28.01.2015 Views

Kouli_etal_2008_Groundwater modelling_BOOK.pdf - Pantelis ...

Kouli_etal_2008_Groundwater modelling_BOOK.pdf - Pantelis ...

Kouli_etal_2008_Groundwater modelling_BOOK.pdf - Pantelis ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A Modeling Approach Supporting Air Sparging System Design 91<br />

Linear function<br />

In order to get a preliminary assess of the behavior of the air injected in soil when no<br />

experimental data about the capillary pressure function are available, a linear relationship<br />

between P c and the degree of saturation to water S l can be selected:<br />

⎧<br />

⎪Pcr<br />

for Sl<br />

≤ Slr<br />

⎪<br />

⎪ Sls<br />

− Sl<br />

PC = ⎨Pcr<br />

for Slr<br />

< Sl<br />

< Sls<br />

(16)<br />

⎪ Sls<br />

− Slr<br />

⎪<br />

⎪0<br />

for Sl<br />

≥ Sl<br />

s<br />

⎩<br />

where P cr (Pa) is the minimum value of the capillary pressure may have.<br />

Function of Pickens et al.<br />

This is a nonlinear model based on the empirical equation proposed by King (Pickens et<br />

al., 1979; van Genuchten et al., 1985) relating θ l to h:<br />

⎡<br />

χ<br />

⎤<br />

⎢ ⎪<br />

⎧ ⎛ h ⎞ ⎪<br />

⎫ θl<br />

0<br />

−θlr<br />

cosh⎨<br />

⎥<br />

⎢<br />

⎜<br />

⎟ + ε⎬<br />

− cosh ε<br />

+ ⎥<br />

⎢<br />

⎪⎩ ⎝ h0<br />

⎠ θl<br />

0<br />

θlr<br />

θ<br />

⎪⎭<br />

⎥<br />

l<br />

= θl0<br />

(17)<br />

χ<br />

⎢<br />

⎪<br />

⎧ ⎛ h ⎞ ⎪<br />

⎫ θ −θ<br />

⎥<br />

l 0 lr<br />

⎢cosh⎨<br />

+ ⎬ +<br />

⎥<br />

⎢<br />

⎜<br />

⎟ ε cosh ε<br />

+ ⎥<br />

⎣ ⎪⎩ ⎝ h0<br />

⎠ θl<br />

0<br />

θlr<br />

⎪⎭<br />

⎦<br />

where θ l0 , h 0 , χ and ε are curve-fitting parameters of a set of experimental values. This<br />

expression showed good results in fitting experimental data for several coarse- and finetextured<br />

soils. Note that θ l0 and h 0 may refer to the saturated condition.<br />

In case of ε = 0, the inversion of Eq. (17) results in:<br />

⎧ ⎡<br />

⎛<br />

2 ⎞⎤⎫<br />

⎪ ⎢ Sl<br />

⎜ ⎛ Sl<br />

⎞ ⎟<br />

1+<br />

⎥⎪<br />

⎪ ⎢<br />

⎜ ⎜1+<br />

⎟<br />

S<br />

⎟⎥⎪<br />

l 0<br />

Sl<br />

0<br />

−Slr<br />

⎨ ⎢<br />

⎜ ⎜ Sl<br />

0<br />

Sl<br />

0<br />

−Slr<br />

P<br />

⎟<br />

c<br />

= P0<br />

1−<br />

1+<br />

1−<br />

⎟⎥⎬<br />

(18)<br />

⎪ ⎢<br />

S + ⎜ ⎜ + ⎟<br />

l<br />

1−<br />

Sl<br />

0<br />

S<br />

S<br />

lr<br />

l<br />

⎟⎥⎪<br />

⎪ ⎢<br />

⎜ ⎜ 1−<br />

Sl<br />

0<br />

Slr<br />

⎟<br />

S<br />

⎟<br />

l 0<br />

⎥⎪<br />

⎝ Sl<br />

0 ⎠<br />

⎩ ⎣<br />

⎝<br />

⎠⎦<br />

⎭<br />

1/<br />

χ<br />

where P 0 is related to h 0 by Eq. (8), and S l0 and S lr are related to θ l0 and θ lr respectively,<br />

through porosity.<br />

Milly’s function<br />

This function is based on the generalization of the soil water retention curve obtained by<br />

Haverkamp for the Yolo clay soil, as reported in Milly (1982):

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!