03.06.2015 Views

Smart Highside High Current Power Switch

Smart Highside High Current Power Switch

Smart Highside High Current Power Switch

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PROFET® Data Sheet BTS550P<br />

<strong>Smart</strong> <strong><strong>High</strong>side</strong> <strong>High</strong> <strong>Current</strong> <strong>Power</strong> <strong>Switch</strong><br />

Reverse Save<br />

• Reverse battery protection by self turn on of<br />

power MOSFET<br />

Features<br />

• Overload protection<br />

• <strong>Current</strong> limitation<br />

• Short circuit protection<br />

• Overtemperature protection<br />

• Overvoltage protection (including load dump)<br />

• Clamp of negative voltage at output<br />

• Fast deenergizing of inductive loads 1)<br />

• Low ohmic inverse current operation<br />

• Diagnostic feedback with load current sense<br />

• Open load detection via current sense<br />

• Loss of Vbb protection 2)<br />

• Electrostatic discharge (ESD) protection<br />

Application<br />

• <strong>Power</strong> switch with current sense diagnostic<br />

feedback for 12 V and 24 V DC grounded loads<br />

• Most suitable for loads with high inrush current<br />

like lamps and motors; all types of resistive and<br />

inductive loads<br />

• Replaces electromechanical relays, fuses and discrete circuits<br />

Product Summary<br />

Overvoltage protection V bb(AZ) 62 V<br />

Output clamp V ON(CL) 44 V<br />

Operating voltage Vbb(on) 5.0 ... 34 V<br />

On-state resistance RON 3.6 mΩ<br />

Load current (ISO) IL(ISO) 115 A<br />

Short circuit current limitation IL(SC) 220 A<br />

<strong>Current</strong> sense ratio IL : I IS 21000<br />

TO-218AB/5<br />

1<br />

Straight leads<br />

General Description<br />

N channel vertical power FET with charge pump, current controlled input and diagnostic feedback with load<br />

current sense, integrated in <strong>Smart</strong> SIPMOS chip on chip technology. Fully protected by embedded protection<br />

functions.<br />

5<br />

3 & Tab<br />

Voltage<br />

source<br />

Overvoltage<br />

protection<br />

<strong>Current</strong><br />

limit<br />

Gate<br />

protection<br />

R bb<br />

+ V bb<br />

2<br />

IN<br />

ESD<br />

Voltage<br />

sensor<br />

Logic<br />

Charge pump<br />

Level shifter<br />

Rectifier<br />

Limit for<br />

unclamped<br />

ind. loads<br />

Output<br />

Voltage<br />

detection<br />

<strong>Current</strong><br />

Sense<br />

OUT<br />

1, 5<br />

I L<br />

Load<br />

I IN<br />

Temperature<br />

sensor<br />

V IN<br />

IS<br />

4<br />

I IS<br />

PROFET<br />

Load GND<br />

V IS<br />

R IS<br />

Logic GND<br />

1 ) With additional external diode.<br />

2) Additional external diode required for energized inductive loads (see page 9).<br />

Infineon Technologies AG Page 1 of 14 2000-Mar-24


Data Sheet BTS550P<br />

Pin Symbol Function<br />

1 OUT O Output to the load. The pins 1 and 5 must be shorted with each other<br />

especially in high current applications! 3)<br />

2 IN I Input, activates the power switch in case of short to ground<br />

3 Vbb +<br />

Positive power supply voltage, the tab is electrically connected to this pin.<br />

In high current applications the tab should be used for the V bb connection<br />

instead of this pin 4) .<br />

4 IS S Diagnostic feedback providing a sense current proportional to the load<br />

current; zero current on failure (see Truth Table on page 7)<br />

5 OUT O Output to the load. The pins 1 and 5 must be shorted with each other<br />

especially in high current applications! 3)<br />

Maximum Ratings at Tj = 25 °C unless otherwise specified<br />

Parameter Symbol Values Unit<br />

Supply voltage (overvoltage protection see page 4) V bb 40 V<br />

Supply voltage for short circuit protection,<br />

V bb 34 V<br />

T j,start =-40 ...+150°C: (E AS<br />

limitation see diagram on page 9)<br />

Load current (short circuit current, see page 5) I L self-limited A<br />

Load dump protection V LoadDump = U A + V s , U A = 13.5 V<br />

R<br />

5) I = 2 Ω, R L = 0.54 Ω, t d = 200 ms,<br />

6)<br />

V Load dump 80 V<br />

IN, IS = open or grounded<br />

Operating temperature range<br />

T j<br />

-40 ...+150 °C<br />

Storage temperature range<br />

T stg -55 ...+150<br />

<strong>Power</strong> dissipation (DC), T C ≤ 25 °C P tot 360 W<br />

Inductive load switch-off energy dissipation, single pulse<br />

V bb = 12V, T j,start = 150°C, T C = 150°C const.,<br />

E AS 3 J<br />

I L = 20 A, Z L = 15 mH, 0 Ω, see diagrams on page 10<br />

Electrostatic discharge capability (ESD)<br />

Human Body Model acc. MIL-STD883D, method 3015.7 and ESD<br />

assn. std. S5.1-1993, C = 100 pF, R = 1.5 kΩ<br />

V ESD 4 kV<br />

<strong>Current</strong> through input pin (DC)<br />

<strong>Current</strong> through current sense status pin (DC)<br />

see internal circuit diagrams on page 8<br />

I IN<br />

+15 , -250<br />

I IS +15 , -250<br />

mA<br />

3) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability<br />

and decrease the current sense accuracy<br />

4) Otherwise add up to 0.5 mΩ (depending on used length of the pin) to the R ON if the pin is used instead of the<br />

tab.<br />

5) R I = internal resistance of the load dump test pulse generator.<br />

6) V Load dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839.<br />

Infineon Technologies AG Page 2 2000-Mar-24


Thermal Characteristics<br />

Data Sheet BTS550P<br />

Parameter and Conditions Symbol Values Unit<br />

min typ max<br />

Thermal resistance chip - case: R thJC<br />

7) -- -- 0.35 K/W<br />

Junction - ambient (free air): R thJA -- 30 --<br />

Electrical Characteristics<br />

Parameter and Conditions Symbol Values Unit<br />

at Tj = -40 ... +150 °C, V bb = 12 V unless otherwise specified min typ max<br />

Load <strong>Switch</strong>ing Capabilities and Characteristics<br />

On-state resistance (Tab to pins 1,5, see measurement<br />

circuit page 8)<br />

I L = 20 A, T j = 25 °C:<br />

V IN = 0, I L = 20 A, T j = 150 °C:<br />

R ON -- 2.8<br />

5.0<br />

3.6<br />

6.5<br />

I L = 120 A, T j = 150 °C: -- 6.5<br />

V bb = 6V 8) , I L = 20 A, T j = 150 °C: R ON(Static) -- 7 10<br />

Nominal load current 9) (Tab to pins 1,5)<br />

I L(ISO) 90 115 -- A<br />

ISO 10483-1/6.7: V ON = 0.5 V, Tc = 85 °C 10)<br />

Maximum load current in resistive range<br />

(Tab to pins 1,5)<br />

see diagram on page 12<br />

V ON = 1.8 V, Tc = 25 °C:<br />

V ON = 1.8 V, Tc = 150 °C:<br />

Turn-on time 11) I IN to 90% V OUT :<br />

Turn-off time I IN to 10% V OUT :<br />

R L = 1 Ω , T j =-40...+150°C<br />

Slew rate on 11) (10 to 30% V OUT )<br />

R L = 1 Ω ,T j =25°C<br />

Slew rate off 11) (70 to 40% V OUT )<br />

R L = 1 Ω=,T j =25°C<br />

I L(Max) 390<br />

215<br />

t on 120<br />

t off 40<br />

--<br />

--<br />

250<br />

90<br />

600<br />

150<br />

mΩ<br />

--<br />

-- A<br />

µs<br />

dV/dt on 0.2 0.5 0.8 V/µs<br />

-dV/dt off 0.2 0.6 1 V/µs<br />

7) Thermal resistance R thCH case to heatsink (about 0.25 K/W with silicone paste) not included!<br />

8) Decrease of V bb below 10 V causes a slowly a dynamic increase of R ON to a higher value of R ON(Static) . As<br />

long as V bIN > V bIN(u) max , R ON increase is less than 10 % per second for T J < 85 °C.<br />

9) Not tested, specified by design.<br />

10) T J is about 105°C under these conditions.<br />

11) See timing diagram on page 13.<br />

Infineon Technologies AG Page 3 2000-Mar-24


Data Sheet BTS550P<br />

Parameter and Conditions Symbol Values Unit<br />

at Tj = -40 ... +150 °C, V bb = 12 V unless otherwise specified min typ max<br />

Inverse Load <strong>Current</strong> Operation<br />

On-state resistance (Pins 1,5 to pin 3)<br />

V bIN = 12 V, I L = - 20 A<br />

see diagram on page 10<br />

T j = 25 °C:<br />

T j = 150 °C:<br />

R ON(inv) -- 2.8<br />

5.0<br />

Nominal inverse load current (Pins 1,5 to Tab) I L(inv) 90 115 -- A<br />

V ON = -0.5 V, Tc = 85 °C 10<br />

Drain-source diode voltage (Vout<br />

I > Vbb)<br />

-V ON -- 0.6 0.7 V<br />

L = - 20 A, I IN = 0, Tj = +150°C<br />

3.6<br />

6.5<br />

mΩ<br />

Operating Parameters<br />

Operating voltage (V IN = 0) 8, 12) V bb(on) 5.0 -- 34 V<br />

Undervoltage shutdown 13) V bIN(u) 1.5 3.0 4.5 V<br />

Undervoltage start of charge pump<br />

see diagram page 14 V bIN(ucp) 3.0 4.5 6.0 V<br />

Overvoltage protection 14)<br />

T j =-40°C: V bIN(Z) 60 -- -- V<br />

I bb = 15 mA<br />

T j = 25...+150°C:<br />

62 64 --<br />

Standby current<br />

T j =-40...+25°C: I bb(off) -- 15 25 µA<br />

I IN = 0<br />

T j = 150°C:<br />

-- 25 50<br />

12) If the device is turned on before a Vbb -decrease, the operating voltage range is extended down to V bIN(u) . For<br />

the voltage range 0..34 V the device is fully protected against overtemperature and short circuit.<br />

13) VbIN = Vbb - VIN see diagram on page 8. When V bIN increases from less than V bIN(u) up to V bIN(ucp) = 5 V<br />

(typ.) the charge pump is not active and V OUT ≈V bb - 3 V.<br />

14) See also VON(CL) in circuit diagram on page 9.<br />

Infineon Technologies AG Page 4 2000-Mar-24


Data Sheet BTS550P<br />

Parameter and Conditions Symbol Values Unit<br />

at Tj = -40 ... +150 °C, V bb = 12 V unless otherwise specified min typ max<br />

Protection Functions<br />

Short circuit current limit (Tab to pins 1,5) 15<br />

VON = 12 V, time until shutdown max. 350 µs T c =-40°C:<br />

T c =25°C:<br />

T c =+150°C:<br />

Short circuit shutdown delay after input current<br />

positive slope, V ON > V ON(SC)<br />

min. value valid only if input "off-signal" time exceeds 30 µs<br />

Output clamp 16)<br />

I L = 40 mA:<br />

(inductive load switch off)<br />

Output clamp (inductive load switch off)<br />

at V OUT = V bb - V ON(CL) (e.g. overvoltage)<br />

I L = 40 mA<br />

I L(SCp) 100<br />

110<br />

120<br />

190<br />

220<br />

210<br />

350<br />

330<br />

310<br />

t d(SC) 80 -- 350 µs<br />

-V OUT(CL) 14 17 20 V<br />

V ON(CL) 40 44 47 V<br />

Short circuit shutdown detection voltage<br />

(pin 3 to pins 1,5) V ON(SC) -- 6 -- V<br />

Thermal overload trip temperature T jt 150 -- -- °C<br />

Thermal hysteresis ∆T jt -- 10 -- K<br />

Reverse Battery<br />

Reverse battery voltage 17) -V bb -- -- 32 V<br />

On-state resistance (Pins 1,5 to pin 3) T j = 25 °C: R ON(rev) -- 3.4 4.3<br />

V bb = -12V, V IN = 0, I L = - 20 A, R IS = 1 kΩ T j = 150 °C:<br />

-- 7.5<br />

mΩ<br />

Integrated resistor in Vbb line<br />

T j<br />

=25°C:<br />

T j<br />

=150°C:<br />

R bb 90<br />

105<br />

110<br />

125<br />

135<br />

150<br />

A<br />

Ω<br />

15 ) Short circuit is a failure mode. The device is not designed to operate continuously into a short circuit by<br />

permanent resetting the short circuit latch function. The lifetime will be reduced under such conditions.<br />

16) This output clamp can be "switched off" by using an additional diode at the IS-Pin (see page 8). If the diode<br />

is used, V OUT is clamped to V bb - V ON(CL) at inductive load switch off.<br />

17) The reverse load current through the intrinsic drain-source diode has to be limited by the connected load (as<br />

it is done with all polarity symmetric loads). Note that under off-conditions (IIN = IIS = 0) the power transistor<br />

is not activated. This results in raised power dissipation due to the higher voltage drop across the intrinsic<br />

drain-source diode. The temperature protection is not active during reverse current operation! Increasing<br />

reverse battery voltage capability is simply possible as described on page 9.<br />

Infineon Technologies AG Page 5 2000-Mar-24


Data Sheet BTS550P<br />

Parameter and Conditions Symbol Values Unit<br />

at Tj = -40 ... +150 °C, V bb = 12 V unless otherwise specified min typ max<br />

Diagnostic Characteristics<br />

<strong>Current</strong> sense ratio, I L = 120 A,T j =-40°C:<br />

static on-condition,<br />

T j =25°C:<br />

k ILIS = I L : I IS,<br />

T j =150°C:<br />

V ON < 1.5 V 18) ,<br />

I L = 20 A,T j =-40°C:<br />

V IS 4.0 V<br />

T j =150°C:<br />

see diagram on page 11 I L = 12 A,T j =-40°C:<br />

T j =25°C:<br />

T j =150°C:<br />

I L = 6 A,T j =-40°C:<br />

T j =25°C:<br />

T j =150°C:<br />

I IS<br />

=0 by I IN =0 (e.g. during deenergizing of inductive loads):<br />

k ILIS<br />

19 000<br />

19 000<br />

18 000<br />

18 500<br />

18 500<br />

18 000<br />

16 000<br />

17 000<br />

17 500<br />

12 000<br />

14 000<br />

16 000<br />

20 600<br />

20 500<br />

19 000<br />

22 300<br />

21 400<br />

19 500<br />

23 500<br />

22 000<br />

19 900<br />

28 000<br />

24 000<br />

20 500<br />

23 000<br />

22 500<br />

21 500<br />

26 000<br />

25 000<br />

23 000<br />

30 000<br />

26 500<br />

24 500<br />

46 000<br />

34 000<br />

30 000<br />

--<br />

Sense current saturation I IS,lim 6.5 -- -- mA<br />

<strong>Current</strong> sense leakage current<br />

I IN = 0: I IS(LL)<br />

-- 0.5 µA<br />

V IN = 0, I L ≤ 0: I IS(LH) -- 2 --<br />

<strong>Current</strong> sense settling time 19) t s(IS) -- -- 500 µs<br />

Overvoltage protection<br />

T j =-40°C: V bIS(Z) 60 -- -- V<br />

I bb = 15 mA<br />

T j = 25...+150°C:<br />

62 64 --<br />

Input<br />

Input and operating current (see diagram page 12) I IN(on) -- 0.8 1.5 mA<br />

IN grounded (V IN = 0)<br />

Input current for turn-off 20) I IN(off) -- -- 80 µA<br />

18) If V ON is higher, the sense current is no longer proportional to the load current due to sense current<br />

saturation, see I IS,lim .<br />

19) Not tested, specified by design.<br />

20) We recommend the resistance between IN and GND to be less than 0.5 kΩ for turn-on and more than<br />

500kΩ for turn-off. Consider that when the device is switched off (I IN = 0) the voltage between IN and GND<br />

reaches almost Vbb.<br />

Infineon Technologies AG Page 6 2000-Mar-24


Truth Table<br />

Data Sheet BTS550P<br />

Input<br />

current<br />

Output<br />

<strong>Current</strong><br />

Sense<br />

Remark<br />

Normal<br />

operation<br />

Very high<br />

load current<br />

<strong>Current</strong>limitation<br />

Short circuit to<br />

GND<br />

Overtemperature<br />

Short circuit to<br />

V bb<br />

Open load<br />

Negative output<br />

voltage clamp<br />

Inverse load<br />

current<br />

L = "Low" Level<br />

H = "<strong>High</strong>" Level<br />

level level I IS<br />

L<br />

H<br />

L<br />

H<br />

0<br />

nominal<br />

=I L / k ilis , up to I IS =I IS,lim<br />

up to V<br />

H H I ON =V ON(Fold back)<br />

IS, lim<br />

I IS no longer proportional to I L<br />

H H 0<br />

V ON > V ON(Fold back)<br />

if V ON >V ON(SC) , shutdown will occure<br />

L L<br />

0<br />

H L<br />

0<br />

L L<br />

0<br />

H L<br />

0<br />

L H<br />

0<br />

H H 150 °C, latch function 23)<br />

X<br />

Tj >150 °C, with auto-restart on cooling X<br />

Short circuit to GND protection<br />

switches off when V ON >6 V typ.<br />

(when first turned on after approx. 180 µs)<br />

Overvoltage shutdown - -<br />

Output negative voltage transient limit<br />

to V bb - V ON(CL) X X<br />

to V OUT = -19 V typ X 24) X 24)<br />

Overtemperature reset by cooling: Tj < Tjt (see diagram on page 14)<br />

Short circuit to GND: Shutdown remains latched until next reset via input (see diagram on page 13)<br />

X<br />

X<br />

21) Low ohmic short to Vbb may reduce the output current I L and can thus be detected via the sense current I IS .<br />

22) <strong>Power</strong> Transistor "OFF", potential defined by external impedance.<br />

23) Latch except when Vbb -V OUT < V ON(SC) after shutdown. In most cases V OUT = 0 V after shutdown (V OUT ≠<br />

0 V only if forced externally). So the device remains latched unless V bb < V ON(SC) (see page 5). No latch<br />

between turn on and t d(SC) .<br />

24) Can be "switched off" by using a diode DS (see page 8) or leaving open the current sense output.<br />

Infineon Technologies AG Page 7 2000-Mar-24


Data Sheet BTS550P<br />

Terms<br />

<strong>Current</strong> sense status output<br />

3<br />

V<br />

bb<br />

V ON<br />

V<br />

bb<br />

R bb<br />

ZD<br />

V<br />

Z,IS<br />

V bIN<br />

R IN<br />

V IN<br />

2<br />

V bIS<br />

IN<br />

V bb I bb I L V OUT<br />

PROFET<br />

4<br />

IS<br />

I IS<br />

OUT<br />

1,5<br />

I<br />

IS<br />

IS<br />

R<br />

IS<br />

V<br />

IS<br />

I IN<br />

V IS<br />

D S<br />

R IS<br />

Two or more devices can easily be connected in<br />

parallel to increase load current capability.<br />

R ON measurement layout<br />

≤ 5.5 mm<br />

V bb force contacts Out Force<br />

contacts<br />

(both out<br />

pins parallel)<br />

Sense<br />

contacts<br />

V Z,IS = 64 V (typ.), R IS = 1 kΩ nominal (or 1 kΩ /n, if<br />

n devices are connected in parallel). I S = I L /k ilis can<br />

be driven only by the internal circuit as long as V out -<br />

V IS > 5 V. If you want to measure load currents up<br />

to I L(M) , R IS should be less than V bb - 5 V<br />

I L(M) / K ilis<br />

.<br />

Note: For large values of R IS the voltage V IS can<br />

reach almost Vbb. See also overvoltage protection.<br />

If you don't use the current sense output in your<br />

application, you can leave it open.<br />

Short circuit detection<br />

Fault Condition: V ON > V ON(SC) (6 V typ.) and t> t d(SC)<br />

(80 ...350 µs).<br />

+ V bb<br />

V ON<br />

Input circuit (ESD protection)<br />

V bb<br />

Logic<br />

unit<br />

Short circuit<br />

detection<br />

OUT<br />

V Z,IN<br />

ZD<br />

R bb<br />

Inductive and overvoltage output clamp<br />

+ V bb<br />

V bIN<br />

IN<br />

V Z1<br />

I<br />

IN<br />

V ON<br />

V ZG<br />

OUT<br />

V IN<br />

When the device is switched off (I IN = 0) the<br />

voltage between IN and GND reaches almost Vbb.<br />

Use a mechanical switch, a bipolar or MOS<br />

transistor with appropriate breakdown voltage as<br />

driver. V Z,IN = 64 V (typ).<br />

D S<br />

IS<br />

PROFET<br />

V OUT<br />

VON is clamped to VON(Cl) = 42 V typ. At inductive<br />

load switch-off without D S , V OUT is clamped to<br />

Infineon Technologies AG Page 8 2000-Mar-24


V OUT(CL) = -19 V typ. via V ZG . With D S , V OUT is<br />

clamped to V bb - V ON(CL) via V Z1 . Using D S gives<br />

faster deenergizing of the inductive load, but higher<br />

peak power dissipation in the PROFET. In case of a<br />

floating ground with a potential higher than 19V<br />

referring to the OUT – potential the device will<br />

switch on, if diode DS is not used.<br />

Overvoltage protection of logic part<br />

Data Sheet BTS550P<br />

Vbb disconnect with energized<br />

inductive load<br />

Provide a current path with load current capability<br />

by using a diode, a Z-diode, or a varistor. (V ZL < 72<br />

V or V Zb < 30 V if R IN =0). For higher clamp voltages<br />

currents at IN and IS have to be limited to 250 mA.<br />

Version a:<br />

+ V bb<br />

V bb<br />

V<br />

bb<br />

V Z,IS<br />

R bb<br />

IN<br />

PROFET<br />

OUT<br />

R IN<br />

IN<br />

Logic<br />

IS<br />

V OUT<br />

V Z,IN<br />

R V<br />

V Z,VIS<br />

IS<br />

PROFET<br />

V ZL<br />

R IS<br />

Version b:<br />

Signal GND<br />

R bb = 120 Ω typ., V Z,IN = V Z,IS = 64 V typ., R IS = 1 kΩ<br />

nominal. Note that when overvoltage exceeds 69 V<br />

typ. a voltage above 5V can occur between IS and<br />

GND, if R V , V Z,VIS are not used.<br />

Reverse battery protection<br />

-V bb<br />

IN<br />

V<br />

bb<br />

PROFET<br />

IS<br />

OUT<br />

V bb<br />

V Zb<br />

R bb<br />

IN<br />

R IN<br />

Logic<br />

<strong>Power</strong><br />

Transistor<br />

OUT<br />

Note that there is no reverse battery protection<br />

when using a diode without additional Z-diode V ZL ,<br />

V Zb .<br />

D<br />

D S<br />

RIS<br />

IS<br />

RV<br />

R L<br />

Version c: Sometimes a neccessary voltage clamp<br />

is given by non inductive loads R L connected to the<br />

same switch and eliminates the need of clamping<br />

circuit:<br />

Signal GND<br />

<strong>Power</strong> GND<br />

R V ≥ 1 kΩ, R IS = 1 kΩ nominal. Add R IN for reverse<br />

battery protection in applications with Vbb above<br />

16 V 17) ; recommended value: 1 + 1 + 1 =<br />

R IN R IS R V<br />

0.1A<br />

|V bb | - 12V if D S is not used (or 1 0.1A<br />

=<br />

R IN |V bb | - 12V if<br />

D S is used).<br />

To minimize power dissipation at reverse battery<br />

operation, the summarized current into the IN and<br />

IS pin should be about 120mA. The current can be<br />

provided by using a small signal diode D in parallel<br />

to the input switch, by using a MOSFET input switch<br />

or by proper adjusting the current through R IS and<br />

R V .<br />

V bb<br />

IN<br />

V<br />

bb<br />

PROFET<br />

IS<br />

OUT<br />

R L<br />

Infineon Technologies AG Page 9 2000-Mar-24


Data Sheet BTS550P<br />

Inverse load current operation<br />

Maximum allowable load inductance for<br />

E AS = IL· L<br />

IL·RL<br />

(V<br />

2·R bb + |V OUT(CL) |) ln (1+<br />

L |V OUT(CL) | ) a single switch off<br />

L = f (I L ); T j,start = 150°C, V bb = 12 V, R L = 0 Ω<br />

V bb<br />

V<br />

bb<br />

- I L<br />

L [µH]<br />

+<br />

IN PROFET OUT<br />

100000<br />

-<br />

IS<br />

V OUT +<br />

V<br />

I IS<br />

IN<br />

10000<br />

-<br />

V IS R IS<br />

1000<br />

The device is specified for inverse load current<br />

operation (V OUT > V bb > 0V). The current sense<br />

feature is not available during this kind of operation<br />

100<br />

(I IS = 0). With I IN = 0 (e.g. input open) only the intrinsic<br />

drain source diode is conducting resulting in<br />

considerably increased power dissipation. If the<br />

10<br />

device is switched on (V IN = 0), this power<br />

dissipation is decreased to the much lower value<br />

R ON(INV) * I 2 (specifications see page 4).<br />

1<br />

Note: Temperature protection during inverse load<br />

current operation is not possible!<br />

1 10 100 1000<br />

I L [A]<br />

Inductive load switch-off energy<br />

Externally adjustable current limit<br />

dissipation<br />

If the device is conducting, the sense current can be<br />

E bb<br />

used to reduce the short circuit current and allow<br />

E AS<br />

higher lead inductance (see diagram above). The<br />

device will be turned off, if the threshold voltage of<br />

E Load T2 is reached by I<br />

V<br />

S<br />

*R IS<br />

. After a delay time defined<br />

bb<br />

by R<br />

i L(t)<br />

V<br />

*C V<br />

T1 will be reset. The device is turned on<br />

V bb<br />

again, the short circuit current is defined by I<br />

IN PROFET OUT<br />

L(SC)<br />

and<br />

the device is shut down after t d(SC)<br />

with latch<br />

E<br />

L function.<br />

IS<br />

L<br />

Z L<br />

{<br />

I IN<br />

R E<br />

V<br />

R L R<br />

bb<br />

IS<br />

V bb<br />

Energy stored in load inductance:<br />

IN PROFET OUT<br />

E L = 1 /2·L·I 2 L<br />

IS<br />

R<br />

While demagnetizing load inductance, the energy<br />

V<br />

R<br />

dissipated in PROFET is<br />

load<br />

IN<br />

E AS = E bb + E L - E R = V ON(CL)·i L (t) dt,<br />

Signal<br />

T1 C V T2<br />

R<br />

IS<br />

Signal<br />

GND<br />

<strong>Power</strong><br />

with an approximate solution for R L > 0 Ω:<br />

GND<br />

Infineon Technologies AG Page 10 2000-Mar-24


Characteristics<br />

Data Sheet BTS550P<br />

<strong>Current</strong> sense versus load current:<br />

I IS = f(I L )<br />

I IS [mA]<br />

7<br />

<strong>Current</strong> sense ratio:<br />

K ILIS = f(I L ), T J = 25 °C<br />

k ilis<br />

34000<br />

6<br />

32000<br />

5<br />

max<br />

30000<br />

28000<br />

4<br />

3<br />

26000<br />

24000<br />

max<br />

2<br />

min<br />

22000<br />

typ<br />

20000<br />

1<br />

0<br />

0 20 40 60 80 100 120<br />

18000<br />

min<br />

16000<br />

0 20 40 60 80 100 120<br />

<strong>Current</strong> sense ratio:<br />

K ILIS = f(I L ), T J = -40 °C<br />

K ilis<br />

46000<br />

44000<br />

42000<br />

40000<br />

38000<br />

36000<br />

34000<br />

32000<br />

30000<br />

28000<br />

26000<br />

24000<br />

22000<br />

20000<br />

18000<br />

16000<br />

14000<br />

max<br />

typ<br />

min<br />

I L [A]<br />

12000<br />

0 20 40 60 80 100 120<br />

<strong>Current</strong> sense ratio:<br />

K ILIS = f(I L ), T J = 150 °C<br />

K ilis<br />

30000<br />

28000<br />

26000<br />

24000<br />

22000<br />

20000<br />

18000<br />

max<br />

typ<br />

I L [A]<br />

min<br />

16000<br />

0 20 40 60 80 100 120<br />

I L [A]<br />

I L [A]<br />

Infineon Technologies AG Page 11 2000-Mar-24


Data Sheet BTS550P<br />

Typ. current limitation characteristic<br />

I L = f (VON, T j )<br />

I L [A]<br />

Typ. input current<br />

I IN = f (V bIN ), V bIN = V bb - V IN<br />

1.6<br />

1.4<br />

800<br />

700<br />

600<br />

500<br />

V ON > V ON(SC) only fort< t d( S C)<br />

(otherwise immediate shutdown)<br />

1.2<br />

1<br />

0.8<br />

400<br />

300<br />

T J = 25°C<br />

0.6<br />

0.4<br />

200<br />

100<br />

T J = -40°C<br />

T J = 150°C<br />

0.2<br />

0<br />

0 5 10 15 20<br />

V ON(FB)<br />

0<br />

0 20 40 60 80<br />

V ON [V]<br />

In case of V ON > V ON(SC) (typ. 6 V) the device will be<br />

switched off by internal short circuit detection.<br />

Typ. on-state resistance<br />

R ON = f (V bb , T j ); I L = 20 A; V IN = 0<br />

R ON [mOhm]<br />

10<br />

I IN [mA]<br />

V bIN [V]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

static<br />

dynamic<br />

T j<br />

= 150°C<br />

85°C<br />

25°C<br />

-40°C<br />

1<br />

0<br />

0 5 10 15 20 40<br />

V bb [V]<br />

Infineon Technologies AG Page 12 2000-Mar-24


Timing diagrams<br />

Figure 1a: <strong>Switch</strong>ing a resistive load,<br />

change of load current in on-condition:<br />

Figure 2b: <strong>Switch</strong>ing an inductive load:<br />

Data Sheet BTS550P<br />

I IN<br />

I IN<br />

V OUT<br />

dV/dtoff<br />

90%<br />

t on<br />

V OUT<br />

10%<br />

dV/dton<br />

t off<br />

I L<br />

I IS<br />

tslc(IS)<br />

tslc(IS)<br />

I L<br />

Load 1 Load 2<br />

t son(IS)<br />

t soff(IS)<br />

t<br />

I IS<br />

t<br />

The sense signal is not valid during a settling time<br />

after turn-on/off and after change of load current.<br />

Figure 3a: Short circuit:<br />

shut down by short circuit detection, reset by I IN = 0.<br />

Figure 2a: <strong>Switch</strong>ing motors and lamps:<br />

I IN<br />

I IN<br />

I L<br />

I L(SCp)<br />

V OUT<br />

t d(SC)<br />

I IL<br />

I IS<br />

V OUT >>0<br />

V OUT =0<br />

t<br />

I IS<br />

Sense current saturation can occur at very high<br />

inrush currents (see IIS,lim on page 6).<br />

t<br />

Shut down remains latched until next reset via input.<br />

Infineon Technologies AG Page 13 2000-Mar-24


Figure 4a: Overtemperature<br />

Reset if T j


Package and Ordering Code<br />

All dimensions in mm<br />

TO-218AB/5 Option E3146 Ordering code<br />

E3146<br />

Q67060-S6952A3<br />

Published by<br />

Infineon Technologies AG i Gr.,<br />

Bereichs Kommunikation<br />

St.-Martin-Strasse 76,<br />

D-81541 München<br />

© Infineon Technologies AG 1999<br />

All Rights Reserved.<br />

Data Sheet BTS550P<br />

Attention please!<br />

The information herein is given to describe certain<br />

components and shall not be considered as warranted<br />

characteristics.<br />

Terms of delivery and rights to technical change reserved.<br />

We hereby disclaim any and all warranties, including but not<br />

limited to warranties of non-infringement, regarding circuits,<br />

descriptions and charts stated herein.<br />

Infineon Technologies is an approved CECC manufacturer.<br />

Information<br />

For further information on technology, delivery terms and<br />

conditions and prices please contact your nearest Infineon<br />

Technologies Office in Germany or our Infineon<br />

Technologies Representatives worldwide (see address list).<br />

Warnings<br />

Due to technical requirements components may contain<br />

dangerous substances. For information on the types in<br />

question please contact your nearest Infineon Technologies<br />

Office.<br />

Infineon Technologies Components may only be used in lifesupport<br />

devices or systems with the express written approval<br />

of Infineon Technologies, if a failure of such components can<br />

reasonably be expected to cause the failure of that lifesupport<br />

device or system, or to affect the safety or<br />

effectiveness of that device or system. Life support devices<br />

or systems are intended to be implanted in the human body,<br />

or to support and/or maintain and sustain and/or protect<br />

human life. If they fail, it is reasonable to assume that the<br />

health of the user or other persons may be endangered.<br />

Infineon Technologies AG Page 15 2000-Mar-24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!