12.07.2015 Views

Mismatch and synchronization: Influence of asymmetries in ... - CSIC

Mismatch and synchronization: Influence of asymmetries in ... - CSIC

Mismatch and synchronization: Influence of asymmetries in ... - CSIC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MISMATCH AND SYNCHRONIZATION: INFLUENCE OF ... PHYSICAL REVIEW E 83, 056211 (2011)FIG. 11. (Color onl<strong>in</strong>e) Cross-correlation coefficient (upper redl<strong>in</strong>es), <strong>and</strong> auto-correlation at t = 2τ (lower blue l<strong>in</strong>es), vs the delaymismatch parameter τ for rational ratios <strong>of</strong> the delay times τ 1 <strong>and</strong>τ 2 . Magnifications <strong>of</strong> plot <strong>in</strong> Fig. 8. (a)r τ = τ 1τ 2= 1/1, (b) r τ = 2/1,(c) r τ = 3/1, (d) τ ≈ τ. Parameters as <strong>in</strong> Fig. 8.FIG. 10. (Color onl<strong>in</strong>e) Dynamics <strong>of</strong> the symmetrized solution(E S ,n S )<strong>in</strong>the(ω,n S ) phase space for different values <strong>of</strong> the delaymismatch parameter τ after t = 5 × 10 4 . For a def<strong>in</strong>ition <strong>of</strong> ω<strong>and</strong> n S , see Fig. 3. The ECMs for a laser subject to two delayedfeedbacks with different delay times are aligned <strong>in</strong>side the area <strong>of</strong>the mode ellipse for the case where the delays are equal. Green (lightgray) circles are transversely stable modes; red (black) triangles aretransversely unstable modes <strong>and</strong> antimodes. The it<strong>in</strong>eracy is drawn<strong>in</strong> blue (dark gray) <strong>and</strong> marked with an arrow if stabilized. The me<strong>and</strong>elay time τ is fixed at τ = 1000. The other parameters are α = 4.0,p = 1.0 (except lower right), μ = 0.26, K = 0.1. Note that the lowerright plot has a different y scale than the others.that chaotic dynamics <strong>and</strong> LFF can be suppressed for a s<strong>in</strong>glelaser, subject to two different feedbacks, by suppress<strong>in</strong>g theantimodes that are responsible for power dropouts [44]. Thisstabilization <strong>of</strong> the dynamics occurs ma<strong>in</strong>ly for a short secondfeedback. Increas<strong>in</strong>g the second feedback strength from a lowlevel to the magnitude <strong>of</strong> the first one results <strong>in</strong> a bifurcationcascade <strong>in</strong> the laser, lead<strong>in</strong>g to several dynamical regimes<strong>in</strong>clud<strong>in</strong>g stable behavior.In a configuration <strong>of</strong> two lasers coupled via a semitransparentmirror, we observe similar changes <strong>in</strong> the dynamics.We calculated the secondary peak <strong>of</strong> the autocorrelation <strong>of</strong>each laser at t = 2τ to <strong>in</strong>vestigate the regularity <strong>of</strong> thetime series. The height <strong>of</strong> the autocorrelation peak exhibitssignificant extrema (see Fig. 8, lower blue l<strong>in</strong>e) for certa<strong>in</strong>delay mismatches. In particular, we f<strong>in</strong>d dips <strong>and</strong> peaks <strong>in</strong>the vic<strong>in</strong>ity <strong>of</strong> simple rational values <strong>of</strong> r τ <strong>and</strong> also aroundr τ = 1(τ ≈ 0) <strong>and</strong> r τ →∞ (τ ≈ τ). At these po<strong>in</strong>ts,naturally the cross correlation also exhibits dips <strong>and</strong> peaks(see Fig. 11, upper red l<strong>in</strong>e). These are primarily caused bya change <strong>in</strong> the underly<strong>in</strong>g dynamical state <strong>of</strong> the system<strong>and</strong> not by a change <strong>of</strong> the <strong>synchronization</strong> quality. Loweredcross-correlation values have been tested to be caused by asmall signal-to-noise ratio when the dynamics is stabilized to afixed po<strong>in</strong>t. Delay mismatches that lead to a stabilization <strong>of</strong> thedynamics to a limit cycle result <strong>in</strong> a peak <strong>in</strong> the autocorrelation<strong>and</strong> cross correlation due to the coherent behavior.To further <strong>in</strong>vestigate the changes <strong>in</strong> the laser dynamics forvary<strong>in</strong>g delay mismatch, we compute a bifurcation diagram. Inthe diagram, which is shown <strong>in</strong> Fig. 12, several <strong>in</strong>tensity maxima<strong>and</strong> m<strong>in</strong>ima extracted from a time trace <strong>of</strong> each laser areplotted versus the delay mismatch τ. The dynamics changessignificantly for vary<strong>in</strong>g delay mismatch, when the delays areclose to a simple ratio, e.g., r τ = 1/1, 2/1, 3/2, .... EspeciallyFIG. 12. (Color onl<strong>in</strong>e) Bifurcation diagram <strong>of</strong> the <strong>in</strong>tensityextrema <strong>of</strong> the two lasers vs the delay mismatch parameter τ. Uppergreen po<strong>in</strong>ts are maxima; lower red po<strong>in</strong>ts are m<strong>in</strong>ima. Vary<strong>in</strong>g thedelay mismatch results <strong>in</strong> radical changes <strong>in</strong> the dynamics, which isevident, e.g., by the changes <strong>in</strong> the variance <strong>of</strong> the <strong>in</strong>tensity outputs.Magnifications are shown for a small delay mismatch τ < 15 (lowerleft), a delay times ratio <strong>of</strong> r τ ≈ 2/1 (lower middle), <strong>and</strong> one veryshort delay τ 1 ≫ τ 2 (lower right). Other parameters are τ = 1000,α = 4.0, μ = 0.26, p = 1.0, T = 200, β = 10 −5 .056211-7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!