16.11.2012 Views

Extragalactic abstracts - IRSA - California Institute of Technology

Extragalactic abstracts - IRSA - California Institute of Technology

Extragalactic abstracts - IRSA - California Institute of Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Spitzer_Approved_<strong>Extragalactic</strong><br />

Mar 25, 10 16:24 Page 259/742<br />

Spitzer Space Telescope − General Observer Proposal #40363<br />

Deep MIPS−70 and 160−micron Imaging <strong>of</strong> the z=1.16 SMG−P4<br />

Principal Investigator: David Frayer<br />

Institution: <strong>California</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

Technical Contact: David Frayer, <strong>California</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

Co−Investigators:<br />

Harry Teplitz, IPAC<br />

Lee Armus, IPAC<br />

Minh Huynh, IPAC<br />

Science Category: high−z galaxies (z>0.5)<br />

Observing Modes: MipsPhot<br />

Hours Approved: 3.5<br />

Abstract:<br />

We propose deep MIPS−70 and 160−micron observations <strong>of</strong> the z=1.16 submillimeter<br />

galaxy (SMG) P4. SMG−P4 is a composite AGN+starburst system showing large PAH<br />

equivalent widths indicating that the infrared emission arises predominantly<br />

from star−formation activity. The current data suggest that the far−infrared<br />

(FIR) spectral energy distribution (SED) is shifted to lower dust temperatures<br />

(cooler FIR colors) than that found for most local ULIRGs, but is consistent<br />

with the constraints on the high−redshift SMGs from ultradeep 70−micron imaging.<br />

Observations at 70 and 160−micron near the FIR peak are needed to constrain the<br />

SED, bolometric luminosity, star formation rate, and dust mass <strong>of</strong> the system.<br />

Spitzer_Approved_<strong>Extragalactic</strong><br />

Printed_by_SSC<br />

Mar 25, 10 16:24 Page 260/742<br />

Spitzer Space Telescope − General Observer Proposal #20643<br />

Testing the Preposterous Universe with Infrared Supernovae<br />

Principal Investigator: Peter Garnavich<br />

Institution: University <strong>of</strong> Notre Dame<br />

Technical Contact: Peter Garnavich, University <strong>of</strong> Notre Dame<br />

Co−Investigators:<br />

Chris Stubbs, Harvard−Smithsonian Center for Astrophysics<br />

Brian Schmidt, The Australian National University<br />

Robert Kirshner, Harvard−Smithsonian Center for Astrophysics<br />

Nicholas Suntzeff, CTIO/NOAO<br />

Chris Smith, CTIO/NOAO<br />

John Tonry, University <strong>of</strong> Hawaii<br />

Alex Filippenko, University <strong>of</strong> <strong>California</strong>, Berkeley<br />

Kevin Krisciunas, Notre Dame<br />

Peter Challis, Harvard−Smithsonian Center for Astrophysics<br />

Bruno Leibundgut, European Southern Observatory<br />

Adam Riess, STScI<br />

Thomas Matheson, NOAO<br />

Armin Rest, CTIO/NOAO<br />

Alejandro Clocchiatti, Universidad Catolica de Chile<br />

Saurabh Jha, University <strong>of</strong> <strong>California</strong>, Berkeley<br />

Gajus Miknaitis, University <strong>of</strong> Washington<br />

Andy Becker, University <strong>of</strong> Washington<br />

Jason Spyromilio, European Southern Observatory<br />

Weidong Li, University <strong>of</strong> <strong>California</strong>, Berkeley<br />

Jesper Sollerman, Stockholm Observatory<br />

Michael Wood−Vasey, Harvard−Smithsonian Center for Astrophysics<br />

Maria Elena Salvo, The Australian National University<br />

Claudio Aguilera, CTIO/NOAO<br />

Ryan Chornock, University <strong>of</strong> <strong>California</strong>, Berkeley<br />

Stephane Blondin, European Southern Observatory<br />

Malcolm Hicken, Harvard−Smithsonian Center for Astrophysics<br />

Science Category: high−z galaxies (z>0.5)<br />

Observing Modes: IracMap<br />

Hours Approved: 83.4<br />

Abstract:<br />

The current standard cosmological model has been called "preposterous" because<br />

it requires a finely tuned dark energy component. We propose a stringent test <strong>of</strong><br />

the accelerating universe using type Ia supernovae observed in the infrared<br />

rest−frame $K$−band. At redshifts near z=0.6, the K−band slides nicely into the<br />

IRAC 3.6 micron band. The infrared has a number <strong>of</strong> exceptional properties. The<br />

effects <strong>of</strong> dust extinction are minimal, reducing a major systematic that has<br />

been suspected <strong>of</strong> dimming high−redshift supernovae. Also, recent work indicates<br />

that type Ia supernovae are true standard candles in the infrared meaning that<br />

evolutionary biases will be reduced. We find that good signal−to−noise<br />

measurements <strong>of</strong> 4 type Ia events at z~0.6 will differentiate between an<br />

accelerating and low−density universe at more than the 99% confidence level, and<br />

make a critical test <strong>of</strong> the dark energy paradigm. Studying high redshift<br />

supernovae in the infrared is not possible from the ground and rest−frame K−band<br />

observations can only be done with Spitzer and IRAC. NASA and DOE are currently<br />

considering the optimum mission concept to investigate the properties <strong>of</strong> the<br />

dark energy. This proposed experiment will test the feasibility <strong>of</strong> using SNIa in<br />

the infrared as a reliable way <strong>of</strong> mapping the expansion history <strong>of</strong> the universe<br />

with the Joint Dark Energy Mission.<br />

Thursday March 25, 2010 xgal_covers.txt<br />

130/371

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!