11.07.2015 Views

Oxygen dynamics and plant-sediment interactions in isoetid ...

Oxygen dynamics and plant-sediment interactions in isoetid ...

Oxygen dynamics and plant-sediment interactions in isoetid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Paper 4Surveys on aquatic <strong>plant</strong>s report fall<strong>in</strong>gAMF colonization <strong>in</strong> <strong>plant</strong>s grow<strong>in</strong>g <strong>in</strong><strong>sediment</strong>s of high contents of organic matter <strong>and</strong>nutrients <strong>and</strong> low redox potential (Tanner &Calyton 1985; Wig<strong>and</strong> et al 1998; Beck-Nielsen& Madsen 2001). However, no experiment hasdirectly addressed the response of AMFcolonization of roots to O 2 depletion <strong>and</strong>changes <strong>in</strong> <strong>sediment</strong> biogeochemistry follow<strong>in</strong>gorganic enrichment of aquatic <strong>sediment</strong>s. Herewe tested this aspect by enrich<strong>in</strong>g aquatic<strong>sediment</strong>s with labile organic matter <strong>and</strong>quantify<strong>in</strong>g AMF root colonization, <strong>sediment</strong>hyphal density <strong>and</strong> <strong>plant</strong> nutrition of the <strong>isoetid</strong>species Lobelia dortmanna <strong>and</strong> Littorellauniflora.Isoetids are small slow-grow<strong>in</strong>g <strong>plant</strong>sdom<strong>in</strong>at<strong>in</strong>g the littoral zones of oligotrophicsoft-water lakes due to their unique adaptationsto take up <strong>sediment</strong> CO 2 for photosynthesisacross permeable root surfaces <strong>and</strong> ensure fast<strong>in</strong>tra-<strong>plant</strong> diffusion through aerenchyma to theleaves (S<strong>and</strong>-Jensen et al. 1982; Møller & S<strong>and</strong>-Jensen 2008). These features also result <strong>in</strong> largeproportions of photosynthetic O 2 be<strong>in</strong>g releasedfrom the roots <strong>and</strong> generat<strong>in</strong>g an oxygenatedrhizosphere (S<strong>and</strong>-Jensen et al. 1982; Pedersenet al. 1995; Møller & S<strong>and</strong>-Jensen 2001b) whichis believed to be required by AMF (Le Tacon etal. 1983; Beck-Nielsen & Madsen 2001). Most<strong>isoetid</strong>s are reported with mycorrhiza(Søndergaard & Laegaard 1977; Wig<strong>and</strong> et al.1998; Beck-Nielsen & Madsen 2001) <strong>and</strong> couldbenefit from the symbiosis because they: (i)<strong>in</strong>habit the most nutrient-poor aquaticenvironments of low P availability (Christensen& Andersen 1996; Christensen & Wig<strong>and</strong> 1998;Smolders et al. 2002), (ii) have relatively thickroots <strong>and</strong> lack roots hairs to provide high<strong>sediment</strong> contact (Søndergaard & Laegaard721977; Beck-Nielsen & Madsen 2001; Farmer1985), <strong>and</strong> (iii) have slow root growth<strong>in</strong>creas<strong>in</strong>g the risk of strong nutrient depletionzones around roots (S<strong>and</strong>-Jensen & Søndergaard1978). AMF associations <strong>in</strong>crease both thesurface area <strong>and</strong> the <strong>sediment</strong> volume fornutrient uptake <strong>and</strong> hyphae extend beyond thedepletion zones surround<strong>in</strong>g the roots (Smith &Read 2008). We report here distribution <strong>and</strong>extension of the mycorrhizal mycelia <strong>in</strong> relationto <strong>plant</strong> density of <strong>isoetid</strong>s <strong>in</strong> lakes for the firsttime.Most studies on AMF <strong>in</strong> aquatic <strong>plant</strong>shave focused on AMF colonization underdifferent natural conditions (Beck-Nielsen &Madsen 2001; Søndergaard & Laegaard 1977;Wig<strong>and</strong> et al. 1998), <strong>and</strong> on <strong>plant</strong> morphologiesassociated with high AMF colonization(Søndergaard & Laegaard 1977; Beck-Nielsen& Madsen 2001). AMF benefits aquatic <strong>plant</strong>sby <strong>in</strong>creas<strong>in</strong>g P uptake <strong>and</strong> P content of leaves(Tanner & Clayton 1985; Wig<strong>and</strong> & Stevenson1997) <strong>and</strong> <strong>plant</strong> biomass (Andersen & Andersen2006). Among different populations of Lobeliadortmanna <strong>plant</strong>s with low tissue P content hadhigher AMF colonization (Wig<strong>and</strong> et al. 1998).Occurrence <strong>and</strong> extension of hyphae <strong>in</strong> aquatic<strong>sediment</strong>s are largely unknown <strong>in</strong> contrast tonumerous terrestrial <strong>in</strong>vestigations (Smith &Read 2008). Only Beck-Nielsen <strong>and</strong> Madsen(2001) reported hyphal densities <strong>in</strong> aquatic<strong>sediment</strong>s <strong>in</strong>habited by Littorella uniflora, butthe lack of measurements of <strong>plant</strong> densityprevented conversion to densities of hyphae pervolume or surface area of <strong>sediment</strong>s needed forcomparison with terrestrial communities. Herewe made a special effort to measure densities ofhyphae <strong>and</strong> roots for comparison with terrestrialcommunities.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!