24.11.2012 Views

C. Amsler Physik-Institut der Universität Zürich

C. Amsler Physik-Institut der Universität Zürich

C. Amsler Physik-Institut der Universität Zürich

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Search for WIMPs<br />

in liquid argon<br />

C. <strong>Amsler</strong><br />

<strong>Physik</strong>-<strong>Institut</strong> <strong>der</strong> <strong>Universität</strong> <strong>Zürich</strong>


WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Abstract: The DARWIN Collaboration has been funded by ASPERA to prepare a proposal for a<br />

next generation of WIMP searches using noble liquids. The University of Zurich is performing<br />

R&D to detect the VUV light from recoiling nuclei. I will present results obtained with 1 ton of<br />

liquid argon (ArDM project) and discuss the response to neutrons using a monochromatic neutron<br />

source.<br />

Progress report on some of the developments at CERN towards the<br />

construction a large liquid argon (LAr) detector for dark matter searches.<br />

Liquid argon technology for dark matter<br />

searches is still in its infancy<br />

1) Brief review on dark matter<br />

2) Future project, DARWIN consortium<br />

3) R&D on light readout in liquid argon<br />

4) First results from 1 ton LAr (ArDM)<br />

5) Response LAr to neutrons<br />

6) Conclusions<br />

C. <strong>Amsler</strong> et al. (ArDM Coll.) JINST 5 (2010) P11003<br />

(and ref. therein)<br />

V. Boccone, PhD thesis, Univ. Zurich, 2010<br />

2


• Fritz Zwicky (1933) from the movements of galaxies in<br />

clusters using the virial theorem: Ttotal much too large<br />

• Vera Rubin (1970) from the speed of stars in spiral galaxies<br />

Andromeda<br />

Astrophysical evidences for dark matter<br />

v<br />

1/r 1/2<br />

Milky Way<br />

5 x more dark matter<br />

than ordinary matter<br />

• Most impressive:<br />

Collision of galaxies in the Bullet Cluster (1E0657-558)<br />

X-ray emission from baryonic matter slowing<br />

down (electromagnetic repulsion)<br />

Center of mass from<br />

gravitational lensing<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 3<br />

r<br />

© 1994 Deneba Systems, Inc.


V(baryons)= 4 %<br />

V(dark matter) = 20%<br />

Nature of dark matter (DM)<br />

but only 1% of baryonic mass is visible!<br />

Energy pizza<br />

V(dark energy) = 76%<br />

Nature of DM = elementary particles are stable and weak interacting (survival)<br />

Interaction:<br />

• gravitational (+ weak)<br />

• no electromagnetic interaction<br />

Neither emission nor absorption of light<br />

Should be called instead transparent matter<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 4


Most popular:<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

II) Axions: a -> gg: Mean life ≫ age of universe for M < 10 eV<br />

M < 0.01 eV otherwise a -> gg enhances cooling in red giants<br />

M = 10-3 - 10-5 eV<br />

CAST expriment at CERN (axions from the sun) M < 0.02 eV<br />

g<br />

a<br />

g<br />

9T<br />

III) WIMPs: Weakly Interacting Massive Particles<br />

e.g. the neutralino x1 of predicted by supersymmetry<br />

excluded<br />

DM candidates, see e.g. RPP 2010, M. Drees and G. Gerbier<br />

I) Neutrinos (unlikely)<br />

Early universe: g e + e - nini until decoupling at T ≈ 1 MeV<br />

Critical density (V = 1 ) requires mne + mnm + mnt ≃ 50 eV but neutrinos are<br />

much lighter. Heavy neutrinos should decay<br />

< 45 GeV (LEP)<br />

M ≈ 100 GeV - a few TeV<br />

5


Ar, Xe<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Invisible<br />

nuclear recoil 0 - 100 keV<br />

light, ionization, phonons<br />

Best limits:<br />

Spin independent ~ A 2 boost<br />

Current upper limits on sN<br />

3.4 x 10 -44 cm 2 @ 55 GeV<br />

(CDMS, XENON-100)<br />

Weak interaction: needs very large targets<br />

Laboratory (non-accelerator) searches<br />

χ χ<br />

Z 0 , H, h<br />

q q<br />

χ χ<br />

q ~<br />

q q<br />

E. Aprile et al., PRL 105 (2010) 131302<br />

SUSY<br />

6


Future laboratory searches: coordination needed!!<br />

I) Cryogenic detectors<br />

T < 100 mK (bolometers)<br />

Phonons and ionization, EDELWEISS, CDMS<br />

Phonons and scintillation, CRESST<br />

Future generation: 100 x more sensitive<br />

e.g. EURECA- consortium: EDELWEISS + CRESST<br />

10 kg to 1000 kg<br />

Advantages: high resolution, nearly background free<br />

Signal proportional to measurement time<br />

II) Noble liquids<br />

ZEPLIN, ArDM, WARP, DEAP, MINICLEAN,<br />

XENON-10,100...<br />

Future generation: DARWIN-consortium (Xe, Ar)<br />

LUX in the USA (Xe), CLEAN, DEAP-3000 (Ar)<br />

Advantage: large masses, Ar is cheap<br />

However: signal proportional to square root of<br />

measurement time<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 8


Goal:<br />

DARWIN = DARk matter WImp search with Noble liquids<br />

(L. Baudis, Spokesperson)<br />

(funded by ASPERA)<br />

Regroups current participants in<br />

ArDM /WARP / XENON<br />

8t LAr<br />

5t LXe<br />

Laura Baudis: arXiv:1012.4764v1 [astro-ph.IM] 21 Dec 2010<br />

(Identification of Dark Matter 2010-IDM2010 July 26-30, 2010 Montpellier France)<br />

Concept of a multiton detector for DM search in Europe using LXe and /<br />

or LAr: design report by 2013, operation by 2016.<br />

Target: sensitivity around 10 -47 cm 2 (3 or<strong>der</strong>s of magnitude improvement)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 9


Rate/day in a 1 ton liquid Ar detector<br />

r (local) = 0.3 GeV/cm 3<br />

v = 245 km/s (June), 215 km (December)<br />

M(WIMP) = 100 GeV, s = 10 -42 cm 2<br />

•at 10 -45 cm 2 : 0.1 event /day @ 30<br />

keV threshold in LAr<br />

•LAr and LXe are complementary<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Liquid argon<br />

1/v 2<br />

Rate d -1<br />

1000<br />

100<br />

10<br />

1<br />

s[cm 2 ]<br />

10 -45<br />

10 -47<br />

dσ<br />

dq2 = G2F CF2 (q2 )<br />

v2 30 keV<br />

100 evts/day<br />

Xenon<br />

Argon<br />

Xenon<br />

0 20 40 60 80 100<br />

Threshold [keV]<br />

Argon<br />

J/D<br />

20 100<br />

Nuclear recoil energy [keV]<br />

Years<br />

Form<br />

factor<br />

10


light<br />

128 nm<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Density 1.4 g/cm 3<br />

Refractive index 1.24<br />

Scintillation yield<br />

(E=0)<br />

Boiling point 87 K<br />

Interaction<br />

length<br />

≈50‘000 g/MeV<br />

@128 nm<br />

83.6 cm<br />

Price 1€ / liter<br />

Radioactive<br />

isotopes<br />

39 Ar isotope (b)<br />

T1/2 = 269 yrs,<br />

Q = 565 keV,<br />

1 Bq/kg<br />

11


Ar2* argon excimers<br />

1S (t1 = 5ns),<br />

3S (t3 = 1.6 ms)<br />

in liquid argon<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Scintillation mechanism in liquid argon<br />

pressure dependent<br />

128 nm, 10 nm band<br />

Tetra-Phenyl-Butadiene (TPB)<br />

128 nm -> 430 nm<br />

Wavelength shifter needed<br />

12


a- source<br />

Signal Amplitude [V]<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Light readout R&D in gaseous and liquid argon<br />

1 GHz sampling rate<br />

0 5 10<br />

t [µs]<br />

15<br />

b b a<br />

1p.e.<br />

1 event<br />

20<br />

Events / 7.5 p.e.<br />

source<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

74 x 78 mm 2<br />

5.3 MeV a-source<br />

0 200 400 600 800 1000<br />

Number of photoelectrons<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 13<br />

TPB<br />

PM PM<br />

b<br />

(Univ. Zurich at CERN)<br />

Gas


Light yield depends strongly on argon purity<br />

0.1 ppm<br />

in pure gas : t2 = 3.140 ± 0.067 µs<br />

Sensitive to impurities<br />

light output<br />

t2 can be used to measure the purity<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 14


Charge from e, g<br />

(E>0)<br />

Charge from<br />

recoil nuclei<br />

(heavily ionizing)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

e/g - background suppression: 1st experimental trick<br />

600 e 750 g<br />

3 e<br />

(strong recombination)<br />

@ 30 keV @ 30 keV<br />

5 kV/cm<br />

Energy deposit [MeV]<br />

Charge/light ratio: 1e/1g from e, g<br />

Light yield<br />

(E>0)<br />

250 g<br />

1e/100 g from WIMPS<br />

1/3<br />

WIMPS produce few charges<br />

15


Recoil nuclei (WIMPs, n)<br />

populate the fast decaying 1 S,<br />

min. ionizing particles the slow 3 S.<br />

Use to suppress background<br />

Component ratio (CR)<br />

fast (


500 kV, 210 stages<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Feasibility study: 1 ton of LAr: ArDM<br />

0kV<br />

-4kV<br />

-500kV<br />

-1kV<br />

Operation on surface (CERN)<br />

Goal: 30 keV threshold<br />

120 cm drift length<br />

Gas<br />

500kV Generator Cockcroft Walton circuit<br />

CHARGE + LIGHT<br />

Wave Length Shifter Re�ectors<br />

Liquid<br />

CHARGE READ OUT<br />

WIMP<br />

Direct VUV<br />

photons<br />

Drifting<br />

electrons<br />

E �eld<br />

4kV/cm<br />

128nm<br />

Conversion of<br />

indirect VUV<br />

photons<br />

Photomultipliers<br />

Large electron multiplier (LEM)<br />

Wavelength shifter<br />

128nm -> 430 nm<br />

TPB on Tetratex foils<br />

14 x 8”<br />

Hamamatsu R5912-02MOD, Pt-un<strong>der</strong>lay, evaporated, low radiation<br />

17


Large scale evaporator<br />

UV illumination<br />

Detector insertion<br />

8’’ PMT<br />

un<strong>der</strong> UV<br />

illumination<br />

Exp. area at CERN<br />

Top flange<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 18


Spraying: granularity<br />

Wavelength shifters<br />

Optimum: 1 mg/cm 2<br />

Best: evaporation on Tetratex (glued on 3M<br />

foil as mechanical support)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 19


WLS on PMT (direct light detection):<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 20<br />

Best


To the cartridge<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Liquid surface<br />

PT0<br />

First filling of 1t detector in May 2009<br />

PT0 immerseddetector<br />

is full!<br />

[ns]<br />

2<br />

250 mm<br />

1500<br />

1000<br />

500<br />

0<br />

Top flange<br />

≈200 K while filling<br />

275 mm<br />

PT0<br />

PT1<br />

PT2<br />

PT3<br />

PT4<br />

τ 2~1.5µs for >30days with bulk<br />

LAr w/o purification circuit<br />

30 days<br />

(no charge detection)<br />

Fit function: p0 * t + p1<br />

/ ndf<br />

200 300 400 500 600<br />

Literature τ2=(1.6±0.1)μs Time [h]<br />

2<br />

p0<br />

p1<br />

35.7 / 138<br />

0.0025 � 0.022<br />

1540 � 8.57<br />

21


WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Light yield for 1 ton LAr<br />

• External 22 Na (2 x 511 keV and 1275 keV)<br />

Triggered on external NaI crystal<br />

• Only half (7) of the PMTs were installed<br />

22


Na 22<br />

Log<br />

3<br />

10<br />

2<br />

10<br />

10<br />

1<br />

Data<br />

Simulation<br />

Ext. trigger on 1275 keV Na<br />

511 keV (ext. trig)<br />

511 keV<br />

662 keV<br />

1275 keV<br />

0 0<br />

0 200 400 600 800 1000 12000<br />

100 0 200 200 300400 400600500 800600 1000 1200<br />

511 662 1275 keV<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 23<br />

Arbitrarily scaled<br />

Ext. trigger on 511 keV Na<br />

B D<br />

F G<br />

Int. trigger Cs<br />

Top<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Lin<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

≈ 50 keV<br />

511<br />

Int. trigger<br />

Na<br />

511 keV<br />

Npe Nr of photoelectrons<br />

662<br />

Zoom<br />

511 keV data<br />

≈0.8 pe/keV ee<br />

(assuming 14 PMTs)<br />

1275 keV<br />

Npe<br />

about 0.2 p.e. / keV WIMP,<br />

hence 6 p.e. for 30 keV<br />

Goal achieved<br />

Npe


Polyethylene<br />

NaI(Tl)<br />

370 MBq Am-Be<br />

241 Am (T1/2 = 430 a)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Neutron background<br />

Neutrons e.g. from the rocks (spallation from cosmic rays)<br />

can simulate WIMPs! s(n A) ~ 10 18 s(WIMP-A) !!<br />

Neutrons<br />

40 n/s<br />

Cooling LAr<br />

Reflector/WLS<br />

Pure LAr<br />

210 Pb source<br />

•Neutron energy up to 10 MeV<br />

•4.4 MeV g (coincidence) 0 6 12<br />

MeV<br />

PMT<br />

74 x 78 mm 2<br />

Hamamatsu<br />

R6091-01 mod<br />

J. Marsh et al., NIM A 366 (1995) 340<br />

24


Component Ratio<br />

= fast (


NSD fusion source<br />

(60’000 €)<br />

Shielding: 1600 kg water extended<br />

polyester mith boron absorber<br />

(Colemanite)<br />

Plasma discharge, heated getter<br />

disks with adsorbed D2<br />

Specs: 10 7 n/s in 4p<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 27<br />

2010<br />

10<br />

HV (kV)<br />

specs<br />

data


Generator<br />

LAr cell<br />

X-monitor<br />

n-Monitor<br />

Radiation level below 1 µSv/h at places of human access for 10 7 n/s<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 28


Energy calibrations<br />

1) of neutron counters: liquid scintillator (LSC)<br />

Na<br />

EJ301 SCIONIX, 2, 3, 5 “<br />

C6H4(CH3)2 65% n-scattering on protons<br />

L = 5.5 cm<br />

Also measurement of the<br />

energy resolution<br />

!<br />

Cannot be calibrated only with g’s<br />

due to non linearity, quenching)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 29<br />

3 “<br />

5 “


[MeV]<br />

Recoil energy [MeV] Recoil energy<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4.4 MeV g<br />

True proton recoil energy vs � t for neutrons [MeV]<br />

AmBe-source AmBe<br />

Neutrons n<br />

�160 �140 �120 �100 �80 �60 �40 �20 0 20<br />

Time of �ight vs. TOF tagged vs tagged photon Photon [ns]<br />

2) neutron energy<br />

from generator:<br />

��<br />

[ns]<br />

max recoil energy for central collisions np<br />

Calibration of recoil energy<br />

Good agreement at low energies<br />

n-energy<br />

3”<br />

2.5 MeV<br />

Tn [MeV]<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 30<br />

5”<br />

collimator<br />

3”


TOF-> Tn<br />

Recoil spectrum<br />

from generator<br />

(ideally should be flat)<br />

fit<br />

Better: unfolding response spectrum of LSC<br />

Energy deposit in LSC<br />

Repeat for all Tn<br />

Tn<br />

[MeV]<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 31<br />

0<br />

16%<br />

Collimator<br />

scattering<br />

2.5


First measurements with LAr<br />

(2.5 MeV)<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 32


Essential to go below 30 keV:<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Measurement of the quenching factor as a function of recoil energy<br />

1.2 p.e /keV ee<br />

poor gas purity<br />

(t2 = 300 ns!)<br />

10 keV recoil reachable<br />

60 keV Am<br />

Preliminary 25% at 69 keV (Q = 65 o )<br />

?<br />

40 keV Kr<br />

33


Conclusions<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

• Current upper limits for s (WIMP-N) : 3.4 x 10 -44 cm 2<br />

Goal for the future: sensitivity around 10 -47 cm 2 ,<br />

large detectors e.g. noble liquids<br />

• DARWIN consortium (> 2016), LXe, LAr<br />

• LAr technology for DM searches is still in its infancy, intensive R&D<br />

• For the first time ArDM (1t) was operated (on the surface):<br />

Light yield is consistent with expectations (0.8 photoelectrons / keV ee)<br />

Goal of 30 keV threshold should be reachable<br />

First successful detection of 50 keV energy in 1t LAr detector<br />

• More R&D needed, e.g.<br />

- Quenching factors vs. energy<br />

- Charge readout<br />

- Evaluation of background (e.g. Ar 39 contamination, purity of components)<br />

• Foreseen location for ArDM: Canfranc Laboratory (Spanish Pyrenees)<br />

34


WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong><br />

Canfranc un<strong>der</strong>ground laboratory (2450 mwe)


© 1994 Deneba Systems, Inc.<br />

© 1994 Deneba Systems, Inc.<br />

© 1994 Deneba Systems, Inc.<br />

Y. Allkofer, C. <strong>Amsler</strong>, W. Creus, A. Ferella, C. Regenfus, L. Scotto-Lavina, M. Walter<br />

WIN’11, CapeTown, 31 January 2011, C. <strong>Amsler</strong> 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!