10.07.2015 Views

simulation of torsion moment at the wheel set of the railway vehicle ...

simulation of torsion moment at the wheel set of the railway vehicle ...

simulation of torsion moment at the wheel set of the railway vehicle ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The implicit methods, vice versa, use <strong>the</strong> equ<strong>at</strong>ion <strong>of</strong> motionin <strong>the</strong> time t Δt. They are suitable, first <strong>of</strong> all, for <strong>the</strong> solution<strong>of</strong> <strong>the</strong> linear equ<strong>at</strong>ion <strong>of</strong> motion with a consistent mass m<strong>at</strong>rix.The stability is a characteristic fe<strong>at</strong>ure <strong>of</strong> numerical methods fora direct integr<strong>at</strong>ion <strong>of</strong> an equ<strong>at</strong>ion <strong>of</strong> motion. The stability meansth<strong>at</strong> <strong>the</strong> solutions must not go through limits for <strong>the</strong> arbitrarystarting conditions. If this condition <strong>of</strong> an arbitrary r<strong>at</strong>io <strong>of</strong> Δt/T nis fulfiled, we describe <strong>the</strong> method as unconditionally stable andif it is fulfiled for an individual critical r<strong>at</strong>io Δt/T n only, we talkabout an conditionally stable method. In <strong>the</strong> following text we willapply some methods th<strong>at</strong> may be used for <strong>the</strong> mechanical systemvibr<strong>at</strong>ion analysis in <strong>the</strong> time domain. They are: <strong>the</strong> Differencemethod, <strong>the</strong> Linear acceler<strong>at</strong>ion method, <strong>the</strong> Wilson θ – method,<strong>the</strong> Newmark method [3], and <strong>the</strong> HHT-method [3, 6].Its advantage is <strong>the</strong> possibility to use it for a nonlinear taskssolution as well.3.2 The method <strong>of</strong> linear acceler<strong>at</strong>ionThis method is based on <strong>the</strong> presupposition <strong>of</strong> a linear acceler<strong>at</strong>ioncourse during each <strong>of</strong> integr<strong>at</strong>ion steps, as shown in Fig.1.3.1 The differential methodFor <strong>the</strong> numerical integr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> equ<strong>at</strong>ion <strong>of</strong> motion wesubstitute <strong>the</strong> time invariant variable for differenties. The simpliestdifferential substitutions <strong>of</strong> <strong>the</strong> acceler<strong>at</strong>ions vector qp and <strong>the</strong>velocities vector qo in <strong>the</strong> time t are:1qo = $ _ qt + D t-qt -Dti, (2)2 $ Dt1qp = , (3)t$ _ q 2 $ q q2 t+ Dt- t+t-DtiDth<strong>at</strong> we apply to <strong>the</strong> equ<strong>at</strong>ion <strong>of</strong> motion in <strong>the</strong> time tM$ qp+ B$ qo+ K$q = F . (4)t t t tAfter insertion and modific<strong>at</strong>ion we obtain:1 1 2d $ M + $ Bn$ q F K M q2 t+Dt = t-d- $ n$t-2Dt2 $ DtDt(5)1 1-d$ M - $ Bn$ qtt.2+ DDt2 $ DtThe differential method is <strong>the</strong> type <strong>of</strong> an explicit method. Themethod has all <strong>the</strong> advantages <strong>of</strong> explicit methods, if <strong>the</strong> dampingm<strong>at</strong>rix is B 0 or B α ⋅ M. The most effective usage is in <strong>the</strong>case <strong>of</strong> a diagonal mass m<strong>at</strong>rix, id est for solutions <strong>of</strong> systems withconcentr<strong>at</strong>ed massess. The method is only conditionally stable, inthis case <strong>the</strong> lenght <strong>of</strong> integr<strong>at</strong>ion step Δt has to meet <strong>the</strong> followingdemand:T nDt# , (6)rwhere T n is <strong>the</strong> smallest period <strong>of</strong> <strong>the</strong> vibr<strong>at</strong>ion. The rel<strong>at</strong>ively veryshort length <strong>of</strong> integr<strong>at</strong>ion step is needed in order to ensure th<strong>at</strong><strong>the</strong> difference method gives <strong>the</strong> correct solution. Ano<strong>the</strong>r disadvantageis <strong>the</strong> fact, th<strong>at</strong> we need to use <strong>the</strong> special procedure in<strong>the</strong> first step.2Dtq- Dt = q0- Dt$ qo0+$ qp02(7)Fig. 1 An acceler<strong>at</strong>ion courseWe label <strong>the</strong> variable th<strong>at</strong> changes in <strong>the</strong> interval with<strong>the</strong> mark τ, we express <strong>the</strong> rel<strong>at</strong>ion for acceler<strong>at</strong>ion with:xqt p^+ xh= qp t q qt+ _ pt +D t-ptiD(8)We obtain <strong>the</strong> rel<strong>at</strong>ions for qt o ^ + xh and qt ^ + xhvia <strong>the</strong>double integr<strong>at</strong>ion:2xqt o^+ xh= x$qp + _t q p q q2+D - pi+ o$ Dt t t. (9)2 3x xqt ^ + xh= $ qp 2 6 t q q q qt+ _ pt+Dt- pti+ x $ ot+t$ DIn <strong>the</strong> end <strong>the</strong> integr<strong>at</strong>ion step for x = Dt we will get:Dt Dt qot+ Dt = Dt$qpt+ _ q pt+ Dt- q pti+ q ot = q ot+ _ q pt+Dt+q pti2 22 2Dt Dtqt+ Dt = q pt+ _ qpt+Dt- qpti+ Dt$qot+ qt=2 62Dt= qt+ Dt$ qot+ _ qpt+Dt+2 $ qpti6(10)From <strong>the</strong>se rel<strong>at</strong>ions we obtain <strong>the</strong> rel<strong>at</strong>ions for qp t+Dta qot+Dt6qpt+ Dt = _ q t q q 2 q2 t+Dt-D$ ot- ti- $ ptDt3q qt q t q q t q Dt ot+ Dt = ot+ _ t+Dt-D$ ot- ti- D $ pt+ q pt=D233 Dt = $ qt+Dt-2$ qot- $ qt-q p(11)tDtDt2COMMUNICATIONS 3/2008 ●27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!