0.09572 0.00114 0.054353 0.000145 1.84 0.02 y 10346 129 -129<br />

DN-7-47 1.05794 0.00108 0.09181 0.00134 0.09713 0.00142 0.002746 0.000007 38.30 0.56 10464 160 -160<br />

DN 7postB 1.04236 0.00107 0.09668 0.00067 0.10077 0.00070 0.008356 0.000013 12.58 0.09 n 11050 80 -80<br />

DN6y(dn9B post) 1.04874 0.00102 0.09764 0.00287 0.10240 0.00301 0.011649 0.000085 9.16 0.28 y 11165 346 -345<br />

DN9y(dn9b prebottom) 1.03918 0.00137 0.10535 0.00444 0.10947 0.00462 0.009156 0.000061 12.81 0.55 n 12097 542 -538<br />

DN-51 pre IV 1.03187 0.00268 0.10615 0.00142 0.10953 0.00149 0.025043 0.000108 4.52 0.06 y 12197 173 -173<br />

DN 7 post 1.04360 0.00107 0.10624 0.00123 0.11088 0.00129 0.008465 0.000033 13.56 0.16 n 12206 150 -150<br />

DN-7-46 1.05616 0.00145 0.10627 0.00134 0.11224 0.00143 0.005237 0.000012 22.44 0.29 12208 163 -163<br />

DN-17-PRE 1.03993 0.00378 0.10877 0.00534 0.11311 0.00557 0.018703 0.000088 6.74 0.33 y 12515 654 -650<br />

DN-2-2 1.05553 0.00227 0.11931 0.00293 0.12593 0.00310 0.013666 0.000055 10.39 0.26 13802 362 -361<br />

DN-4 pre (top) 1.05119 0.00122 0.14265 0.00169 0.14995 0.00178 0.014788 0.000039 10.54 0.13 y 16717 214 -214<br />

DN8y(dn6C pre) 1.05426 0.00116 0.14291 0.00280 0.15067 0.00295 0.025554 0.000117 6.19 0.12 16749 355 -354<br />

DN-66c-post (I) 1.05186 0.00282 0.14369 0.01171 0.15114 0.01233 0.024836 0.000587 9.52 0.81 y 16849 1495 -1475<br />

DN 6B pre 1.05783 0.00150 0.15336 0.00237 0.16223 0.00252 0.011280 0.000046 14.95 0.24 18079 304 -304<br />

DN 4 pre 1.06953 0.00113 0.16814 0.00134 0.17983 0.00145 0.001742 0.000004 106.97 0.87 n 19981 175 -175<br />

DN-4 pre II (post) 1.03404 0.00129 0.16915 0.00276 0.17491 0.00286 0.027329 0.000098 6.65 0.11 y 20132 362 -361<br />

DEN-2 pre 1.02887 0.00097 0.18043 0.00293 0.18564 0.00302 0.023520 0.000085 8.10 0.13 y 21619 390 -388<br />

DN-6c pre I 1.10503 0.00150 0.18607 0.00207 0.20561 0.00231 0.022379 0.000049 9.42 0.11 y 22317 276 -276<br />

DN-19-PRE-II 1.03311 0.00165 0.19322 0.00314 0.19962 0.00326 0.036963 0.000153 5.54 0.09 y 23323 425 -423<br />

DN-47 pre II 1.04122 0.00072 0.19454 0.00183 0.20256 0.00191 0.020953 0.000070 9.83 0.10 y 23494 246 -246<br />

DN-45 post 1.03315 0.00131 0.19801 0.00201 0.20457 0.00210 0.127528 0.000358 1.64 0.02 y 23969 273 -273<br />

DN3y(dn4-pre) 1.07078 0.00122 0.20100 0.00267 0.21523 0.00287 0.007581 0.000029 29.63 0.41 n 24343 364 -362<br />

DN 7 pre 1.06103 0.00116 0.20218 0.00145 0.21452 0.00156 0.011100 0.000036 19.77 0.15 y 24511 198 -198<br />

DN-2-1 1.07159 0.00258 0.20490 0.00639 0.21957 0.00687 0.006287 0.000032 37.01 1.17 y 24871 875 -868<br />

DN-48 post 1.07019 0.00201 0.21909 0.00146 0.23447 0.00162 0.002970 0.000008 81.34 0.56 n 26820 203 -203<br />

DN-48 pre 1.06698 0.00153 0.23135 0.00210 0.24684 0.00226 0.005485 0.000023 46.27 0.45 n 28534 296 -296<br />

DN-45 pre 1.01720 0.00139 0.23546 0.00807 0.23951 0.00821 0.030836 0.000254 7.89 0.28 y 29176 1154 -1142<br />

DN-63-post 1.08810 0.00131 0.23978 0.00158 0.26090 0.00174 0.004805 0.000012 81.12 0.56 n 29701 225 -225<br />

DN-37a-pre 1.07969 0.00213 0.24685 0.00145 0.26652 0.00165 0.001866 0.000004 145.54 0.84 n 30719 211 -211<br />

DN-21pre-I 1.07807 0.00197 0.25861 0.00264 0.27880 0.00289 0.005144 0.000013 55.60 0.57 y 32420 387 -386<br />

DN-7-45 1.09876 0.00149 0.26418 0.00166 0.29027 0.00187 0.011424 0.000024 25.95 0.17 33202 245 -245<br />

DN 6C pre 1.07073 0.00096 0.27134 0.00237 0.29054 0.00255 0.001669 0.000003 177.99 1.57 34300 352 -352<br />

DN-6c pre II 1.07306 0.00148 0.27851 0.00236 0.29886 0.00256 0.003601 0.000014 84.97 0.78 n 35363 354 -354<br />

DN7y(dn6C pre) 1.07398 0.00147 0.28225 0.00319 0.30313 0.00345 0.002120 0.000004 146.36 1.67 35921 483 -481<br />

DN-68b-pre 1.07626 0.00493 0.28627 0.00774 0.30810 0.00845 0.008858 0.000055 43.68 1.19 36522 1185 -1171<br />

DN-47 post I 1.06773 0.00153 0.29022 0.00259 0.30987 0.00280 0.004028 0.000014 78.61 0.74 n 37136 398 -396<br />

DN-44 post 1.07758 0.00301 0.29846 0.00285 0.32161 0.00320 0.000935 0.000005 354.47 3.62 n 38375 444 -442<br />

DN-44 pre 1.06962 0.00277 0.29967 0.00458 0.32054 0.00497 0.006032 0.000025 55.00 0.86 38577 707 -708<br />

DN-63-pre II 1.07924 0.00052 0.30333 0.00183 0.32737 0.00198 0.001445 0.000004 230.39 1.50 n 39122 283 -283<br />

DN-36 pre III 1.08074 0.00157 0.32781 0.00176 0.35427 0.00197 0.018083 0.000047 19.92 0.11 y 42965 285 -285<br />

DN-33C1-PRE 1.03957 0.00231 0.32881 0.01284 0.34182 0.01337 0.023024 0.000194 15.32 0.61 n 43241 2094 -2055<br />

DN-52 post 1.07331 0.00247 0.33114 0.00399 0.35542 0.00436 0.006495 0.000021 55.90 0.68 n 43519 652 -647<br />

DN-19-PRE-I 1.06999 0.00228 0.36921 0.00441 0.39505 0.00479 0.018431 0.000072 22.00 0.27 n 49829 762 -756<br />

DN-47 pre I 1.05901 0.00146 0.37049 0.00319 0.39235 0.00342 0.020007 0.000057 20.07 0.18 y 50089 553 -550<br />

DN-40-pre II 0.92599 0.00159 0.38749 0.03322 0.35881 0.03077 0.015372 0.001397 23.54 2.94 y 53717 6189 -5841<br />

DN-21 pre II 1.04397 0.00132 0.39452 0.00253 0.41186 0.00270 0.020446 0.000056 20.47 0.14 y 54345 457 -456<br />

DN 9B pre 1.05794 0.00184 0.40077 0.00267 0.42399 0.00291 0.007702 0.000019 56.30 0.39 n 55394 488 -486<br />

DN-52 pre 1.07588 0.00156 0.40291 0.00267 0.43348 0.00294 0.005633 0.000015 78.36 0.55 n 55692 488 -485<br />

DN-51 post I 1.05778 0.00176 0.42081 0.00312 0.44512 0.00339 0.020085 0.000041 22.59 0.17 n 59048 590 -587<br />

DN-40 pre-II 1.04746 0.00271 0.42505 0.01276 0.44522 0.01342 0.016911 0.000021 27.06 0.81 n 59897 2429 -2376<br />

DN 6A pre (post) 1.07952 0.00155 0.42623 0.00219 0.46013 0.00245 0.001532 0.000003 305.29 1.59 n 59936 416 -415<br />

DN-66c-post II 1.18317 0.00280 0.43225 0.00576 0.51143 0.00692 0.009720 0.000039 65.53 0.90 60527 1080 -1069<br />

DN-14A-PRE-I 1.00241 0.00069 0.44900 0.00260 0.45008 0.00262 0.072954 0.000224 6.26 0.04 y 64801 517 -516<br />

DN-63-pre I 1.04106 0.00165 0.46048 0.00208 0.47938 0.00229 0.053326 0.000129 11.64 0.06 y 66781 427 -426<br />

DN-14a-preI 1.00621 0.00065 0.49026 0.00413 0.49330 0.00417 0.075309 0.000242 6.68 0.06 73220 890 -882<br />

DN-25 post II 1.02651 0.00151 0.52357 0.00317 0.53745 0.00335 0.032306 0.000085 16.91 0.11 y 80306 738 -733<br />

DN-66c-pre I 1.08715 0.00161 0.57708 0.00308 0.62737 0.00348 0.046079 0.000109 9.58 0.05 y 92162 790 -785<br />

DN-34a- post 1.04353 0.00278 0.64757 0.00394 0.67576 0.00449 0.048901 0.000125 17.75 0.10 112216 1264 -1247<br />

DN-51 pre I 1.01478 0.00186 0.70284 0.00301 0.71323 0.00332 0.081740 0.000223 8.84 0.04 y 131346 1171 -1158<br />

DN-33c2-post 1.05619 0.00251 0.71582 0.00474 0.75605 0.00532 0.018440 0.000043 41.70 0.27 134388 1848 -1814<br />

DN-46 pre I 1.03657 0.00146 0.71835 0.00254 0.74462 0.00283 0.032753 0.000095 22.99 0.10 y 136133 1017 -1008<br />

DN-25 post I 0.97948 0.00241 0.71237 0.03443 0.69775 0.03377 0.063813 0.002499 11.03 0.69 136503 14315 -12605<br />

DN-66b-pre 1.00470 0.00290 0.72369 0.03047 0.72708 0.03068 0.123950 0.002547 9.08 0.42 y 139648 12826 -11444<br />

DN-34a-pre II 1.06637 0.00318 0.74725 0.00514 0.79685 0.00598 0.004753 0.000016 108.57 0.76 n 146004 2253 -2203<br />

DN-36 post-II 0.98185 0.00116 0.73641 0.00484 0.72304 0.00482 0.118289 0.000354 7.56 0.05 y 146262 1858 -2302<br />

DN-33c2-pre 1.05609 0.00222 0.74735 0.00380 0.78927 0.00434 0.016461 0.000033 48.73 0.24 146544 1674 -1644<br />

DN-46 pre II 1.05637 0.00186 0.75339 0.00598 0.79586 0.00647 0.008694 0.000023 92.76 0.75 y 149020 2619 -2556<br />

DN-36 pre II 1.04813 0.00213 0.76509 0.00391 0.80192 0.00441 0.012018 0.000040 47.62 0.27 154473 1861 -1824<br />

DN-34a-pre I 1.02974 0.00248 0.77247 0.00427 0.79544 0.00479 0.044464 0.000120 18.11 0.10 y 158935 2155 -2108<br />

DN-22-POST-II 1.06510 0.00245 0.78766 0.00490 0.83893 0.00556 0.009551 0.000025 89.14 0.56 n 163707 2507 -2446<br />

DN-46 post 0.95424 0.00121 0.79093 0.00483 0.75474 0.00471 0.108059 0.000344 7.07 0.05 y 174544 2862 -2784<br />

DN-37a post 0.94086 0.00138 0.79625 0.00363 0.74915 0.00359 0.185180 0.000610 7.90 0.04 y 178984 2362 -1790<br />

DN-27-II 0.99633 0.00134 0.85107 0.00344 0.84795 0.00361 0.049629 0.000082 17.32 0.07 207662 2776 -2702<br />

DN-62 post II 1.04862 0.00208 0.86174 0.00726 0.90364 0.00782 0.036535 0.000148 25.14 0.23 y 207847 5571 -5291<br />

DN-40-pre I 1.00703 0.00138 0.89247 0.00365 0.89875 0.00387 0.039360 0.000107 23.16 0.11 y 240828 4005 -3857<br />

DN-26top-postI 1.01528 0.00082 0.90344 0.00335 0.91724 0.00348 0.074261 0.000126 12.53 0.05 250043 3850 -3717<br />

DN-62 post I 1.04910 0.00090 0.91456 0.01086 0.95946 0.01142 0.071402 0.000550 13.56 0.19 y 253340 12464 -11197<br />

DN-36 post I 1.03745 0.00347 0.91212 0.00558 0.94628 0.00660 0.029360 0.000076 25.69 0.14 253643 7157 -6679<br />

DN-40 post I (2) 0.95030 0.00114 0.91932 0.00524 0.87363 0.00509 0.064856 0.000211 13.63 0.09 296208 9310 -9456<br />

DN-65 post 1.05926 0.00101 0.95402 0.00566 1.01056 0.00607 0.004511 0.000019 226.13 1.63 n 301492 10009 -9185<br />

DN-42e-pre 1.07104 0.00118 0.96297 0.00490 1.03138 0.00537 0.057652 0.000147 18.11 0.10 n 311281 9461 -8720<br />

DN-66c-pre II 1.03939 0.00090 0.95915 0.00800 0.99693 0.00836 0.066596 0.000188 32.63 0.28 y 320296 17481 -15087<br />

DN-36 pre I 1.02635 0.00142 0.95785 0.00293 0.98310 0.00330 0.064699 0.000149 32.60 0.11 y 325384 7240 -6771<br />

DN34a-pre III 1.02381 0.00184 0.96007 0.00525 0.98293 0.00566 0.045409 0.000193 22.20 0.15 y 331793 13731 -12152<br />

DN-65 pre 1.04065 0.00140 0.96909 0.00786 1.00848 0.00829 0.001810 0.000006 561.97 4.90 n 340805 21364 -17886<br />

DN-22-POST-I 0.94199 0.00197 0.95166 0.00377 0.89646 0.00401 0.163262 0.000313 5.55 0.02 y 394924 24176 -19364<br />

DN-22-PRE-II 1.02405 0.00208 0.98211 0.00450 1.00573 0.00504 0.075199 0.000194 13.53 0.07 y 395927 22847 -18817<br />

DN-40-post I 0.91731 0.00264 0.97600 0.00388 0.89530 0.00440 0.071726 0.000213 12.62 0.04 y 873592 -11608 19656<br />

DN-26top-preI 1.00029 0.00102 1.05743 0.00178 1.05773 0.00208 0.102962 0.000177 10.36 0.02 y eq. 150 -150<br />

DN-62 pre I 1.01571 0.00056 1.01743 0.00406 1.03341 0.00416 0.083724 0.000260 12.45 0.06 y eq.<br />

DN-22-PRE-I 0.98376 0.00180 0.99498 0.00336 0.97882 0.00376 0.093713 0.000251 10.56 0.04 y eq. 2658 -2590<br />

53


The plots illustrated in Figures 17 and 18 may serve as indicators for sample clusters,<br />

which could lend statistical reliability to speleo-seismite ages from Denya Cave, yet with<br />

no precise dating <strong>the</strong> uncertainty of <strong>the</strong>se results is very large. Using <strong>the</strong> results from<br />

<strong>the</strong>se plots, which indicate age clusters, an age cluster analysis was made (see below).<br />

4.2 Age cluster analysis<br />

Ano<strong>the</strong>r way to calculate sample ages is by using equati<strong>on</strong> [2] according to Broecker<br />

(1963), based <strong>on</strong> isotopic ratios of 230 Th/ 238 U and 234 U/ 238 U. Those ages can be plotted <strong>on</strong><br />

a U-series evoluti<strong>on</strong> diagram with isochr<strong>on</strong> lines and initial 234 U/ 238 U evoluti<strong>on</strong> curves<br />

(Fig. 19).<br />

Adding a third axis (z= 232 Th/ 238 U) to <strong>the</strong> evoluti<strong>on</strong> diagram, age calculati<strong>on</strong>s can be<br />

presented using a regressi<strong>on</strong> for an isochr<strong>on</strong> line in three dimensi<strong>on</strong>s. The x-y plane<br />

intercepts of this 3-D isochr<strong>on</strong> define <strong>the</strong> ratios used to calculate a 230 Th/U age and initial<br />

234 U/ 238 U (Ludwig and Titteringt<strong>on</strong>, 1994). Age calculati<strong>on</strong>s were d<strong>on</strong>e using Isoplot3.7,<br />

where <strong>on</strong>e age was calculated for all samples which plotted reas<strong>on</strong>ably well <strong>on</strong> a three<br />

dimensi<strong>on</strong>al isochr<strong>on</strong> plot. The isochr<strong>on</strong> plots were calculated for all samples of similar<br />

uncorrected ages (as indicated by Figs 17 and 18) and <strong>the</strong>n modificati<strong>on</strong>s were made<br />

according to <strong>the</strong> criteria elaborated above (see ch. 3.3.3- Cluster dating). These isochr<strong>on</strong><br />

age calculati<strong>on</strong>s (elaborated in Figs. 20-28), are termed sample age clusters and<br />

c<strong>on</strong>sidered to be indicators of seismic events that affected Denya Cave.<br />

54


1.14<br />

1.10<br />

1.06<br />

234 U/<br />

238 U<br />

1.02<br />

0.98<br />

0.94<br />

0.90<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

230 Th/ 238 U<br />

Figure 19: U-series evoluti<strong>on</strong> diagram for Denya Cave seismite samples (red rectangles). Data are<br />

based <strong>on</strong> isotopic ratios illustrated in Table 6.<br />

55


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-51 pre III 0.04590 0.00121 1.04455 0.00108 0.004875 0.000019 10.15 0.27 y 4886 131 131 E<br />

DN-2-3 0.04973 0.00230 1.04588 0.00237 0.002880 0.000022 22.50 1.05 n 5296 250 250 A<br />

DN-2-4 0.05875 0.00206 1.04588 0.00152 0.004098 0.000024 16.88 0.60 y 6285 227 227 A<br />

DN-66c-pre III 0.08397 0.00193 1.05658 0.00100 0.038891 0.000187 1.93 0.05 y 9000 1495 1475 E<br />

DN-17-POST 0.09572 0.00114 1.05396 0.00139 0.054353 0.000145 1.84 0.02 y 10346 129 129 A<br />

230<br />

Th/U Age = 4.83 ±0.80 ka<br />

1.08<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.045 ±0.016<br />

MSWD = 33, probability = 0.000<br />

1.06<br />

234 U/<br />

238 U<br />

1.04<br />

1.02<br />

0.03 0.05 0.07 0.09 0.11<br />

230 Th/ 238 U<br />

Figure 20: 5ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 5ka is<br />

shown in Figure 20. This age is<br />

post<br />

10.35ka<br />

based <strong>on</strong> four pre- and post-seismic<br />

A-1<br />

event samples, from around <strong>the</strong><br />

E-1<br />

cave, giving <strong>the</strong> age of <strong>the</strong> event a<br />

pre III<br />

9ka<br />

viable c<strong>on</strong>straint. Two of <strong>the</strong><br />

samples are of type A seismites and<br />

two are of poor quality (type E)<br />

DN-1<br />

A-1<br />

4-post<br />

6.28ka<br />

3-post<br />

5.3ka<br />

E-1<br />

seismites (Fig. 21). The age<br />

calculati<strong>on</strong> yielded a minimal<br />

Seismic c<strong>on</strong>tact<br />

pre III<br />

4.89ka<br />

scatter isochr<strong>on</strong> plot.<br />

Figure 21: Age cluster ~5ka samples<br />

56


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-7-46b-post 0.08454 0.00174 1.04368 0.00212 0.00345 0.00001 27.23 0.56 9181 196 196 A<br />

DN-7-47 0.09713 0.00142 1.05794 0.00108 0.00275 0.00001 38.30 0.56 10464 160 160 A<br />

DN 7postB 0.10077 0.00070 1.04236 0.00107 0.00836 0.00001 12.58 0.09 n 11050 80 80 A<br />

DN-9B (post) 0.10240 0.00301 1.04874 0.00102 0.01165 0.00009 9.16 0.28 y 11165 346 345 C<br />

DN-9b pre(bottom) 0.10947 0.00462 1.03918 0.00137 0.00916 0.00006 12.81 0.55 n 12097 542 538 C<br />

DN-51 pre IV 0.10953 0.00149 1.03187 0.00268 0.02504 0.00011 4.52 0.06 y 12197 173 173 E<br />

DN 7 post 0.11088 0.00129 1.04360 0.00107 0.00847 0.00003 13.56 0.16 n 12206 150 150 A<br />

DN-7-46 0.11224 0.00143 1.05616 0.00145 0.00524 0.00001 22.44 0.29 12208 163 163 A<br />

DN-17-PRE 0.11311 0.00557 1.03993 0.00378 0.01870 0.00009 6.74 0.33 y 12515 654 650 A<br />

DN-2-2 0.12593 0.00310 1.05553 0.00227 0.01367 0.00005 10.39 0.26 13802 362 361 A<br />

DN-45 post 0.20457 0.00210 1.03315 0.00131 0.12753 0.00036 1.64 0.02 y 23969 273 273 A<br />

data-point error ellipses are 2σ<br />

230 Th/U Age = 10.42 ±0.69 ka<br />

1.07<br />

Initial 234 U/ 238 U = 1.050 ±0.024<br />

MSWD = 107, probability = 0.000<br />

1.06<br />

234 U/<br />

238 U<br />

1.05<br />

1.04<br />

1.03<br />

1.02<br />

0.04 0.08 0.12 0.16 0.20 0.24<br />

230 Th/ 238 U<br />

Figure 22: 10.4ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crosses- projected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

DN-1<br />

46-post<br />

12.21ka<br />

46b-post<br />

9.18ka<br />

A cluster of ages at ca. 10.5ka is shown in Figure 22. This age is based <strong>on</strong> six seismite<br />

A-1<br />

2-pre<br />

13.79ka<br />

Seismic c<strong>on</strong>tact<br />

Seismic c<strong>on</strong>tact<br />

post<br />

23.97ka<br />

A-1<br />

post<br />

12.21ka<br />

post B<br />

11.05ka<br />

pre<br />

12.51ka<br />

A-1<br />

Seismic c<strong>on</strong>tact<br />

(1)pre (post)<br />

11.17ka<br />

(2)pre (bottom)<br />

12.1ka<br />

C-1<br />

samples of pre- and postseismic<br />

event samples from<br />

different areas of <strong>the</strong> cave.<br />

Four of <strong>the</strong> samples are type<br />

A seismite samples (Fig. 23).<br />

This isochr<strong>on</strong> calculated age<br />

is c<strong>on</strong>sidered to be very<br />

accurate since it is derived<br />

from five DN-7 post-seismite<br />

samples, which is a type A<br />

seismite (Fig. 23).<br />

E-1<br />

C-1<br />

DN-45<br />

pre IV<br />

12.2ka<br />

Figure 23: Age cluster ~10.5ka<br />

samples.<br />

57


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-4 pre (top) 0.14995 0.00178 1.05119 0.00122 0.014788 0.000039 10.54 0.13 y 16717 214 214 C<br />

DN8y(dn6C pre) 0.15067 0.00295 1.05426 0.00116 0.025554 0.000117 6.19 0.12 16749 355 354 C<br />

DN-66c-post (I) 0.15114 0.01233 1.05186 0.00282 0.024836 0.000587 9.52 0.81 y 16849 1495 1475 A<br />

DN 6B pre 0.16223 0.00252 1.05783 0.00150 0.011280 0.000046 14.95 0.24 18079 304 304 C<br />

DN 4 pre 0.17983 0.00145 1.06953 0.00113 0.001742 0.000004 106.97 0.87 n 19981 175 175 C<br />

DN-4 pre II (post) 0.17491 0.00286 1.03404 0.00129 0.027329 0.000098 6.65 0.11 y 20132 362 361 C<br />

DEN-2 pre 0.18564 0.00302 1.02887 0.00097 0.023520 0.000085 8.10 0.13 y 21619 390 388 C<br />

DN-6c pre I 0.20561 0.00231 1.10503 0.00150 0.022379 0.000049 9.42 0.11 y 22317 276 276 C<br />

DN-19-PRE-II 0.19962 0.00326 1.03311 0.00165 0.036963 0.000153 5.54 0.09 y 23323 425 423 C<br />

DN-47 pre II 0.20256 0.00191 1.04122 0.00072 0.020953 0.000070 9.83 0.10 y 23494 246 246 A<br />

DN-45 post 0.20457 0.00210 1.03315 0.00131 0.127528 0.000358 1.64 0.02 y 23969 273 273 A<br />

DN3y(dn4-pre) 0.21523 0.00287 1.07078 0.00122 0.007581 0.000029 29.63 0.41 n 24343 364 362 C<br />

DN 7 pre 0.21452 0.00156 1.06103 0.00116 0.011100 0.000036 19.77 0.15 y 24511 198 198 C<br />

data-point error ellipses are 2σ<br />

230 Th/U Age = 20.8 ±3.0 ka<br />

1.12<br />

Initial 234 U/ 238 U = 1.060 ±0.063<br />

MSWD = 712, probability = 0.000<br />

1.10<br />

234 U/<br />

238 U<br />

1.08<br />

1.06<br />

1.04<br />

1.02<br />

0.12 0.14 0.16 0.18 0.20 0.22 0.24<br />

230 Th/ 238 U<br />

Figure 24: 21ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 21ka is shown in Figure 24. This age is based <strong>on</strong> eight<br />

seismite samples, mostly of pre-seismic event samples, from all parts of <strong>the</strong> upper<br />

chamber of <strong>the</strong> cave. Most of <strong>the</strong> samples are type C seismites (Fig. 25). The isochr<strong>on</strong><br />

C-1<br />

A-1<br />

pre<br />

24.51ka<br />

DEN-2<br />

pre<br />

21.62ka<br />

pre<br />

18.07ka<br />

b DN-6c<br />

C-3<br />

pre<br />

16.75ka<br />

pre I<br />

22.32ka<br />

(4) pretop<br />

16.72ka<br />

(2) pre II<br />

19.98ka<br />

A-2<br />

C-1<br />

(1) pre I<br />

24.34ka<br />

post I<br />

16.85ka<br />

(3) pre<br />

III (pos t )<br />

20.14ka<br />

pre II<br />

23.49ka<br />

E-1<br />

A-1<br />

DN-47<br />

pre II<br />

23.32ka<br />

post<br />

23.97ka<br />

C-1<br />

plot is very scattered and yet it<br />

was established as a viable<br />

isochr<strong>on</strong> because four DN-4 preseismite<br />

samples come from <strong>the</strong><br />

same lamina, despite <strong>the</strong> fact that<br />

<strong>the</strong>y show different ages, and <strong>the</strong><br />

same is true of two DN-6c preseismite<br />

samples (Fig. 25).<br />

Sample DN-7 pre is c<strong>on</strong>sidered<br />

to be a reliable seismite sample.<br />

Figure 25: Age cluster ~21ka samples.<br />

58


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-48 post 0.23447 0.00162 1.07019 0.00201 0.002970 0.000008 81.34 0.56 n 26820 203 203 A<br />

DN-48 pre 0.24684 0.00226 1.06698 0.00153 0.005485 0.000023 46.27 0.45 n 28534 296 296 A<br />

DN-45 pre 0.23951 0.00821 1.01720 0.00139 0.030836 0.000254 7.89 0.28 y 29176 1154 1142 A<br />

DN-63-post 0.26090 0.00174 1.08810 0.00131 0.004805 0.000012 81.12 0.56 n 29701 225 225 A<br />

DN-37a-pre 0.26652 0.00165 1.07969 0.00213 0.001866 0.000004 145.54 0.84 n 30719 211 211 D<br />

DN-21pre-I 0.27880 0.00289 1.07807 0.00197 0.005144 0.000013 55.60 0.57 y 32420 387 386 C<br />

230<br />

Th/U Age = 29.1 ±3.3 ka<br />

1.12<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.095 ±0.044<br />

MSWD = 220, probability = 0.000<br />

1.10<br />

1.08<br />

234 U/<br />

238 U<br />

1.06<br />

1.04<br />

1.02<br />

1.00<br />

0.22 0.24 0.26 0.28 0.30<br />

230 Th/ 238 U<br />

Figure 26: 29ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of age at ca. 29ka is shown in Figure 26. This age is based <strong>on</strong> five different<br />

seismite samples, three of which are type A (Fig. 27). The age is a well c<strong>on</strong>strained<br />

because it is based <strong>on</strong> pre- and post seismite samples DN-48 (type B) (Fig. 27). Any o<strong>the</strong>r<br />

evidence can be seen<br />

pre<br />

30.72ka<br />

DN-45<br />

as corroborative.<br />

A-1<br />

D-1<br />

pre<br />

29.18ka<br />

DN-37<br />

pre I<br />

32.42ka<br />

DN-63<br />

post<br />

29.7ka<br />

post<br />

26.83ka<br />

C-1<br />

A-5<br />

pre<br />

28.53ka<br />

B-1<br />

Figure 27: Age cluster<br />

~ 29ka samples.<br />

59


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-68b-pre 0.30810 0.00845 1.07626 0.00493 0.008858 0.000055 43.68 1.19 36522 1185 1171 C<br />

DN-47 post I 0.30987 0.00280 1.06773 0.00153 0.004028 0.000014 78.61 0.74 n 37136 398 396 A<br />

DN-44 post 0.32161 0.00320 1.07758 0.00301 0.000935 0.000005 354.47 3.62 n 38375 444 442 A<br />

DN-44 pre 0.32054 0.00497 1.06962 0.00277 0.006032 0.000025 55.00 0.86 38577 707 708 A<br />

DN-63-pre II 0.32737 0.00198 1.07924 0.00052 0.001445 0.000004 230.39 1.50 n 39122 283 283 A<br />

DN-36 pre III 0.35427 0.00197 1.08074 0.00157 0.018083 0.000047 19.92 0.11 y 42965 285 285 E<br />

DN-33C1-PRE 0.34182 0.01337 1.03957 0.00231 0.023024 0.000194 15.32 0.61 n 43241 2094 2055 A<br />

DN-52 post 0.35542 0.00436 1.07331 0.00247 0.006495 0.000021 55.90 0.68 n 43519 652 647 A<br />

230<br />

Th/U Age = 38.0 ±2.7 ka<br />

1.12<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.089 ±0.028<br />

MSWD = 105, probability = 0.000<br />

1.10<br />

234 U/<br />

238 U<br />

1.08<br />

1.06<br />

1.04<br />

1.02<br />

0.27 0.29 0.31 0.33 0.35 0.37<br />

230 Th/ 238 U<br />

Figure 28: 38ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

post<br />

38.37ka<br />

A cluster of ages at ca. 38ka is shown in Figure 28. This age is based <strong>on</strong> six pre- and<br />

DN-63<br />

pre II<br />

39.12ka<br />

pre<br />

38.58ka<br />

post I<br />

37.14ka<br />

pre<br />

43.24ka<br />

A-4<br />

A-5<br />

A-2<br />

DN-33c-1<br />

pre<br />

36.52ka<br />

post<br />

43.52ka<br />

C-1<br />

DN-52<br />

post-seismite samples from around<br />

<strong>the</strong> upper chamber of <strong>the</strong> cave, four<br />

of which are type A seismite samples<br />

(Fig. 29). The age calculati<strong>on</strong> of <strong>the</strong><br />

isochr<strong>on</strong> is approximately <strong>the</strong> same<br />

as <strong>the</strong> uncorrected ages of samples<br />

DN-44 pre and post, which c<strong>on</strong>strain<br />

<strong>the</strong> age of <strong>the</strong> seismic event very<br />

accurately, even though <strong>the</strong> isochr<strong>on</strong><br />

seems highly scattered. The two o<strong>the</strong>r<br />

samples in this cluster can be viewed<br />

as corroborative evidence.<br />

A-4<br />

DN-44<br />

A-3<br />

Figure 29: Age cluster ~38ka samples.<br />

60


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-52 pre 0.43348 0.00294 1.07588 0.00156 0.005633 0.000015 78.36 0.55 n 55692 488 485 A<br />

DN-51 post I(pre) 0.44512 0.00339 1.05778 0.00176 0.020085 0.000041 22.59 0.17 n 59048 590 587 E<br />

DN 6A pre 0.46013 0.00245 1.07952 0.00155 0.001532 0.000003 305.29 1.59 n 59936 416 415 C<br />

DN-14A-PRE-I 0.45008 0.00262 1.00241 0.00069 0.072954 0.000224 6.26 0.04 y 64801 517 516 C<br />

DN-63-pre I 0.47938 0.00229 1.04106 0.00165 0.053326 0.000129 11.64 0.06 y 66781 427 426 A<br />

DN-14a-preI 0.49330 0.00417 1.00621 0.00065 0.075309 0.000242 6.68 0.06 73220 890 882 C<br />

230<br />

Th/U Age = 57.9 ±5.2 ka<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.097 ±0.040<br />

MSWD = 156, probability = 0.000<br />

1.11<br />

1.09<br />

1.07<br />

234 U/<br />

238 U<br />

1.05<br />

1.03<br />

1.01<br />

0.99<br />

0.41 0.43 0.45 0.47 0.49 0.51<br />

230 Th/ 238 U<br />

Figure 30: 58ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 58ka is shown in Figure 30. This age is based strictly <strong>on</strong> preseismic<br />

event samples from different parts of <strong>the</strong> cave, two of which are type A seismites<br />

pre<br />

59.94ka<br />

A-5<br />

DN-63<br />

C-3<br />

post I<br />

(maybe pre)<br />

59.05ka<br />

pre I<br />

66.78ka<br />

DN-51<br />

E-1<br />

C-1<br />

DN-14<br />

DN-52<br />

Seismic c<strong>on</strong>tact<br />

pre<br />

55.69ka<br />

pre<br />

73.2ka<br />

A-3<br />

pre<br />

64.8ka<br />

(Fig. 31). The isochr<strong>on</strong> plot<br />

is scattered and gives a<br />

relatively high error <strong>on</strong> <strong>the</strong><br />

calculated age. Never<strong>the</strong>less,<br />

two DN-14a samples from<br />

<strong>the</strong> same lamina were<br />

calculated. This age indicates<br />

that some time after ca. 58ka<br />

a seismic event occurred,<br />

which affected <strong>the</strong> whole<br />

cave.<br />

Figure 31: Age cluster ~58ka<br />

samples.<br />

61


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-51 pre I 0.71323 0.00332 1.01478 0.00186 0.081740 0.000223 8.84 0.04 y 131346 1171 1158 A<br />

DN-33c2-post 0.75605 0.00532 1.05619 0.00251 0.018440 0.000043 41.70 0.27 134388 1848 1814 A<br />

DN-46 pre I 0.74462 0.00283 1.03657 0.00146 0.032753 0.000095 22.99 0.10 y 136133 1017 1008 A<br />

DN-25 post I 0.69775 0.03377 0.97948 0.00241 0.063813 0.002499 11.03 0.69 136503 14315 12605 D<br />

DN-66b-pre 0.72708 0.03068 1.00470 0.00290 0.123950 0.002547 9.08 0.42 y 139648 12826 11444 E<br />

230<br />

Th/U Age = 137 ±29 ka<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.085 ±0.067<br />

MSWD = 179, probability = 0.000<br />

1.12<br />

1.08<br />

234 U/<br />

238 U<br />

1.04<br />

1.00<br />

0.96<br />

0.64 0.68 0.72 0.76 0.80 0.84<br />

230<br />

Th/ 238 U<br />

Figure 32: 137ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crosses- projected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 137ka is shown in Figure 32. This age is based <strong>on</strong> five pre-<br />

and post-seismite samples from around <strong>the</strong> upper chamber of <strong>the</strong> cave, three of which are<br />

type A speleo-seismites (Fig. 33). The large error of <strong>the</strong> calculated age could be attributed<br />

A-3<br />

to <strong>the</strong> large error of some of<br />

D-2<br />

<strong>the</strong> individual samples (due<br />

to a low accuracy of<br />

dating). Never<strong>the</strong>less, <strong>the</strong><br />

post I<br />

136.5ka<br />

DN-46<br />

pre I<br />

136.13ka<br />

A-2<br />

isochr<strong>on</strong> calculati<strong>on</strong> yielded<br />

a very large error, <strong>the</strong>refore<br />

it is noted as an event<br />

Seismic c<strong>on</strong>tact<br />

post<br />

134.38ka<br />

pre<br />

139.65ka<br />

which was recorded at <strong>the</strong><br />

time interval between ca.<br />

110 and 170ka.<br />

A-2<br />

DN-33c2<br />

E-1<br />

pre I<br />

(maybe post)<br />

131.35ka<br />

DN-51<br />

Figure 33: Age cluster ~137ka<br />

samples.<br />

62


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - Type<br />

DN-34a-pre II 0.7968 0.0060 1.0664 0.0032 0.004753 0.000016 108.57 0.76 n 146004 2253 2203 A<br />

DN-36 post-II 0.7230 0.0048 0.9818 0.0012 0.118289 0.000354 7.56 0.05 y 146262 1858 2302 A<br />

DN-33c2-pre 0.7893 0.0043 1.0561 0.0022 0.016461 0.000033 48.73 0.24 146544 1674 1644 A<br />

DN-46 pre II 0.7959 0.0065 1.0564 0.0019 0.008694 0.000023 92.76 0.75 y 149020 2619 2556 A<br />

230<br />

Th/U Age = 147.6 ±5.4 ka<br />

1.10<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.100 ±0.012<br />

MSWD = 5.4, probability = 0.000<br />

1.08<br />

1.06<br />

234 U/<br />

238 U<br />

1.04<br />

1.02<br />

1.00<br />

0.98<br />

0.96<br />

0.70 0.72 0.74 0.76 0.78 0.80 0.82<br />

230 Th/ 238 U<br />

Figure 34: 148ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 148ka is shown in Figure 34. This age is based <strong>on</strong> a relatively<br />

accurate isochr<strong>on</strong> plot, derived from four different type A speleo-seismites (Fig. 35).<br />

DN-46<br />

A-3<br />

DN-36<br />

A-5<br />

Samples DN-36, DN-34<br />

and DN-46 are flowst<strong>on</strong>e<br />

cores from <strong>the</strong> same area of<br />

<strong>the</strong> cave. It is <strong>the</strong>refore<br />

pre II<br />

149.02ka<br />

post II<br />

146.26ka<br />

Seismic c<strong>on</strong>tact<br />

likely that <strong>the</strong>y recorded<br />

<strong>the</strong> same event, which is<br />

DN-33c2<br />

DN-34a<br />

A-5<br />

well c<strong>on</strong>strained since <strong>the</strong>y<br />

Seismic c<strong>on</strong>tact<br />

Seismic c<strong>on</strong>tact<br />

are both pre- and postseismite<br />

samples.<br />

A-2<br />

pre<br />

146.54ka<br />

pre II<br />

146ka<br />

Figure 35: Age cluster<br />

~147ka samples.<br />

63


Sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age (y) + - type<br />

DN-36 pre II 0.80192 0.00441 1.04813 0.00213 0.012018 0.000040 47.62 0.27 154473 1861 1824 A<br />

DN-34a-pre I 0.79544 0.00479 1.02974 0.00248 0.044464 0.000120 18.11 0.10 y 158935 2155 2108 A<br />

DN-22-POST-II 0.83893 0.00556 1.06510 0.00245 0.009551 0.000025 89.14 0.56 n 163707 2507 2446 A<br />

DN-46 post 0.75474 0.00471 0.95424 0.00121 0.108059 0.000344 7.07 0.05 y 174544 2862 2784 A<br />

DN-37a post 0.74915 0.00359 0.94086 0.00138 0.185180 0.000610 7.90 0.04 y 178984 2362 1790 D<br />

230 Th/U Age = 160 ±45 ka<br />

data-point error ellipses are 2σ<br />

Initial 234 U/ 238 U = 1.079 ±0.095<br />

MSWD = 408, probability = 0.000<br />

1.10<br />

1.06<br />

234 U/<br />

238 U<br />

1.02<br />

0.98<br />

0.94<br />

0.90<br />

0.72 0.76 0.80 0.84 0.88<br />

230 Th/ 238 U<br />

Figure 36: 160ka sample age cluster; 1. Sample isotopic ratio data table (red-pre samples, black-post<br />

samples). 2. Isochr<strong>on</strong> plot and age calculati<strong>on</strong> (red crosses-uncorrected ages, green crossesprojected<br />

data points). 3. Distributi<strong>on</strong> of cluster samples in Denya Cave (red dots).<br />

A cluster of ages at ca. 160ka is shown in Figure 36. This age is based <strong>on</strong> five<br />

flowst<strong>on</strong>e samples, four of which are type A speleo-seismites (Fig. 37). The calculated<br />

age has a large error, yet <strong>the</strong>se samples originate from <strong>the</strong> same area of <strong>the</strong> cave, which<br />

A-4<br />

Seismic c<strong>on</strong>tact<br />

pre I<br />

158.94ka<br />

DN-34a<br />

A-5<br />

DN-37a<br />

post<br />

178.98ka<br />

Seismic c<strong>on</strong>tact<br />

D-2<br />

may indicate that <strong>the</strong>y<br />

recorded <strong>the</strong> same<br />

event, which is well<br />

c<strong>on</strong>strained since <strong>the</strong>y<br />

are both pre- and postseismite<br />

samples.<br />

post II<br />

163.7ka<br />

A-5 DN-36<br />

A-3<br />

post<br />

174.54ka<br />

Seismic c<strong>on</strong>tact<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

154.47ka<br />

Seismic c<strong>on</strong>tact<br />

DN-46<br />

Figure 37: Age cluster<br />

~160ka samples.4.2.1<br />

Seismic events in<br />

64


Seismic events in Denya Cave<br />

Broken speleo<strong>the</strong>ms from Denya Cave yielded break ages that seemed to cluster at<br />

specific times (e.g. ~10-12ka, ~20-24ka, ~29-32ka, ~37-40ka etc. see Table 4 and Figs,<br />

17,18). This indicates that <strong>the</strong> ages are not random and that certain events affected <strong>the</strong><br />

whole cave simultaneously. When c<strong>on</strong>sidering seismite types, each age cluster is also<br />

classified according to its credibility as a precise indicator of a seismic event.<br />

Single sample dating was not possible for Denya Cave seismites and <strong>the</strong>refore criteria<br />

for creating sample age clusters through three-dimensi<strong>on</strong>al isochr<strong>on</strong> plots were<br />

established, yielding a corrected age for all seismite samples of <strong>the</strong> same age. This in turn,<br />

established statistical means to discern ages of seismic events, which caused damage in<br />

Denya Cave. Criteria for viable isochr<strong>on</strong>s are based <strong>on</strong> morphological, special and<br />

chemical factors. Seismic events discerned from Denya Cave seismites, using all<br />

aforementi<strong>on</strong>ed criteria and three dimensi<strong>on</strong>al isochr<strong>on</strong> plots are: 5.03±0.87ka,<br />

10.42±0.69ka, 20.8±3.0ka, 29.1±3.3, 38.0±2.7ka, 57.9±5.2ka, 137±29ka, 147.6±5.4ka<br />

and 160±45ka (Figs. 38, 39).<br />

4.2.2 Isochr<strong>on</strong> age cluster dating<br />

As menti<strong>on</strong>ed above, all seismite samples that plotted <strong>on</strong> isochr<strong>on</strong> lines were used for<br />

age calculati<strong>on</strong>s. In this study <strong>the</strong> criteria for establishing a reas<strong>on</strong>able isochr<strong>on</strong> (see ch.<br />

3.3-Age cluster dating) encompass not <strong>on</strong>ly geochemical criteria, but also take into<br />

account structural features within <strong>the</strong> cave and stratigraphic c<strong>on</strong>siderati<strong>on</strong>s in <strong>the</strong><br />

speleo<strong>the</strong>m sample laminae.<br />

Table 7 shows that calculati<strong>on</strong>s using isochr<strong>on</strong>s give average ages, causing some<br />

samples to appear older, whereas a single correcti<strong>on</strong> would always cause <strong>the</strong>m to be<br />

younger (e.g. correcti<strong>on</strong> factor 1.8 ; Table 7). Essentially this means that <strong>the</strong> ages of<br />

sample clusters are <strong>on</strong>ly significant when <strong>the</strong> samples are c<strong>on</strong>sidered as a group. Since <strong>the</strong><br />

sampling technique is not as accurate as <strong>the</strong> actual results from <strong>the</strong> MC-ICP-MS, it seems<br />

reas<strong>on</strong>able that any age of a seismic event obtained from this kind of research would<br />

result from averaging individual sample ages.<br />

When using three dimensi<strong>on</strong>al isochr<strong>on</strong> calculati<strong>on</strong>s all samples are c<strong>on</strong>sidered, even<br />

those o<strong>the</strong>rwise discarded because of <strong>the</strong>ir high detrital c<strong>on</strong>tent. Those samples add to <strong>the</strong><br />

number of samples included in <strong>the</strong> average and yield more accurate ages because <strong>the</strong>y<br />

better c<strong>on</strong>strain <strong>the</strong> isochr<strong>on</strong> line.<br />

65


By using <strong>the</strong> isochr<strong>on</strong> technique some seismite samples of high quality (e.g. DN-42e;<br />

see Appendix I-II) did not plot al<strong>on</strong>g an isochr<strong>on</strong> line and were <strong>the</strong>refore discarded. Yet<br />

those samples have a very l<strong>on</strong>g depositi<strong>on</strong>al hiatus (Fig. 15) and wouldn’t have been<br />

str<strong>on</strong>g indicators of earthquakes by <strong>the</strong>mselves. Therefore, <strong>the</strong> isochr<strong>on</strong> method also<br />

permits to sort data, using <strong>on</strong>ly statistically viable samples.<br />

While <strong>the</strong> precise age of each isochr<strong>on</strong>, or set of seismite samples, might be disputed,<br />

it is clear that <strong>the</strong>y do seem to plot and give a reas<strong>on</strong>able age, which is stratigraphicaly<br />

plausible. Fur<strong>the</strong>rmore, no clear isochr<strong>on</strong>s were obtained for n<strong>on</strong>-seismite samples, and<br />

when <strong>the</strong> DEM was factored in, <strong>the</strong> degree of isochr<strong>on</strong> accuracy rose. The scattering of a<br />

large number of <strong>the</strong> results could be explained by an inherent inaccuracy in <strong>the</strong> sampling<br />

technique. It is <strong>the</strong>refore clear that <strong>the</strong> ages obtained are not random, and while <strong>the</strong>y may<br />

vary within <strong>the</strong>ir margin of error, <strong>the</strong>y are c<strong>on</strong>sidered to be indicators of str<strong>on</strong>g<br />

earthquakes that affected Denya Cave. This study suggests that three dimensi<strong>on</strong>al<br />

isochr<strong>on</strong> plots solved <strong>the</strong> problem of <strong>the</strong> single age correcti<strong>on</strong> value, or lack <strong>the</strong>reof, for<br />

Denya Cave speleo<strong>the</strong>ms. Use of this method has also created a reas<strong>on</strong>able way to derive<br />

sample age clusters, which might indicate seismic events.<br />

4.2.3 C<strong>on</strong>siderati<strong>on</strong>s c<strong>on</strong>cerning MSWD<br />

MSWD (Mean Square of Weighted Deviates) is <strong>the</strong> degree to which <strong>the</strong> observed<br />

amount of scatter of <strong>the</strong> U-series data points from <strong>the</strong> isochr<strong>on</strong> lines (<strong>the</strong> best-fit line) can<br />

be explained by assigned analytical errors (Ludwig and Titteringt<strong>on</strong>, 1994).<br />

C<strong>on</strong>sequently, a high MSWD ei<strong>the</strong>r means underestimated analytical errors or <strong>the</strong><br />

presence of n<strong>on</strong>-analytical scatter (Ludwig, 2003). Brooks et al. (1972) suggested that a<br />

satisfactory isochr<strong>on</strong> must have an MSWD value that is lower than 2.5. Yet Davids<strong>on</strong> et<br />

al. (2005) noted that for a given data set <strong>the</strong> MSWD deteriorates as <strong>the</strong> errors <strong>on</strong> <strong>the</strong> data<br />

point decrease (a correlati<strong>on</strong> line is harder to pass within <strong>the</strong> error bars). Since assigned<br />

errors are quite small when using <strong>the</strong> MC-ICP-MS, it is highly likely that <strong>the</strong> MSWD<br />

value is magnified, which in turn translates into degradati<strong>on</strong> in <strong>the</strong> precisi<strong>on</strong> of <strong>the</strong><br />

isochr<strong>on</strong>.<br />

In this study, results have shown that <strong>the</strong> MSWD has very little effect <strong>on</strong> <strong>the</strong> precisi<strong>on</strong><br />

of ages obtained through Isoplot. Indeed, <strong>the</strong>re seems to be no correlati<strong>on</strong> at all between<br />

<strong>the</strong> amount of scatter of <strong>the</strong> data points and <strong>the</strong>ir MSWD values. Moreover, when<br />

comparing <strong>the</strong> four point isochr<strong>on</strong> of 147.6ka (MSWD = 5.4) to that of <strong>the</strong> eleven point<br />

66


isochr<strong>on</strong> of 10.4ka (MSWD = 107), it seems that this value does not altoge<strong>the</strong>r portray<br />

<strong>the</strong> statistical factors creating <strong>the</strong> isochr<strong>on</strong>. When creating an isochr<strong>on</strong> line for samples<br />

from <strong>the</strong> same lamina (i.e. isochr<strong>on</strong> samples; Figs. 15, 16 and Tables 1-3), it was expected<br />

that <strong>the</strong>y would plot comfortably al<strong>on</strong>g <strong>the</strong> lines and have a low MSWD. However, those<br />

samples have varying MSWD values, all of <strong>the</strong>m much higher than 2.5. This observati<strong>on</strong><br />

c<strong>on</strong>curs with Davids<strong>on</strong> et al. (2005), who state that an isochr<strong>on</strong> may not be acceptable <strong>on</strong><br />

<strong>the</strong> basis of statistical tests but can still be geologically meaningful, and vice versa. It is<br />

for that reas<strong>on</strong> that it is valid to expand all assigned errors by √MSWD, and <strong>the</strong> calculated<br />

slope or intercept errors by a student's multiplier, as suggested by Ludwig and<br />

Titteringt<strong>on</strong> (1994) and executed through Isoplot3.7. Using <strong>the</strong>se methods and<br />

c<strong>on</strong>sidering <strong>the</strong>se ideas, it seems likely that <strong>the</strong> isochr<strong>on</strong>s in this study are reas<strong>on</strong>ably<br />

accurate.<br />

67


1.14<br />

1.10<br />

1.06<br />

234 U/<br />

238 U<br />

1.02<br />

0.98<br />

0.94<br />

0.90<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

230 Th/ 238 U<br />

Figure 38: U-series evoluti<strong>on</strong> diagram for Denya Cave seismite samples showing <strong>the</strong> projected<br />

data, which yielded <strong>the</strong> isochr<strong>on</strong> ages, and illustrating with circles <strong>the</strong> calculated ages. Circles<br />

representing isochr<strong>on</strong> calculati<strong>on</strong>s: Red-5ka, light blue-10.4ka, pink-21ka, green-29ka, brown-<br />

38ka, purple-58ka, yellow-137ka, light green-147ka and dark blue-160ka.<br />

68


data-point error ellipses are 2σ<br />

1.14<br />

1.10<br />

234 U/<br />

238 U<br />

1.06<br />

1.02<br />

0.98<br />

a<br />

0.94<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

230 Th/ 238 U<br />

data-point error ellipses are 2σ<br />

1.08<br />

1.04<br />

234 U/<br />

238 U<br />

1.00<br />

0.96<br />

b<br />

0.92<br />

0.6 0.7 0.8 0.9 1.0 1.1<br />

230 Th/ 238 U<br />

Figure 39: U-series evoluti<strong>on</strong> diagrams for Denya Cave seismite samples showing<br />

uncorrected ages and illustrating with circles <strong>the</strong> calculated ages yielded by <strong>the</strong>ir<br />

isochr<strong>on</strong>es. a) Samples of ages up to 100ka; red- 5ka isochr<strong>on</strong>, and blue, pink, green,<br />

brown represent 10.42ka, 21ka, 29ka, 38ka, and 58ka isochr<strong>on</strong>s respectively. b)<br />

Samples of ages between 100 and 200ka. Red, green and blue marks represent 137ka,<br />

148ka and 160ka isochr<strong>on</strong>es respectively.<br />

69


Table 7: Comparis<strong>on</strong> between <strong>the</strong> ages obtained by different dating techniques for<br />

Denya Cave seismite samples (represented in ka). The samples are sorted by age.<br />

Samples marked in light blue are samples that had no detrital material yet had a low<br />

230 Th/ 232 Th ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratio. DN-2 samples 3 and 4 come from very close laminae in <strong>the</strong><br />

sample and show that <strong>the</strong> detrital c<strong>on</strong>tent does in fact affect <strong>the</strong> age when a sample<br />

c<strong>on</strong>tains detritus, even though <strong>the</strong>y both have a low 230 Th/ 232 Th ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratio.<br />

Dated sample name 230/238 err 234/238 err 232/238 err 230/232 err Det. Age-un.corr ± AgeCorr. (1.8) Clus. Age ±<br />

DN-51 pre III 0.0459 0.00121 1.0445 0.00108 0.0049 0.00002 10.15 0.27 y 4.9 0.26 4.0 5 0.87<br />

DN-2-3 0.0497 0.00230 1.0459 0.00237 0.0029 0.00002 22.50 1.05 n 5.3 0.50 4.8 5 0.87<br />

DN-2-4 0.0588 0.00206 1.0459 0.00152 0.0041 0.00002 16.88 0.60 y 6.3 0.45 5.5 5 0.87<br />

DN-51 pre II 0.0734 0.00261 0.9987 0.01697 0.0116 0.00009 6.63 0.18 y 8.3 0.54 6.1 5 0.87<br />

DN-66c-pre III 0.0840 0.00193 1.0566 0.00100 0.0389 0.00019 1.93 0.05 y 9.0 2.97 0.5 5 0.87<br />

DN-7-46b-post 0.0845 0.00174 1.0437 0.00212 0.0034 0.00001 27.23 0.56 9.2 0.39 8.6 10.4 0.69<br />

DN-17-POST 0.0957 0.00114 1.0540 0.00139 0.0544 0.00014 1.84 0.02 y 10.3 0.26 0.2 5 0.87<br />

DN-7-47 0.0971 0.00142 1.0579 0.00108 0.0027 0.00001 38.30 0.56 10.5 0.32 10.0 10.4 0.69<br />

DN 7postB 0.1008 0.00070 1.0424 0.00107 0.0084 0.00001 12.58 0.09 n 11.1 0.16 9.5 10.4 0.69<br />

DN6y(dn9B post) 0.1024 0.00301 1.0487 0.00102 0.0116 0.00009 9.16 0.28 y 11.2 0.69 9.1 10.4 0.69<br />

DN9y(dn9b prebottom) 0.1095 0.00462 1.0392 0.00137 0.0092 0.00006 12.81 0.55 n 12.1 1.08 10.4 10.4 0.69<br />

DN-51 pre IV 0.1095 0.00149 1.0319 0.00268 0.0250 0.00011 4.52 0.06 y 12.2 0.35 7.5 10.4 0.69<br />

DN 7 post 0.1109 0.00129 1.0436 0.00107 0.0085 0.00003 13.56 0.16 n 12.2 0.30 10.7 10.4 0.69<br />

DN-7-46 0.1122 0.00143 1.0562 0.00145 0.0052 0.00001 22.44 0.29 12.2 0.33 11.3 10.4 0.69<br />

DN-17-PRE 0.1131 0.00557 1.0399 0.00378 0.0187 0.00009 6.74 0.33 y 12.5 1.30 9.1 10.4 0.69<br />

DN-2-2 0.1259 0.00310 1.0555 0.00227 0.0137 0.00005 10.39 0.26 13.8 0.72 11.3 10.4 0.69<br />

DN8y(dn6C pre) 0.1507 0.00295 1.0543 0.00116 0.0256 0.00012 6.19 0.12 16.7 0.71 12.1 20.8 3<br />

DN 6B pre 0.1622 0.00252 1.0578 0.00150 0.0113 0.00005 14.95 0.24 18.1 0.61 16.1 20.8 3<br />

DN 4 pre 0.1798 0.00145 1.0695 0.00113 0.0017 0.00000 106.97 0.87 n 20.0 0.35 19.7 20.8 3<br />

DEN-2 pre 0.1856 0.00302 1.0289 0.00097 0.0235 0.00008 8.10 0.13 y 21.6 0.78 17.2 20.8 3<br />

DN-19-PRE-II 0.1996 0.00326 1.0331 0.00165 0.0370 0.00015 5.54 0.09 y 23.3 0.85 16.4 20.8 3<br />

DN-45 post 0.2046 0.00210 1.0331 0.00131 0.1275 0.00036 1.64 0.02 y 24.0 0.55 20.8 or 10.4 0.69<br />

DN3y(dn4-pre) 0.2152 0.00287 1.0708 0.00122 0.0076 0.00003 29.63 0.41 n 24.3 0.73 23.0 20.8 3<br />

DN 7 pre 0.2145 0.00156 1.0610 0.00116 0.0111 0.00004 19.77 0.15 y 24.5 0.40 22.5 20.8 3<br />

DN-48 post 0.2345 0.00162 1.0702 0.00201 0.0030 0.00001 81.34 0.56 n 26.8 0.41 26.3 29 3.3<br />

DN-48 pre 0.2468 0.00226 1.0670 0.00153 0.0055 0.00002 46.27 0.45 n 28.5 0.59 27.6 29 3.3<br />

DN-45 pre 0.2395 0.00821 1.0172 0.00139 0.0308 0.00025 7.89 0.28 y 29.2 2.30 23.3 29 3.3<br />

DN-63-post 0.2609 0.00174 1.0881 0.00131 0.0048 0.00001 81.12 0.56 n 29.7 0.45 29.1 29 3.3<br />

DN-37a-pre 0.2665 0.00165 1.0797 0.00213 0.0019 0.00000 145.54 0.84 n 30.7 0.42 30.4 29 3.3<br />

DN-21pre-I 0.2788 0.00289 1.0781 0.00197 0.0051 0.00001 55.60 0.57 y 32.4 0.77 31.5 29 3.3<br />

DN-68b-pre 0.3081 0.00845 1.0763 0.00493 0.0089 0.00005 43.68 1.19 36.5 2.36 35.2 38 2.7<br />

DN-47 post I 0.3099 0.00280 1.0677 0.00153 0.0040 0.00001 78.61 0.74 n 37.1 0.79 36.4 38 2.7<br />

DN-44 post 0.3216 0.00320 1.0776 0.00301 0.0009 0.00000 354.47 3.62 n 38.4 0.89 38.2 38 2.7<br />

DN-44 pre 0.3205 0.00497 1.0696 0.00277 0.0060 0.00002 55.00 0.86 38.6 1.42 37.5 38 2.7<br />

DN-63-pre II 0.3274 0.00198 1.0792 0.00052 0.0014 0.00000 230.39 1.50 n 39.1 0.57 38.9 38 2.7<br />

DN-36 pre III 0.3543 0.00197 1.0807 0.00157 0.0181 0.00005 19.92 0.11 y 43.0 0.57 39.8 38 2.7<br />

DN-33C1-PRE 0.3418 0.01337 1.0396 0.00231 0.0230 0.00019 15.32 0.61 n 43.2 4.15 39.0 38 2.7<br />

DN-52 post 0.3554 0.00436 1.0733 0.00247 0.0065 0.00002 55.90 0.68 n 43.5 1.30 42.4 38 2.7<br />

DN-52 pre 0.4335 0.00294 1.0759 0.00156 0.0056 0.00002 78.36 0.55 n 55.7 0.97 54.7 58 5.2<br />

DN-51 post I 0.4451 0.00339 1.0578 0.00176 0.0201 0.00004 22.59 0.17 n 59.0 1.18 55.5 58 5.2<br />

DN 6A pre (post) 0.4601 0.00245 1.0795 0.00155 0.0015 0.00000 305.29 1.59 n 59.9 0.83 59.7 58 5.2<br />

DN-14A-PRE-I 0.4501 0.00262 1.0024 0.00069 0.0730 0.00022 6.26 0.04 y 64.8 1.03 50.2 58 5.2<br />

DN-63-pre I 0.4794 0.00229 1.0411 0.00165 0.0533 0.00013 11.64 0.06 y 66.8 0.85 59.0 58 5.2<br />

DN-14a-preI 0.4933 0.00417 1.0062 0.00065 0.0753 0.00024 6.68 0.06 73.2 1.77 58.2 58 5.2<br />

DN-33c2-post 0.7560 0.00532 1.0562 0.00251 0.0184 0.00004 41.70 0.27 134.4 3.66 131.1 137 29<br />

DN-46 pre I 0.7446 0.00283 1.0366 0.00146 0.0328 0.00010 22.99 0.10 y 136.1 2.02 130.1 137 29<br />

DN-25 post I 0.6978 0.03377 0.9795 0.00241 0.0638 0.00250 11.03 0.69 136.5 26.92 123.4 137 29<br />

DN-66b-pre 0.7271 0.03068 1.0047 0.00290 0.1239 0.00255 9.08 0.42 y 139.6 24.27 123.6 137 29<br />

DN-34a-pre II 0.7968 0.00598 1.0664 0.00318 0.0048 0.00002 108.57 0.76 n 146.0 4.46 144.7 147.6 5.4<br />

DN-36 post-II 0.7230 0.00482 0.9818 0.00116 0.1183 0.00035 7.56 0.05 y 146.3 4.16 125.5 147.6 5.4<br />

DN-33c2-pre 0.7893 0.00434 1.0561 0.00222 0.0165 0.00003 48.73 0.24 146.5 3.32 143.7 147.6 5.4<br />

DN-46 pre II 0.7959 0.00647 1.0564 0.00186 0.0087 0.00002 92.76 0.75 y 149.0 5.17 147.5 147.6 5.4<br />

DN-36 pre II 0.8019 0.00441 1.0481 0.00213 0.0120 0.00004 47.62 0.27 154.5 3.69 151.4 160 45<br />

DN-34a-pre I 0.7954 0.00479 1.0297 0.00248 0.0445 0.00012 18.11 0.10 y 158.9 4.26 150.6 160 45<br />

DN-22-POST-II 0.8389 0.00556 1.0651 0.00245 0.0096 0.00003 89.14 0.56 n 163.7 4.95 162.1 160 45<br />

DN-46 post 0.7547 0.00471 0.9542 0.00121 0.1081 0.00034 7.07 0.05 y 174.5 5.65 150.1 160 45<br />

DN-37a post 0.7492 0.00359 0.9409 0.00138 0.1852 0.00061 7.90 0.04 y 179.0 4.15 157.1 160 45<br />

70


5. Discussi<strong>on</strong><br />

The purpose of <strong>the</strong> present study is to date large paleoseismic events al<strong>on</strong>g <strong>the</strong> CF<br />

during <strong>the</strong> Quaternary using <strong>the</strong> ages of broken speleo<strong>the</strong>ms from Denya Cave.<br />

Speleo<strong>the</strong>ms are dated using <strong>the</strong> uranium disequilibrium decay series. The use of <strong>the</strong> three<br />

dimensi<strong>on</strong>al isochr<strong>on</strong> was found to be <strong>the</strong> best method to determine <strong>the</strong> ages of speleoseismites.<br />

The method reas<strong>on</strong>ably generates age clusters, which are probably indicative of<br />

seismic events that caused damage to Denya Cave speleo<strong>the</strong>ms. These age clusters are<br />

based <strong>on</strong> statistically viable isochr<strong>on</strong>s as well as structural and morphological criteria. A<br />

comparis<strong>on</strong> showed that some sample age clusters were similar to <strong>the</strong> ages determined in<br />

o<strong>the</strong>r paleo-seismological studies in Israel (Table 4 and Fig. 29). The comparis<strong>on</strong><br />

indicates that <strong>the</strong> breaks, which were identified in Denya Cave speleo<strong>the</strong>ms, are not<br />

random and lends supportive evidence to <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong>y represent seismic<br />

events.<br />

5.1 Seismic events recorded in Denya Cave speleo<strong>the</strong>ms<br />

Analysis of U-Th ages of speleo-seismites in Denya Cave, using three dimensi<strong>on</strong>al<br />

isochr<strong>on</strong>s, yielded age clusters that are c<strong>on</strong>sidered to represent nine seismic events during<br />

<strong>the</strong> last 200kyr BP:<br />

1. A seismic event at ~4.8(±0.8)ka is based <strong>on</strong> five pre and post seismite samples<br />

from around <strong>the</strong> cave, am<strong>on</strong>g <strong>the</strong>m DN-2, which is a type A speleo-seismite.<br />

2. A seismic event at ~10.4(±0.69)ka is based <strong>on</strong> six pre and post seismite<br />

samples from around <strong>the</strong> cave, where two are type A speleo-seismites (DN-7<br />

and DN-17). This calculated age is c<strong>on</strong>sidered accurate since it is based <strong>on</strong> 11<br />

dated samples, of which four DN-7 post-seismite samples are c<strong>on</strong>sidered to be<br />

of <strong>the</strong> same age and two DN-9 pre-seismite samples that are likewise<br />

c<strong>on</strong>sidered to be of <strong>the</strong> same age.<br />

3. A seismic event at ~20.8(±3.0)ka is based <strong>on</strong> eight seismite samples from<br />

around <strong>the</strong> cave. Most of those are pre-seismite samples of type C speleoseismites.<br />

This calculated age is based <strong>on</strong> 13 dated samples, of which four<br />

DN-4 pre-seismite samples are c<strong>on</strong>sidered to be of <strong>the</strong> same age and likewise<br />

for two DN-6 pre-seismite samples. It is supported by DN-7 pre-seismite<br />

sample, which is a type A speleo-seismite.<br />

71


4. A seismic event at ~29.1(±3.3)ka is based <strong>on</strong> a well c<strong>on</strong>strained type A<br />

speleo-seismite (DN-48 pre and post samples) and is corroborated by four<br />

o<strong>the</strong>r pre- and post-seismite samples from around <strong>the</strong> cave.<br />

5. A seismic event at ~38(±2.7)ka is based <strong>on</strong> a well c<strong>on</strong>strained type A speleoseismite<br />

(DN-44 pre and post dated samples) and is corroborated by six o<strong>the</strong>r<br />

post- and pre-seismite samples from around <strong>the</strong> cave.<br />

6. A seismic event after ~57.9(±5.2)ka is based <strong>on</strong>ly <strong>on</strong> pre-seismite samples,<br />

usually of type C. Its isochr<strong>on</strong> plot is scattered and gives a high error <strong>on</strong> <strong>the</strong><br />

calculated age. It is still c<strong>on</strong>sidered an indicator for a seismic event, which<br />

occurred after that time, since it is based <strong>on</strong> six different speleo-seismites from<br />

around <strong>the</strong> cave.<br />

7. A seismic event at ~137(±29)ka is based <strong>on</strong> five pre and post seismite samples<br />

from around <strong>the</strong> cave. Most of those samples are from type C speleo-seismites.<br />

The age calculati<strong>on</strong> is based <strong>on</strong> sample ages with large errors and is <strong>the</strong>refore<br />

less reliable.<br />

8. A seismic event at ~147.6(±5.4)ka is based <strong>on</strong> four type A pre and post<br />

seismite dated samples from around <strong>the</strong> cave. The age calculati<strong>on</strong> yielded a<br />

minimal scatter isochr<strong>on</strong> plot.<br />

9. A seismic event at ~160(±45)ka is based <strong>on</strong> five pre and post seismite dated<br />

samples from around <strong>the</strong> cave. Three of those samples are type A speleoseismites.<br />

The age calculati<strong>on</strong> is based <strong>on</strong> sample ages with large errors and is<br />

<strong>the</strong>refore less reliable.<br />

5.2 Comparis<strong>on</strong> of results with o<strong>the</strong>r paleoseismic studies<br />

One way to verify if <strong>the</strong> accuracy of ages obtained are valid as seismites is to correlate<br />

<strong>the</strong>m to known, well established ages of seismic events (e.g. Kagan et al., 2005). As noted<br />

above, data <strong>on</strong> paleoseismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> CF are scarce and often not very accurate and<br />

<strong>the</strong>re is no clear evidence of historically known earthquakes. Never<strong>the</strong>less, some<br />

informati<strong>on</strong> is available (Table 8 and Fig. 40) Since Mt. Carmel is at a similar distance<br />

from <strong>the</strong> DST as Soreq Cave is (Kagan et al, 2005), an initial comparis<strong>on</strong> of <strong>the</strong> ages<br />

obtained from Denya Cave seismites to ages obtained from DST paleoseismic studies, is<br />

made (Table 8 and Fig. 40). The comparis<strong>on</strong> showed some matching ages. If such is <strong>the</strong><br />

72


case, it is not clear which of those two <strong>faul</strong>t systems caused damage to speleo<strong>the</strong>ms<br />

analyzed from Denya Cave.<br />

The sample age cluster at ca. 5ka from Denya Cave may correlate well to <strong>the</strong> seismic<br />

event which caused structural damage to <strong>the</strong> EB I temple at Megiddo (Marco et al., 2006)<br />

as well as to six damaged speleo<strong>the</strong>ms dated to that approximate time (4.9-5.7ka or older)<br />

at Soreq cave in <strong>the</strong> Judean Hills (Kagan, 2002).<br />

A seismic event at ca. 10ka is very clearly documented in Denya Cave speleoseismites<br />

but is too old to be observed in Megiddo, which has no archeological evidence<br />

from that period. That age might also be too young to be noted in paleoseismic trenches,<br />

which were dug al<strong>on</strong>g <strong>the</strong> CF in <strong>the</strong> Kish<strong>on</strong> Valley, since most of <strong>the</strong> upper layers in that<br />

area may have been disturbed by human ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> (Zilberman et al., 2006). This event was<br />

not recorded at all in Soreq Cave as well. It might have been recorded in two<br />

paleoseismic trenches in <strong>the</strong> area of Ein-Gev, al<strong>on</strong>g <strong>the</strong> nor<strong>the</strong>rn segment of <strong>the</strong> DST,<br />

which were dated to ca. 11ka (Amit et al., 2009).<br />

The seismic event recorded in Denya Cave speleo<strong>the</strong>ms at ca. 21ka might be<br />

supported by <strong>the</strong> age of <strong>the</strong> upper part of <strong>the</strong> shutter ridge dated by Zilberman et al.<br />

(2006) to 24.5±2.5ka, which was followed by an incisi<strong>on</strong> of <strong>the</strong> stream channel and<br />

assumed to be indicative of <strong>faul</strong>t movement.<br />

A seismic event at ca. 29ka, obtained from Denya Cave speleo<strong>the</strong>ms, might be<br />

supported by <strong>the</strong> ages obtained for a layer in a paleoseismic trench al<strong>on</strong>g <strong>the</strong> Nesher <strong>faul</strong>t,<br />

which indicates a terminati<strong>on</strong> of a 50ka l<strong>on</strong>g subsidence, dated to 27±1ka (Zilberman et al.,<br />

2006).<br />

The well c<strong>on</strong>strained age of ca. 38ka for a seismic event, which affected Denya Cave,<br />

could probably be supported by three different paleoseismic findings. The first, an event<br />

reported by Kagan et al. (2007) at ~39±1 ka, which has left evidence of brecciated marls at<br />

four Lake Lisan sites al<strong>on</strong>g <strong>the</strong> Dead Sea basin as well as five well-c<strong>on</strong>strained collapses in<br />

different areas of <strong>the</strong> Soreq cave. Ano<strong>the</strong>r <strong>on</strong>e is a stratigraphic step in a paleoseismic<br />

trench al<strong>on</strong>g <strong>the</strong> CF, which was dated to 32±4.4ka, and indicated that <strong>the</strong> <strong>faul</strong>ting occurred<br />

before ca. 35ka (Gluck, 2002). And <strong>the</strong> last is <strong>the</strong> dated layers to ca. 37ka in two<br />

paleoseismic trenches in Ein-Gev (Amit et al., 2009).<br />

The age cluster of ca. 58ka is based <strong>on</strong> pre-seismic event samples from Denya Cave,<br />

which indicates that a seismic event occurred sometime after. This age might possibly be<br />

supported by three collapses dated in Soreq cave speleo-seismites, and Lake Lisan<br />

brecciated marls at three sites, which all yielded an age of 52±2.<br />

73


The sample age cluster of ca. 137ka may possibly be supported by <strong>the</strong> age obtained<br />

for a post collapse growth <strong>on</strong> a ceiling block, dated in Har-Tuv cave to be younger than<br />

135ka (Kagan, 2002).<br />

The age cluster of ca. 148ka was obtained from <strong>on</strong>ly four dated samples.<br />

Never<strong>the</strong>less, it is corroborated by dated speleo<strong>the</strong>m samples from Har-Tuv and Soreq<br />

caves, which yielded ages between 144 and 155ka (Kagan, 2002). It might also be<br />

corroborated by <strong>the</strong> age of material from <strong>the</strong> base of <strong>the</strong> shutter ridge studied by Zilberman<br />

et al. (2006), which was dated to 146±20ka. It should be noted that <strong>the</strong> error margin for that<br />

age is much larger than that of <strong>the</strong> age cluster from Denya Cave (147.6±5.4).<br />

Although <strong>the</strong> age cluster that was determined by Denya Cave seismite samples at<br />

160±45 has a large error, it might never<strong>the</strong>less be compared to <strong>the</strong> age, reported by<br />

Zilberman et al. (2006), for a layer in a paleoseismic trench, which indicated subsidence of<br />

a small basin south of <strong>the</strong> main <strong>faul</strong>t, and was dated to 176±30ka. A collapsed pillar in<br />

Soreq cave yielded a post-seismic age of ca. 163ka, and might also be compared to this age<br />

cluster.<br />

Ages obtained for Denya Cave age clusters can potentially be compared to o<strong>the</strong>r ages<br />

from paleoseismological findings in Israel. The likelihood that this correlati<strong>on</strong> is random<br />

can be estimated by randomly picking age ranges from <strong>the</strong> interval of <strong>the</strong> entire record,<br />

namely 0-206 ka. Each of <strong>the</strong> Denya Cave dated events cumulatively occupy a finite time<br />

range, and <strong>the</strong> chance for it to correlate at random with <strong>the</strong> time occupied by o<strong>the</strong>r records<br />

is given by <strong>the</strong> ratio between <strong>the</strong> latter (total=149.9ky) and <strong>the</strong> range of dated time<br />

(204.1ky). Each separate event dated by Denya Cave speleo-seismites has a ~70% chance<br />

of randomly correlating to <strong>on</strong>e of <strong>the</strong> o<strong>the</strong>r ages dated by different studies. For all nine<br />

dated events to correlate, this figure needs to be raised by <strong>the</strong> power of nine events recorded<br />

in Denya Cave (i.e. {[149.9/204.1]^9}*100), giving a ~6% chance. Those numbers<br />

c<strong>on</strong>sider <strong>the</strong> errors <strong>on</strong> <strong>the</strong> given ages, which are higher for most of <strong>the</strong> ages older than<br />

100ka. The same estimati<strong>on</strong> was d<strong>on</strong>e for <strong>the</strong> likelihood that <strong>the</strong> six age clusters, which<br />

yielded younger ages than 100ka, dated from Denya Cave speleo-seismites could all<br />

randomly be correlated to o<strong>the</strong>r dated seismic events. It was found that for <strong>the</strong>re is a ~3%<br />

chance of that to happen (i.e. {[49.9(time occupied by o<strong>the</strong>r dated events)/88.1(<strong>the</strong> range of<br />

dated events)]^6}*100).<br />

These results fur<strong>the</strong>r enforce that age clusters obtained from Denya Cave speleoseismites<br />

are not random, and are indicators of seismic events. This comparis<strong>on</strong> also<br />

74


indicates that <strong>the</strong>re is a possibility that some of those events might have originated from <strong>the</strong><br />

DST and not <strong>the</strong> CF.<br />

Table 8: Comparis<strong>on</strong> between Denya Cave cluster results and o<strong>the</strong>r paleoseismic studies in <strong>the</strong><br />

regi<strong>on</strong>. Blue-CF studies. Red-DST studies. Carmel 1: Zilberman et al., 2006; Carmel 2: Gluck,<br />

2002; Megiddo: Marco et al, 2006; Soreq: Kagan, 2002 and Kagan et al., 2007; Ein-Gev: Amit,<br />

2009.<br />

Denya Carmel 1 Carmel 2 Megiddo Soreq Ein-Gev<br />

2.3 ±0.4<br />

3.5 ±0.4 3.15 ±0.15 3.9 3.5 ±1.4<br />

4.8 ±0.8 5.25 ±0.25 5.3 ±0.3 5.7 ±2.2<br />

9.2 ±1.9<br />

10.42 ±0.69 11<br />

13.25 ±0.25<br />

20.8 ±3<br />

24.5 ±2.5<br />

29.1 ±3.3 27 ±1<br />

35+<br />

38 ±2.7 39 ±1 37<br />

46.5 ±2<br />

52 ±2<br />

57.9 ±5.2<br />

71 ±2<br />

78 ±8 80 ±10<br />

137 ±29 135+<br />

147.6 ±5.4 146 ±20 149.5 ±5.5<br />

160 ±45 176 ±30 163+<br />

75


a<br />

b<br />

Figure 40: Comparis<strong>on</strong> between Denya Cave cluster results and o<strong>the</strong>r paleoseismic studies in <strong>the</strong> regi<strong>on</strong>.<br />

Blue marks indicate CF studies. Red marks indicate DST studies. Carmel 1: Zilberman et al., 2006;<br />

Carmel 2: Gluck, 2002; Megiddo: Marco et al, 2006; Soreq: Kagan, 2002 and Kagan et al, 2007; Ein-Gev:<br />

Amit et al., 2009).<br />

76


5.2.1 C<strong>on</strong>siderati<strong>on</strong>s for comparis<strong>on</strong>s between paleoseismic studies<br />

Although a multi-archival approach is probably <strong>the</strong> best way to validate <strong>the</strong> findings<br />

from cave deposits, it is important to c<strong>on</strong>sider some additi<strong>on</strong>al aspects of <strong>the</strong> different<br />

research techniques and <strong>the</strong>ir results. Speleoseismic research is based <strong>on</strong> an assumpti<strong>on</strong><br />

that earthquake-related damage can occur to speleo<strong>the</strong>ms in a cave that is in <strong>the</strong> vicinity<br />

of an active <strong>faul</strong>t and not necessarily <strong>on</strong> it. A damaged speleo<strong>the</strong>m can <strong>the</strong>refore be an<br />

off-<strong>faul</strong>t type indicator of paleo-earthquakes as well as an <strong>on</strong>-<strong>faul</strong>t indicator similar to<br />

trenches across a <strong>faul</strong>t trace. Whereas <strong>the</strong> former records ground accelerati<strong>on</strong>s, <strong>the</strong> latter<br />

records ground rupture.<br />

Paleoseismic trenches are usually dug perpendicular to a known or suspected <strong>faul</strong>t<br />

strand in order to determine <strong>the</strong> slip vector, and if possible date <strong>the</strong> slip events. The<br />

accuracy of <strong>the</strong> findings depends <strong>on</strong> <strong>the</strong> type of <strong>faul</strong>t and <strong>the</strong> types of soil investigated.<br />

The studies cited in this research (Gluck, 2002; Zilberman et al., 2006) detected mainly of<br />

earthquake proxies, such as a shutter ridge or subsiding formati<strong>on</strong>s. For <strong>the</strong> most part <strong>the</strong><br />

ages were of general tect<strong>on</strong>ic phenomena such as <strong>the</strong> beginning or terminati<strong>on</strong> of<br />

subsiding through <strong>the</strong> accumulati<strong>on</strong> of soil in depressi<strong>on</strong>s, which are difficult to compare<br />

with <strong>the</strong> <strong>on</strong>es yielded from speleo-seismites. It is <strong>the</strong>refore essential to make <strong>the</strong><br />

comparis<strong>on</strong> between <strong>the</strong> different studies while taking into c<strong>on</strong>siderati<strong>on</strong> <strong>the</strong>ir inherent<br />

differences.<br />

Lacustrine sediments from <strong>faul</strong>t basins (e.g. Lake Lisan arag<strong>on</strong>ites), which are also<br />

<strong>on</strong>-<strong>faul</strong>t seismic indicators, could be highly sensitive to any ground accelerati<strong>on</strong> and<br />

could <strong>the</strong>refore potentially record very small events. By comparis<strong>on</strong>, off-<strong>faul</strong>t caves<br />

would <strong>on</strong>ly be damaged by str<strong>on</strong>g events if <strong>the</strong>y are located far from an earthquake<br />

epicenter. If a cave is close to <strong>the</strong> <strong>faul</strong>t it might record smaller events, which could<br />

damage some of <strong>the</strong> smaller types of speleo<strong>the</strong>ms, but such samples are difficult to date<br />

and are usually highly suspect because of <strong>the</strong>ir fragility.<br />

Fur<strong>the</strong>rmore, results obtained from dating damaged speleo<strong>the</strong>ms indicate time<br />

c<strong>on</strong>straints of a likely event that caused <strong>the</strong> damage. When such c<strong>on</strong>straints are from both<br />

pre- and post-seismite samples, both yielding similar ages (within <strong>the</strong> error margin), <strong>the</strong>y<br />

are c<strong>on</strong>sidered <strong>the</strong> age of an event. That age, though potentially having an analytical error<br />

of less than 1%, is still not an exact date as would be given by historical, archeological or<br />

even some lacustrine sediment evidence (Migowski et al., 2004). Only by comparing <strong>the</strong><br />

77


ages obtained through speleo-seismites to known earthquakes can a specific event be<br />

determined as <strong>the</strong> cause for damage in karstic caves.<br />

5.1.2 Suggesti<strong>on</strong>s for fur<strong>the</strong>r research<br />

Although mechanisms of structural damage to speleo<strong>the</strong>m formati<strong>on</strong>s and cave<br />

envir<strong>on</strong>ments are not fully understood, it is still reas<strong>on</strong>able to assume that damage<br />

depends to a great deal <strong>on</strong> <strong>the</strong> locati<strong>on</strong> of a cave and its distance from an earthquake<br />

epicenter. Denya Cave is located <strong>on</strong> a spur sloping down to <strong>the</strong> west of Mt. Carmel, and<br />

as noted above, this area is quite close to <strong>the</strong> CF system and has many seismic features<br />

(ch. 1.4.2). It seems likely, <strong>the</strong>refore, that those features are c<strong>on</strong>nected to <strong>the</strong> <strong>faul</strong>t system<br />

and are activated by it, especially since <strong>the</strong>re are no tect<strong>on</strong>ic features <strong>on</strong> <strong>the</strong> west side of<br />

<strong>the</strong> mountain chain. An in depth investigati<strong>on</strong> of <strong>the</strong> structural features of <strong>the</strong> northwestern<br />

Carmel might shed some light <strong>on</strong> <strong>the</strong> tect<strong>on</strong>ic mechanisms in that area and<br />

perhaps also <strong>on</strong> likely mechanisms that created <strong>the</strong> kind of structural features observed in<br />

Denya Cave.<br />

Ano<strong>the</strong>r c<strong>on</strong>siderati<strong>on</strong> that could indicate <strong>the</strong> source of seismic events recorded in<br />

Denya Cave is in models for seismic loading, as c<strong>on</strong>ducted by Marco et al. (in prep.).<br />

Those scholars assessed potential sources for earthquakes that might have caused damage<br />

to <strong>the</strong> archeological site of Megiddo (Fig. 1). In <strong>the</strong>ir model <strong>the</strong>y adopted a slip rate of<br />

0.5mm/y al<strong>on</strong>g <strong>the</strong> CF and <strong>the</strong>n c<strong>on</strong>sidered three alternatives for estimating <strong>the</strong><br />

distributi<strong>on</strong> of that slip al<strong>on</strong>g <strong>the</strong> CF. One of those alternatives suggests that a str<strong>on</strong>g<br />

earthquake (magnitude of 7.2) which ruptured <strong>the</strong> entire <strong>faul</strong>t (~90km) is c<strong>on</strong>sistent with<br />

observed offsets of stream channels reported by Achm<strong>on</strong> (1986). These scholars’ analyses<br />

showed that that kind of earthquake could be characteristic of <strong>the</strong> CF if it had a recurrence<br />

interval of several millennia. That seems to be c<strong>on</strong>sistent with <strong>the</strong> findings from Denya<br />

Cave (see ch. 4.3- Seismic events in Denya Cave).<br />

Marco et al. (in prep.) also compared spectral accelerati<strong>on</strong>s expected from ruptures<br />

al<strong>on</strong>g <strong>the</strong> two <strong>faul</strong>t systems at Megiddo, given a certain magnitude of earthquake and its<br />

appropriate recurrence. The comparis<strong>on</strong> led <strong>the</strong>m to suggest that <strong>the</strong> dominant hazard at<br />

<strong>the</strong> site comes from <strong>the</strong> CF. However, that c<strong>on</strong>clusi<strong>on</strong> was based <strong>on</strong> an assumpti<strong>on</strong> that<br />

<strong>the</strong> slip was accounted for largely by moderate earthquakes (examined for a maximum<br />

magnitude M5.5 using <strong>the</strong> Gutenberg-Richter frequency-magnitude distributi<strong>on</strong>). They<br />

also noted that if that were <strong>the</strong> case it would be hard to rec<strong>on</strong>cile it with evidence for<br />

surface rupture (Achm<strong>on</strong>, 1986). On <strong>the</strong> <strong>on</strong>e hand that observati<strong>on</strong> establishes a<br />

78


eas<strong>on</strong>able assumpti<strong>on</strong> that whatever <strong>the</strong> cause of seismic event recorded in Denya Cave,<br />

it is most probable that it originated from <strong>the</strong> CF ra<strong>the</strong>r than from <strong>the</strong> DST. Yet it also<br />

signifies that <strong>the</strong> findings from Denya Cave are not necessarily attributed to <strong>the</strong> CF. It is<br />

<strong>the</strong>refore evident that fur<strong>the</strong>r studies are needed to rec<strong>on</strong>cile <strong>the</strong>se problems.<br />

6. C<strong>on</strong>clusi<strong>on</strong>s<br />

This study successfully established that broken and deformed cave deposits in Denya<br />

Cave <strong>on</strong> Mt. Carmel are speleo<strong>the</strong>m seismites. By using U-Th dating methods <strong>the</strong>se<br />

seismites were dated in order to extend <strong>the</strong> paleo-earthquake record for <strong>the</strong> CF.<br />

1. Broken speleo<strong>the</strong>ms, collapsed structures and cracks observed in Denya Cave,<br />

appear to be evidence of seismically induced damage. The exclusi<strong>on</strong> of n<strong>on</strong>seismic<br />

causes for damage in Denya Cave, as well as various assessments as to<br />

seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> throughout <strong>the</strong> Carmel regi<strong>on</strong>, affirms <strong>the</strong> likelihood of<br />

earthquake damage.<br />

2. Samples of broken or deformed speleo<strong>the</strong>ms from Denya Cave were mapped<br />

and analyzed. Where a break or deformati<strong>on</strong> of speleo<strong>the</strong>ms was detected a<br />

seismic c<strong>on</strong>tact was identified. Material was extracted by means of a hand held<br />

pneumatic drill from laminae located as close as possible to <strong>the</strong> seismic c<strong>on</strong>tact.<br />

The last lamina preceding <strong>the</strong> break event was termed a pre-seismic sample,<br />

while <strong>the</strong> first <strong>on</strong>e to succeed <strong>the</strong> break event was termed a post-seismic sample.<br />

All samples were dated with <strong>the</strong> uranium decay series method. The samples<br />

were extracted from laminae closest to <strong>the</strong> seismic c<strong>on</strong>tacts, allowing for <strong>the</strong><br />

closest age c<strong>on</strong>straints to seismic events.<br />

3. A classificati<strong>on</strong> method for different types of seismites was added to speleoseismite<br />

analysis in order to determine <strong>the</strong> reliability of <strong>the</strong> results.<br />

Classificati<strong>on</strong> was determined according to <strong>the</strong> type of speleo<strong>the</strong>m, <strong>the</strong> clarity of<br />

<strong>the</strong> seismic c<strong>on</strong>tact as a viable indicator for a seismic event, and <strong>the</strong> ability to<br />

adequately sample material. Type A seismites show clear breaks, which indicate<br />

abrupt events. Type B seismites show noticeable changes in sedimentati<strong>on</strong><br />

patterns, which might be related to abrupt events. In both types pre- and post-<br />

79


eak phases yielded datable samples. Types C, D and E yielded <strong>on</strong>ly pre- or<br />

post-break datable samples (i.e. <strong>the</strong>y indicated <strong>on</strong>ly <strong>on</strong>e sided c<strong>on</strong>straints <strong>on</strong><br />

seismic events). Type C seismites are c<strong>on</strong>sidered robust indicators of seismic<br />

events as are type D seismites, yet seismites of type D are harder to sample due<br />

to fragments of un-datable material embedded in <strong>the</strong>m. Type E seismites are<br />

fragile stalactites, which are less indicative of seismic events, and <strong>the</strong>refore <strong>the</strong>ir<br />

ages can <strong>on</strong>ly be used as corroborative evidence when <strong>the</strong>y are part of a cluster<br />

of samples that have yielded similar ages.<br />

4. A total of 68 speleo<strong>the</strong>m samples was taken and inspected from Denya Cave, 37<br />

of which were identified as seismites; of <strong>the</strong>m, 32 were processed. Ten seismites<br />

are severed stalagmites broken al<strong>on</strong>g sub-horiz<strong>on</strong>tal plains. Nine seismites of <strong>the</strong><br />

32 are severed stalactites of different shapes and sizes. The remaining seismites<br />

are flowst<strong>on</strong>e samples in which breaks and depositi<strong>on</strong>al unc<strong>on</strong>formities were<br />

found; some revealed soda straw speleo<strong>the</strong>ms embedded in <strong>the</strong>m.<br />

5. U-series age equati<strong>on</strong>s are based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that all 230 Th in <strong>the</strong> sample<br />

is <strong>the</strong> product of 234 U decay. Most speleo<strong>the</strong>m samples c<strong>on</strong>tain 230 Th, which is<br />

associated with a detrital comp<strong>on</strong>ent that becomes cemented or occluded within<br />

a speleo<strong>the</strong>m. The extent of detrital Th c<strong>on</strong>taminati<strong>on</strong> can be m<strong>on</strong>itored by<br />

232 Th, using as a first estimati<strong>on</strong> <strong>the</strong> ratio 230 Th/ 232 Th. The lower this ratio, <strong>the</strong><br />

higher <strong>the</strong> probability that a detrital 230 Th comp<strong>on</strong>ent exists in <strong>the</strong> sample,<br />

causing its age to appear older than it is. For most speleo<strong>the</strong>m samples from<br />

Denya Cave a correcti<strong>on</strong> for detrital 230 Th was needed.<br />

6. A correcti<strong>on</strong> factor for speleo<strong>the</strong>m ages can be determined using <strong>the</strong> detrital<br />

molar ratio of 232 Th/ 238 U. The most comm<strong>on</strong> correcti<strong>on</strong> factor for crust value<br />

rocks is 3.8. In a carb<strong>on</strong>ate terrain (e.g. Judean Hills), this correcti<strong>on</strong> factor was<br />

determined as 1.8. Correcti<strong>on</strong> factors for detrital Th were calculated for ages of<br />

speleo<strong>the</strong>ms from Denya Cave, using isochr<strong>on</strong> calculati<strong>on</strong>s of isotopic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g><br />

ratios for ( 232 Th/ 234 U) vs. ( 230 Th/ 234 U) isochr<strong>on</strong>s. These calculati<strong>on</strong>s yielded<br />

different correcti<strong>on</strong> factors for different sets of isochr<strong>on</strong>s, all of <strong>the</strong>m extremely<br />

low (between ~0.1-~0.7). These different factors are assumed to be indicative of<br />

more than <strong>on</strong>e phase or origin of detrital matter. It was <strong>the</strong>refore not possible to<br />

80


establish a unique correcti<strong>on</strong> factor for Denya Cave detrital 230 Th. Fur<strong>the</strong>r<br />

analysis suggested that <strong>the</strong>se low correcti<strong>on</strong> factors might indicate <strong>the</strong> existence<br />

of hydrogenous Th in <strong>the</strong> speleo<strong>the</strong>ms of this cave. It is assumed that <strong>the</strong><br />

hydrogenous Th does not overly affect <strong>the</strong> ages reported in this study, but <strong>the</strong><br />

degree of its affects was not established.<br />

7. The ages obtained for Denya Cave seismite samples were corrected for detrital<br />

Th using an isochr<strong>on</strong> method based <strong>on</strong> Osm<strong>on</strong>d type isochr<strong>on</strong>s by means of <strong>the</strong><br />

Isoplot3.7 program. Using <strong>the</strong> U-series evoluti<strong>on</strong> diagram, where x= 230 Th/ 238 U<br />

y= 234 U/ 238 U, a third axis is added, z= 232 Th/ 238 U, in order to calculate a<br />

regressi<strong>on</strong> line for an isochr<strong>on</strong> (samples of <strong>the</strong> same age). The x-y intercepts of<br />

this three dimensi<strong>on</strong>al isochr<strong>on</strong> define <strong>the</strong> ratios used to calculate a 230 Th/U age<br />

and initial 234 U/ 238 U. Denya Cave seismite samples, which were c<strong>on</strong>sidered to<br />

be of <strong>the</strong> same age when certain criteria were met, were plotted al<strong>on</strong>g isochr<strong>on</strong><br />

lines and a single age was determined for <strong>the</strong>m. Criteria for plotting seismite<br />

samples al<strong>on</strong>g isochr<strong>on</strong> lines are based <strong>on</strong> <strong>the</strong> amount of detrital matter within<br />

<strong>the</strong> dated sample, structural features within <strong>the</strong> cave and stratigraphic<br />

c<strong>on</strong>siderati<strong>on</strong>s in <strong>the</strong> sample laminae.<br />

8. The isochr<strong>on</strong> calculated ages obtained for groups of speleo-seismite samples<br />

indicate that each group records a seismic event. Nine age clusters were<br />

determined for speleo-seismites from Denya Cave, indicating <strong>the</strong> ages of<br />

seismic events which affected <strong>the</strong> cave over <strong>the</strong> last 200ky: 4.8±0.80ka;<br />

10.42±0.69ka; 20.8±3.0ka; 29.1±3.3; 38.0±2.7ka; 57.9±5.2ka; 137±29ka;<br />

147.6±5.4ka and 160±45ka.<br />

9. A comparis<strong>on</strong> with data available to date from o<strong>the</strong>r paleoseismic studies in <strong>the</strong><br />

regi<strong>on</strong> shows that all ages obtained for Denya Cave age clusters can potentially<br />

be compared to o<strong>the</strong>r ages obtained from paleoseismological studies in Israel.<br />

The comparis<strong>on</strong> indicates that <strong>the</strong> breaks identified in Denya Cave speleo<strong>the</strong>ms,<br />

are not random and lends supportive evidence to <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong>y<br />

represent seismic events.<br />

81


10. Some of <strong>the</strong> ages obtained from this study might coincide with ages of seismic<br />

events dated al<strong>on</strong>g <strong>the</strong> DST, as well as those al<strong>on</strong>g <strong>the</strong> CF. Therefore, fur<strong>the</strong>r<br />

studies are needed in order to determine which of those two <strong>faul</strong>t systems<br />

created <strong>the</strong> seismic events reported in this study.<br />

82


References<br />

Achm<strong>on</strong>, M., 1986. The Carmel Border Fault between Yokneam and Nesher. Ms.C.<br />

Thesis, The Hebrew University of Jerusalem.<br />

Achm<strong>on</strong>, M. and Ben-Avraham, Z., 1997. The deep structure of <strong>the</strong> CF z<strong>on</strong>e, nor<strong>the</strong>rn<br />

Israel, from gravity field analysis. Tect<strong>on</strong>ics 16 (3): 563-569.<br />

Agn<strong>on</strong>, A., Migowski, C., Marco, S., 2006. Intraclast breccias in laminated sequences:<br />

Recorders of paleo-earthquakes. Special paper-Geological Soc. of America 401: 195–<br />

214. New fr<strong>on</strong>tiers in Dead Sea paleoenvir<strong>on</strong>mental research.<br />

Amiran, D.H.K., Arieh, E., Turcotte, T., 1994. Earthquakes in Israel and adjacent areas;<br />

macro seismic observati<strong>on</strong>s since 100 B.C.E. Isr. Ex. J. 44: 260-305.<br />

Amit. R., Katz, O., Yagoda-Biran G., Hatzor, Y.H., 2009. Paleoseismology of <strong>the</strong> eastern<br />

Sea of Galilee. Dead Sea Workshop Fuild.Guigde. 49-53.<br />

Ashkar, L., Salam<strong>on</strong>, A., Greenbaum., N., 2005. Morphotect<strong>on</strong>ic phenomena al<strong>on</strong>g <strong>the</strong><br />

Carmel <strong>faul</strong>t. Intermediate report, Israel Geol. Surv. TR-GSI/05/05. (in Hebrew).<br />

Ayal<strong>on</strong>, A., Bar-Mat<strong>the</strong>ws, M. and Kaufman, A., 2002. Climatic c<strong>on</strong>diti<strong>on</strong>s during<br />

marine isotopic stage 6 in <strong>the</strong> Eastern Mediterranean regi<strong>on</strong> as evident from <strong>the</strong><br />

isotopic compositi<strong>on</strong> of speleo<strong>the</strong>ms: Soreq Cave, Israel. Geology 30: 303-306.<br />

Aydan, O., 2008. Investigati<strong>on</strong> of <strong>the</strong> seismic damage caused to <strong>the</strong> Gunung Sitoli<br />

Cave by <strong>the</strong> 2005 Great Nias earthquake. J. of <strong>the</strong> Earth Sci. Appl. and Res. Center of<br />

Hacettepe University 29 (1): 1-15.<br />

Bar-Mat<strong>the</strong>ws, M., Ayal<strong>on</strong>, A., Kaufman,. A., 1997. Late Quaternary paleoclimate in <strong>the</strong><br />

Eastern Mediterranean regi<strong>on</strong> from stable isotope analysis of speleo<strong>the</strong>ms at Soreq<br />

Cave, Israel. Quat. Res. 47: 155–168.<br />

Bar-Mat<strong>the</strong>ws, M., Ayal<strong>on</strong>, A., Kaufman, A., 2000. Timing and hydrological c<strong>on</strong>diti<strong>on</strong>s<br />

of sapropel events in <strong>the</strong> eastern Mediterranean, as evident from speleo<strong>the</strong>m, Soreq<br />

Cave, Israel. Chem. Geol. 169: 145-156.<br />

Bar-Mat<strong>the</strong>ws, M., Ayal<strong>on</strong>, A., Gilmour, M., Mat<strong>the</strong>ws, A., Hawkesworth, C.J., 2003.<br />

Sea–land oxygen isotopic relati<strong>on</strong>ships from plankt<strong>on</strong>ic foraminifera and speleo<strong>the</strong>ms<br />

in <strong>the</strong> Eastern Mediterranean regi<strong>on</strong> and <strong>the</strong>ir implicati<strong>on</strong> for paleorainfall during<br />

interglacial intervals. Geoch. et Cos. Acta. 67: 3181–3199.<br />

Becker, A., Ferry, M., M<strong>on</strong>eck, K., Schnellmann, M., Giardini, D., 2005. Multiarchive<br />

paleoseismic record of late Pleistocene and Holocene str<strong>on</strong>g earthquakes in<br />

Switzerland. Tect<strong>on</strong>ophisics 400: 153-177.<br />

Becker, A., Davenport, C.A., Eichenberger, U., Gilli, E., Jeannin, P.Y., Lacave, C. 2006.<br />

Speleosismology: A critical perspective. J.of Seismol. 10: 371-388.<br />

Begin, Z.B., Steinberg, D.M., Ichinose, G.A., Marco, S., 2005. A 40,000yr unchanging<br />

seismic regime in <strong>the</strong> Dead Sea rift. Geology 33: 257-260.<br />

Ben-Avraham, Z. and Hall, J.K., 1977. Geophysical survey of Mt. Carmel structure and<br />

its extenti<strong>on</strong> into <strong>the</strong> eastern Mediterranean. J. of Geophys. Res. 82: 793-802.<br />

Ben-Avraham, Z. and Ginzburg, A., 1990, Displaces teranes and crustal evoluti<strong>on</strong> of <strong>the</strong><br />

Levant and <strong>the</strong> eastern Mediterranean. Tect<strong>on</strong>ics 9: 613-622.<br />

Ben-Gai, Y., 1989.The border <strong>faul</strong>ts of <strong>the</strong> Carmel structure <strong>on</strong> <strong>the</strong> c<strong>on</strong>tinental shelf of<br />

nor<strong>the</strong>rn Israel. M.Sc. Thesis, Tel Aviv University.<br />

Broeker, W.S., 1963. A preliminary evaluati<strong>on</strong> of uranium-series inequilibrium as a tool<br />

for absolute age measurement <strong>on</strong> marine carb<strong>on</strong>ates. J. Geophys. Res. 68: 2817-2834.<br />

Broecker, W.S. and Kaufman, A., 1965. Radiocarb<strong>on</strong> chr<strong>on</strong>ology of Lake Lah<strong>on</strong>tan and<br />

Lake B<strong>on</strong>neville II, Great Basin, Geol. Soc. Amer. Bull. 76: 537–566.<br />

83


Brooks, C., Hart, S.R., Wendt, I., 1972. Realistic use of two-error regressi<strong>on</strong> treatments as<br />

applied to rubidium-str<strong>on</strong>tium data. Rev. of Geophys. and Sp. Phys. 10: 551-577.<br />

Crispim, J.A. 1999. Seismotect<strong>on</strong>ic versus man-induced morphological changes in a cave<br />

<strong>on</strong> <strong>the</strong> Arrabida chain (Portugal). Geodinam. Acta. 12: 135-142.<br />

Davenport, C.A., 1998, Karst as a record of Paleoseismicity. Tect<strong>on</strong>ique. 98: 41-44.<br />

Davids<strong>on</strong>, J., Charlier, B., Hora, J.M., Perlroth, R., 2005. Mineral isochr<strong>on</strong>s and isotopic<br />

fingerprinting: Pitfalls and promises. Geology 33: 29-32.<br />

Ellenblum, R., Marco, S., Agn<strong>on</strong>, A., Rockwell, T., Boas, A., 1998. A crusader castle torn<br />

apart by <strong>the</strong> earthquake of dawn, 20 May 1202. Geology 26: 303-306.<br />

Enzel, Y., Kadan, G. and Eyal, Y., 2000, Holocene earthquakes inferred from a fan delta<br />

sequence in <strong>the</strong> Dead Sea graben. Quat. Res. 53: 34-48.<br />

Feigin, D. 1994, High-resoluti<strong>on</strong> seismic refracti<strong>on</strong> and ground-penetrating radar for<br />

detecting buried young <strong>faul</strong>ts. Israel Geol. Surv. Rep. GSI/25/94.<br />

Finkelstein I., Ussishkin, D., Halpern, B., eds, 2000. Megiddo III: The 1992-1996<br />

Seas<strong>on</strong>s. M<strong>on</strong>o. S. Tel Aviv University 18.<br />

Finkelstein I., Ussishkin, D., Halpern, B., 2006. eds, Megiddo IV: The 1998-2000<br />

Seas<strong>on</strong>s. M<strong>on</strong>o. S. Tel Aviv University 24.<br />

Forti, P., 1998, Seismotect<strong>on</strong>ic and paleoseismic studies from speleo<strong>the</strong>ms: <strong>the</strong> state of<br />

<strong>the</strong> art. Han 98- Tect<strong>on</strong>ique, Karst et seis. 79-81.<br />

Forti, P. and Postpischl, D. 1980. Neotect<strong>on</strong>ic data from stalagmites: sampling and<br />

analysis techniques. Proc. Europ. Reg. Speleol. C<strong>on</strong>f. Sofi. 351: 1-10.<br />

Fruend, R., 1965. A model for <strong>the</strong> development of Israel and adjacent areas since <strong>the</strong><br />

Upper Cretaceous times. Geol. 102: 189-205.<br />

Fruend, R., Garfunkel, Z., Zak, I., Goldberg, M., Weissbrod, T., Derin, B., 1970. The<br />

shear al<strong>on</strong>g <strong>the</strong> Dead Sea Rift. Philos. Trans. R. Soc. L<strong>on</strong>. Ser. A. 267: 107-130.<br />

Frumkin, A., Ford, D.C., Schwarcz, H.P., 1999. C<strong>on</strong>tinental oxygen isotope record of <strong>the</strong><br />

last 170,000 years in Jerusalem. Quat. Res. 51: 317-327.<br />

Garfunkel, Z., and Almagor, G., 1985. Geology and structure of <strong>the</strong> c<strong>on</strong>tinental margin<br />

off nor<strong>the</strong>rn Israel and <strong>the</strong> adjacent part of <strong>the</strong> Levantine basin. Mar. Geol. 62: 105-<br />

131.<br />

Geophisical institute of Israel web site, earthquake search:<br />

(http://www.gii.co.il/heb/de<strong>faul</strong>t.html).<br />

Gilli, E., Levret, A., Sollogoub, P. and Delange, P., 1999. Research <strong>on</strong> <strong>the</strong> February 18,<br />

1996 earthquake in <strong>the</strong> caves of <strong>the</strong> Saint- Paul-de Fenouillet area, (eastern Pyrenees,<br />

France). Geodyn. Acta. 12: 3-4, 143-158.<br />

Gluck, D., 2002. The landscape evoluti<strong>on</strong> of <strong>the</strong> southwestern Dead Sea Basin and <strong>the</strong><br />

paleoseismic record of <strong>the</strong> southwestern marginal <strong>faul</strong>t of <strong>the</strong> Dead Sea Basin and of<br />

<strong>the</strong> CF during <strong>the</strong> Late Pleistocene and <strong>the</strong> Holocene. M.Sc. Thesis, The Hebrew<br />

University of Jerusalem.<br />

Hall, J. K., 1993. The GSI digital terrain model (DTM) completed. in GSI current<br />

research, edited by R. Bogoch and Y. Eshet: 47-50.<br />

Hasse-Schramm, A., Goldstein, S.L., Stein, M., 2004. U-Th dating of Lake Lisan (late<br />

Pleistocene Dead Sea) arag<strong>on</strong>ite and implicati<strong>on</strong>s for glacial East Mediterranean<br />

climate change. Geochem. et Cosmochem. Acta. 68: 985-1005.<br />

Hellstrom, J., 2007. U–Th dating of speleo<strong>the</strong>ms with high initial 230 Th using<br />

stratigraphical c<strong>on</strong>straint. Quat. Geochr<strong>on</strong>. 1: 289–295.<br />

Hofstetter, A., van Eck, T. and Shapira, A., 1996. Seismic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> al<strong>on</strong>g <strong>faul</strong>t branches of<br />

<strong>the</strong> Dead Sea-Jordan transform system: The Carmel-Tirza Fault system.<br />

Tect<strong>on</strong>ophysics 267: 317-330.<br />

84


Hofstetter, A., Feldman, L. and Rotstein, Y., 1991. Crustal structure of Israel: c<strong>on</strong>straints<br />

from teleseismic and gravity data. Geophys. J. Int. 104: 371-380.<br />

Hofstetter, A., R<strong>on</strong>, H., and van Eck, T., 1989. Mt. Carmel Earthquake Sequence.<br />

Seismol. Div. Inst. Petrol. Res. Geophys., Hol<strong>on</strong>, Israel 303/1829/88 (1).<br />

Kafri, U., 1969. Recent crustal movements in nor<strong>the</strong>rn Israel. J. Geophys. Res. 74: 4246-<br />

4258.<br />

Kafri, U., 1970, Pleistocene tect<strong>on</strong>ic movements in <strong>the</strong> coastal area. Isr. J. Earth Sci. 19:<br />

147-152.<br />

Kagan, E.J., 2002. Dating large earthquakes using damaged cave deposits, Soreq and Har-<br />

Tuv caves, central Israel. M.Sc. Thesis, The Hebrew University of Jerusalem.<br />

Kagan, E.J., Agn<strong>on</strong>, A., Bar-Mat<strong>the</strong>ws, M. and Ayal<strong>on</strong>, A., 2005. Dating large infrequent<br />

earthquakes by damaged cave deposits. Geology 33: 261-264.<br />

Kagan, E.J., Stein, M., Bar-Mat<strong>the</strong>ws, M., Agn<strong>on</strong>, A., 2007. A Tale of Two Cataclysmic<br />

Earthquakes: 39 and 52 kyr BP, Dead Sea Transform, Israel; a Multi-archive Study.<br />

Eos. Trans. AGU. Fall Meet. Suppl. 88(52).<br />

Karcz, Y., 1958. The Geology of northwestern Mount Carmel. M.Sc. Thesis, The Hebrew<br />

University of Jerusalem.<br />

Karcz, Y. 1959, The structure of <strong>the</strong> nor<strong>the</strong>rn Carmel. Bull. Res. Counc. Isr. 8G: 119-130.<br />

Kashai, E., 1966. The geology of eastern and southwestern Mount Carmel. Ph.D. Thesis,<br />

The Hebrew University of Jerusalem.<br />

Kaufman, A., Wasserburg, G.J., Porcelli, D., Bar-Mat<strong>the</strong>ws, M., Ayal<strong>on</strong>, A., Halitcz, L.<br />

1998. U-Th isotope systematics from <strong>the</strong> Soreq Cave, Israel and climatic correlati<strong>on</strong>s.<br />

Earth and Planetary Sci. Let. 156: 141-155.<br />

Kostov, K. 2002, Speleo<strong>the</strong>ms as paleoseismic indicators: examples from Bulgaria. Atlas<br />

Document # caig-35<br />

Kupperman, G., 2005. Rec<strong>on</strong>structi<strong>on</strong> of flood periods by dating speleo<strong>the</strong>ms in Nahal<br />

Hazerz, nor<strong>the</strong>rn Negev. Geol. Sur. of Isr. Rep. GSI/1105. (in Hebrew).<br />

Lacave, C., Levret, A., Koller, M.G. 2000. Measurments of natural frequencies and<br />

damping of speleo<strong>the</strong>ms. Proc. of <strong>the</strong> 12 th World C<strong>on</strong>f. <strong>on</strong> Earthqu. Auckland, New-<br />

Zealand. 2118.<br />

Lacave, C. Koller, M.G. and Eozcue, J.J. 2004. What can be c<strong>on</strong>cluded about seismic<br />

history from broken speleo<strong>the</strong>ms J. Earthqu. Eng. 8(3): 431-455.<br />

Lemeille, F., Cushing, M., Carb<strong>on</strong>, D., Grellet, B., Bitterli, T., Flehoc, C. and Innocent,<br />

C. 1999, C-seismic ruptures and deformati<strong>on</strong>s recorded by speleo<strong>the</strong>ms in <strong>the</strong><br />

epicentral z<strong>on</strong>e of <strong>the</strong> Bazel earthquake. Geodinam. Acta, 12: 3-4, 179-191.<br />

Li W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., McNutt, R., Williams,<br />

D., 1989. High-precisi<strong>on</strong> mass-spectrometric uranium-series dating of cave deposits<br />

and implicati<strong>on</strong>s for paleoclimate studies. Nature 339:534-536.<br />

Ludwig, K.R., 2003. Ma<strong>the</strong>matical-statistical treatment of data and errors for Th-230/U<br />

geochr<strong>on</strong>ology. Rev. Min. & Geochem. 52: 631-656.<br />

Ludwig, K.R., 2008. Users manual for Isoplot 3.7. Berk. Geochr<strong>on</strong>. Cen. Spec. Pub. 4.<br />

Ludwig, K.R. and Titteringt<strong>on</strong>, D.M. 1994, Calculati<strong>on</strong> of 230Th/U isochr<strong>on</strong>es, ages and<br />

errors. Geoch. et Cosmochim. Acta. 58 (22): 5031-5042.<br />

Marco, S., Stein, M., Agn<strong>on</strong>, A. and R<strong>on</strong>, H. 1996. L<strong>on</strong>g-term earthquake clustering: A<br />

50,000 year paleoseismic record in <strong>the</strong> Dead Sea Graben. J. Geophys. R. 101: 6179-<br />

6191.<br />

Marco, S., Agn<strong>on</strong>, A., Ussishkin, D., Finkelstein, I., 2006. Megiddo Earthquakes, in<br />

Ussishkin, D., and Finkelstein, I., eds., Megiddo, Volume IV: T.A. Univ. 568-575.<br />

Marco, S., Agn<strong>on</strong>, A., Finkelstein, I., Ussishkin, D., in prep. Archeoseismic observati<strong>on</strong>s<br />

by <strong>the</strong> Carmel <strong>faul</strong>t: Megiddo (Armagedd<strong>on</strong>) versus Yoqne'am.<br />

85


Migowski, C., Agn<strong>on</strong>, A., Bookmanb, R., Negendanka, J.F.W., Stein, M., 2004.<br />

Recurrence pattern of Holocene earthquakes al<strong>on</strong>g <strong>the</strong> Dead Sea transform revealed<br />

by varve-counting and radiocarb<strong>on</strong> dating of lacustrine sediments. Earth and Planet.<br />

Sci. Let. 222: 301– 314.<br />

Morinaga, H., Y<strong>on</strong>ezawa, T., Adachi, Y., Inokuchi, H., Goto, H., Yaskawa, K., 1994. The<br />

possibility of inferring paleoseismicity from <strong>the</strong> paleomagnetic dating of speleo<strong>the</strong>ms,<br />

western Japan. Techt<strong>on</strong>ophysics 230: 241-248.<br />

Muire-Wood, R. and King, G.C.P., 1993. Hydrological signatures of earthquake strain. J.<br />

Geophys. Res. 98, 22, 035-22,068.<br />

Panno, S.V., Lundstrom, C.C., Hackley, K.C., Curry, B.B., Fouke, B., Zhang, Z., 2006.<br />

Phil. Ann. Meet. 229-6.<br />

Picard, L.Y. and Kashai, E., 1958, On <strong>the</strong> lithostratigraphy and tect<strong>on</strong>ics of <strong>the</strong> Carmel.<br />

Bull. Res. Counc. Isr. 7G: 1-9.<br />

Postpischl, D., Aostini, S., Forti, P., Quinif, Y., 1991. Paleoseismicity from karst<br />

sediments: <strong>the</strong> "Grotta del Cervo" cave case study (Central Italy). Tect<strong>on</strong>ophysics<br />

193: 33-44.<br />

Richards, D.A., Dorale, J.A., 2003. Uranium-series chr<strong>on</strong>ology and envir<strong>on</strong>mental<br />

applicati<strong>on</strong>s of speleo<strong>the</strong>ms. Rev. in Min. & Geochem. 52: 407–460.<br />

R<strong>on</strong>, H., Fruend, R., Garfunkel, Z. and Nur, A., 1984. Block rotati<strong>on</strong> by strike-slip<br />

<strong>faul</strong>ting: structural and paleomagnetic evidence. J. Geophys. Res. 89 (B7): 6256-6270.<br />

R<strong>on</strong>, H., Nur, A., Hofstetter, A., 1990. Late Cenozoic and recent strike slip tect<strong>on</strong>ics in<br />

Mt. Carmel, nor<strong>the</strong>rn Israel. Ann. Tect<strong>on</strong>. 4: 70-80.<br />

Rotstein, Y., Bruner, I., Kafri, U., 1993. High-resoluti<strong>on</strong> seismic imaging of <strong>the</strong> CF and<br />

its implicati<strong>on</strong>s for <strong>the</strong> structure of Mt. Carmel. Isr. J. Earth Sci. 42: 55-69.<br />

Salam<strong>on</strong>, A., Zaslavski, I., Shtebelman, V., Rockwell, T., 2001. Earthquake hazards in<br />

Nesher industrial plant- Haifa Bay. Isr. Geo. Soc. Annual meeting, Abs. booklet: 85.<br />

(in Hebrew).<br />

Salam<strong>on</strong>, A., Hofstetter, A., Garfunkel, Z., R<strong>on</strong>, H., 2003. Seismotect<strong>on</strong>ics of <strong>the</strong> Sinai<br />

subplate- The eastern Mediterranean regi<strong>on</strong>. Geoph. J. Int. 155: 149-173.<br />

Sass, E., 1957. The Volcanic Occurrences in Mt. Carmel. M.Sc. Thesis, <strong>the</strong> Hebrew<br />

University of Jerusalem.<br />

Sass, E., 1980. Late Cretaceous volcanism in Mt. Carmel, Israel. Isr. J. Erth Sci. 29: 8-24.<br />

Sass, E. and Bein, A. 1982. The Cretaceous carb<strong>on</strong>ate platform in Israel. Cretac. Res.<br />

3(1/2): 135-144.<br />

Sass, E., Bein, A., Arkin, Y. and Bartov, Y., 1977, Geological photomap (Zihr<strong>on</strong> Ya-akov<br />

erea). Geol. Surv. Isr. Jer. Israel sheet. 145-200.<br />

Schattner, U., Ben-Avraham, Z., Reshef, M., Bar-Am, G., Lazar, M., 2006. Oligocene–<br />

Miocene formati<strong>on</strong> of <strong>the</strong> Haifa basin: Qish<strong>on</strong>–Sirhan rifting coeval with <strong>the</strong> Red<br />

Sea–Suez rift system. Tect<strong>on</strong>ophysics 419: 1-12.<br />

Segev, A., and Sass, E., 2006. The geology of Central and Sou<strong>the</strong>rn Mount Carmel. Isr.<br />

Geol. Soc. Annual meeting, Field Trip 4: 69-87 (in Hebrew).<br />

Shamir, G., 2007. Earthquake epicenter distributi<strong>on</strong> and mechanisms in nor<strong>the</strong>rn Israel.<br />

Geol. Surv. Isr. Jer. Rep. GSI/16/07. (in Hebrew).<br />

Sneh, A., Bartov, Y. and Rosensaft, M. 1998. Geological Map of Israel, 1:200,000. Geol.<br />

Surv. of Isr. Sheet 1.<br />

Stern, E., Geva H., Paris. A., eds. 2008. The New Encyclopedia of Archaeological<br />

Excavati<strong>on</strong>s in <strong>the</strong> Holy Land, Jerusalem and Washingt<strong>on</strong> DC: The Israel Explorati<strong>on</strong><br />

Society and Biblical Archaeological Society. 5. Supp. Vol.<br />

Szeidovitz, Gy., Paskaleva, I., Gribovszki1, K., Kostov, K., Sur´any, G., Varga, P.,<br />

Nikolov, G., 2008. Estimati<strong>on</strong> of an upper limit <strong>on</strong> prehistoric peak ground<br />

86


accelerati<strong>on</strong> using <strong>the</strong> parameter of intact speleo<strong>the</strong>ms in cave situated at <strong>the</strong> western<br />

part of Balkan mountain range, north-west Bulgaria. Acta Geod. Geoph. Hung. 43(2–<br />

3): 249–266.<br />

Wedepohl KH (1995) The compositi<strong>on</strong> of <strong>the</strong> c<strong>on</strong>tinental crust. Geochim. Cosmochim.<br />

Acta 59:1217-1239.<br />

Zilberman, E., Greenbaum, N., Nahmias, Y., Porat, N., Ashkar, L., 2006. Middle<br />

Pleistocene to Holocene Tect<strong>on</strong>ic Ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> al<strong>on</strong>g <strong>the</strong> CF- Preliminary Results of a<br />

Paleoseismic Study. Geol. Surv. Of Isr. GSI/02/2007.<br />

87


Appendix I: Denya Cave samples; summery of types,<br />

locati<strong>on</strong>s and dated samples.<br />

a. Table of Denya Cave speleo<strong>the</strong>m samples<br />

b. Seismite sample photographs<br />

c. Digital photos of Denya Cave and samples


I-a. Table of Denya Cave speleo<strong>the</strong>m samples<br />

Table 1: Denya Cave sample I.D.'s. Samples marked in red are spleo-seismites.<br />

Sample Area Seismic Processed Lab fig. i.d’s Comments<br />

i.d. in map c<strong>on</strong>tact<br />

DN-1 A No No<br />

DN-2 A Yes Yes 1,2,3,4<br />

DEN-2 A Yes Yes pre<br />

DN-3 A No No No calcite<br />

DN-4 A Yes Yes pre I, II (post), III, top &<br />

Isochr<strong>on</strong>s 1, 2<br />

DN-5 B No No<br />

DN-6 C Yes Yes a-pre (post), b-pre, c-pre I,<br />

II, III,IV,V<br />

DN-7 C Yes Yes 45-pre, 46-post I, II, pre,<br />

post I, II, 47-post<br />

DN-8 B No No<br />

DN-9 C Yes Yes pre, pre-down, pre-bottom,<br />

pre (post)<br />

DN-10 B No No No calcite<br />

DN-11 B Yes No Not enough material<br />

DN-12 B Yes No Not enough material<br />

DN-13 B Yes No Not enough material<br />

DN-14 B Yes Yes a: pre I, PRE-I<br />

DN-16 A No No Isochr<strong>on</strong><br />

DN-17 A Yes Yes pre, post<br />

DN-18 A No No No calcite<br />

DN-19 A Yes Yes pre I, II<br />

DN-20 A No No<br />

DN-21 B Yes No pre I, II<br />

DN-22 B Yes Yes pre I, II, post I, II<br />

DN-23 B No No<br />

DN-24 B No No<br />

DN-25 B Yes Yes post I, II<br />

DN-26 B Yes Yes top: pre I, post I, II<br />

DN-27 B Yes Yes post II<br />

DN-28 B No No<br />

DN-29 B No No<br />

DN-30 B No No<br />

DN-31 B No No<br />

DN-32 A No No<br />

DN-33 A Yes Yes c1-pre, post, c2-pre, post<br />

DN-34 B Yes Yes a: pre I, II, III<br />

DN-35 B No No Isochr<strong>on</strong><br />

DN-36 B Yes Yes pre I, II, III, post I, II<br />

DN-37 B Yes Yes a: pre, post<br />

DN-38 B No No<br />

DN-39 B Yes No Very large detritic<br />

comp<strong>on</strong>ent<br />

DN-40 B Yes Yes pre- I, II, post I Age reversal<br />

DN-41 B No No<br />

DN-42 B Yes Yes e-pre, post<br />

DN-43 B Yes No Not enough material<br />

DN-44 A Yes Yes pre, post<br />

DN-45 A Yes Yes pre, post<br />

DN-46 A Yes Yes pre I, II, post Age reversal


DN-47 A Yes Yes pre I, II, post I<br />

DN-48 A Yes Yes pre, post<br />

DN-49 A No No<br />

DN-50 A No No<br />

DN-51 A Yes Yes pre I-IV, post I<br />

DN-52 A Yes Yes pre, post<br />

DN-53 A No No Isochr<strong>on</strong><br />

DN-54 A No No<br />

DN-55 A No No<br />

DN-56 A No No<br />

DN-57 A No No<br />

DN-58 A No No<br />

DN-59 A No No<br />

DN-60 A No No<br />

DN-61 A No No<br />

DN-62 A Yes Yes pre I, II, post II & Isochr<strong>on</strong><br />

DN-63 A Yes Yes pre I, II, post<br />

DN-64 A No No<br />

DN-65 A Yes Yes pre, post<br />

DN-66 A Yes Yes b-pre, c-pre I, II, III, post I<br />

DN-67 A No No<br />

DN-68 A Yes Yes pre


DEN-2<br />

Sample DEN-2 is a type C-1 seismite. It was<br />

found not in situ in <strong>the</strong> cave.<br />

C-1<br />

pre<br />

21.62ka


DN-1 DN-2<br />

Seismic c<strong>on</strong>tact<br />

DN-2<br />

Sample DN-2 is a stalagmite c<strong>on</strong>nected to <strong>the</strong><br />

broken stalagmite DN-1(type C-1). The<br />

assumpti<strong>on</strong> is that <strong>the</strong> seismic c<strong>on</strong>tact is <strong>the</strong><br />

c<strong>on</strong>tact between <strong>the</strong> two stalagmites (between<br />

sampled laminae 2 and 3 or 4). Ano<strong>the</strong>r seismic<br />

c<strong>on</strong>tact might be where <strong>the</strong> laminae of DN-2 start<br />

to form fully horiz<strong>on</strong>tally (marked by dotted green<br />

lines), since this is where <strong>the</strong>y are unquesti<strong>on</strong>ably<br />

not broken.<br />

A-1<br />

DN-1<br />

2-pre<br />

13.79ka<br />

4-post<br />

6.28ka<br />

Seismic c<strong>on</strong>tact<br />

3-post<br />

5.3ka


DN-4<br />

Sample DN-4 is a type C-1<br />

seismite.<br />

Seismic c<strong>on</strong>tact<br />

(4) pre-top<br />

16.72ka<br />

(1) pre I<br />

24.34ka<br />

(2) pre II<br />

19.98ka<br />

C-1<br />

(3) pre III<br />

(post)<br />

20.14ka<br />

Seismic c<strong>on</strong>tact


pre<br />

59.94ka<br />

DN-6<br />

Samples DN-6 a, b and c are all taken from broken bedrock covered with<br />

speleo<strong>the</strong>ms which fell from <strong>the</strong> cave wall. The scar <strong>on</strong> <strong>the</strong> wall is still evident<br />

which indicates <strong>the</strong> directi<strong>on</strong> of <strong>the</strong> fall as well as enhancing <strong>the</strong> probability of <strong>the</strong><br />

break being caused by a seismic event (type C-3). The pre-break samples<br />

indicate <strong>the</strong> last laminae deposited as stalactites before <strong>the</strong>y broke off.<br />

C-3<br />

Seismic c<strong>on</strong>tact<br />

pre<br />

18.07ka<br />

b<br />

Seismic c<strong>on</strong>tact<br />

pre<br />

16.75ka<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

35.37ka<br />

pre I<br />

22.32ka


DN-7<br />

DN-7 appeared to be a stalagmite which was<br />

slightly broken <strong>on</strong> top. When cut into secti<strong>on</strong>s it<br />

became clear that <strong>the</strong> top of it was merely<br />

eroded. Yet inside, an angular unc<strong>on</strong>formity is<br />

clearly visible which indicates that an event<br />

occurred which broke <strong>the</strong> top of <strong>the</strong> stalagmite,<br />

causing an hiatus of depositi<strong>on</strong>. The<br />

unc<strong>on</strong>formity is c<strong>on</strong>sidered to be <strong>the</strong> seismic<br />

c<strong>on</strong>tact, making it a type A-1 seismite.<br />

46-post<br />

12.21ka<br />

Seismic c<strong>on</strong>tact<br />

45-pre<br />

33.2ka<br />

46b-post<br />

9.18ka pre<br />

24.51ka<br />

A-1<br />

Seismic c<strong>on</strong>tact<br />

post<br />

12.21ka<br />

post B<br />

11.05ka


DN-9b<br />

DN-9b is a type C-1 seismite.<br />

Sample (1) was thought to<br />

represent a post-break stage but<br />

in fact is <strong>the</strong> last lamina deposited<br />

before <strong>the</strong> break.<br />

(1)pre (post)<br />

11.17ka<br />

(2)pre (bottom)<br />

12.1ka<br />

Seismic c<strong>on</strong>tact<br />

C-1<br />

(3)pre (down)<br />

10.04ka


DN-11, 12 and 13<br />

These samples are broken stalactites indicate a phase of re-growth<br />

and <strong>the</strong>refore might be seismite samples. However, <strong>the</strong>y are not<br />

robust indicators of seismic events since <strong>the</strong>y are very fragile and<br />

<strong>the</strong> re-growth phase is from currant drip water. They were <strong>the</strong>refore<br />

discarded.<br />

E-1


DN-14<br />

DN-14 is a type C-1 seismite.<br />

Seismic c<strong>on</strong>tact<br />

C-1<br />

Seismic c<strong>on</strong>tact pre<br />

64.8ka


Seismic c<strong>on</strong>tact<br />

pre<br />

12.51ka<br />

DN-17<br />

DN-17 is a type A-1 seismite.<br />

The post sample is mainly<br />

detrital matter, <strong>the</strong>refore <strong>the</strong> age<br />

it yields requires a correcti<strong>on</strong>.<br />

post<br />

10.35ka<br />

A-1


DN-19<br />

DN-19 is a type C-1<br />

seismite.<br />

pre I<br />

49.83ka<br />

pre II<br />

23.32ka<br />

C-1<br />

Seismic c<strong>on</strong>tact


DN-21<br />

DN-21 is a type C-1 seismite.<br />

pre I<br />

32.42ka<br />

pre II<br />

54.35ka<br />

C-1<br />

Seismic c<strong>on</strong>tact


DN-22<br />

DN-22 is a flowst<strong>on</strong>e core of a type A-4<br />

seismite.<br />

A-4<br />

post II<br />

163.7ka<br />

post I<br />

394.92ka<br />

pre I<br />

Eq.<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

395.93ka


DN-25<br />

DN-25 is a sample of flowst<strong>on</strong>e <strong>on</strong><br />

bedrock from <strong>the</strong> edge of a cavity in<br />

<strong>the</strong> cave floor next to an area of<br />

collapsed st<strong>on</strong>es.<br />

No indicati<strong>on</strong> of a seismite was<br />

found in this sample.<br />

post II<br />

80.3ka<br />

post I<br />

136.5ka<br />

D-2


DN-26<br />

DN-26 is a flowst<strong>on</strong>e core of a type<br />

A-4 seismite.<br />

A-4<br />

Seismic c<strong>on</strong>tact<br />

Seismic c<strong>on</strong>tact<br />

pre I<br />

Eq.<br />

post I<br />

250.04ka<br />

pre II<br />

post II


DN-27<br />

DN-27 is a sample of<br />

flowst<strong>on</strong>e <strong>on</strong> bedrock from<br />

<strong>the</strong> edge of a cavity in <strong>the</strong><br />

cave floor next to an area<br />

of collapsed st<strong>on</strong>es. It is a<br />

type D-2 seismite.<br />

D-2<br />

post I<br />

Seismic c<strong>on</strong>tact<br />

post II<br />

207.66ka


Seismic c<strong>on</strong>tact<br />

DN-33<br />

DN-33 is a group of broken stalactites<br />

from <strong>the</strong> cave ceiling in chamber A, in<br />

which <strong>the</strong> whole floor is strewn with<br />

fallen rocks. All of <strong>the</strong>m are type A-1<br />

seismites.<br />

A-2<br />

Seismic c<strong>on</strong>tact<br />

post<br />

post<br />

0.47ka<br />

134.38ka pre<br />

43.24ka<br />

pre<br />

146.54ka


DN-34<br />

DN-34 is a flowst<strong>on</strong>e core<br />

of a type A-5 seismite.<br />

A-5<br />

Seismic c<strong>on</strong>tact<br />

Seismic c<strong>on</strong>tact<br />

pre I<br />

158.94ka<br />

DN-34a<br />

post<br />

112.22ka<br />

pre III<br />

331.79ka<br />

pre II<br />

146ka


A-4<br />

Seismic c<strong>on</strong>tact<br />

post I<br />

253.64ka<br />

pre I<br />

325.38ka<br />

DN-36<br />

DN-36 is a flowst<strong>on</strong>e core of a type A-<br />

4 and A-5 seismites. Sample pre III is<br />

a loose broken stalactite found while<br />

drilling and is a type E-1 seismite.<br />

Seismic c<strong>on</strong>tact<br />

A-5<br />

pre III<br />

42.96ka<br />

E-1<br />

post II<br />

146.26ka<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

154.47ka


DN-37a<br />

DN-37a is a flowst<strong>on</strong>e core in which D-1 and D-2 type seismites were found.<br />

Seismic c<strong>on</strong>tact<br />

pre<br />

30.72ka<br />

post<br />

178.98ka<br />

D-2<br />

Seismic c<strong>on</strong>tact<br />

D-1


DN-39<br />

This coral type speleo<strong>the</strong>m was<br />

located al<strong>on</strong>g a wall surrounding a<br />

crevice. It was not possible to<br />

separate enough datable material<br />

from <strong>the</strong> surrounding bedrock,<br />

<strong>the</strong>refore no samples were dated.<br />

D-2


DN-40<br />

DN-40 is a sample of<br />

flowst<strong>on</strong>e <strong>on</strong> bedrock from<br />

<strong>the</strong> edge of a cavity in <strong>the</strong><br />

cave floor next to an area<br />

of collapsed st<strong>on</strong>es. It is a<br />

type B-2 seismite as well<br />

as a type C seismite in<br />

which a pre-crack sample<br />

was dated.<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

53.72ka<br />

crack<br />

pre I<br />

240.83ka<br />

C-1<br />

B-2<br />

Seismic c<strong>on</strong>tact<br />

post I (2)<br />

296.2ka


DN-42<br />

DN-42 is a group of broken stalactites<br />

from <strong>the</strong> cave ceiling in chamber B<br />

above <strong>the</strong> small rock fall. Sample 42e<br />

is a type A-1 seismites.<br />

Seismic c<strong>on</strong>tact<br />

A-2<br />

pre<br />

311.28ka<br />

post<br />

0.77ka


DN-43<br />

This stalactite was located close to broken<br />

speleo<strong>the</strong>ms and was found to be a seismite. It<br />

was not possible to separate enough datable<br />

material from <strong>the</strong> surrounding bedrock, <strong>the</strong>refore no<br />

samples were dated.<br />

D-2


DN-44<br />

DN-44 is a flowst<strong>on</strong>e core<br />

of a type A-4 seismite.<br />

A-4<br />

post<br />

38.37ka<br />

pre<br />

38.58ka<br />

Seismic c<strong>on</strong>tact


Seismic c<strong>on</strong>tact<br />

DN-45<br />

DN-45 is a type A-1 seismite.<br />

The post sample is mainly<br />

detrital matter, <strong>the</strong>refore <strong>the</strong> age<br />

it yields requires a correcti<strong>on</strong>.<br />

post<br />

23.97ka<br />

pre<br />

29.18ka<br />

A-1


pre II<br />

149.02ka<br />

A-3<br />

DN-46<br />

DN-46 is a flowst<strong>on</strong>e core of flowst<strong>on</strong>e cementing<br />

rock and speleo<strong>the</strong>m fragments. The samples<br />

dated were of a type A-3 seismite (<strong>the</strong> pre samples<br />

being two broken stalactites).<br />

Seismic c<strong>on</strong>tact<br />

post<br />

174.54ka<br />

pre I<br />

136.13ka


DN-47<br />

DN-47 is a flowst<strong>on</strong>e core of a type A-4 seismite.<br />

Sample pre II is a loose broken stalactite found while<br />

drilling and is a type E-1 seismite.<br />

pre I<br />

50.09ka<br />

post I<br />

37.14ka<br />

pre II<br />

23.49ka<br />

E-1<br />

Seismic c<strong>on</strong>tact<br />

A-4


DN-48<br />

DN-48 is a flowst<strong>on</strong>e core of a<br />

type B-1 seismite. It was taken<br />

from <strong>the</strong> edge of a pool. A<br />

possible mechanism which<br />

could explain <strong>the</strong> depositi<strong>on</strong>al<br />

unc<strong>on</strong>formity could be that <strong>the</strong><br />

pool <strong>on</strong> <strong>the</strong> edge of which <strong>the</strong><br />

tilted laminas were deposited<br />

was suddenly filled with debris<br />

during a seismic event. This<br />

could have caused <strong>the</strong><br />

subsequent laminae to be<br />

deposited horiz<strong>on</strong>tally.<br />

B-1<br />

post<br />

26.83ka<br />

pre<br />

28.53ka<br />

Seismic c<strong>on</strong>tact ()


DN-51<br />

DN-51 is a stalactite formati<strong>on</strong><br />

from <strong>the</strong> cave wall. Samples<br />

pre-II & III are from broken<br />

stalactites. Samples pre & post I<br />

might are in fact seismites of<br />

two different events: pre I- is<br />

post seismic c<strong>on</strong>tact. Post I is<br />

nearly <strong>the</strong> last lamina before a<br />

small break in <strong>the</strong> stalactite and<br />

<strong>the</strong>refore not a seismite.<br />

post I<br />

(maybe pre)<br />

59.05ka<br />

pre I<br />

(maybe post)<br />

131.35ka<br />

A-2<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

8.31ka<br />

A-4<br />

E-1<br />

pre III<br />

4.89ka


DN-52<br />

DN-52 is a flowst<strong>on</strong>e<br />

core of a type A-4<br />

seismite.<br />

A-3<br />

pre<br />

55.69ka<br />

post<br />

43.52ka<br />

Seismic c<strong>on</strong>tact


DN-62<br />

DN-62 is a flowst<strong>on</strong>e sample of type A-4 and D-2<br />

seismites. The D-2 seismite might have yielded a<br />

mixed age with <strong>the</strong> bedrock.<br />

A-4<br />

post I<br />

253.34ka<br />

pre I<br />

Eq.<br />

Seismic c<strong>on</strong>tact<br />

D-2<br />

post II<br />

207.85ka


pre II<br />

39.12ka<br />

crack<br />

post<br />

29.7ka<br />

pre I<br />

66.78ka<br />

Seismic c<strong>on</strong>tact<br />

DN-63<br />

DN-63 is a flowst<strong>on</strong>e sample of type A-5<br />

seismites which was found as <strong>on</strong>ly partially<br />

c<strong>on</strong>nected to <strong>the</strong> cave flowst<strong>on</strong>e because<br />

of a crack.<br />

A-5


DN-65<br />

DN-65 is a flowst<strong>on</strong>e sample of type A-4 seismites.<br />

pre<br />

340.8ka<br />

Seismic c<strong>on</strong>tact<br />

post<br />

301.5ka<br />

A-4


pre<br />

139.65ka<br />

E-1<br />

Seismic c<strong>on</strong>tact<br />

pre II<br />

320.3ka<br />

post II<br />

60.53ka<br />

pre III<br />

9ka<br />

DN-66<br />

DN-66 are a stalagmite<br />

and stalactites. DN-66b<br />

is a type E-1 seismite<br />

and DN-66c has two type<br />

A-2 seismites.<br />

A-2<br />

pre I<br />

92.16ka<br />

post I<br />

16.85ka


Seismic c<strong>on</strong>tact<br />

DN-68<br />

DN-68 is a a fallen broken stalagmite<br />

buried in <strong>the</strong> debris of chamber A<br />

yielding a type A-4 seismite.<br />

C-1<br />

pre<br />

36.52ka


Appendix II: Laboratory protocols and MC-ICP-MS<br />

functi<strong>on</strong><br />

II-a. Laboratory protocol for <strong>the</strong> separati<strong>on</strong> of U and Th for<br />

measurement with <strong>the</strong> MC-ICP-MS<br />

A chromatographic separati<strong>on</strong> of Uranium and Thorium<br />

Preparati<strong>on</strong>s:<br />

• Weighing ~0.3g of material with a uranium c<strong>on</strong>centrati<strong>on</strong> of about 0.2-<br />

0.3 ppm.<br />

• Dissolving <strong>the</strong> samples with 7N of HNO 3 acid in centrifugal test tubes.<br />

• The remaining insoluble material is separated with centrifuge and<br />

transported to a separate Tefl<strong>on</strong> c<strong>on</strong>tainer.<br />

• A spike ( 236 U- 229 Th) is added and measured and <strong>the</strong>n <strong>the</strong> sample is left<br />

until equilibrium is reached.<br />

• The soluti<strong>on</strong> is evaporated and <strong>the</strong>n ano<strong>the</strong>r 7N of NHO 3 is added and<br />

a clear soluti<strong>on</strong> is received.<br />

• The insoluble material is dissolved with 5ml of a mixture of<br />

c<strong>on</strong>centrated HF and HNO 3 .<br />

• The detritic, insoluble matter is added to <strong>the</strong> soluti<strong>on</strong>.<br />

• The soluti<strong>on</strong> is evaporated and more 7N HNO 3 is added<br />

Chromatographic separati<strong>on</strong>:<br />

• Resin (Ag 1 x 800 200-400 mesh) is added to col<strong>on</strong>s which are <strong>the</strong>n<br />

washed twice with 6N of HCl and three times with distilled water (TD<br />

H 2 O).<br />

• Prec<strong>on</strong>diti<strong>on</strong>ing <strong>the</strong> col<strong>on</strong>s to <strong>the</strong> soluti<strong>on</strong> by washing <strong>the</strong>m with<br />

HNO 3 .<br />

• Adding <strong>the</strong> samples to <strong>the</strong> col<strong>on</strong>s and washing <strong>the</strong>m with 7N HNO 3<br />

three times.<br />

• Prec<strong>on</strong>diti<strong>on</strong>ing <strong>the</strong> col<strong>on</strong>s to thorium collecti<strong>on</strong> using 6N HCl.<br />

• Adding 3.5ml of 6N HCl to <strong>the</strong> col<strong>on</strong>s and collecting <strong>the</strong> thorium in<br />

Tefl<strong>on</strong> c<strong>on</strong>tainers.<br />

• Prec<strong>on</strong>diti<strong>on</strong>ing <strong>the</strong> col<strong>on</strong>s to uranium collecti<strong>on</strong> using 1N HBr.<br />

• Adding 3.5ml of 1N HBr to <strong>the</strong> col<strong>on</strong>s and collecting <strong>the</strong> uranium in<br />

Tefl<strong>on</strong> c<strong>on</strong>tainers.<br />

• Evaporati<strong>on</strong> of <strong>the</strong> separated soluti<strong>on</strong>s until <strong>the</strong>y are completely dry.<br />

• Adding 2-3ml of 0.1N HNO 3 to <strong>the</strong> uranium in <strong>the</strong> Tefl<strong>on</strong> c<strong>on</strong>tainers<br />

and moving it to centrifugal test tubes.<br />

• Adding 5ml 0.1N HNO 3 to <strong>the</strong> thorium in <strong>the</strong> Tefl<strong>on</strong> c<strong>on</strong>tainers and<br />

moving it to centrifugal test tubes.<br />

• Measuring <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> of uranium in <strong>the</strong> samples from <strong>the</strong><br />

soluti<strong>on</strong> with <strong>the</strong> ICP-MS.<br />

• Diluting <strong>the</strong> samples with a high c<strong>on</strong>centrati<strong>on</strong> (more than <strong>the</strong> standard<br />

50ppb).<br />

• Adding 25µl of standard 112a U NBL, in which <strong>the</strong> 234 U/ 238 U is<br />

known, to <strong>the</strong> thorium test tubes.


II-b. Laboratory protocol for <strong>the</strong> preparati<strong>on</strong> of samples for<br />

chromatographic separati<strong>on</strong> of U and Th without <strong>the</strong><br />

insoluble/detrital matter<br />

Preparati<strong>on</strong>s:<br />

• Weighing of material.<br />

• Dissolving <strong>the</strong> samples with twice <strong>the</strong> molar ratio of DH 3 COOH acid<br />

in centrifugal test tubes:<br />

CaCO 3 + 2CH 3 COOH = Ca(CH 3 COO) 2 + H 2 O + CO 2<br />

• The insoluble material is separated with centrifuge (not more than 40 cc<br />

per run) for 20 minutes at 4000 cycles per minute.<br />

• The soluti<strong>on</strong> is separated into a Tefl<strong>on</strong> c<strong>on</strong>tainer.<br />

• After cleaning <strong>the</strong> test tubes with 5 cc of distilled water, while going<br />

over <strong>the</strong> sides with a pipette and shaking <strong>the</strong> tube, repeating <strong>the</strong><br />

centrifuge procedure twice more.<br />

• Removing <strong>the</strong> remaining soluti<strong>on</strong> with a 5 cc pipette to a new test tube.<br />

• Adding and measuring spike ( 236 U- 229 Th) into <strong>the</strong> new test tube.<br />

• Adding <strong>the</strong> c<strong>on</strong>tents of <strong>the</strong> new test tube to <strong>the</strong> Tefl<strong>on</strong> c<strong>on</strong>tainer with<br />

<strong>the</strong> rest of <strong>the</strong> soluti<strong>on</strong>, cleaning it out with distilled water.<br />

• The soluti<strong>on</strong> is evaporated to complete dryness, making sure no acetic<br />

acid remains.<br />

• C<strong>on</strong>tinuing chromatographic procedure as stated above.<br />

II-c. Measuring isotopic ratios using <strong>the</strong> ICP-MS<br />

MC-ICP-MS: Multiple Collector Inductively Coupled Plasma Mass Spectrometer<br />

(produced by U.K. Nu Instrument) in <strong>the</strong> Geological Survey.<br />

The different isotopic ratios are determined by <strong>the</strong> injecti<strong>on</strong> of sample soluti<strong>on</strong>s in<br />

Arag<strong>on</strong> Plasma (~6000 o K) which produces an i<strong>on</strong>izati<strong>on</strong> of nuclides which are <strong>the</strong>n<br />

accelerated in an electrical field, <strong>the</strong>n separated with a magnet and are measured by<br />

<strong>the</strong> mass spectrometer (Goldstein and Stirling, 2003). The machine c<strong>on</strong>tains 12<br />

Faraday detectors and 3 I<strong>on</strong> Counters (IC). The IC is used for very low c<strong>on</strong>centrati<strong>on</strong>s<br />

of 229 Th, 236 U, 230 Th, 234 U.<br />

Measuring uranium ratios:<br />

This is d<strong>on</strong>e in three cycles <strong>the</strong> following ratios are determined: 235 U/ 236 U,<br />

235 U/ 238 U and 234 U/ 236 U.<br />

• Cycle I - The c<strong>on</strong>diti<strong>on</strong>s of <strong>the</strong> machine are determined by <strong>the</strong><br />

measuring of 235 U/ 238 U with <strong>the</strong> Faraday detector. The results are<br />

calibrated using <strong>the</strong> known ratios which exist in nature. Then a<br />

calibrati<strong>on</strong> is d<strong>on</strong>e for <strong>the</strong> IC0 detector.<br />

• Cycle II - Faraday detectors measure 235 U and 238 U and <strong>the</strong> results are<br />

calibrated for <strong>the</strong> IC1 detector.


• Cycle III - Faraday detectors measure 235 U and 238 U, 236 U is measured<br />

with <strong>the</strong> IC0 detector and 234 U is measured with <strong>the</strong> IC1 detector.<br />

Measuring thorium ratios:<br />

This is d<strong>on</strong>e by calibrating <strong>the</strong> ratios: 232 Th/ 229 Th and 230 Th/ 229 Th to uranium<br />

isotopic ratios due to <strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> of <strong>the</strong> machine does not allow for a<br />

direct measurement of 230 Th.<br />

• Cycle I – Faraday detectors measure 235 U and 238 U and <strong>the</strong> results are<br />

calibrated for <strong>the</strong> IC1 detector in which <strong>the</strong> 229 Th is measured.<br />

• Cycle II – IC1 detector measures 235 U and Faraday detectors measure<br />

235 U.<br />

• Cycle III - Faraday detectors measure 235 U and 238 U and <strong>the</strong> results are<br />

calibrated for <strong>the</strong> IC1 detector in which <strong>the</strong> 230 Th is measured.<br />

238 U/ 235 U is c<strong>on</strong>stant in nature and in <strong>the</strong> spike 236 U- 229 Th is known, allowing<br />

for an accurate measurement of 238 U/ 234 U and 230 Th/ 234 Th.


Appendix III: All seismites c<strong>on</strong>sidered for age clusters devided into seismic events.<br />

Event 2 Event 3<br />

Pre I Pre II Pre III Pre IV Pre V Post I Post II Post III Post IV Pre I Pre II<br />

Post I Pre I<br />

Sample<br />

Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-) Name Age (+) (-)<br />

DEN-2 DEN-2 pre 21619 390 -388<br />

DN-2 DN-2-2 13802 362 -361 DN-2-3 5296 250 -250 DN-2-4 6285 227 -227<br />

DN-4 DN-4 pre (top) 16717 214 -214 DN-4 pre II (post) 20132 362 -361 DN 4 pre 19981 175 -175 DN3y(dn4-pre) 24343 364 -362<br />

DN-6a DN 6A pre (post) 59936 416 -415<br />

DN-6b DN 6B pre 18079 304 -304<br />

DN-6c DN8y(dn6C pre) 16749 355 -354 DN 6C pre 34300 352 -352 DN-6c pre I 22317 276 -276 DN7y(dn6C pre) 35921 483 -481 DN-6c pre II 35363 354 -354<br />

DN-7 DN 7 pre 24511 198 -198 DN-7-45 33202 245 -245 DN 7 post 12206 150 -150 DN 7postB 11050 80 -80 DN-7-46b-post 9181 196 -196 DN-7-47 10464 160 -160<br />

DN-9 DN9y(dn9b prebottom) 12097 542 -538 DN6y(dn9B post) 11165 346 -345 DN 9B pre 55394 488 -486<br />

DN-14 DN-14A-PRE-I 64801 517 -516 DN-14a-preI 73220 890 -882<br />

DN-17 DN-17-PRE 12515 654 -650 DN-17-POST 10346 129 -129<br />

DN-19 DN-19-PRE-I 49829 762 -756 DN-19-PRE-II 23323 425 -423<br />

DN-21 DN-21pre-I 32420 387 -386 DN-21 pre II 54345 457 -456<br />

DN-22 DN-22-PRE-I eq. 2658 -2590 DN-22-PRE-II 395927 22847 -18817 DN-22-POST-I 394924 24176 -19364 DN-22-POST-II 163707 2507 -2446<br />

DN-25 DN-25 post I 136503 14315 -12605 DN-25 post II 80306 738 -733<br />

DN-26 DN-26top-preI eq. DN-26top-postI 250043 3850 -3717<br />

DN-27 DN-27-II 207662 2776 -2702<br />

DN-33 DN-33C1-PRE 43241 2094 -2055 DN-33c1-post 466 10 -10 DN-33c2-pre 146544 1674 -1644 DN-33c2-post 134388 1848 -1814<br />

DN-34 DN-34a-pre I 158935 2155 -2108 DN-34a-pre II 146004 2253 -2203 DN-34a- post 112216 1264 -1247 DN34a-pre III 331793 13731 -12152 DN-34a- post 112216 1264 -1247<br />

DN-36 DN-36 pre I 325384 7240 -6771 DN-36 post I 253643 7157 -6679 DN-36 pre II 154473 1861 -1824 DN-36 post-II 146262 1858 -2302 DN-36 pre III 42965 285 -285<br />

DN-37 DN-37a post 178984 2362 -1790 DN-37a-pre 30719 211 -211<br />

DN-40 DN-40-pre I 240828 4005 -3857 DN-40 post I (2) 296208 9310 -9456 DN-40-pre II 53717 6189 -5841 DN-40 pre-II 59897 2429 -2376<br />

DN-42 DN-42e-pre 311281 9461 -8720 DN-42e-post 773 31 -31<br />

DN-44 DN-44 pre 38577 707 -708 DN-44 post 38375 444 -442<br />

DN-45 DN-45 pre 29176 1154 -1142 DN-45 post 23969 273 -273<br />

DN-46 DN-46 pre I 136133 1017 -1008 DN-46 pre II 149020 2619 -2556 DN-46 post 174544 2862 -2784<br />

DN-47 DN-47 pre I 50089 553 -550 DN-47 post I 37136 398 -396 DN-47 pre II 23494 246 -246<br />

DN-48 DN-48 pre 28534 296 -296 DN-48 post 26820 203 -203<br />

DN-51 DN-51 pre II 8307 271 -271 DN-51 pre III 4886 131 -131 DN-51 pre IV 12197 173 -173 DN-51 post I (pre) 59048 590 -587 DN-51 pre I (post) 131346 1171 -1158<br />

DN-52 DN-52 pre 55692 488 -485 DN-52 post 43519 652 -647<br />

DN-62 DN-62 pre I eq. DN-62 post I 253340 12464 -11197 DN-62 post II 207847 5571 -5291<br />

DN-63 DN-63-pre II 39122 283 -283 DN-63-post 29701 225 -225 DN-63-pre I 66781 427 -426 DN-63-pre II 39122 283 -283<br />

DN-65 DN-65 pre 340805 21364 -17886 DN-65 post 301492 10009 -9185<br />

DN-66b DN-66b-pre 139648 12826 -11444 -1475<br />

DN-66c DN-66c-pre I 92162 790 -785 DN-66c-post (I) 16849 1495 DN-66c-pre II 320296 17481 -15087 DN-66c-post II 60527 1080 -1069 DN-66c-pre III 9000 1495 -1475<br />

DN-68 DN-68b-pre 36522 1185 -1171


Appendix IV: Isotopic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios of all seismite samples arranged by ages<br />

Dated sample name 234/238 err 230/234 err 234/230 err 234/232 err 232/234 err 238/232 err 230/238 err 232/238 err 230/232 err Det. Age (y) + -<br />

DN-33c1-post 1.06245 0.00216 0.004277 0.000094 233.806 5.147 1312.022 2.680 0.000762 0.000002 899.011 2.313 0.004544 0.000100 0.001112 0.000003 5.61 0.12 n 466 10 -10<br />

DN-42e-post 1.05686 0.00153 0.007083 0.000283 141.187 5.637 2474.089 3.607 0.000404 0.000001 1932.721 7.177 0.007486 0.000299 0.000517 0.000002 17.52 0.70 n 773 31 -31<br />

DN-51 pre III 1.04455 0.00108 0.043943 0.001155 22.757 0.598 230.947 0.242 0.004330 0.000005 205.144 0.807 0.045900 0.001208 0.004875 0.000019 10.15 0.27 y 4886 131 -131<br />

DN-2-3 1.04588 0.00237 0.047547 0.002197 21.032 0.972 473.138 1.099 0.002114 0.000005 347.203 2.708 0.049728 0.002300 0.002880 0.000022 22.50 1.05 n 5296 250 -250<br />

DN-2-4 1.04588 0.00152 0.056177 0.001970 17.801 0.624 300.532 0.446 0.003327 0.000005 244.022 1.420 0.058754 0.002062 0.004098 0.000024 16.88 0.60 y 6285 227 -227<br />

DN-51 pre II 0.99870 0.01697 0.073535 0.002297 13.599 0.425 90.117 1.533 0.011097 0.000189 86.146 0.646 0.073440 0.002611 0.011608 0.000087 6.63 0.18 y 8307 271 -271<br />

DN-66c-pre III 1.05658 0.00100 0.079475 0.001827 12.583 0.289 24.302 0.012 0.041148 0.000021 25.713 0.123 0.083972 0.001932 0.038891 0.000187 1.93 0.05 y 9000 1495 -1475<br />

DN-7-46b-post 1.04368 0.00212 0.081000 0.001658 12.346 0.253 336.161 0.687 0.002975 0.000006 290.264 0.842 0.084538 0.001738 0.003445 0.000010 27.23 0.56 9181 196 -196<br />

DN10y(dn9bpre down) 1.03678 0.00218 0.088197 0.003492 11.338 0.449 173.728 0.368 0.005756 0.000012 154.030 0.530 0.091441 0.003626 0.006492 0.000022 15.32 0.61 10036 418 -416<br />

DN-17-POST 1.05396 0.00139 0.090817 0.001080 11.011 0.131 20.217 0.027 0.049464 0.000065 18.398 0.049 0.095718 0.001145 0.054353 0.000145 1.84 0.02 y 10346 129 -129<br />

DN-7-47 1.05794 0.00108 0.091808 0.001339 10.892 0.159 417.196 0.429 0.002397 0.000002 364.203 0.886 0.097128 0.001420 0.002746 0.000007 38.30 0.56 10464 160 -160<br />

DN 7postB 1.04236 0.00107 0.096677 0.000666 10.344 0.071 130.129 0.134 0.007685 0.000008 119.682 0.190 0.100773 0.000702 0.008356 0.000013 12.58 0.09 n 11050 80 -80<br />

DN6y(dn9B post) 1.04874 0.00102 0.097639 0.002866 10.242 0.301 93.853 0.096 0.010655 0.000011 85.844 0.627 0.102398 0.003008 0.011649 0.000085 9.16 0.28 y 11165 346 -345<br />

DN9y(dn9b prebottom) 1.03918 0.00137 0.105347 0.004444 9.492 0.400 121.631 0.166 0.008222 0.000011 109.215 0.727 0.109475 0.004620 0.009156 0.000061 12.81 0.55 n 12097 542 -538<br />

DN-51 pre IV 1.03187 0.00268 0.106147 0.001422 9.421 0.126 42.628 0.111 0.023459 0.000061 39.931 0.172 0.109530 0.001495 0.025043 0.000108 4.52 0.06 y 12197 173 -173<br />

DN 7 post 1.04360 0.00107 0.106243 0.001233 9.412 0.109 127.678 0.133 0.007832 0.000008 118.131 0.454 0.110876 0.001291 0.008465 0.000033 13.56 0.16 n 12206 150 -150<br />

DN-7-46 1.05616 0.00145 0.106275 0.001341 9.410 0.119 211.184 0.291 0.004735 0.000007 190.966 0.452 0.112243 0.001425 0.005237 0.000012 22.44 0.29 12208 163 -163<br />

DN-17-PRE 1.03993 0.00378 0.108770 0.005342 9.194 0.452 61.922 0.227 0.016149 0.000059 53.467 0.251 0.113114 0.005571 0.018703 0.000088 6.74 0.33 y 12515 654 -650<br />

DN-2-2 1.05553 0.00227 0.119307 0.002928 8.382 0.206 87.118 0.189 0.011479 0.000025 73.174 0.293 0.125933 0.003102 0.013666 0.000055 10.39 0.26 13802 362 -361<br />

DN-4 pre (top) 1.05119 0.00122 0.142647 0.001690 7.010 0.083 73.884 0.086 0.013535 0.000016 67.622 0.177 0.149949 0.001785 0.014788 0.000039 10.54 0.13 y 16717 214 -214<br />

DN8y(dn6C pre) 1.05426 0.00116 0.142912 0.002799 6.997 0.137 43.323 0.048 0.023083 0.000026 39.133 0.179 0.150666 0.002955 0.025554 0.000117 6.19 0.12 16749 355 -354<br />

DN-66c-post (I) 1.05186 0.00282 0.143690 0.011714 6.959 0.567 66.279 0.168 0.015088 0.000038 40.265 0.952 0.151142 0.012328 0.024836 0.000587 9.52 0.81 y 16849 1495 -1475<br />

DN 6B pre 1.05783 0.00150 0.153364 0.002372 6.520 0.101 97.462 0.140 0.010260 0.000015 88.655 0.362 0.162232 0.002520 0.011280 0.000046 14.95 0.24 18079 304 -304<br />

DN 4 pre 1.06953 0.00113 0.168137 0.001342 5.948 0.047 636.214 0.677 0.001572 0.000002 574.029 1.247 0.179827 0.001448 0.001742 0.000004 106.97 0.87 n 19981 175 -175<br />

DN-4 pre II (post) 1.03404 0.00129 0.169149 0.002761 5.912 0.096 39.306 0.050 0.025442 0.000032 36.591 0.131 0.174906 0.002863 0.027329 0.000098 6.65 0.11 y 20132 362 -361<br />

DEN-2 pre 1.02887 0.00097 0.180433 0.002931 5.542 0.090 44.902 0.043 0.022271 0.000021 42.517 0.153 0.185641 0.003021 0.023520 0.000085 8.10 0.13 y 21619 390 -388<br />

DN-6c pre I 1.10503 0.00150 0.186069 0.002074 5.374 0.060 50.637 0.069 0.019748 0.000027 44.685 0.098 0.205611 0.002308 0.022379 0.000049 9.42 0.11 y 22317 276 -276<br />

DN-19-PRE-II 1.03311 0.00165 0.193225 0.003142 5.175 0.084 28.646 0.046 0.034908 0.000056 27.054 0.112 0.199621 0.003262 0.036963 0.000153 5.54 0.09 y 23323 425 -423<br />

DN-47 pre II 1.04122 0.00072 0.194539 0.001827 5.140 0.048 50.544 0.036 0.019785 0.000014 47.725 0.159 0.202558 0.001907 0.020953 0.000070 9.83 0.10 y 23494 246 -246<br />

DN-45 post 1.03315 0.00131 0.198011 0.002015 5.050 0.051 8.291 0.011 0.120612 0.000154 7.841 0.022 0.204574 0.002097 0.127528 0.000358 1.64 0.02 y 23969 273 -273<br />

DN3y(dn4-pre) 1.07078 0.00122 0.201005 0.002673 4.975 0.066 147.405 0.170 0.006784 0.000008 131.900 0.499 0.215231 0.002873 0.007581 0.000029 29.63 0.41 n 24343 364 -362<br />

DN 7 pre 1.06103 0.00116 0.202184 0.001453 4.946 0.036 97.769 0.108 0.010228 0.000011 90.089 0.291 0.214523 0.001559 0.011100 0.000036 19.77 0.15 y 24511 198 -198<br />

DN-2-1 1.07159 0.00258 0.204898 0.006389 4.880 0.152 180.620 0.440 0.005536 0.000013 159.070 0.807 0.219566 0.006867 0.006287 0.000032 37.01 1.17 y 24871 875 -868<br />

DN-48 post 1.07019 0.00201 0.219088 0.001455 4.564 0.030 371.263 0.700 0.002694 0.000005 336.675 0.943 0.234466 0.001618 0.002970 0.000008 81.34 0.56 n 26820 203 -203<br />

DN-48 pre 1.06698 0.00153 0.231348 0.002095 4.322 0.039 199.990 0.289 0.005000 0.000007 182.309 0.759 0.246844 0.002264 0.005485 0.000023 46.27 0.45 n 28534 296 -296<br />

DN-45 pre 1.01720 0.00139 0.235464 0.008070 4.247 0.146 33.501 0.048 0.029850 0.000043 32.429 0.267 0.239513 0.008215 0.030836 0.000254 7.89 0.28 y 29176 1154 -1142<br />

DN-63-post 1.08810 0.00131 0.239780 0.001576 4.170 0.027 338.317 0.492 0.002956 0.000004 208.134 0.539 0.260904 0.001743 0.004805 0.000012 81.12 0.56 n 29701 225 -225<br />

DN-37a-pre 1.07969 0.00213 0.246848 0.001452 4.051 0.024 589.584 1.164 0.001696 0.000003 535.992 1.010 0.266519 0.001653 0.001866 0.000004 145.54 0.84 n 30719 211 -211<br />

DN-21pre-I 1.07807 0.00197 0.258612 0.002636 3.867 0.039 214.996 0.394 0.004651 0.000009 194.417 0.492 0.278803 0.002887 0.005144 0.000013 55.60 0.57 y 32420 387 -386<br />

DN-7-45 1.09876 0.00149 0.264182 0.001660 3.785 0.024 98.217 0.133 0.010182 0.000014 87.533 0.186 0.290272 0.001866 0.011424 0.000024 25.95 0.17 33202 245 -245<br />

DN 6C pre 1.07073 0.00096 0.271344 0.002372 3.685 0.032 655.946 0.588 0.001525 0.000001 599.327 1.082 0.290537 0.002553 0.001669 0.000003 177.99 1.57 34300 352 -352<br />

DN-6c pre II 1.07306 0.00148 0.278515 0.002357 3.590 0.030 305.075 0.427 0.003278 0.000005 277.735 1.090 0.298864 0.002563 0.003601 0.000014 84.97 0.78 n 35363 354 -354<br />

DN7y(dn6C pre) 1.07398 0.00147 0.282250 0.003191 3.543 0.040 518.542 0.710 0.001928 0.000003 471.711 0.984 0.303132 0.003452 0.002120 0.000004 146.36 1.67 35921 483 -481<br />

DN-68b-pre 1.07626 0.00493 0.286271 0.007740 3.493 0.094 152.585 0.189 0.006554 0.000008 112.891 0.697 0.308102 0.008449 0.008858 0.000055 43.68 1.19 36522 1185 -1171<br />

DN-47 post I 1.06773 0.00153 0.290215 0.002591 3.446 0.031 270.852 0.390 0.003692 0.000005 248.270 0.841 0.309871 0.002802 0.004028 0.000014 78.61 0.74 n 37136 398 -396<br />

DN-44 post 1.07758 0.00301 0.298459 0.002847 3.351 0.032 1187.656 3.344 0.000842 0.000002 1069.489 5.248 0.321614 0.003197 0.000935 0.000005 354.47 3.62 n 38375 444 -442<br />

DN-44 pre 1.06962 0.00277 0.299674 0.004578 3.337 0.051 183.547 0.478 0.005448 0.000014 165.790 0.680 0.320537 0.004967 0.006032 0.000025 55.00 0.86 38577 707 -708<br />

DN-63-pre II 1.07924 0.00052 0.303331 0.001827 3.297 0.020 759.525 1.268 0.001317 0.000002 692.217 1.848 0.327367 0.001978 0.001445 0.000004 230.39 1.50 n 39122 283 -283<br />

DN-36 pre III 1.08074 0.00157 0.327807 0.001756 3.051 0.016 60.771 0.089 0.016455 0.000024 55.302 0.144 0.354275 0.001967 0.018083 0.000047 19.92 0.11 y 42965 285 -285<br />

DN-33C1-PRE 1.03957 0.00231 0.328810 0.012842 3.041 0.119 46.600 0.107 0.021459 0.000049 43.433 0.366 0.341821 0.013372 0.023024 0.000194 15.32 0.61 n 43241 2094 -2055<br />

DN-52 post 1.07331 0.00247 0.331142 0.003992 3.020 0.036 168.799 0.390 0.005924 0.000014 153.958 0.499 0.355417 0.004362 0.006495 0.000021 55.90 0.68 n 43519 652 -647<br />

DN-19-PRE-I 1.06999 0.00228 0.369211 0.004406 2.708 0.032 59.591 0.128 0.016781 0.000036 54.258 0.213 0.395054 0.004788 0.018431 0.000072 22.00 0.27 n 49829 762 -756<br />

DN-47 pre I 1.05901 0.00146 0.370490 0.003192 2.699 0.023 54.164 0.075 0.018463 0.000026 49.983 0.143 0.392353 0.003424 0.020007 0.000057 20.07 0.18 y 50089 553 -550<br />

DN-40-pre II 0.92599 0.00159 0.387487 0.033220 2.581 0.221 60.755 0.606 0.016460 0.000164 65.052 5.911 0.358808 0.030767 0.015372 0.001397 23.54 2.94 y 53717 6189 -5841<br />

DN-21 pre II 1.04397 0.00132 0.394516 0.002534 2.535 0.016 51.880 0.066 0.019275 0.000024 48.909 0.134 0.411863 0.002696 0.020446 0.000056 20.47 0.14 y 54345 457 -456<br />

DN 9B pre 1.05794 0.00184 0.400767 0.002665 2.495 0.017 140.492 0.245 0.007118 0.000012 129.828 0.316 0.423986 0.002914 0.007702 0.000019 56.30 0.39 n 55394 488 -486<br />

DN-52 pre 1.07588 0.00156 0.402905 0.002673 2.482 0.016 194.489 0.283 0.005142 0.000007 177.539 0.487 0.433480 0.002943 0.005633 0.000015 78.36 0.55 n 55692 488 -485<br />

DN-51 post I 1.05778 0.00176 0.420808 0.003124 2.376 0.018 53.685 0.089 0.018627 0.000031 49.788 0.102 0.445122 0.003386 0.020085 0.000041 22.59 0.17 n 59048 590 -587<br />

DN-40 pre-II 1.04746 0.00271 0.425050 0.012761 2.353 0.071 63.652 0.165 0.015711 0.000041 59.132 0.075 0.445223 0.013417 0.016911 0.000021 27.06 0.81 n 59897 2429 -2376<br />

DN 6A pre (post) 1.07952 0.00155 0.426233 0.002189 2.346 0.012 716.249 1.033 0.001396 0.000002 652.691 1.153 0.460127 0.002454 0.001532 0.000003 305.29 1.59 n 59936 416 -415<br />

DN-66c-post II 1.18317 0.00280 0.432252 0.005758 2.313 0.031 151.602 0.242 0.006596 0.000011 102.883 0.416 0.511427 0.006919 0.009720 0.000039 65.53 0.90 60527 1080 -1069<br />

DN-14A-PRE-I 1.00241 0.00069 0.448996 0.002596 2.227 0.013 13.949 0.010 0.071692 0.000050 13.707 0.042 0.450078 0.002621 0.072954 0.000224 6.26 0.04 y 64801 517 -516<br />

DN-63-pre I 1.04106 0.00165 0.460476 0.002079 2.172 0.010 25.276 0.037 0.039564 0.000057 18.753 0.045 0.479381 0.002294 0.053326 0.000129 11.64 0.06 y 66781 427 -426<br />

DN-14a-preI 1.00621 0.00065 0.490258 0.004129 2.040 0.017 13.616 0.009 0.073440 0.000048 13.279 0.043 0.493304 0.004167 0.075309 0.000242 6.68 0.06 73220 890 -882<br />

DN-25 post II 1.02651 0.00151 0.523575 0.003173 1.910 0.012 32.303 0.048 0.030957 0.000046 30.954 0.082 0.537453 0.003352 0.032306 0.000085 16.91 0.11 y 80306 738 -733<br />

DN-66c-pre I 1.08715 0.00161 0.577076 0.003083 1.733 0.009 16.608 0.014 0.060213 0.000052 21.702 0.051 0.627366 0.003478 0.046079 0.000109 9.58 0.05 y 92162 790 -785<br />

DN-34a- post 1.04353 0.00278 0.647566 0.003937 1.544 0.009 27.418 0.082 0.036472 0.000109 20.450 0.052 0.675756 0.004485 0.048901 0.000125 17.75 0.10 112216 1264 -1247<br />

DN-51 pre I 1.01478 0.00186 0.702835 0.003010 1.423 0.006 12.580 0.023 0.079494 0.000146 12.234 0.033 0.713225 0.003322 0.081740 0.000223 8.84 0.04 y 131346 1171 -1158<br />

DN-33c2-post 1.05619 0.00251 0.715824 0.004742 1.397 0.009 58.259 0.139 0.017165 0.000041 54.230 0.126 0.756049 0.005321 0.018440 0.000043 41.70 0.27 134388 1848 -1814<br />

DN-46 pre I 1.03657 0.00146 0.718347 0.002542 1.392 0.005 32.004 0.045 0.031246 0.000044 30.531 0.089 0.744620 0.002834 0.032753 0.000095 22.99 0.10 y 136133 1017 -1008<br />

DN-25 post I 0.97948 0.00241 0.712367 0.034429 1.404 0.068 15.482 0.062 0.064593 0.000258 15.671 0.614 0.697751 0.033766 0.063813 0.002499 11.03 0.69 136503 14315 -12605<br />

DN-66b-pre 1.00470 0.00290 0.723686 0.030466 1.382 0.058 12.542 0.034 0.079733 0.000217 8.068 0.166 0.727084 0.030681 0.123950 0.002547 9.08 0.42 y 139648 12826 -11444<br />

DN-34a-pre II 1.06637 0.00318 0.747255 0.005142 1.338 0.009 145.286 0.325 0.006883 0.000015 210.379 0.696 0.796849 0.005976 0.004753 0.000016 108.57 0.76 n 146004 2253 -2203<br />

DN-36 post-II 0.98185 0.00116 0.736410 0.004835 1.358 0.009 10.269 0.025 0.097382 0.000235 8.454 0.025 0.723042 0.004824 0.118289 0.000354 7.56 0.05 y 146262 1858 -2302<br />

DN-33c2-pre 1.05609 0.00222 0.747350 0.003801 1.338 0.007 65.206 0.137 0.015336 0.000032 60.751 0.121 0.789269 0.004342 0.016461 0.000033 48.73 0.24 146544 1674 -1644<br />

DN-46 pre II 1.05637 0.00186 0.753394 0.005982 1.327 0.011 123.125 0.217 0.008122 0.000014 115.016 0.303 0.795864 0.006472 0.008694 0.000023 92.76 0.75 y 149020 2619 -2556<br />

DN-36 pre II 1.04813 0.00213 0.765092 0.003911 1.307 0.007 62.241 0.113 0.016067 0.000029 83.208 0.275 0.801916 0.004411 0.012018 0.000040 47.62 0.27 154473 1861 -1824<br />

DN-34a-pre I 1.02974 0.00248 0.772466 0.004266 1.295 0.007 23.443 0.057 0.042656 0.000103 22.490 0.061 0.795439 0.004792 0.044464 0.000120 18.11 0.10 y 158935 2155 -2108<br />

DN-22-POST-II 1.06510 0.00245 0.787660 0.004897 1.270 0.008 113.174 0.261 0.008836 0.000020 104.703 0.276 0.838935 0.005561 0.009551 0.000025 89.14 0.56 n 163707 2507 -2446<br />

DN-46 post 0.95424 0.00121 0.790934 0.004829 1.264 0.008 8.945 0.011 0.111798 0.000142 9.254 0.029 0.754743 0.004706 0.108059 0.000344 7.07 0.05 y 174544 2862 -2784<br />

DN-37a post 0.94086 0.00138 0.796245 0.003630 1.256 0.006 9.923 0.015 0.100776 0.000148 5.400 0.018 0.749155 0.003587 0.185180 0.000610 7.90 0.04 y 178984 2362 -1790<br />

DN-27-II 0.99633 0.00134 0.851074 0.003439 1.175 0.005 20.347 0.027 0.049147 0.000066 20.150 0.033 0.847954 0.003612 0.049629 0.000082 17.32 0.07 207662 2776 -2702<br />

DN-62 post II 1.04862 0.00208 0.861741 0.007262 1.160 0.010 29.170 0.058 0.034281 0.000068 27.371 0.111 0.903637 0.007822 0.036535 0.000148 25.14 0.23 y 207847 5571 -5291<br />

DN-40-pre I 1.00703 0.00138 0.892474 0.003645 1.120 0.005 25.951 0.036 0.038534 0.000053 25.407 0.069 0.898748 0.003872 0.039360 0.000107 23.16 0.11 y 240828 4005 -3857<br />

DN-26top-postI 1.01528 0.00082 0.903439 0.003346 1.107 0.004 13.869 0.011 0.072104 0.000058 13.466 0.023 0.917245 0.003477 0.074261 0.000126 12.53 0.05 250043 3850 -3717<br />

DN-62 post I 1.04910 0.00090 0.914560 0.010862 1.093 0.013 14.828 0.014 0.067440 0.000062 14.005 0.108 0.959462 0.011425 0.071402 0.000550 13.56 0.19 y 253340 12464 -11197<br />

DN-36 post I 1.03745 0.00347 0.912117 0.005580 1.096 0.007 28.164 0.075 0.035506 0.000095 34.060 0.088 0.946279 0.006597 0.029360 0.000076 25.69 0.14 253643 7157 -6679<br />

DN-40 post I (2) 0.95030 0.00114 0.919318 0.005239 1.088 0.006 14.824 0.018 0.067457 0.000082 15.419 0.050 0.873626 0.005088 0.064856 0.000211 13.63 0.09 296208 9310 -9456<br />

DN-65 post 1.05926 0.00101 0.954019 0.005656 1.048 0.006 237.027 0.230 0.004219 0.000004 221.659 0.937 1.010557 0.006068 0.004511 0.000019 226.13 1.63 n 301492 10009 -9185<br />

DN-42e-pre 1.07104 0.00118 0.962967 0.004903 1.038 0.005 18.805 0.021 0.053176 0.000059 17.345 0.044 1.031375 0.005373 0.057652 0.000147 18.11 0.10 n 311281 9461 -8720<br />

DN-66c-pre II 1.03939 0.00090 0.959147 0.008001 1.043 0.009 34.015 0.054 0.029399 0.000047 15.016 0.042 0.996932 0.008361 0.066596 0.000188 32.63 0.28 y 320296 17481 -15087<br />

DN-36 pre I 1.02635 0.00142 0.957855 0.002932 1.044 0.003 34.036 0.061 0.029380 0.000053 15.456 0.036 0.983097 0.003302 0.064699 0.000149 32.60 0.11 y 325384 7240 -6771<br />

DN34a-pre III 1.02381 0.00184 0.960071 0.005248 1.042 0.006 23.128 0.048 0.043238 0.000089 22.022 0.094 0.982925 0.005657 0.045409 0.000193 22.20 0.15 y 331793 13731 -12152<br />

DN-65 pre 1.04065 0.00140 0.969092 0.007858 1.032 0.008 579.889 0.786 0.001724 0.000002 552.497 1.983 1.008484 0.008289 0.001810 0.000006 561.97 4.90 n 340805 21364 -17886<br />

DN-22-POST-I 0.94199 0.00197 0.951661 0.003770 1.051 0.004 5.835 0.012 0.171365 0.000358 6.125 0.012 0.896456 0.004013 0.163262 0.000313 5.55 0.02 y 394924 24176 -19364<br />

DN-22-PRE-II 1.02405 0.00208 0.982110 0.004502 1.018 0.005 13.778 0.028 0.072579 0.000148 13.298 0.034 1.005731 0.005044 0.075199 0.000194 13.53 0.07 y 395927 22847 -18817<br />

DN-40-post I 0.91731 0.00264 0.976004 0.003881 1.025 0.004 12.927 0.037 0.077355 0.000223 13.942 0.041 0.895297 0.004397 0.071726 0.000213 12.62 0.04 y 873592 -11608 19656<br />

DN-26top-preI 1.00029 0.00102 1.057427 0.001780 0.946 0.002 9.798 0.010 0.102060 0.000104 9.712 0.017 1.057729 0.002082 0.102962 0.000177 10.36 0.02 y eq. 150 -150<br />

DN-62 pre I 1.01571 0.00056 1.017429 0.004056 0.983 0.004 12.237 0.007 0.081722 0.000045 11.944 0.037 1.033415 0.004159 0.083724 0.000260 12.45 0.06 y eq.<br />

DN-22-PRE-I 0.98376 0.00180 0.994981 0.003357 1.005 0.003 10.613 0.020 0.094224 0.000173 10.671 0.029 0.978819 0.003758 0.093713 0.000251 10.56 0.04 y eq. 2658 -2590<br />

Table 2: Isotopic ac<str<strong>on</strong>g>tivity</str<strong>on</strong>g> ratios of seismite samples as calculated from MC-ICP-MS isotopic measurements, arranged by age for Isochr<strong>on</strong> calculati<strong>on</strong>s.<br />

Pre-seismic event samples are marked in red. Post-seismic samples are marked in black.<br />

The detrital comp<strong>on</strong>ent of samples was established in <strong>the</strong> lab for most samples. Markings in blue are for samples that were established in <strong>the</strong> lab ex post facto as near as possible to <strong>the</strong> original sample.


,10.4±0.7<br />

שהשאירו את חותמן בספלאותמים במערת דניה ‏(מספרים באלפי שנים)‏ :<br />

,4.8±0.8<br />

.160±45 ,147.6±5.4 ,137±29 ,57.9±5.2 ,38.0±2.7 ,29.1±3.3 ,20.8±3.0<br />

השוואה של ממצאים אלה עם גילי אירועים סייסמיים שדווחו במחקרים פלאוסייסמים אחרים שנערכו<br />

בישראל הראתה שלכל תשעת האירועים ניתן למצוא תיארוך מקביל במחקר אחר.‏ השוואה זו מאששת<br />

את ההנחה שגילי השבירה של ספלאותמים ממערת דניה אינם אקראיים ושהדוגמאות שנבדקו אכן נשברו<br />

כתוצאה מאירועים סייסמיים.‏ חלק מהגילים שנמצאו לסייסמיטים מהמערה מראים התאמה לגילים שדווחו<br />

לארועים סייסמיים שפקדו את בקע ים המלח,‏ כמו גם לגילים שדווחו לארועים בהעתק הכרמל.‏ דרושים<br />

מחקרים נוספים בכדי לבחון את המקור לרעידות האדמה המדווחות במחקר זה.‏<br />

90


תקציר<br />

הר הכרמל מוגדר מצידו המזרחי על ידי העתק הכרמל,‏ שכיוונו הכללי צפ'-מע'.‏ העתק זה הוא שלוחה של<br />

מערכת ההעתקה בבקע ים המלח.‏ מערת דניה נמצאת בשכונת דניה בעיר חיפה,‏ על שיפולי שלוחה<br />

היורדת מערבה לכיוון טירת הכרמל.‏ זוהי מערה קארסטית שבה נראים משקעי מערות ‏(ספלאותמים)‏<br />

שבורים,‏ מפולות סלעים וסדקים,‏ העשויים להוות עדויות לכך שהנזקים האלה נגרמו כתוצאה מרעידות<br />

אדמה.‏ מטרות המחקר הזה הן לבדוק האם הספלאותמים השבורים במערת דניה הם סמנים לפעילות<br />

סייסמית ‏(סייסמיטים),‏ שמהם ניתן ללמוד על ההיסטוריה של רעידות האדמה שפקדו את האזור ברביעון.‏<br />

ראשית מופתה המערה עם כל תופעות השבירה והמעוות בתוכה,‏ תוך כדי שלילה של גורמים אחרים<br />

שאינם קשורים לרעידות אדמה שיכלו לגרום להיווצרות התופעות האלה.‏ מקומות שבהם זוהתה אי<br />

התאמה בשכוב של למינות במשקעי המערה מזוהים כאזורים של ‏'מגע סייסמי'‏ והלמינות הכי קרובות<br />

לאותו מגע נדגמו למטרות תיארוך.‏ גילה של הלמינה האחרונה שהושקעה לפני אי ההתאמה ו/או הלמינה<br />

הראשונה ששקעה אחרי אי ההתאמה,‏ מהווה אילוץ לגיל האירוע שיצר את אי ההתאמה.‏ הסייסמיטים<br />

השונים סווגו לפי סוג הספלאותם,‏ מידת הבהירות של המגע הסייסמי כסמן לארוע סייסמי והמידה בה<br />

ניתן היה לדגום את הלמינות הרצויות.‏ סיווג זה תרם לבחינה של מידת האמינות של הממצאים.‏<br />

הלמינות הנדגמות תוארכו בשיטת התיארוך של מערכת הדעיכה של אורניום<br />

לתוריום (U)<br />

.(Th)<br />

משוואות הגיל של שיטה זו מבוססות על כך שהמערכת נקיה מתוריום שמקורו דטריטי ושעשוי להשפיע<br />

על תוצאות הגיל.‏ כאשר נמצא חומר דטריטי בספלאותמים יש צורך בתיקון לגילים המתקבלים.‏ התיקון<br />

לתוריום דטריטי לגילי הדוגמאות ממערת דניה נעשה בשיטה של איזוכרון.‏ על פי קריטריונים שמבוססים<br />

על כמות החומר הדטריטי בדוגמה והמאפיינים של הלמינה מהן נלקחה הדוגמה,‏ הדוגמאות השונות חולקו<br />

לקבוצות שוות גיל ובעזרת דיאגרמת איזוכרון נקבע גיל משותף לכולן.‏<br />

68 דוגמאות ספלאותמים נאספו לבדיקה ממערת דניה.‏ 37 מתוכן הן דוגמאות של סייסמיטים ומתוכן,‏<br />

32<br />

נבדקו לשם תיארוך.‏ מתוך הדוגמאות שתוארכו עשרה סייסמיטים הם זקיפים קטומים שנשברו לאורך<br />

מישורים כמעט אופקיים.‏ תשעה סייסמיטים הם נטיפים קטומים בצורות ואורכים שונים ושאר הדגימות<br />

נלקחו מגלעינים של משקעי זרימה קלציטיים מרצפת המערה שבהם נמצאו אי התאמות בשיכוב וחלקם<br />

שקעו מעל שברי ספלאותמים קדומים יותר.‏<br />

הגילים שחושבו ע"י איזוכרונים של קבוצות הסייסמיטים השונות מהווים את הגיל המוערך של הארוע<br />

הסייסמי שיצר אותם.‏ לאורך<br />

200<br />

אלף השנים האחרונות,‏ נמצאו תשעה ארועים של רעידות אדמה<br />

89


משרד התשתיות הלאומיות<br />

המכון הגיאולוגי<br />

תיארוך אירועים סייסמים קדומים על העתק הכרמל<br />

באמצעות ספלאותמים שבורים ממערת דניה בכרמל<br />

יעל בראון<br />

עבודת זו הוגשה כחיבור לקבלת תואר ‏"מוסמך במדעי הטבע"‏ במכון למדעי כדור הארץ,‏<br />

האוניברסיטה העברית,‏ ירושלים.‏<br />

העבודה נעשתה בהדרכתם של:‏<br />

פרופ'‏ אמוץ עגנון,‏ המכון למדעי כדור הארץ,‏ האוניברסיטה העברית,‏ ירושלים<br />

דר ‏'מירה בר-מטיוס,‏ המכון הגיאולוגי,‏ ירושלים<br />

דוח מס'‏ GSI/23/2010<br />

ירושלים,‏ חשון,‏ תשע"א

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!