13.07.2015 Views

DBI Analysis of Open String Bound States on Non-compact D-branes

DBI Analysis of Open String Bound States on Non-compact D-branes

DBI Analysis of Open String Bound States on Non-compact D-branes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Master Thesis<str<strong>on</strong>g>DBI</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Open</str<strong>on</strong>g> <str<strong>on</strong>g>String</str<strong>on</strong>g> <str<strong>on</strong>g>Bound</str<strong>on</strong>g> <str<strong>on</strong>g>States</str<strong>on</strong>g> <strong>on</strong>N<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong>Vrije Universiteit BrusselFaculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Bio-engineering SciencesDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> PhysicsAuthor:Laurent MertensAdvisors:Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Alexander SevrinDr. Raphael Benichou2009-2010


⌈There’s a fragile tensi<strong>on</strong>That’s keeping us goingIt may not last foreverBut oh when it’s flowingThere’s something magical in the airSomething so tragic we have to careThere’s a strange obsessi<strong>on</strong>That’s drawing us nearerWe d<strong>on</strong>’t understand itIt never gets clearerThere’s something mystical in our genesSo simplistic it kicks and screamsOh when we’re teeteringOn the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> collapseNothing can keep us downThere’s a dizzying feelingThat’s keeping us flyingThrough glittering galasWithout even tryingThere’s something radical in our handsNothing logical to our plans⌋[ Depeche Mode (M. Gore) - Fragile Tensi<strong>on</strong> ]


C<strong>on</strong>tentsAcknowledgements 1Samenvatting 2I General Introducti<strong>on</strong> 31 Introducti<strong>on</strong> 41.1 <str<strong>on</strong>g>String</str<strong>on</strong>g> theory in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 A brief history <str<strong>on</strong>g>of</str<strong>on</strong>g> string theory . . . . . . . . . . . . . . . . . . . . . . . 61.3 Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8II Theoretical Introducti<strong>on</strong> 112 Bos<strong>on</strong>ic <str<strong>on</strong>g>String</str<strong>on</strong>g>s 122.1 Acti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.4 <str<strong>on</strong>g>Bound</str<strong>on</strong>g>ary c<strong>on</strong>diti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.4.1 Closed strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.4.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5 Soluti<strong>on</strong>s and expansi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5.1 Closed string expansi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . 192.5.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> string expansi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . 202.6 Quantizati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.6.1 Covariant approach . . . . . . . . . . . . . . . . . . . . . . . . . 212.6.2 Energy-momentum tensor and Hamilt<strong>on</strong>ian . . . . . . . . . . . . 232.6.3 Virasoro algebra and physical states . . . . . . . . . . . . . . . . 272.6.4 Light-c<strong>on</strong>e gauge quantizati<strong>on</strong> and spectrum . . . . . . . . . . . 292.7 Oriented vs. unoriented strings . . . . . . . . . . . . . . . . . . . . . . . 362.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37i


3 Superstrings 383.1 Superstring acti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.2 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.3 <str<strong>on</strong>g>Bound</str<strong>on</strong>g>ary c<strong>on</strong>diti<strong>on</strong>s and expansi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . 413.3.1 Closed strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.3.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.4 Quantizati<strong>on</strong> and spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 443.4.1 <str<strong>on</strong>g>Open</str<strong>on</strong>g> strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.2 GSO projecti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.4.3 Closed strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 C<strong>on</strong>formal Invariance 534.1 C<strong>on</strong>formal Field Theory Jr. . . . . . . . . . . . . . . . . . . . . . . . . . 544.2 <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory vs. QFT vs. General Relativity . . . . . . . . . . . . . . . 564.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 Branes 605.1 Dp-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.1.1 T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615.1.2 D-<strong>branes</strong> in Type IIA and Type IIB theories . . . . . . . . . . . 685.1.3 T-duality in Type IIA and Type IIB theories . . . . . . . . . . . 705.1.4 Dirac-Born-Infeld Acti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . 705.2 NS5-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73III Research 756 Setting 766.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766.2 What’s in a title? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776.2.1 Compact vs. n<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong> . . . . . . . . . . . . . . . . 776.2.2 <str<strong>on</strong>g>Bound</str<strong>on</strong>g> states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786.2.3 <str<strong>on</strong>g>DBI</str<strong>on</strong>g> approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786.3 Geometrical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.5 How to recognize bound states . . . . . . . . . . . . . . . . . . . . . . . 837 A First Example 857.1 D1-brane <strong>on</strong> the cigar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857.1.1 Metric and acti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 857.1.2 Classical soluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 867.1.3 Adding perturbati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 87ii


7.1.4 Perturbed equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> . . . . . . . . . . . . . . . . . . . 897.1.5 Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the PDE . . . . . . . . . . . . . . . . . . . . . . . . . 897.2 D1-brane <strong>on</strong> the trumpet . . . . . . . . . . . . . . . . . . . . . . . . . . 917.2.1 Metric and acti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 927.2.2 Classical soluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.2.3 Adding perturbati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 937.2.4 Perturbed equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> . . . . . . . . . . . . . . . . . . . 947.2.5 Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the PDE . . . . . . . . . . . . . . . . . . . . . . . . . 948 Computati<strong>on</strong>s 968.1 Metric and field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 968.2 Classical soluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978.3 Field strength variati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 988.4 Regularized Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . 998.5 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018.6 Road to differential equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . 1018.7 Differential equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028.8 Hypergeometric equati<strong>on</strong>? . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 C<strong>on</strong>clusi<strong>on</strong> & Final Thoughts 105Bibliography 107List <str<strong>on</strong>g>of</str<strong>on</strong>g> Abbreviati<strong>on</strong>s 109iii


AcknowledgementsI would hereby like to express my deepest and earnest gratitude towards my advisor,Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Alexander Sevrin, for the leap <str<strong>on</strong>g>of</str<strong>on</strong>g> faith he took in accepting me as his thesisstudent so late <strong>on</strong>, and <strong>on</strong> such short notice. I can <strong>on</strong>ly hope that after having readthrough this document, he does not bury his head in his hands, shaking it in questi<strong>on</strong>ingwhat could possibly have overcome him in taking that decisi<strong>on</strong>.Sincerest thanks also to my co-advisor, Dr. Raphaël Benichou, for his truely endlesspatience and countless precious time spent answering questi<strong>on</strong>s that should have gottenme sent back to my freshman year (if not even further back!), not slapping me when Icautiously explored the extend <str<strong>on</strong>g>of</str<strong>on</strong>g> his tolerance, steady guidance over the past m<strong>on</strong>thsand valuable advice given during these, specifically with regard to the writing <str<strong>on</strong>g>of</str<strong>on</strong>g> thisthesis.Last but not least, I am indebted to Angelos Fotopoulos for communicated informati<strong>on</strong>with regards to the obtainment <str<strong>on</strong>g>of</str<strong>on</strong>g> the results reported in [6].1


SamenvattingDe zogehete snaartheorie is een vooralsnog puur theoretisch raamwerk dat als ambitieheeft de vier fundamentele krachten van de Natuur te unificeren. Het stuit daarbij echterop enige problemen, één daarvan zijnde dat de formulering die aanleiding geeft tot defysica zoals beschreven door het Standaard Model zichzelf nog niet heeft prijsgegeven.Een eerste stap naar het vinden van die formulering is het terugvinden van alle elementenaanwezig in het Standaard Model. Eén van die elementen zijn massieve ijkdeeltjes. Eenander probleem is dat snaartheorie als biotoop een tien-dimensi<strong>on</strong>ale ruimte-tijd heeft,en dat de vertaling van de fysica in deze tien-dimensi<strong>on</strong>ale ruimte-tijd naar een vierdimensi<strong>on</strong>aleruimte-tijd ook nog steeds niet volledig gekend is.In [3] werd o.a. een welbepaalde tien-dimensi<strong>on</strong>ale c<strong>on</strong>figuratie <strong>on</strong>der de loep genomendie resulteert in een massief ijkdeeltje dat leeft in een vier-dimensi<strong>on</strong>ale Minkowskiruimte. Dit massief ijkdeeltje manifesteert zichzelf als een aangeslagen toestand van eenD4-braan. De berekeningen die dit resultaat tot gevolg hadden werden uitgevoerd in eenbi-dimensi<strong>on</strong>aal c<strong>on</strong>form veldentheoretisch raamwerk. Dit raamwerk heeft als voordeelexact te zijn, maar heeft als nadeel dat het slechts voor een beperkt aantal c<strong>on</strong>figuratiesgekend is. Anderzijds bestaat er een laag energetische braan actie, de Dirac-Born-Infeldactie, die alhoewel slechts nauwkeurig bij lage snaarkoppeling, wel éénvoudig te veralgemenenvalt naar arbitraire c<strong>on</strong>figuraties.Het doel van deze thesis is om deze actie aan te wenden om te trachten het eerderaangehaalde resultaat uit [3] terug te vinden. Indien beide besproken methodes zoudenovereenstemmen in dit c<strong>on</strong>crete geval, zou men de <str<strong>on</strong>g>DBI</str<strong>on</strong>g> actie ook kunnen gebruikenom te bestuderen wat er gebeurt in gebieden die de omgeving waarin de c<strong>on</strong>formeveldentheoretische aanpak van toepassing is overschrijden. Dit doel werd niet bereikt,daar complicaties in de berekeningen, die in het toebedeelde tijdsbestek niet opgelostk<strong>on</strong>den worden, roet in het eten gooiden.2


Part IGeneral Introducti<strong>on</strong>3


Chapter 1Introducti<strong>on</strong>“Smokey, my friend, you’re entering a world <str<strong>on</strong>g>of</str<strong>on</strong>g> pain. Aworld <str<strong>on</strong>g>of</str<strong>on</strong>g> pain...”Coen BrothersThe Big Lebowski<str<strong>on</strong>g>String</str<strong>on</strong>g> theory is a field that is still in full blossoming, despite the fact that it has actuallybeen around for about four decades. It took its first steps rather slowly and faced a hardtime getting generally accepted for several reas<strong>on</strong>s. In this introductory chapter, a bit<str<strong>on</strong>g>of</str<strong>on</strong>g> ink will be spilled in order to paint with very broad strokes the general idea <str<strong>on</strong>g>of</str<strong>on</strong>g> whatstring theory is all about, and in trying to retrace some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important steps itwent through from its incepti<strong>on</strong> until now.1.1 <str<strong>on</strong>g>String</str<strong>on</strong>g> theory in a nutshellUnlike the reference work <str<strong>on</strong>g>of</str<strong>on</strong>g> the same name [13], this nutshell will not comprise severalhundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> pages and will, hopefully, be accessible to every<strong>on</strong>e.<str<strong>on</strong>g>String</str<strong>on</strong>g> theory sometimes seems like a giant box full <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> buildingblocks. These building blocks allow <strong>on</strong>e to c<strong>on</strong>struct entire worlds, and the name <str<strong>on</strong>g>of</str<strong>on</strong>g> thegame is <str<strong>on</strong>g>of</str<strong>on</strong>g> course to build a world that looks remarkably close to ours. However, due toan as <str<strong>on</strong>g>of</str<strong>on</strong>g> yet insufficient understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> these buildingblocks, this task proves itself excruciatingly difficult.The Standard Model allowed for the unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three <str<strong>on</strong>g>of</str<strong>on</strong>g> the four fundamentalforces at a quantum (field) level; electro-magnetism, and the weak and str<strong>on</strong>g nuclearforces. Its success has been c<strong>on</strong>firmed time and again by the tear inducingly beautifulagreement <str<strong>on</strong>g>of</str<strong>on</strong>g> its prediciti<strong>on</strong>s with experimental results. Which made its predictive powerall the more puzzling, given that the theory exhibited some undeniable shortcomings.For <strong>on</strong>e, it relied <strong>on</strong> a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters (couplings, masses,...) which neededto be tuned by hand in order to agree with Nature. Furthermore, it did not incorporatethe fourth fundamental force: gravity. And last but certainly not least, the high energy4


CHAPTER 1. INTRODUCTION 5behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory seemed to be far for from ideal, a regime at which gravity canno l<strong>on</strong>ger be ignored.All these problems suggested that a new, or at least improved, theory should exist,<strong>on</strong>e that is more fundamental than the Standard Model. As far as the improvement<str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model is c<strong>on</strong>cerned, two major developments occured. The first <strong>on</strong>e isthe c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the so-called Grand Unified Theories, which try to extend the gaugegroups <str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model in order to further unify the theory. The other <strong>on</strong>e issupersymmetry. But still, this proves to be insufficient.So rather than extending the SM, <strong>on</strong>e could also envisage the sec<strong>on</strong>d approach: tocreate a new fundamental theory.Figure 1.1: Taken from [23].<str<strong>on</strong>g>String</str<strong>on</strong>g> theory is a quantum theory that has the potential to incorporate all fourfundamental forces <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature. Its novelty lies in the fact that it radically alters the c<strong>on</strong>cept<str<strong>on</strong>g>of</str<strong>on</strong>g> what an elementary particle is. All other theories except string theory c<strong>on</strong>siderelementary particles as being point particles; particles without any physical dimensi<strong>on</strong>.<str<strong>on</strong>g>String</str<strong>on</strong>g> theory raises the possibility that the fundamental c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> matter mightwell have a physical dimensi<strong>on</strong>. It started out looking at fundamental c<strong>on</strong>stituentswhich extend in <strong>on</strong>e spatial dimensi<strong>on</strong> closely resembling strings, explaining its name.The idea is that these strings can oscillate, and that different oscillati<strong>on</strong>s give rise todifferent particles. However, the original string so<strong>on</strong> became a “superstring,” and othermulti-dimensi<strong>on</strong>al objects also naturally appeared to inhabit the theory. Despite allthis, the name “string theory” remained; it simply gained weight.Complementing the possibility that it might be a quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity, stringtheory exhibits a number <str<strong>on</strong>g>of</str<strong>on</strong>g> other features that sets it apart from other theories. For<strong>on</strong>e, it c<strong>on</strong>tains <strong>on</strong>ly <strong>on</strong>e dimensi<strong>on</strong>full parameter, namely the string length l s , the length<str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stituent. All other “parameters” are dictated by the theory. Asa specific example, string theory demands the number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time dimensi<strong>on</strong>s to be10 (in superstring theory) in order to be c<strong>on</strong>sistent. It is the first theory to imposethe dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> the space-time it lives in. Admittedly, 10 dimensi<strong>on</strong>s at first


CHAPTER 1. INTRODUCTION 6sight seems like six too many, which brings al<strong>on</strong>g the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> making those extradimensi<strong>on</strong>s “invisible.”Another compelling feature is that string theory requires supersymmetry. Also, yousimply can not ignore gravity; it is embedded in it from the very <str<strong>on</strong>g>of</str<strong>on</strong>g>fset.At <strong>on</strong>e point, string theory appeared to be “diversified,” and loose its uniqueness.Several “flavours” <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistent superstring theories were known, and at first sight, theywere not related. However, it was found out afterwards that in fact all <str<strong>on</strong>g>of</str<strong>on</strong>g> these theorieswere related by an intricate play <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities. As a c<strong>on</strong>sequence, string theory regainedits uniqueness.Of course, all is not peace and love in string land. The theory has its flaws. For<strong>on</strong>e, the exact descripti<strong>on</strong> that gives rise to the physics as they are described by theStandard Model is as <str<strong>on</strong>g>of</str<strong>on</strong>g> yet still unknown. Also, giving the right mass to particlesis still a challenge. But most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, string theory has failed so far to make even <strong>on</strong>esingle experimentally verifiable prediciti<strong>on</strong>. It has already made many predicti<strong>on</strong>s, butthey are simply vastly out <str<strong>on</strong>g>of</str<strong>on</strong>g> reach <str<strong>on</strong>g>of</str<strong>on</strong>g> modern day experiments. On the other handhowever, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> string theory has given rise to many new insights into newmathematics and old physics alike. Moreover, the elegance and c<strong>on</strong>strictiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> itsformulati<strong>on</strong>, as well as the many fundamental answers that seem to be lurking behindthe corner, easily justify its place at the top <str<strong>on</strong>g>of</str<strong>on</strong>g> modern theoretical physics.1.2 A brief history <str<strong>on</strong>g>of</str<strong>on</strong>g> string theoryThis secti<strong>on</strong> will summarily walk through some <str<strong>on</strong>g>of</str<strong>on</strong>g> the major steps in the history <str<strong>on</strong>g>of</str<strong>on</strong>g> stringtheory so far.1968: the seed from which string theory would eventually grow was sown in this year,during a time in which much study was devoted to the understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>ginteracti<strong>on</strong>s, and understanding the hadr<strong>on</strong>ic spectrum and the many res<strong>on</strong>ances fromstates with ever increasing spin that kept being discovered. Phenomenology showed thatmany <str<strong>on</strong>g>of</str<strong>on</strong>g> these res<strong>on</strong>ances appeared to respect a linear behaviour between their mass andtheir spin,m 2 = J α ′ + α 0, (1.1)with m the mass, J the spin, α ′ the Regge-slope and α 0 the intercept. On the other hand,when c<strong>on</strong>sidering four-particle scattering amplitudes (see Fig. 1.2) a duality betweenthe s- and t-channels appeared to exist, in that it could be shown (with the help <str<strong>on</strong>g>of</str<strong>on</strong>g>experimental data) that the amplitude for the s-channel and t-channel corresp<strong>on</strong>dedfor small enough values <str<strong>on</strong>g>of</str<strong>on</strong>g> s and t. This was called the “duality hypothesis,” and thissuggested that it should be possible to write down an amplitude A(s, t) that was invariantunder the exchange s ←→ t. Veneziano managed to write down such an amplitude bymaking use <str<strong>on</strong>g>of</str<strong>on</strong>g> Euler’s β-functi<strong>on</strong>,A(s, t) =Γ (−α(s)) Γ (−α(t)), (1.2)Γ(−α(s) − α(t))


Part IITheoretical Introducti<strong>on</strong>11


Chapter 2Bos<strong>on</strong>ic <str<strong>on</strong>g>String</str<strong>on</strong>g>s“If you’d like to know, I can tell you that in your universeyou move freely in three dimensi<strong>on</strong>s that you call space.You move in a straight line in a fourth, which you calltime, and stay rooted to <strong>on</strong>e place in a fifth, which is thefirst fundamental <str<strong>on</strong>g>of</str<strong>on</strong>g> probability. After that it gets a bitcomplicated, and there’s all sorts <str<strong>on</strong>g>of</str<strong>on</strong>g> stuff going <strong>on</strong> in dimensi<strong>on</strong>sthirteen to twenty-two that you really wouldn’twant to know about, even if you start from a positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>thinking it’s pretty damn complicated in the first place.”Douglas AdamsHitchhiker’s Guide to the GalaxyWe will now turn to the basic element <str<strong>on</strong>g>of</str<strong>on</strong>g> string theory: the string itself. Just as everybodyelse, we will start at the beginning, meaning the bos<strong>on</strong>ic string. Although thistheory is inadequate to describe our universe (at least without severe “modificati<strong>on</strong>s”), itis ideally suited for getting acquainted with a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cepts and terminology proper tostring theory, and many <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas present herein can be straightforwardly generalizedto the superstring case.Ultimately, our goal is to obtain the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a free bos<strong>on</strong>ic string. To achievethis goal, we must first have an acti<strong>on</strong>. Once we have this acti<strong>on</strong>, we can compute theequati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> (EOM), and we will see that different boundary counditi<strong>on</strong>s canbe imposed in order to solve these equati<strong>on</strong>s. Next we can quantize these equati<strong>on</strong>s.Expanding the quantized versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the EOM will deliver us what we are looking for.<str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this spectrum will tell us that we need a 26-dimensi<strong>on</strong>al space-time in orderfor this theory to possibly make any sense at all, but even then we will be left with twoserious issues, namely the presense <str<strong>on</strong>g>of</str<strong>on</strong>g> tachy<strong>on</strong>s in the spectrum and the fact that thespectrum does not c<strong>on</strong>tain any fermi<strong>on</strong>s, which will <strong>on</strong>ly be solved in the next chapter.The idea behind string theory is that there exist a number <str<strong>on</strong>g>of</str<strong>on</strong>g> objects, most notablystrings and their generalised brothers, the p-<strong>branes</strong>, that live in an external,12


CHAPTER 2. BOSONIC STRINGS 13D-dimensi<strong>on</strong>al space-time (or background). p usually denotes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> spatialdimensi<strong>on</strong>s <strong>on</strong>ly, hence, D > p. When these p-dimensi<strong>on</strong>al objects move in space-time,they describe a (p + 1)-dimensi<strong>on</strong>al world volume. On this world volume, <strong>on</strong>e can, anddoes, define a set <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates, usually denoted by σ. Now, <strong>on</strong>e can imagine standingsomewhere <strong>on</strong> this world volume, surrounded by the D-dimensi<strong>on</strong>al external world, andthrowing out anchors, <strong>on</strong>e in each dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the external space-time. These anchorsdefine maps that translate the positi<strong>on</strong> <strong>on</strong> the world volume to a positi<strong>on</strong> in the externalspace-time, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as the target space, and these are usually denoted by X.With both coordinate systems, that <str<strong>on</strong>g>of</str<strong>on</strong>g> the world volume and <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, are associatedmetrics. Also associated with a brane is a brane tensi<strong>on</strong> which gives a noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>how resistive this object is with respect to gravitati<strong>on</strong>-like forces exerted up<strong>on</strong> it fromoutside. In a sense, this is nothing else but the mass per volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a brane. In the case<str<strong>on</strong>g>of</str<strong>on</strong>g> the 0-brane, which is in fact a pointlike particle, the brane tensi<strong>on</strong> is the mass itselfsince the 0-brane has no physical dimensi<strong>on</strong>, and hence no volume. Starting from the1-brane, or string if you prefer, this tensi<strong>on</strong> thus becomes mass per length, mass persurface, etc. The metrics, maps and brane tensi<strong>on</strong> are all we need to c<strong>on</strong>struct an acti<strong>on</strong>for the brane. Since this chapter specializes to strings, in this case p = 1.2.1 Acti<strong>on</strong>Our journey starts with the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic string. Being <strong>on</strong>e-dimensi<strong>on</strong>al, up<strong>on</strong>moving around in space-time this object will describe a two-dimensi<strong>on</strong>al sheet, calledthe world sheet, analogous to the <strong>on</strong>e-dimensi<strong>on</strong>al world line <str<strong>on</strong>g>of</str<strong>on</strong>g> a point particle. Weequip this world sheet with a coordinate system, the coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> which are usuallylabeled (σ 0 , σ 1 ) = (τ, σ), in which τ suggests that this coordinate can be tought <str<strong>on</strong>g>of</str<strong>on</strong>g> asthe equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> the space-time time t, and σ can be interpreted as a spatial dimensi<strong>on</strong>.The simplest acti<strong>on</strong> we can associate with this object is the following:∫ √S NG = −T dσdτ (ẊX′ ) 2 − Ẋ2 X ′2 . (2.1)In this equati<strong>on</strong>, T represents the string tensi<strong>on</strong>, Ẋ = ∂ τ X and X ′ = ∂ σ X. The subscript“NG” stands for “Nambu-Goto,” the two people who first c<strong>on</strong>sidered this acti<strong>on</strong>, makingit the Nambu-Goto acti<strong>on</strong>. The string tensi<strong>on</strong> T can be interpreted as the “mass perunit length” <str<strong>on</strong>g>of</str<strong>on</strong>g> the string, and hence it has mass dimensi<strong>on</strong> equal to two. Often thestring tensi<strong>on</strong> is written asT = 12πα ′, (2.2)where α ′ represents the Regge slope menti<strong>on</strong>ed in the introductory chapter. One couldrewrite this acti<strong>on</strong> as∫S NG = −T√d 2 σ − det(η µν ∂ α X µ ∂ β X ν ), (2.3)with η µν representing the D-dimensi<strong>on</strong>al Minkowski metric, and the subscripts (α, β)refering to derivatives with respect to the world sheet coordinates. As such, for the


CHAPTER 2. BOSONIC STRINGS 14moment we c<strong>on</strong>sider space-time to be flat. Note that the minus sign preceding thedeterminant is <strong>on</strong>ly needed if a negative time-comp<strong>on</strong>ent is present, as is the case here,but if we were to e.g. c<strong>on</strong>sider a Euclidean space-time, we should disregard it. Furthernote that the expressi<strong>on</strong>η αβ = η µν ∂ α X µ ∂ β X ν (2.4)defines a metric <strong>on</strong> the world sheet. This expressi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called the pullback η αβ <str<strong>on</strong>g>of</str<strong>on</strong>g>the tensor η µν , in this case the space-time metric, <strong>on</strong> the world sheet.Eq. 2.1 however is a classical acti<strong>on</strong> that does not lend itself very well to quantizati<strong>on</strong>because <str<strong>on</strong>g>of</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a square root. 1 Note that we have not yet made use <str<strong>on</strong>g>of</str<strong>on</strong>g> ametric explicitely defined <strong>on</strong> the world sheet (we <strong>on</strong>ly used the pullback from the externalspace-time). Doing so allows us to write a new acti<strong>on</strong>, called the Polyakov acti<strong>on</strong> orstring sigma model acti<strong>on</strong>. Writing this world sheet metric as h αβ , this acti<strong>on</strong> takes thefollowing form:S σ = − 1 2 T ∫d 2 σ √ −hh αβ η µν ∂ α X µ ∂ β X ν . (2.5)Here, h = det h αβ . The √ −h factor is actually needed to make the integral measure(d 2 σ √ −h) reparameterizati<strong>on</strong> invariant, a symmetry that will prove itself very usefullater <strong>on</strong>. The Nambu-Goto and Polyakov acti<strong>on</strong>s are equivalent at the classical level,which can be dem<strong>on</strong>strated by computing the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for h αβ , and usingthem to eliminate h αβ from the Polyakov acti<strong>on</strong>, which gives back the Nambu-Gotoacti<strong>on</strong>, a point we will come back to later.Before going <strong>on</strong>, we will agree to the c<strong>on</strong>venti<strong>on</strong> that indices (µ, ν, . . .) refer tospace-time, whilst indices (α, β, . . .) refer to the world sheet.2.2 SymmetriesNow that we have our acti<strong>on</strong>, we are interested in the symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>, especiallythe local <strong>on</strong>es, as we will need these to fix our metric (i.e. choose a gauge), a stepwe need to undertake if we wish to be able to quantize our theory. Keep in mind thatwe are still c<strong>on</strong>sidering Minkowski space-time, which comes down to c<strong>on</strong>sidering thefirst term in a perturbative expansi<strong>on</strong> around a flat background. Going to the case <str<strong>on</strong>g>of</str<strong>on</strong>g>a curved background can be achieved by simply replacing η µν by g µν . 2 The symmetries<str<strong>on</strong>g>of</str<strong>on</strong>g> the Polyakov acti<strong>on</strong> are:Global symmetries• Poincaré transformati<strong>on</strong>s: the usual translati<strong>on</strong>s, rotati<strong>on</strong>s and boosts in spacetime,which are represented byδX µ = a µ νX ν + b µ ,δh αβ = 0,(2.6)1 In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a pointlike particle, it is also inadequate to describe massless particles, given thatT 0 = m.2 Note that this is true for the classical theory, but not for the quantum theory.


CHAPTER 2. BOSONIC STRINGS 15with a µ ν an infinitesimal Lorentz transformati<strong>on</strong> parameter, and b µ an infinitesimaltranslati<strong>on</strong> parameter, both c<strong>on</strong>stant.Local symmetries• Reparameterizati<strong>on</strong> invariance: this amounts to choosing different coordinates<strong>on</strong> the world sheet, and hence reparameterizing the maps X µ ; mathematicallyspeaking, this means applyingσ α −→ f α (σ, τ) = σ ′α ,h αβ (σ, τ) =∂f γ ∂f δ∂σ α ∂σ β h γδ(σ ′ , τ ′ ).(2.7)• Weyl transformati<strong>on</strong>s: in essence this means rescaling the metric with a coordinatedependent, and thus local, scaling factor,h αβ −→ e φ(σ,τ) h αβ ,δX µ = 0,(2.8)with φ(σ, τ) an arbitrary functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ and τ. 3 These local symmetries allow us to gaugefix the world sheet metric so that the Polyakov acti<strong>on</strong> takes <strong>on</strong> a remarkably simple form,making the computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> particularly easy. First, we remarkthat a metric <strong>on</strong> a two-dimensi<strong>on</strong>al space has three independant comp<strong>on</strong>ents. As Eq.2.7 shows, reparameterizing two comp<strong>on</strong>ents requires two functi<strong>on</strong>s corresp<strong>on</strong>ding tothe new coordinates. Thus, we are free to choose these new coordinates such thath αβ = φ(σ, τ)η αβ , (2.9)where φ(σ, τ) represents a local c<strong>on</strong>formal factor. But, Weyl invariance expressed inEq. 2.8 allows us to eliminate this local factor, leaving us with[ ] −1 0h αβ = η αβ = . (2.10)0 1This gauge choice is called the c<strong>on</strong>formal gauge, because h αβ is trivially c<strong>on</strong>formallyrelated to η αβ . The c<strong>on</strong>formal gauge allows the Polyakov acti<strong>on</strong> (Eq. 2.5) to be rewrittenin the much simpler wayS = T ∫d 2 (Ẋ2 σ − X ′2) . (2.11)23 The exp<strong>on</strong>ential in Eq. 2.8 is not necessary, but makes it easiest to see that this is indeed a symmetry,as √ −hh αβ −→ e φ e −φ√ −hh αβ .


CHAPTER 2. BOSONIC STRINGS 162.3 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>From Eq. 2.11, we obtain the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for X µ .δS = T ∫ {}d 2 σ∂Ẋ22 ∂Ẋ (∂ τδX) − ∂X′2∂X ′ (∂ σ δX)= T ∫) ( )d 2 (σ{2∂ τ(ẊδX − 2 ∂ τ Ẋ δX − 2∂ σ X ′ δX ) + 2 ( ∂ σ X ′) }δX2∫= T d 2 σ ( ∂σX 2 − ∂τX 2 ) δX, (2.12)from which we c<strong>on</strong>clude that∂ 2 X µ∂σ 2 − ∂2 X µ∂τ 2 = ∂ α ∂ α X µ = 0. (2.13)We thus obtain a two-dimensi<strong>on</strong>al wave equati<strong>on</strong> for every map X µ .2.4 <str<strong>on</strong>g>Bound</str<strong>on</strong>g>ary c<strong>on</strong>diti<strong>on</strong>sLooking back at Eq. 2.12, we see that we have assumed, as is usual when varying anacti<strong>on</strong>, that the total derivatives vanish. The total time (actually, τ) derivative is, asis customary, eliminated by choosing initial and final states for which the variati<strong>on</strong>s arezero, i.e.δX µ (σ, τ i ) = δX µ (σ, τ f ) = 0, (2.14)with τ i and τ f representing the initial and final time respectively. This leaves <strong>on</strong>ly theσ derivative, ∫− T dτ [ X µδX ′ µ | σ=π − X µδX ′ µ ]| σ=0 = 0, (2.15)in which we further assume that σ ∈ [0, π], for open and closed strings alike (a differencewe will quantify in a sec<strong>on</strong>d). Now, there are several ways to make this c<strong>on</strong>diti<strong>on</strong> fit,and these different possibilities mathematically define different types <str<strong>on</strong>g>of</str<strong>on</strong>g> strings.2.4.1 Closed stringsA first possibility is to assume thatX µ (σ, τ) = X µ (σ + π, τ) . (2.16)This would <str<strong>on</strong>g>of</str<strong>on</strong>g> course imply that the string is periodic, or closed, and as a c<strong>on</strong>sequence,since we have just identified points whose σ values differ by an integer multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> π,that alsoδX µ (σ, τ) = δX µ (σ + π, τ). (2.17)Hence, this c<strong>on</strong>diti<strong>on</strong> defines a closed string.


CHAPTER 2. BOSONIC STRINGS 172.4.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> stringsDirichlet boundary c<strong>on</strong>diti<strong>on</strong>sAnother possibility is to assume that δX µ = 0, which would imply that we are dealingwith an open string whose endpoints are fixed:X µ | σ=0 = X µ 0 ; X µ | σ=π = X µ π. (2.18)This defines an open string with Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s. Since we are now demandingthat the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> the string corresp<strong>on</strong>d to some specific points in space,we can no l<strong>on</strong>ger hope that this string satisfies Poincaré invariance. For this reas<strong>on</strong>,Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s are not even menti<strong>on</strong>ed in older references like e.g. [9]and [14], until they eventually turned out to be <str<strong>on</strong>g>of</str<strong>on</strong>g> great interest, as we will found outourselves in Chapter 5.Note that for this c<strong>on</strong>diti<strong>on</strong> µ ≠ 0, since τ ∼ = t and Eq. 2.18 can be restated asNeumann boundary c<strong>on</strong>diti<strong>on</strong>s∂X µ∂τ∣ = 0. (2.19)σ=0,πFinally, we could impose that the σ derivatives vanish in the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> an open string,∂X µ∂σ (σ = 0, τ) = ∂X µ(σ = π, τ) = 0. (2.20)∂σThis defines what is called an open string with Neumann boundary c<strong>on</strong>diti<strong>on</strong>s. It is<str<strong>on</strong>g>of</str<strong>on</strong>g>ten stated that “no momentum flows <str<strong>on</strong>g>of</str<strong>on</strong>g> the end <str<strong>on</strong>g>of</str<strong>on</strong>g> an open string with Neumannboundary c<strong>on</strong>diti<strong>on</strong>s,” which is indeed what Eq. 2.20 expresses. This might makeyou w<strong>on</strong>der where the momentum that can flow <str<strong>on</strong>g>of</str<strong>on</strong>g>f the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dirichlet string goesto. Anticipating what will come, the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> a Dirichlet string are attached to aphysical object called a D-brane, and hence momentum gets transferred to this objectand vice-versa.Note that in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> an open string, <strong>on</strong>e could impose Neumann boundary c<strong>on</strong>diti<strong>on</strong>sin some directi<strong>on</strong>s, and Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s in the others.2.5 Soluti<strong>on</strong>s and expansi<strong>on</strong>sNow that we have our equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the bos<strong>on</strong>ic string, it is time to lookfor soluti<strong>on</strong>s to it. To this end, it will prove to be useful to switch to a new set <str<strong>on</strong>g>of</str<strong>on</strong>g>coordinates, called light-c<strong>on</strong>e coordinates or light-c<strong>on</strong>e gauge. These are defined byeasily explaining their name. As a c<strong>on</strong>sequence, usingσ ± = τ ± σ. (2.21)∂ ± =∂∂σ ±,


CHAPTER 2. BOSONIC STRINGS 18we see that∂ + = 1 2( ∂τ ∂∂σ + ∂τ + ∂σ )∂∂σ + ,∂σ= 1 2 (∂ τ + ∂ σ ) . (2.22)Similarly,∂ − = 1 2 (∂ τ − ∂ σ ) . (2.23)For the metric, we compute thatand analogous for η −− , andη ++ = ∂σµ∂σ + ∂σ ν∂σ +η µν,= (∂ + σ) 2 − (∂ + τ) 2 ,= 1 4 − 1 4 ,= 0, (2.24)η ±∓ = (∂ + σ)(∂ − σ) − (∂ + τ) (∂ − τ),= − 1 4 − 1 4 ,= − 1 2 , (2.25)leaving us with [ ]η++ η +−= − 1 [ 0 1η −+ η −− 2 1 0]. (2.26)The nice thing about these coordinates is that they allow us to write the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>moti<strong>on</strong> expressed in Eq. 2.12 as follows:∂ + ∂ − X µ = 0, (2.27)which immediatly suggests the general soluti<strong>on</strong>X µ (σ, τ) = X µ (R σ− ) + X µ (L σ+ ) . (2.28)X µ R,Lare called the right- and left-moving modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the string respectively.Things get a bit messy when we want to expand these modes, because we have tolook at it <strong>on</strong> a case per case basis, depending <strong>on</strong> what boundary c<strong>on</strong>diti<strong>on</strong>s are appliedto the string under c<strong>on</strong>siderati<strong>on</strong>.


CHAPTER 2. BOSONIC STRINGS 192.5.1 Closed string expansi<strong>on</strong>If we assume closed string boundary c<strong>on</strong>diti<strong>on</strong>s, these modes can be expanded as follows:X µ R = 1 2 xµ + 1 2 l2 sp µ (τ − σ) + i 2 l ∑ 1sn αµ ne −2in(τ−σ) , (2.29)n≠0X µ L = 1 2 xµ + 1 2 l2 sp µ (τ + σ) + i 2 l ∑ 1sn ˜αµ ne −2in(τ+σ) . (2.30)Here, we see the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the string length scale l s , related to the Regge slope α ′and string tensi<strong>on</strong> T by the relati<strong>on</strong>s 4n≠012 l2 s = α ′ ; T = 1πls2 , (2.31)the center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass momentum p µ , and the center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass positi<strong>on</strong> x µ . More importantlythough, we also see the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positive and negative modes, which in thequantum versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the story will become raising and lowering operators. Note that X µshould be real, 5 and that as a c<strong>on</strong>sequenceα µ −n = (αµ n) ∗ ; ˜α µ −n = (˜αµ n) ∗ . (2.32)The fact that x µ and p µ do indeed represent the center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass positi<strong>on</strong> and momentumcan be obtained as follows. First note that∂X µ R (σ− )∂τ= ∂Xµ R (σ− ) ∂σ −∂σ − ∂τ = ∂ σ −Xµ R , (2.33)and analogous for X µ L . So defining α µ 0 = ˜αµ 0 = (l s/2)p µ (2.34)so as to allow us to “complete the sum” up<strong>on</strong> differentiati<strong>on</strong>, we find thatẊ µ R = l sẊ µ L = l s+∞∑n=−∞+∞∑n=−∞α µ ne −2in(τ−σ) , (2.35)˜α µ ne −2in(τ+σ) . (2.36)From this, and using the usual definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>jugate momentum, we see thatP µ = ∂L∂Ẋµ= T∫ π0dσẊµ = T∫ π0)dσ(ẊµL + Ẋµ R= p µ , (2.37)4 Some references like e.g. [13] define ls 2 = α ′ , inducing subsequent changes in several formulae withfactors <str<strong>on</strong>g>of</str<strong>on</strong>g> √ 2, 2 and/or inverses there<str<strong>on</strong>g>of</str<strong>on</strong>g>.5 We are, after all, mapping from and to real spaces.


CHAPTER 2. BOSONIC STRINGS 20which c<strong>on</strong>firms our claim for p µ . Furthermore, simply applying the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anaverage to X µ (σ), we see that1π∫ π0dσX µ (σ, τ) = x µ + l 2 sp µ τ, (2.38)indicating that x µ is the center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass positi<strong>on</strong> at time τ = 0. Note that x µ and p µare arbitrary, i.e. if we wanted to we could explicitely fill them in, thereby specifying aninitial positi<strong>on</strong> and momentum for our string.2.5.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> string expansi<strong>on</strong>A feature present in all open string expansi<strong>on</strong>s is that <strong>on</strong>ly <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> coefficientsα is present. Before giving the expansi<strong>on</strong>s, this can already be understoodby realizing that whilst the closed strings allow oscillati<strong>on</strong>s in two directi<strong>on</strong>s, in thecase <str<strong>on</strong>g>of</str<strong>on</strong>g> open strings left- and right-movers need to combine into standing waves due toreflecti<strong>on</strong>s at their endpoints, hence leaving <strong>on</strong>ly <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients.Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>sThe wave equati<strong>on</strong>s for an open string satisfying Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s can beexpanded as∑X µ (σ, τ) = x µ + w µ 1σ − l sn αµ ne −inτ sin(nσ), (2.39)with again µ ≠ 0. We need sin(nσ), and not cos (nσ), in order to accomodate thevanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the oscillators in the endpoints. The c<strong>on</strong>stant w µ is called the windingnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> the string. Note thatn≠0X µ (σ = π, τ) − X µ (σ = 0, τ) = w µ π, (2.40)and hence w µ encodes the distance between both endpoints. We will come back to thiswhen we will c<strong>on</strong>sider T-duality and D-<strong>branes</strong>.Neumann boundary c<strong>on</strong>diti<strong>on</strong>sFor an open string satisfying Neumann boundary c<strong>on</strong>diti<strong>on</strong>s, the expansi<strong>on</strong> readsX µ (σ, τ) = x µ + l 2 sp µ τ + il s∑n≠01n αµ ne −inτ cos (nσ). (2.41)Note that this time we need cos (nσ), so that the ∂ σ derivatives will vanish at theendpoints. Also note that since no momentum can flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the string, we canagain talk about a center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass momentum p µ .This time, we can define the zero-mode asα µ 0 = l sp µ . (2.42)


CHAPTER 2. BOSONIC STRINGS 21We will not c<strong>on</strong>sider the more exotic case <str<strong>on</strong>g>of</str<strong>on</strong>g> a string which has a Dirichlet boundaryc<strong>on</strong>diti<strong>on</strong> at <strong>on</strong>e end, and Neumann boundary c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the other end, which istreated in e.g. §2.3.2 in [13].2.6 Quantizati<strong>on</strong>So far, everything we have d<strong>on</strong>e was purely classical. In order to quantize the theory,three basic approaches exist, <str<strong>on</strong>g>of</str<strong>on</strong>g> which we <strong>on</strong>ly c<strong>on</strong>sider the following two:• covariant approach: the usual QFT quantizati<strong>on</strong>, in which the expansi<strong>on</strong> coefficients<str<strong>on</strong>g>of</str<strong>on</strong>g> the expanded fields get promoted to quantum operators satisfying commutatorrelati<strong>on</strong>s that are generalized from the Poiss<strong>on</strong> brackets satisfied by theclassical fields; its advantage is that it manifestly preserves Lorentz invariance,• light-c<strong>on</strong>e quantizati<strong>on</strong>: a specific change <str<strong>on</strong>g>of</str<strong>on</strong>g> variables is made that allows <strong>on</strong>eto solve the c<strong>on</strong>straint equati<strong>on</strong>s at a classical level instead <str<strong>on</strong>g>of</str<strong>on</strong>g> having to imposethem, and quantize the remaining theory; the drawback is that manifest Lorentzinvariance is lost, the advantage is the inherent removal <str<strong>on</strong>g>of</str<strong>on</strong>g> negative-norm states.The third method is path integral quantizati<strong>on</strong>, and is technically vastly more complicated.Interested parties are referred to e.g. [13] §3.5, [14] §3.4 and [16] §2.5. It isworth menti<strong>on</strong>ing that whenever comparis<strong>on</strong> between these methods was possible, theyall agreed.2.6.1 Covariant approachThe idea is pretty simple: compute the classical Poiss<strong>on</strong> brackets (P.B.’s) <str<strong>on</strong>g>of</str<strong>on</strong>g> the expandedX µ ’s, translate those to the P.B.’s <str<strong>on</strong>g>of</str<strong>on</strong>g> the expansi<strong>on</strong> coefficients, replace theseP.B.’s by quantum commutators, throw in a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> i, et voilà, you are d<strong>on</strong>e. Let usgo through the moti<strong>on</strong>s <strong>on</strong>e by <strong>on</strong>e.Again defining the momentum c<strong>on</strong>jugate to X µ asP µ (σ, τ) = ∂L∂Ẋµ= TẊµ , (2.43)and recalling that the Poiss<strong>on</strong> brackets <str<strong>on</strong>g>of</str<strong>on</strong>g> two arbitrary functi<strong>on</strong>s x(q, p),y (q, p) aredefined by[ ∂x ∂y{x, y} P.B. =∂q ∂p − ∂x ]∂y, (2.44)∂p ∂qwith q representing coordinates and p representing momenta, we find that{P µ (σ, τ),P ν ( σ ′ , τ )} P.B. = 0, (2.45){X µ (σ, τ),X ν ( σ ′ , τ )} P.B. = 0, (2.46){P µ (σ, τ),X ν ( σ ′ , τ )} P.B. = ηµν δ ( σ − σ ′) , (2.47){Ẋ (σ, τ),Xν ( σ ′ , τ )} P.B. = T −1 η µν δ ( σ − σ ′) , (2.48)


CHAPTER 2. BOSONIC STRINGS 22which are the usual equal time classical Poiss<strong>on</strong> brackets. This can be translated to theP.B.’s <str<strong>on</strong>g>of</str<strong>on</strong>g> the modes by inserting the expansi<strong>on</strong>s found earlier (Eqs. 2.29, 2.30, 2.39 and2.41), and results in{α µ m, α ν n} P.B. = imη µν δ m+n,0 , (2.49){˜α µ m, ˜α ν n} P.B. = imη µν δ m+n,0 , (2.50){α µ n, ˜α ν n} P.B. = 0. (2.51)Of course, the two last equati<strong>on</strong>s are <strong>on</strong>ly applicable to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the closed string.The next step would be to replace these classical P.B.’s with quantum mechanicalcommutati<strong>on</strong> relati<strong>on</strong>s usig the prescripti<strong>on</strong>Thus we obtain{. . .,...} P.B. −→ i [. . . , . . .] . (2.52)[α µ m, α ν n] = [˜α µ n, ˜α ν n] = mη µν δ m+n,0 ; [α µ m, ˜α ν n] = 0. (2.53)Just as in quantum mechanics, these operators are normalized following the definiti<strong>on</strong>a µ m = 1 √ mα µ m ; a µ†m = 1 √ mα µ −m with m > 0. (2.54)Essentialy, this leaves us with the algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> the harm<strong>on</strong>ic oscillator operators,[ ] [ ]a µ m, a ν†n = ã µ m, ã ν†n = η µν δ m,n with m, n > 0. (2.55)This immediatly alerts us to a serious problem, namely[ ]a 0 m, a 0†m = −1, (2.56)which dem<strong>on</strong>strates that the timelike mode (µ = 0) is a very naughty boy because itgives rise to negatively normed states, e.g.〈0|a 0 ma 0†m|0〉 = −1,in which we assumed that 〈0|0〉 = 1, and in which |0〉 represents the ground state, i.e.the state that is annihilated by all lowering operators,α µ m|0〉 = 0 ∀ m > 0. (2.57)This, and other negative norm states, are called ghosts, and we will need to find a wayto get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> them if we want our theory to make any sense.


CHAPTER 2. BOSONIC STRINGS 232.6.2 Energy-momentum tensor and Hamilt<strong>on</strong>ianWe have come to a point where we can no l<strong>on</strong>ger ignore the energy-momentum tensorT αβ , defined asT αβ = − 2 1 δL√ σ, (2.58)T −h δhαβ or if you prefer, as the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian (density) with respect to the (worldsheet) metric. In this equati<strong>on</strong>, L σ represents the Lagrangian density as it appears inthe Polyakov acti<strong>on</strong> defined in Eq. 2.5. Using the Polyakov acti<strong>on</strong> and<strong>on</strong>e finds that∫δSδh αβ = −1 2 T= − 1 2 T √ ∫−h{( √ ) ∂ −hd 2 σ∂h αβd 2 σδ √ −h = − 1 2√−hhαβ δh αβ ,h γδ η µν ∂ γ X µ ∂ δ X ν + √ }−hη µν ∂ α X µ ∂ β X ν δh αβ{− 1 }2 h αβh γδ ∂ γ X µ ∂ δ X µ + ∂ α X µ ∂ β X µ δh αβ , (2.59)implying thatT αβ = ∂ α X · ∂ β X − 1 2 h αβh γδ ∂ γ X · ∂ δ X. (2.60)Demanding that the field equati<strong>on</strong>s for the world sheet metric,δLδh αβ= 0, are satisfied,we need to impose thatT αβ = 0. (2.61)These equati<strong>on</strong>s are called the c<strong>on</strong>straint equati<strong>on</strong>s, as they lay extra c<strong>on</strong>straints <strong>on</strong> thesolutios <str<strong>on</strong>g>of</str<strong>on</strong>g> the EOM for X µ . In the particular case <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>ic string theory, they also gounder the name <str<strong>on</strong>g>of</str<strong>on</strong>g> Virasoro c<strong>on</strong>straints, for reas<strong>on</strong>s that will become clear in a sec<strong>on</strong>d.We have seen that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the local symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> the world sheet is Weyl invariance. Thissymmetry has a side effect, namely it induces the tracelessness <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy-momentumtensor, i.e. h αβ T αβ = 0. To show this, c<strong>on</strong>sider a general acti<strong>on</strong> S (h αβ , φ i ), where φ irepresents some fields satisfying the field equati<strong>on</strong>s δL = 0. Supposing that under anδφ iinfinitesimal Weyl rescaling with parameter Λ these transform ash αβ −→ h αβ + 2Λh αβ ; φ i −→ φ i + d i Λφ i , (2.62)where d i represents the c<strong>on</strong>formal weight (see Chapter 4) <str<strong>on</strong>g>of</str<strong>on</strong>g> φ i , and assuming the acti<strong>on</strong>to be scale invariant, we find that∫ {0 = δS = d 2 σ 2 δL h αβ + ∑ }δLd i φ i Λ. (2.63)δh αβ δφi iDue to the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> φ i , <strong>on</strong>ly the first term is n<strong>on</strong>-trivial. Using Eq. 2.58, wefind that∫0 = −T d 2 σ √ )−h(T αβ h αβ , (2.64)


CHAPTER 2. BOSONIC STRINGS 24from which the claimed result follows. Note that Eq. 2.8 shows that the c<strong>on</strong>formalweight <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields X µ is zero, and hence in this case the result follows even withoutthe use <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.As was menti<strong>on</strong>ed earlier, the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for h αβ , resulting in T αβ , can beused to show the classical equivalence between the NG and Polyakov acti<strong>on</strong>s. First,using Eqs. 2.60 and 2.61, remark that− det(∂ α X · ∂ β X) = − 1 ) 2(h4 h γδ ∂ γ X · ∂ δ X⇓√− det(g µν (X) ∂ α X µ ∂ β X ν ) = 1 √ ( )−h h γδ ∂ γ X · ∂ δ X . (2.65)2Plugging this result right into Eq. 2.5 immediatly gives back Eq. 2.1.In c<strong>on</strong>formal gauge, the c<strong>on</strong>straint equati<strong>on</strong>s readand in light c<strong>on</strong>e coordinates they translate toT 01 = T 10 = Ẋ · X′ = 0, (2.66)T 00 = T 11 = 1 2 (Ẋ2 + X ′2) = 0, (2.67)T ++ = ∂ + X µ ∂ + X µ = 0, (2.68)T −− = ∂ − X µ ∂ − X µ = 0, (2.69)T +− = T −+ = 0. (2.70)This last c<strong>on</strong>diti<strong>on</strong> expresses the vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the trace in light-c<strong>on</strong>e gauge, η αβ T αβ =0 = T +− + T −+ .Virasoro generatorsInserting our mode expansi<strong>on</strong>s for X µ for the closed string into the above expresi<strong>on</strong> forT ++ , we find thatT ++ = ∂ + X L · ∂ + X L( +∞) (∑∑ +∞= ls2 ˜α me µ −2im(σ+ ) ·= l 2 s= l 2 sm=−∞( +∞∑+∞∑m=−∞ n=−∞+∞∑( +∞∑m=−∞ n=−∞n=−∞)˜α m · ˜α n e −2i(n+m)(σ+ ))˜α m−n · ˜α n e −2i(m)(σ+ ))˜α ne µ −2in(σ+ )where in the last step, we made use <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that the summing index runs over aninfinite range <str<strong>on</strong>g>of</str<strong>on</strong>g> values. The computati<strong>on</strong> for T −− is strictly analogous, and thus we see


CHAPTER 2. BOSONIC STRINGS 25thatin which we usedT −− = 2l 2 sT ++ = 2l 2 sL m = 1 2˜L m = 1 2+∞∑m=−∞+∞∑m=−∞+∞∑n=−∞+∞∑n=−∞L m e −2im(τ−σ) , (2.71)˜L m e −2im(τ+σ) , (2.72)α m−n · α n , (2.73)˜α m−n · ˜α n . (2.74)These entities are called the Virasoro generators, and they obey the so-called Virasoroalegbra, to which we will come back in a sec<strong>on</strong>d.For open strings, the Virasoro c<strong>on</strong>straints look a little different, but they still allowfor the same combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modes to be separated, and hence, the Virasoro generatorsremain the same. If this seems a bit awkward at first, recall that for open strings leftandright-movers need to combine into standing waves. This does however still allowthe expansi<strong>on</strong> to be separated into left- and right-movers, and hence the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the Virasoro c<strong>on</strong>straints remains strikingly resemblant to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the closed string case.Anyhow, we are mostly interested in the Virasoro generators, not the c<strong>on</strong>straints.Hamilt<strong>on</strong>ianUsing the Virasoro generators, <strong>on</strong>e can easily write the Hamilt<strong>on</strong>ian asH = 2(L 0 + ˜L)0 =in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the closed string, andH = L 0 = 1 2+∞∑n=−∞+∞∑n=−∞(α −n · α n + ˜α −n · ˜α n ) (2.75)α −n · α n (2.76)for an open string. One obtains this result by first c<strong>on</strong>sidering the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theHamilt<strong>on</strong>ian, ∫ πH =(Ẋµ P µ − L)dσ = T ∫ π (Ẋ2 + X ′2) dσ. (2.77)02 0The next step is <str<strong>on</strong>g>of</str<strong>on</strong>g> course to compute the derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the X µ ’s. C<strong>on</strong>sidering the case<str<strong>on</strong>g>of</str<strong>on</strong>g> the closed string, using the expansi<strong>on</strong>s shown in Eqs. 2.29 and 2.30 and not forgetting


CHAPTER 2. BOSONIC STRINGS 26to use Eq. 2.34, this readsẊ µ R = l s∑α µ ne −2in(τ−σ) , (2.78)Ẋ µ L = l s∑˜α µ ne −2in(τ+σ) , (2.79)X µ′R = −l s∑α µ ne −2in(τ−σ) , (2.80)X µ′L = l s∑˜α µ ne −2in(τ+σ) . (2.81)Next, we compute the square <str<strong>on</strong>g>of</str<strong>on</strong>g> these derivatives.)Ẋ 2 = Ẋ2 R + Ẋ2 L + 2(ẊR · Ẋ L⎧( )⎨2 ( ) ⎫2⎬ = ls∑α 2 µ ⎩ne −2in(τ−σ) +∑˜α ne µ −2in(τ+σ) ⎭{( ) ( )}+ 2ls∑α 2 n e −2in(τ−σ) ·∑˜α n e −2in(τ+σ)(2.82)(X′ ) 2 ( )= X′ 2 ( )R + X′ 2 (L + 2 X′R · X L)′⎧( )⎨2 ( ) ⎫2⎬ = ls∑α 2 µ ⎩ne −2in(τ−σ) +∑˜α ne µ −2in(τ+σ) ⎭{( ) ( )}− 2ls∑α 2 n e −2in(τ−σ) ·∑˜α n e −2in(τ+σ)(2.83)When summing Eqs. 2.82 and 2.83, we see that the crossterms will cancel each other,and that the squared terms will just gain a coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> two:⎧( )⎨2 ( ) ⎫2⎬ Ẋ 2 + X ′2 = 2ls∑α 2 µ ⎩ne −2in(τ−σ) +∑˜α ne µ −2in(τ+σ) ⎭ . (2.84)A general term in these squared sums can be written as(α m · α n )e −2i(τ−σ)(m+n) , (2.85)and this expressi<strong>on</strong> is integrated in Eq. 2.77. Recalling that∫ π0dσ e 2iσ(m+n) = πδ m+n , (2.86)


CHAPTER 2. BOSONIC STRINGS 27we are left withH = Tπl 2 s∑(α −n · α n + ˜α −n · ˜α n ). (2.87)Further using Eq. 2.31, this indeed resolves to Eq. 2.75, as we wanted to assure ourselves<str<strong>on</strong>g>of</str<strong>on</strong>g>. The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string Hamilt<strong>on</strong>ian goes by similarly. This, however,is a valid classical result, but as always, quantum mechanically we should deal withan ordering ambuigity. However at the moment we can ignore this complicati<strong>on</strong>, andremaining in the classical realm we can define an expressi<strong>on</strong> for the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a string as afuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its oscillati<strong>on</strong>s. To this end, recall the light-c<strong>on</strong>e gauge c<strong>on</strong>straint equati<strong>on</strong>s,expressed in Eqs. 2.68 - 2.70, and remark that this implies that L m = ˜L m = 0 for allm. In other words, this should also hold for the zero-mode, and thus we find thatL 0 = 1 2∑α −n · α n = 1 2 α2 0 + ∑ n>0α −n · α n = 0. (2.88)and analogous for ˜L m (remember that α 0 = ˜α 0 ). This bears a nice surprise, because alook at Eqs. 2.31 and 2.34 reveals that for the closed string case12 α2 0 = 1 4 α′ p µ p µ . (2.89)For the open (Neumann) string, we have to use Eq. 2.42 revealing that12 α2 0 = α ′ p µ p µ . (2.90)Using the relativistic mass-shell c<strong>on</strong>diti<strong>on</strong> M 2 = −p 2 , we find that for an open stringα ′ M 2 = ∑ n>0α −n · α n . (2.91)For the closed string, <strong>on</strong>e should take into account c<strong>on</strong>tributi<strong>on</strong>s from both left- andright-movers, so thatα ′ M 2 = 2 ∑ n>0(α −n · α n + ˜α −n · ˜α n ) . (2.92)2.6.3 Virasoro algebra and physical statesClassically, the Virasoro generators satisfy the Virasoro algebra,{L m , L n P.B. = i (m − n)L m+n , (2.93){˜Lm , ˜L}n = i (m − n) ˜L m+n , (2.94)P.B.{L m , ˜L}n = 0. (2.95)P.B.


CHAPTER 2. BOSONIC STRINGS 28This algebra can be derived by using the commutati<strong>on</strong> relati<strong>on</strong>s for the expansi<strong>on</strong> modesexpressed in Eqs. 2.49 - 2.51. Quantum mechanically, things get a bit messier because<str<strong>on</strong>g>of</str<strong>on</strong>g> the earlier noted ordering ambiguity, and the algebra becomes[L m , L n ] = (m − n)L m+n + c12 m( m 2 − 1 ) δ m+n . (2.96)The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result is somewhat tricky, and can be found in full glory in e.g.the Appendix to Chapter 3, p. 54-55 in [14], or via an alternative approach in [9], p.80-81.As is usual in quantum theories, we will order our operators using the normalorderingc<strong>on</strong>venti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “lowering operators to the right and raising operators to theleft,” resulting inL m = 1 2+∞∑n=−∞: α m−n · α n : . (2.97)We should be careful though. Since we find ourselves in the beloved and charmingpresence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity (<strong>on</strong> the world sheet), we can no l<strong>on</strong>ger ignore the extra c<strong>on</strong>stant thatresults from the normal ordering prescripti<strong>on</strong> as we did in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> QFT. However,since all operators commute except those c<strong>on</strong>stituting L 0 , this ordering ambiguity is<strong>on</strong>ly relevant for L 0 , and we take this into account by replacing L 0 by (L 0 − a) wheneverneeded, where a represents the as-<str<strong>on</strong>g>of</str<strong>on</strong>g>-yet undetermined ordering c<strong>on</strong>stant. 6This c<strong>on</strong>stant also has repercussi<strong>on</strong>s for the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> states. We demand that for aphysical state |φ〉L m |φ〉 = ˜L m |φ〉 = 0 m > 0, (2.98))(L 0 − a) |φ〉 =(˜L0 − a |φ〉 = 0. (2.99)The sec<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong> is simply the mass-shell c<strong>on</strong>diti<strong>on</strong>. The first c<strong>on</strong>diti<strong>on</strong> can be understoodas the quantum translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the classical vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy-momentumtensor T αβ . Quantum mechanically, our first guess would be to impose thatT αβ |φ〉 = 0, (2.100)however this would imply that all operators annihilate physical states. This would leaveus a little embarassed, as little physics would survive. The next best thing we can do isdemand that〈φ|T αβ |φ〉 = 0. (2.101)Remembering that in the mean time we normal-ordered our Virasoro generators, we seethat this time around the lowering operators can destroy |φ〉, while the raising operatorscan destroy 〈φ|, which leaves a fully c<strong>on</strong>sistent spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> physical states. This isanalogous to the statement expressed in Eq. 2.98.6 Basically, we are simply rewriting L 0 = `12P: α −n · α n : +a´ as L 0 − a = 1 2P: α −n · α n :.


CHAPTER 2. BOSONIC STRINGS 29Moving <strong>on</strong>, we see that for the closed string, Eq. 2.99 can be combined into(L 0 − ˜L 0)|φ〉 = 0, (2.102)a c<strong>on</strong>diti<strong>on</strong> which bears the name <str<strong>on</strong>g>of</str<strong>on</strong>g> level-matching c<strong>on</strong>diti<strong>on</strong>, since it implies that thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> left- and right-movers should be equal. To see this, we identifyN = ∑ α −n · α n ; Ñ = ∑n>0n>0˜α −n · ˜α n , (2.103)and recognize N and Ñ as variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the well known number operator from QFT. Wealso see that Eq. 2.99 tells us that for a physical open string state( )∑α ′ M 2 |φ〉 = α −n · α n − a |φ〉. (2.104)n>0For the open string vacuum, this relati<strong>on</strong> becomesα ′ M 2 |0〉 = −a|0〉,or in other words, the mass squared <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string vacuum is proporti<strong>on</strong>al to −a.For the closed string vacuum, this becomes)α ′ M 2 |0〉 = 2(N + Ñ − 2a = −4a|0〉.This raises our curiosity as to what the value <str<strong>on</strong>g>of</str<strong>on</strong>g> a is exactly, because if it is strictlypositive, we have a serious problem. In order to find out what a is equal to, it ishowever much more c<strong>on</strong>venient to switch to a different gauge.2.6.4 Light-c<strong>on</strong>e gauge quantizati<strong>on</strong> and spectrumIn order to get started, we introduce light-c<strong>on</strong>e coordinates in space-time. To this end,we defineX ± = √ 1 (X 0 ± X D−1) . (2.105)2The other D − 2 coordinates remain unchanged, and are denoted by X i with i ∈{1, . . .,D − 2}. The inner product now takes <strong>on</strong> the formX · Y = X µ Y µ = −X + Y − − X − Y + + ∑ iX i Y i . (2.106)Next, we notice that by gauge fixing h αβ = η αβ , we actually did not use all thefreedom we had at our disposal. In fact, after performing this gauge fix, so-calledresidual gauge freedom lurks around the corner, which is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact thattransformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form∂ α ξ β + ∂ β ξ α = Λη αβ , (2.107)


CHAPTER 2. BOSONIC STRINGS 30World SheettheoryC<strong>on</strong>formal GaugeQuantizeLigth-C<strong>on</strong>eGaugeVirasoroC<strong>on</strong>straintsQuantize<str<strong>on</strong>g>String</str<strong>on</strong>g>sFigure 2.1: C<strong>on</strong>formal vs. light-c<strong>on</strong>e quantizati<strong>on</strong>.with ξ α an infinitesimal reparameterizati<strong>on</strong> parameter and Λ and infinitesimal Weylrescaling parameter, leave our physics, and in particular our previous gauge choice,unchanged. To see this, first note that we could rewrite the local world sheet symmetries(Eqs. 2.7 and 2.8) in infinitesimal form asδh αβ = ξ γ ∂ γ h αβ − ∂ γ ξ α h γβ − ∂ γ ξ β h αγ , (2.108)δh αβ = Λh αβ , (2.109)where the first line represents an infinitesimal reparameterizati<strong>on</strong>, and the sec<strong>on</strong>d linean infinitesimal Weyl rescaling. Replacing h αβ with η αβ , we see that we could chooseparameters such that Eq. 2.107 is indeed satisfied, i.e. we could perform a reparameterizati<strong>on</strong>that in fact has the same effect as a Weyl rescaling, and then cancel thisrescaling by applying the “inverse” Weyl rescaling.Defining ξ ± = ξ 0 ± ξ 1 , and using our old friends σ ± , Eq. 2.107 tells us thatwhich can be solved by stating that∂ + ξ + = ∂ − ξ + = 0,∂ − ξ − = ∂ + ξ − = 0,ξ + = ξ + ( σ +) ; ξ − = ξ − ( σ −) . (2.110)This implies that this residual gauge freedom allows us to apply reparameterizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>the formσ ± −→ ˜σ ± ( σ ±) , (2.111)and in particular τ = 1 2 (σ+ + σ − ) and σ = 1 2 (σ+ − σ − ) get transformed according to


CHAPTER 2. BOSONIC STRINGS 31the general form˜τ = 1 +[˜σ ( σ +) + ˜σ − ( σ −)] ,2(2.112)˜σ = 1 +[˜σ ( σ +) − ˜σ − ( σ −)] .2(2.113)You might be w<strong>on</strong>dering why this is any reas<strong>on</strong> to get excited about, but. . . Lookingback at Eq. 2.28, remembering that we got there from Eq. 2.27, and realizing that weare dealing with the “inverse” situati<strong>on</strong> here, 7 we c<strong>on</strong>clude that ˜τ may be any arbitrarysoluti<strong>on</strong> to the wave equati<strong>on</strong>(∂2σ − ∂τ2 )˜τ = 0. (2.114)This is great news, because we know from the c<strong>on</strong>formal gauge Virasoro c<strong>on</strong>straintexpressed in Eq. 2.67 that the X µ ’s satisfy this very equati<strong>on</strong>, and hence we can choose˜τ to be proporti<strong>on</strong>al to any <str<strong>on</strong>g>of</str<strong>on</strong>g> the X µ ’s. In particular, we can chooseor if you prefer,˜τ = 1l 2 sp + (X + (˜σ, ˜τ) − x +) , (2.115)X + (˜σ, ˜τ) = x + + l 2 sp +˜τ,which corresp<strong>on</strong>ds to setting the α + n (and ˜α + n ) to 0 for n ≠ 0 in the mode expansi<strong>on</strong> forX + . Since the oscillators for X + have been put to 0 this way, this also means we canno l<strong>on</strong>ger excite our string in that directi<strong>on</strong>! But that is not all. Since all comp<strong>on</strong>ents<str<strong>on</strong>g>of</str<strong>on</strong>g> T αβ are zero anyway, we can combine them and rewrite the Virasoro c<strong>on</strong>straints inEqs. 2.66 and 2.67 as0 = T 00 + T 11 + T 01 + T 10 = Ẋ2 + 2Ẋ · X′ + X ′2 =(Ẋ + X′ ) 2, (2.116)0 = T 00 + T 11 − T 01 − T 10 = Ẋ2 − 2Ẋ · X′ + X ′2 =(Ẋ − X′ ) 2. (2.117)In light-c<strong>on</strong>e gauge this becomes(Ẋ ± X′ ) 2= Ẋ 2 + X ′2 ± 2Ẋ · X′= −2Ẋ+ Ẋ − + Ẋi Ẋ i − 2X +′ X −′ + X i′ X ′ i∓ 2Ẋ+ X −′ ∓ 2X +′ Ẋ − ± 2Ẋi X ′ i0 = −2l 2 sp + Ẋ − +(Ẋi ) 2+(Xi′ ) 2∓ 2l2s p + X −′ ± 2Ẋi X ′ i⇓[Ẋ− ± X −′] = 12l 2 sp + (Ẋi ± X i′) 2. (2.118)7 More specifically, we have an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the same form as Eq. 2.27, and thus the soluti<strong>on</strong>s to thisequati<strong>on</strong> will be <str<strong>on</strong>g>of</str<strong>on</strong>g> the same form as Eq. 2.28.


CHAPTER 2. BOSONIC STRINGS 32This gives us two equati<strong>on</strong>s relating the mode expansi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> X − to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the X i ’s, arelati<strong>on</strong> that can be solved explicity, and for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string the result is(αn − = 1 1l s p + 2D−2∑∞∑i=1 m=−∞: α i n−mα i m : −aδ n,0). (2.119)For the closed string, an analogous relati<strong>on</strong> for ˜α n − exists. Notice the ordering c<strong>on</strong>stanta again. The important point to note, is that now there are no independent oscillatorsleft for X − , so here again, we can no l<strong>on</strong>ger excite our string in the X − directi<strong>on</strong>! Thatis very good news indeed, because looking back at Eq. 2.56, and keeping in mind thatdue to our freshly introduced light-c<strong>on</strong>e coordinates our metric has somehow changed abit, 8 we now see that we are no l<strong>on</strong>ger able to create ghost states, even if we wanted todo so. In other words, the light-c<strong>on</strong>e gauge is manifestly free <str<strong>on</strong>g>of</str<strong>on</strong>g> ghost states.Let us now turn to the mass operator. The generic expressi<strong>on</strong> M 2 = −p µ p µ nowbecomesD−2∑M 2 = −p µ p µ = 2p + p − − p 2 i . (2.120)In order to work this out some more, let us focus <strong>on</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> open (Neumann) strings,and recall that in that caseα µ 0 = l sp µ .Hence, using p − = (l s ) −1 α0 − and Eq. 2.119, we compute that{ [(D−2∑D−2)2p + p − − p 2 i = 2p+ 1 ∑ ∑l s l s p + α−nα i ni + 1 2i=1i=1where we redefinedD−2∑− 1 ls2 i=1[(= 2 D−2 ∑ ∞∑ls2 i=1 n=1(αi0) 2,α i −nα i nn>0)− a],i=1D−2∑+∞∑i=1 n=−∞(αi0) 2]M 2 = 2 ls2 (N − a), (2.121)N =D−2∑i=1 n=1∞∑α−nα i n.iWe see that the mass-shell c<strong>on</strong>diti<strong>on</strong> in light-c<strong>on</strong>e gauge is identical to the <strong>on</strong>e in c<strong>on</strong>formalgauge (Eq. 2.104), except for the fact that we now simply have two directi<strong>on</strong>s lessin which we can excite our string. Hence, our groundstate still has α ′ M 2 |0〉 = −a|0〉.8 More specifically, we get g +− = g −+ = −1, and g ij = δ ij for i, j ∈ {1, . . . , D − 2}. But the tw<strong>on</strong>egatively valued entries corresp<strong>on</strong>d to directi<strong>on</strong>s in which we have no oscillators, and hence we can nol<strong>on</strong>ger create ghosts.− a}


CHAPTER 2. BOSONIC STRINGS 33If we now take a look at the first excited state <str<strong>on</strong>g>of</str<strong>on</strong>g> our string, noting again that in thelight-c<strong>on</strong>e gauge we can <strong>on</strong>ly excite transversely, we notice that this state,α i −1|0〉, (2.122)should bel<strong>on</strong>g to a (D − 2)-comp<strong>on</strong>ent vector representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rotati<strong>on</strong> groupSO(D − 2). The mass <str<strong>on</strong>g>of</str<strong>on</strong>g> this state equalsα ′ M 2 ( α i −1|0〉 ) = (1 − a) ( α i −1|0〉 ) . (2.123)But, a state bel<strong>on</strong>ging to a vector representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SO(D −2) should, if Lorentz invarianceis c<strong>on</strong>served, be massless.Since we want Lorentz invariance to be c<strong>on</strong>served, we areforced to “choose” a = 1.As a b<strong>on</strong>us, now that we know the value <str<strong>on</strong>g>of</str<strong>on</strong>g> a, we can determine, be it in a n<strong>on</strong>rigourousway, the dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. C<strong>on</strong>sider the n<strong>on</strong>-normal-ordered operatorL 0 = 1 ∑ D−2 ∑ +∞2 i=1 −∞ αi −nαn. i Up<strong>on</strong> applying the normal-ordering prescripti<strong>on</strong>, we pickup a normal-ordering c<strong>on</strong>stant because <str<strong>on</strong>g>of</str<strong>on</strong>g> the commutators <str<strong>on</strong>g>of</str<strong>on</strong>g> the modes,12D−2∑+∞∑i=1 −∞: α i −n · α i n :=D−2∑∑α−n i · αn i + 1 2i=1 n>0D−2∑i=1( )αi 2 1∞0 −2 (D − 2) ∑n, (2.124)and as we have just found out, this c<strong>on</strong>stant should equal −1 (remember, we wrote“L 0 − a”). The trick to apply in order to obtain this result, is to use the Riemann zetafuncti<strong>on</strong>,∞∑ζ (s) = n −s , (2.125)n=1defined for any s ∈. The nice thing about this functi<strong>on</strong> is that it has an analyticalc<strong>on</strong>tinuati<strong>on</strong> for s = −1, whereζ (−1) = − 112 ,which is exactly what we need. Using this, we find that−1 = 1 ∞ 2 (D − 2) ∑nn=1= − 1 (D − 2)24⇓n=1D = 26. (2.126)Again, this is <str<strong>on</strong>g>of</str<strong>on</strong>g> course far from being a rigourous pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that space-time should be 26-dimensi<strong>on</strong>al, but it does make it seem very plausible. Readers who demand a rigourouspro<str<strong>on</strong>g>of</str<strong>on</strong>g> are referred to e.g. §2.3.3 in [9], where the so-called no-ghost theorem gets proven.Still other ways exist, am<strong>on</strong>gts which we note <strong>on</strong>e that cleverly exploits the Virasoroalgebra, which can be found e.g. <strong>on</strong> p.44-46 in [2].At last, we are now in a positi<strong>on</strong> to analyse the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic string.


CHAPTER 2. BOSONIC STRINGS 34<str<strong>on</strong>g>Open</str<strong>on</strong>g> string spectrumAs always, we c<strong>on</strong>struct the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory by acting <strong>on</strong> the ground state withthe raising operators. Before doing this, we remind ourselves that the groundstate hadM 2 equal toα ′ M 2 |0〉 = −a|0〉 = −1|0〉. (2.127)Hence, we see that our groundstate is in fact a tachy<strong>on</strong>. This, to say the least, is badnews, but there is not much we can do about it. 9Next, we turn to the first excited state, generated by acting <strong>on</strong>ce up<strong>on</strong> the groundstatewith a raising operator,α i −1|0〉, (2.128)and as we saw earlier, this should be a massless particle. Since there are 24 raisingoperators, we find ourselves with 24 massless states.Going <strong>on</strong>e step further, we find several ways to create the next state, namelyα−2|0〉 i or α−1α i j −1 |0〉. (2.129)Both ways give rise to a massive particle with α ′ M 2 = 1. The first possibility clearlyleads to 24 different states. Recalling that the “n<strong>on</strong>-zero mode” operators commute, thesec<strong>on</strong>d <strong>on</strong>e amounts to24 2 − 242+ 24 =24 (24 − 1) + 482=24 · 252= 300 states, (2.130)so in total, we find ourselves with 324 states with α ′ M 2 = 1.To c<strong>on</strong>struct the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum, which is infinite, <strong>on</strong>e just has to carry <strong>on</strong>this game as l<strong>on</strong>g as <strong>on</strong>e wishes. This is however a nice time to introduce a nice littletool that allows <strong>on</strong>e to easily compute the number <str<strong>on</strong>g>of</str<strong>on</strong>g> states at each and every masslevel, which resp<strong>on</strong>ds to the name <str<strong>on</strong>g>of</str<strong>on</strong>g> generating functi<strong>on</strong>. As an appetizer, c<strong>on</strong>sider theidentity1+∞∑1 − x = 1 + x + x2 + x 3 + · · · = x n . (2.131)n=0In this case, we see that expanding 11−xgenerates all the terms 1 + x + . . .. We can putthis knowledge to our advantage by c<strong>on</strong>sidering how we c<strong>on</strong>struct open string states.The ground state is unique. Then we act <strong>on</strong> the ground state with raising operators, andwe have 24 sets <str<strong>on</strong>g>of</str<strong>on</strong>g> these. For the first excited level, we have 24 choices corresp<strong>on</strong>dingto the 24 α−1 i operators. Going <strong>on</strong>e step further, we also need to c<strong>on</strong>sider the αi −2operators, even <strong>on</strong>e step further also α−3 i and so <strong>on</strong>. But if we c<strong>on</strong>sider all the modesseparately for a sec<strong>on</strong>d, and c<strong>on</strong>sidering <strong>on</strong>ly <strong>on</strong>e directi<strong>on</strong>, say i = 1, we see that theα−1 1 operator will give rise to <strong>on</strong>e level <strong>on</strong>e state, <strong>on</strong>e level two state ((α1 −1 )2 ), <strong>on</strong>e levelthree state, etc. Assuming x represents a state, and that the exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> x corresp<strong>on</strong>ds9 An interpretati<strong>on</strong> for this has been found as the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> D25-<strong>branes</strong> into closed strings, but we willcome back to this in due time.


CHAPTER 2. BOSONIC STRINGS 35to its mass level (0 = vacuum, . . .), we see that this is in fact encoded in Eq. 2.131. Allterms have coefficient <strong>on</strong>e, expressing that we have exactly <strong>on</strong>e state at each mass level.The mode two operator α−2 1 will give <strong>on</strong>e level two state, <strong>on</strong>e level four, etc. Thiscan be summarized into1+∞∑1 − x 2 = 1 + x2 + x 4 + x 6 + · · · = x 2n . (2.132)n=0To create states from the vacuum state by combining raising operators <str<strong>on</strong>g>of</str<strong>on</strong>g> differentmode number, we need to multiply them, e.g. α−1 1 α1 −2 |0〉. Accounting for the fact thatwe have an infinite set <str<strong>on</strong>g>of</str<strong>on</strong>g> them, this suggests the generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the above reas<strong>on</strong>ingto( ) ( ) ( )1 1 1+∞ ∏ 1×1 − x 1 − x 2 ×1 − x 3 × · · · =1 − xn. (2.133)n=1Since we have <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> these operators in all 24 transverse directi<strong>on</strong>s, we should accountfor this by applying the straightforward modificati<strong>on</strong>( ) 1 24 ( ) 1 24 ( ) 1 24 +∞ ∏×1 − x 1 − x 2 ×1 − x 3 × · · · =n=11(1 − x n )24.(2.134)Expanding this (which takes some time doing it by hand, but lucky for us we havecomputers to do that stuff for us 10 ), we find+∞ ∏n=11(1 − x n ) 24 = 1 + 24x + 324x2 + 3200x 3 + . . . , (2.135)which indeed c<strong>on</strong>firms our earlier result that we have <strong>on</strong>e groundstate, 24 massless statesand 324 level two states, and tells us that we would have found 3200 level three statesif we would have g<strong>on</strong>e <strong>on</strong>. Note that if we would prefer that the exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> x wouldrepresent the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the state expressed in units <str<strong>on</strong>g>of</str<strong>on</strong>g> a, we could achieve this by upgradingour generating functi<strong>on</strong> toClosed string spectrum1+∞ ∏ 1x (1 − xn=1n ) 24 = 1x−1 + 24x 0 + 324x 1 + 3200x 2 + . . .. (2.136)The closed string has two sectors: left-movers and right-movers. The level-matchingc<strong>on</strong>diti<strong>on</strong> Eq. 2.102 however tells us we have to excite both sectors as many times.Other than that, the spectrum is obtained in exactly the same way, and we again finda tachy<strong>on</strong> in the ground state,α ′ M 2 |0〉 = −4|0〉. (2.137)10 In Mathematica, <strong>on</strong>e can use the line “Series[Product[(1 − x n ) −24 , {n, 1, y}], {x, 0, z}]” and replacey and z by integers <str<strong>on</strong>g>of</str<strong>on</strong>g> choice with y ≥ z to obtain the right accuracy at level z in the expansi<strong>on</strong>.


CHAPTER 2. BOSONIC STRINGS 36For the first excited level though, we now have many more possibilities, since thesestates are given byα−1˜α i j −1 |0〉, (2.138)and both excitati<strong>on</strong>s are essentialy independent. This results in 24 2 = 576 masslessstates. However, the fact that these excitati<strong>on</strong>s are indepent has a huge c<strong>on</strong>sequence,namely it allows us to decompose the states in three distinct parts as follows:[α−1α i j −1 |0〉 = α[i −1˜αj] −1 |0〉 + α −1˜αj) (i−1 − 1D − 2 δij α−1˜α k −1k]|0〉+ 1D − 2 δij α k −1˜α k −1|0〉, (2.139)where [...] stand for anti-symmetrizati<strong>on</strong> and (...) stand for symmetrizati<strong>on</strong>. Thus we obtainan anti-symmetric part, a traceless symmetric part, and a part that is proporti<strong>on</strong>alto the unit matrix. And now comes the moment you have all been waiting for: thegravit<strong>on</strong> has entered the building! Admittedly, we are skipping a few steps here, butwe can nevertheless already identify the traceless symmetric part <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 2.139 with amassless spin two particle described by a traceless symmetric rank two tensor, usuallydenoted g µν . It turns out though that if <strong>on</strong>e would investigate how this particle couplesto matter and to itself, it does indeed behave like a gravit<strong>on</strong> (cfr. [14], Chapter 15).Furthermore, we also find ourselves in the lovely company <str<strong>on</strong>g>of</str<strong>on</strong>g> a massless antisymmetricrank two tensor, which is called the Kalb-Ram<strong>on</strong>d field and denoted B µν , and a masslessscalar which resp<strong>on</strong>ds to the name dilat<strong>on</strong> field and denoted Φ, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which will playvery important roles later <strong>on</strong>.Note that in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the closed string, the generating functi<strong>on</strong> trick describedfor the open string case does not apply. The origin for this lies in the level matchingc<strong>on</strong>diti<strong>on</strong>, Eq. 2.102, combined with the commutators for the modes, Eq. 2.53. The commutati<strong>on</strong>relati<strong>on</strong>s show that an m-level operator weights more than an (n < m)-leveloperator, resulting in the fact that <strong>on</strong>e cannot simply write down an elegant generatingfuncti<strong>on</strong> for this situati<strong>on</strong>, but has to verify the level-matching <strong>on</strong> a level-per-level basis.2.7 Oriented vs. unoriented stringsWe note in passing that <strong>on</strong>e could define a projecti<strong>on</strong> operati<strong>on</strong> that projectsσ −→ π − σ, (2.140)i.e. it flips all points <strong>on</strong> the string around the centerpoint. The c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> thisoperati<strong>on</strong> for the mode expansi<strong>on</strong>s isopen strings: α µ m ←→ (−1) m α µ m, (2.141)closed strings: α µ m ←→ ˜α µ m. (2.142)<str<strong>on</strong>g>String</str<strong>on</strong>g>s unaffected by this operati<strong>on</strong> are called unoriented, in c<strong>on</strong>trast to their brethrenwho do feel the operati<strong>on</strong> and are called oriented.


CHAPTER 2. BOSONIC STRINGS 37The first relati<strong>on</strong> amounts to saying that the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the unoriented open stringc<strong>on</strong>tains <strong>on</strong>ly states with even mode number. In particular, it c<strong>on</strong>tains no phot<strong>on</strong>(represented by the massless states).An important c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d relati<strong>on</strong> is that as far as the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g>the unoriented closed bos<strong>on</strong>ic string is c<strong>on</strong>cerned, <strong>on</strong>ly states symmetric in α and ˜αsurvive, implying that the antisymmetric B µν tensor does not. Giving away a spoiler bysaying that strings can be shown to acquire charge under the B µν field, this and previousparagraphs show that unoriented theories are vastly different from oriented <strong>on</strong>es.In this document, we will <strong>on</strong>ly c<strong>on</strong>sider oriented theories.2.8 SummaryIn this chapter, we started out by c<strong>on</strong>sidering the simplest possible bos<strong>on</strong>ic string acti<strong>on</strong>,namely the Nambu-Goto acti<strong>on</strong>. We noted that it was difficult to quantize, and sointroduced a world sheet metric so as to be able to switch to the Polyakov acti<strong>on</strong>. Wethen analysed the symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> the Polyakov acti<strong>on</strong>, which allowed us to choose agauge in which deriving the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic fields was particularlyeasy. Demanding that the boundary term <str<strong>on</strong>g>of</str<strong>on</strong>g> the varied acti<strong>on</strong> vanish, we found thatit was possible to impose several boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> our string, which gave birthto different types <str<strong>on</strong>g>of</str<strong>on</strong>g> strings. By their nature, these strings, and more specifically thesoluti<strong>on</strong>s to their equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, allowed to be Fourier decomposed. This led to acan<strong>on</strong>ical quantizati<strong>on</strong> in which the classical modes where promoted to quantum raisingand lowering operators. However, there was an ordering ambuigity to be solved, andthis appeared to be simpler to do in the light-c<strong>on</strong>e gauge. Switching to this gauge alsoallowed us to derive the number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time dimensi<strong>on</strong>s in order for the theory to beLorentz invariant, and finally, to easily c<strong>on</strong>struct the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic string(s).All this been said, what we have seen in this chapter is <strong>on</strong>ly a minuscule part <str<strong>on</strong>g>of</str<strong>on</strong>g> whatbos<strong>on</strong>ic string theory is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g>. One could write an entire book about the bos<strong>on</strong>icstring al<strong>on</strong>e, an endeavour which has been succesfully accomplished most notably byPolchinski [18].


Chapter 3Superstrings“One <str<strong>on</strong>g>of</str<strong>on</strong>g> the problems has to do with the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> lightand the difficulties involved in trying to exceed it. Youcan’t. Nothing travels faster than the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light withthe possible excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bad news, which obeys it ownspecial laws. The Hingefreel people <str<strong>on</strong>g>of</str<strong>on</strong>g> Arkinto<str<strong>on</strong>g>of</str<strong>on</strong>g>le Minordid try to build spaceships that were powered by badnews but they didn’t work particularly well and were soextremely unwelcome whenever they arrived anywherethat there wasn’t really any point in being there.”Douglas AdamsHitchhiker’s Guide to the GalaxyThe bos<strong>on</strong>ic string is a versatile object, but as things usually go with prototypes, it isnot exactly there yet. It mainly has two flaws. First, its spectrum always c<strong>on</strong>tains atachy<strong>on</strong>, something we do not exactly appreciate (Adams seems to rightly suggest it isthe quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> bad news). Sec<strong>on</strong>d, it is purely bos<strong>on</strong>ic, meaning it can not possiblydescribe fermi<strong>on</strong>s. Being that fermi<strong>on</strong>s in large part make up the world as we know it,this is <str<strong>on</strong>g>of</str<strong>on</strong>g> course a serious issue.So the questi<strong>on</strong> now becomes how we can possibly alter bos<strong>on</strong>ic string theory suchthat it also incorporates fermi<strong>on</strong>s. The answer turns out to be to introduce a new symmetrycalled supersymmetry, that relates, at least <strong>on</strong> some level, bos<strong>on</strong>s and fermi<strong>on</strong>s.Using this symmetry, <strong>on</strong>e can expand the bos<strong>on</strong>ic string acti<strong>on</strong> with an extra fermi<strong>on</strong>icterm, thus creating what is called the superstring. As in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic string,the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this superstring will lead to several possible boundary c<strong>on</strong>diti<strong>on</strong>s,resulting in different types <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings. Possibilities to combine boundaryc<strong>on</strong>diti<strong>on</strong>s for open strings will however increase, and have c<strong>on</strong>siderable c<strong>on</strong>sequencesfor the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> said strings, resulting in different types, or flavours, <str<strong>on</strong>g>of</str<strong>on</strong>g> superstringtheories.38


CHAPTER 3. SUPERSTRINGS 39First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, it should be pointed out that two main methods exist to introducesupersymmetry to the bos<strong>on</strong>ic string theory. The first method is called the “Ram<strong>on</strong>d-Neveu-Schwarz” (RNS) method, and starts from a positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> making the world sheetsupersymmetric. The sec<strong>on</strong>d method is called the “Green-Schwarz” (GS) method, andstarts from a positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> making space-time supersymmetric. Both methods have theiradvantages and disadvantages, however the sec<strong>on</strong>d <strong>on</strong>e has the drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> being vastlymore technical and hard to quantize. Therefore, we will disregard it completely in thisdocument, and will c<strong>on</strong>centrate instead <strong>on</strong> the RNS formalism. Both formalisms areequivalent for a 10-dimensi<strong>on</strong>al space-time, which turns out to be the critical dimensi<strong>on</strong>for superstring theory. Parties interested in the GS formalism are referred to e.g.Chapter 5 in both [2] and [9].We will not be c<strong>on</strong>cerned with specific details and applicati<strong>on</strong>s, but rather focus <strong>on</strong>presenting the method that allows <strong>on</strong>e to write a SUSY string acti<strong>on</strong>, what this entailsfor the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> said strings, and how this results in different superstring theories.3.1 Superstring acti<strong>on</strong>But let us start at the beginning. If we want to include fermi<strong>on</strong>s in our theory, the firstthing we need is something that behaves like a fermi<strong>on</strong>. To this end, we introduce fieldsψ α µ with µ ∈ {0, . . .,D − 1} and α ∈ {0, 1}, which are physical objects that behave liketwo-comp<strong>on</strong>ent spinors <strong>on</strong> the world sheet (hence their spinor index α), and as vectorsin D-dimensi<strong>on</strong>al space-time (hence their Lorentz index µ). Note that we introduceobjects that behave as fermi<strong>on</strong>s <strong>on</strong> the world sheet. We do not yet have objects thatbehave as fermi<strong>on</strong>s in spacetime, but we will come to that so<strong>on</strong> enough.If we want to add these new fields to our existing bos<strong>on</strong>ic string acti<strong>on</strong>, opti<strong>on</strong>s arelimited as to what we can do. Since we are assuming a supersymmetric relati<strong>on</strong> betweenthe bos<strong>on</strong>ic fields X µ and ψ µ , give by the simultaneous transformati<strong>on</strong>s{δX µ = ¯ǫψ µ ,δψ µ = ρ α ∂ α X µ (3.1)ǫ,in which ǫ represents an infinitesimal parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> this supersymmetry transformati<strong>on</strong>,we should <str<strong>on</strong>g>of</str<strong>on</strong>g> course add as many fermi<strong>on</strong>ic fields as we had bos<strong>on</strong>ic fields, meaning <strong>on</strong>efor each space-time dimensi<strong>on</strong>. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> the acti<strong>on</strong> that imposes itself is that <str<strong>on</strong>g>of</str<strong>on</strong>g> astandard Dirac acti<strong>on</strong> for massless fermi<strong>on</strong>s, hence the superstring acti<strong>on</strong> readsS = − 1 ∫2πα ′ d 2 σ ( ∂ α X µ ∂ α X µ + ¯ψ µ ρ α )∂ α ψ µ . (3.2)This acti<strong>on</strong> is symmetric under Eq. 3.1, and in it, ρ α represents the two-dimensi<strong>on</strong>alDirac matrices, obeying the Clifford algebra 1 defined by{ρ α , ρ β} = 2η αβ½2×2. (3.3)1 See e.g. Chapter 3 in [22].


CHAPTER 3. SUPERSTRINGS 40In D dimensi<strong>on</strong>s, and for D even, there are 2 ⌊D/2⌋ <str<strong>on</strong>g>of</str<strong>on</strong>g> them. 2 In two dimensi<strong>on</strong>s, <strong>on</strong>e canchoose a real, or Majorana, representati<strong>on</strong>, and we choose[ ][ ]ρ 0 0 −1=; ρ 1 0 1= . (3.4)1 01 0The spinors ψ µ also are real, and hence have two (real) comp<strong>on</strong>ents, which, in anticipati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> light-c<strong>on</strong>e coordinates, we denote[ψ µ ψµ]−=ψ µ . (3.5)+We further define¯ψ = ψ † β ; β = iρ 0 . (3.6)Note that since ψ µ is real, ψ † = ψ T . It should further be pointed out that the fields ψ µanticommute, as they are expected to, so{ψ µ , ψ ν } = 0. (3.7)This is <strong>on</strong>ly true in the classical theory though. Although we will not go into this, wementi<strong>on</strong> that quantum mechanically this relati<strong>on</strong> gets upgraded to{ψµA (σ, ( τ),ψν B σ ′ , τ )} = πη µν δ AB δ ( σ − σ ′) . (3.8)We see that at first sight, we are c<strong>on</strong>fr<strong>on</strong>ted with the same ghost problem we had for thebos<strong>on</strong>ic string. In order to eliminate these, <strong>on</strong>e has to introduce supersymmetry, whichresults in an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Virasoro algebra (called the super-Virasoro algebra), inturn leading to altered super-Virasoro c<strong>on</strong>straint equati<strong>on</strong>s, which will do the trick.For the sake <str<strong>on</strong>g>of</str<strong>on</strong>g> completeness, we menti<strong>on</strong> that while we introduced, or even imposed,supersymmetry by hand, <strong>on</strong>e could also define a superspace, which amounts to addinganticommuting coordinates to an arbitrary space-time. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this is that inthis formulati<strong>on</strong> supersymmetry if manifest. For our purposes however, this does notmake any difference for the results we want to obtain, and would <strong>on</strong>ly needlessly makethings more complicated. Interested parties are referred to e.g. [9], §4.1.2.3.2 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>We first <str<strong>on</strong>g>of</str<strong>on</strong>g> all note that the bos<strong>on</strong>ic term in the string acti<strong>on</strong> is unaffected by thepresence <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong>ic term. Hence, nothing will change in the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>,and subsequent spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic part <str<strong>on</strong>g>of</str<strong>on</strong>g> the string. This allows us to single outthe fermi<strong>on</strong>ic part <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>, and c<strong>on</strong>sider it separately. Let us denote this partbyS F = − 1 ∫2πα ′ d 2 σ ( ¯ψµ ρ α )∂ α ψ µ . (3.9)2 For D uneven there is <strong>on</strong>e more, but we will not be c<strong>on</strong>fr<strong>on</strong>ted with this possibility.


CHAPTER 3. SUPERSTRINGS 41Using Eqs. 3.4, 3.5 and 3.6, and dropping the Lorentz index for c<strong>on</strong>venience, we findthat(¯ψρ α ∂ α ψ = i [ψ − ψ + ] ( ρ 0) [ ]2 ∂τ ψ −+ [ψ∂ τ ψ − ψ + ] ( ρ 0 · ρ 1) [ ])∂ σ ψ −,+ ∂ σ ψ +( [ ] [ ])−∂τ − ∂= i [ψ − ψ + ] σ 0 ψ−,0 −∂ τ − ∂ σ ψ += −i (ψ − (∂ τ + ∂ σ ) ψ − + ψ + (∂ τ − ∂ σ ) ψ + ),= −2i (ψ − ∂ + ψ − + ψ + ∂ − ψ + ), (3.10)where in the last line we have used Eqs. 2.22 and 2.23. Reinserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result in Eq.3.9 leaves us withS F = i ∫πα ′ d 2 σ (ψ − ∂ + ψ − + ψ + ∂ − ψ + ) , (3.11)which lends itself nicely to deriving the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ + and ψ − . Varying thisacti<strong>on</strong>, we find thatδS F = i ∫ ∫ ππα ′ dτ dσ [(δψ − ) ∂ + ψ − + ψ − ∂ + (δψ − ) + (δψ + ) ∂ − ψ + + ψ + ∂ − (δψ + )] ,0= i ∫ ∫ ππα ′ dτ dσ[−2 {(∂ + ψ − ) δψ − + (∂ − ψ + ) δψ + }0+ {∂ + (ψ − δψ − ) + ∂ − (ψ + δψ + )}], (3.12)in which we have used the anticommutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinors, and from which we immediatlysee that∂ + ψ − = 0 = ∂ − ψ + , (3.13)which are the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the fermi<strong>on</strong>ic fields.3.3 <str<strong>on</strong>g>Bound</str<strong>on</strong>g>ary c<strong>on</strong>diti<strong>on</strong>s and expansi<strong>on</strong>sEq. 3.12 still leaves us with boundary terms, namelyδS F = i ∫ ∫ ππα ′ dτ dσ[∂ τ {(ψ − δψ − ) + (ψ + δψ + )}0+ ∂ σ {(ψ − δψ − ) − (ψ + δψ + )}]. (3.14)We disregard the ∂ τ term as usual, which leaves <strong>on</strong>lyδS F = i ∫πα ′ dτ {[(ψ − δψ − ) − (ψ + δψ + )] σ=π− [(ψ − δψ − ) − (ψ + δψ + )] σ=0} . (3.15)This should <str<strong>on</strong>g>of</str<strong>on</strong>g> course vanish, and this can be achieved, as in the bos<strong>on</strong>ic case, byimposing different c<strong>on</strong>diti<strong>on</strong>s, leading to two different “sectors.” Different combinati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> these sectors will eventually lead to different types <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings, open as well asclosed.


CHAPTER 3. SUPERSTRINGS 423.3.1 Closed stringsWe start by c<strong>on</strong>sidering the possibility thatψ + (σ, τ) = ±ψ + (σ + π, τ), (3.16)ψ − (σ, τ) = ±ψ − (σ + π, τ). (3.17)Note that these suppositi<strong>on</strong>s imply that the same relati<strong>on</strong>s also apply to the variati<strong>on</strong>sδψ ± . Furthermore, we see that if the + sign is chosen, the functi<strong>on</strong>s are periodic andare said to obey Ram<strong>on</strong>d boundary c<strong>on</strong>diti<strong>on</strong>s (R), if − is chosen they are antiperiodicand obey Neveu-Schwarz boundary c<strong>on</strong>diti<strong>on</strong>s (NS). ψ + corresp<strong>on</strong>ds to left-movers, ψ −to right-movers, and the periodicity c<strong>on</strong>diti<strong>on</strong> for them can be chosen independantly,resulting in four different possible combinati<strong>on</strong>s, namely, choosing to write them as(left-movers,right-movers), (NS,NS), (NS,R), (R,NS) and (R,R).To realize these different boundary c<strong>on</strong>diti<strong>on</strong>s, the following expansi<strong>on</strong>s can be applied:3 R left-movers: ψ + (σ, τ) = ∑ m∈˜dµ m e −2im(τ+σ) , (3.18)R right-movers: ψ − (σ, τ) = ∑ n∈d µ ne −2in(τ−σ) , (3.19)NS left-movers:ψ + (σ, τ) = ∑˜bµ r e −2ir(τ+σ) , (3.20)NS right-movers:r∈+ 1 2ψ − (σ, τ) = ∑b µ se −2is(τ−σ) . (3.21)s∈+ 12We see that the (anti)periodicity is reflected in the (half-)integer summing indices. Fromhere<strong>on</strong>, we will follow the c<strong>on</strong>venti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using indices (m, n) for integer numbers, and(r, s) for half-integer numbers.3.3.2 <str<strong>on</strong>g>Open</str<strong>on</strong>g> stringsWhen c<strong>on</strong>sidering open strings, the names Ram<strong>on</strong>d and Neveu-Schwarz boundary c<strong>on</strong>diti<strong>on</strong>sare still used, but they corresp<strong>on</strong>d to different c<strong>on</strong>diti<strong>on</strong>s. Nevertheless, they arevery similar, explaining the double usage.Since now the positi<strong>on</strong>s (σ = 0) and (σ = π) corresp<strong>on</strong>d to two different and a prioriunrelated positi<strong>on</strong>s <strong>on</strong> the string, the two terms in Eq. 3.15 should vanish seperately.Hence, we see that{ψ − (0, τ)δψ − (0, τ) − ψ + (0, τ)δψ + (0, τ) = 0,(3.22)ψ − (π, τ) δψ − (π, τ) − ψ + (π, τ)δψ + (π, τ) = 0.3 Almost every reference uses b and d to denote the NS and R modes respectively, except for [14] whouse b for both, and differentiate <strong>on</strong>ly by means <str<strong>on</strong>g>of</str<strong>on</strong>g> their indices (m, n) or (r, s).


CHAPTER 3. SUPERSTRINGS 43These equati<strong>on</strong>s can be resolved by relating the boundary c<strong>on</strong>diti<strong>on</strong>s for ψ − and ψ + ,which in turn impose the same c<strong>on</strong>diti<strong>on</strong>s for their respective variati<strong>on</strong>s, in the followingway: {ψ − (σ ⋆ , τ) = ±ψ + (σ ⋆ , τ),δψ − (σ ⋆ , τ) = ±δψ + (σ ⋆ (3.23), τ),for σ ⋆ ∈ {0, π}. Due to the fact that ψ ± and their variati<strong>on</strong>s appear quadratically inthe boundary c<strong>on</strong>diti<strong>on</strong>s, their absolute sign is <str<strong>on</strong>g>of</str<strong>on</strong>g> no importance. What matters is therelative sign between σ = 0 and σ = π. Therefore, it is c<strong>on</strong>venti<strong>on</strong>ally chosen to setNow, our two sectors appear. The c<strong>on</strong>diti<strong>on</strong>ψ − (σ = 0) = ψ + (σ = 0) . (3.24)ψ − (σ = π) = +ψ + (σ = π) (3.25)corresp<strong>on</strong>ds to the open string Ram<strong>on</strong>d boundary c<strong>on</strong>diti<strong>on</strong>, the caseψ − (σ = π) = −ψ + (σ = π) (3.26)is the open string Neveu-Schwarz boundary c<strong>on</strong>diti<strong>on</strong>. The expansi<strong>on</strong>s are similar tothose for the closed string, but c<strong>on</strong>taining <strong>on</strong>ly <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> coefficients.⎧⎪⎨ψ + (σ, τ) = 1 ∑√2Ram<strong>on</strong>d open string:m∈d µ me −im(τ+σ) ,⎪⎩ψ − (σ, τ) = √ 1 ∑(3.27)2n∈d µ ne −in(τ−σ) ,Neveu-Schwarz open string:⎧ψ + (σ, τ)⎪⎨= 1 ∑√2ψ − (σ, τ)⎪⎩= √ 1 ∑2r∈+ 1 2s∈+ 1 2b µ re −ir(τ+σ) ,b µ se −is(τ−σ) .(3.28)The c<strong>on</strong>diti<strong>on</strong> Eq. 3.24 is trivially satisfied. Further remark that for the NS open string,ψ µ 1 ∑− (π, τ) = √2r∈+ 1 2b µ re −ir(τ) e irπ = −ψ µ + (π, τ),as expected, since e irπ = −e −irπ for r ∈+ 1 2. For the R open string, given thate inπ = e −inπ with n ∈, we also verify that the corresp<strong>on</strong>ding boundary c<strong>on</strong>diti<strong>on</strong> isindeed satisfied.


CHAPTER 3. SUPERSTRINGS 443.4 Quantizati<strong>on</strong> and spectrumTurning to the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these strings, we will again start by promoting the expansi<strong>on</strong>modes to quantum operators using the can<strong>on</strong>ical formalism, switching to (spacetime)light-c<strong>on</strong>e gauge in order to c<strong>on</strong>struct the spectra.First thing to note is that the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom has notchanged, and as a c<strong>on</strong>sequence, also the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their modes remains the same,i.e.[α µ m, α ν n] = [˜α µ m, ˜α ν n] = mδ m+n,0 η µν ; [α µ m, ˜α ν n] = 0. (3.29)We could have instead chosen to use a instead <str<strong>on</strong>g>of</str<strong>on</strong>g> α, in which case the above relati<strong>on</strong>sbecome[a µ m, a ν n] = [ã µ m, ã ν n] = δ m+n,0 η µν ; [a µ m, ã ν n] = 0. (3.30)The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong>ic modes is very similar, the biggest difference being thatthey obey anticommutati<strong>on</strong> relati<strong>on</strong>s instead <str<strong>on</strong>g>of</str<strong>on</strong>g> commutati<strong>on</strong> relati<strong>on</strong>s, as a c<strong>on</strong>sequence<str<strong>on</strong>g>of</str<strong>on</strong>g> them being fermi<strong>on</strong>ic. As such, the quantizati<strong>on</strong> prescripti<strong>on</strong> becomes{. . .,...} −→ −i {. . .,...} , (3.31)where the left anticommutator represents the classical <strong>on</strong>e, and the <strong>on</strong>e <strong>on</strong> the right isthe quantum versi<strong>on</strong>. We also note that the fact that ψ µ are Majorana spinors getsinherited by the modes in that sense that they need to satisfy the c<strong>on</strong>diti<strong>on</strong>(b µ r) † = b µ −r ; (d µ r) † = d µ −r , (3.32)and analogous for their tilded brethren. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> all this are the following relati<strong>on</strong>s:}{ }{b µ r,b ν s} ={˜bµ r ,˜b ν s = η µν δ r+s ; b µ r,˜b ν s = 0, (3.33){{d µ m, d ν n} = ˜dµ m , ˜d}{νn = η µν δ m+n ; d µ m, ˜d}νn = 0. (3.34)Notice that the b µ and ˜b µ operators do not c<strong>on</strong>tain a zero mode.Before moving <strong>on</strong> to the spectrum, and although we will not go into the details, wementi<strong>on</strong> that also in the superstring case <strong>on</strong>e can expand the energy-momentum tensor,as well as the supercurrent coming from the global world sheet supersymmetry. Themodes <str<strong>on</strong>g>of</str<strong>on</strong>g> these expansi<strong>on</strong>s form the super-Virasoro algebra. Furthermore, also analogousto the bos<strong>on</strong>ic string case, up<strong>on</strong> normal ordering <str<strong>on</strong>g>of</str<strong>on</strong>g> the modes <strong>on</strong>e induces two orderingc<strong>on</strong>tants a R and a NS , respectively for the Ram<strong>on</strong>d and Neveu-Schwarz sectors. Byplaying a clever game involving the super-Virasoro algebra and physical states, <strong>on</strong>e canderive the results that a R = 0, a NS = 1 2and D = 10 for superstrings. The same resultcould be obtained by first c<strong>on</strong>structing the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the strings in the space-timelight-c<strong>on</strong>e gauge, and then applying a zeta-regularizati<strong>on</strong> technique similar to the <strong>on</strong>ewe saw in Chapter 2 for the bos<strong>on</strong>ic string. We will c<strong>on</strong>sider these results as known,and immediatly use them in what follows.It is worth pointing out that Eq. 3.2 still describes <strong>on</strong>e, and <strong>on</strong>ly <strong>on</strong>e, string. Wedo not get two strings: <strong>on</strong>e which behaves like a bos<strong>on</strong>, and <strong>on</strong>e which behaves like a


CHAPTER 3. SUPERSTRINGS 45fermi<strong>on</strong>. We still have <strong>on</strong>ly <strong>on</strong>e string, <strong>on</strong>ly this time around this string has bos<strong>on</strong>ic andfermi<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <strong>on</strong> the world sheet. This means that general states <str<strong>on</strong>g>of</str<strong>on</strong>g> thissingle string will be obtained by acting with both bos<strong>on</strong>ic and fermi<strong>on</strong>ic raising operators<strong>on</strong> the vacuum. Hence, when we state that a R = 0 and a NS = 1 2, we in fact state thatthe normal ordering c<strong>on</strong>stant that results from the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bos<strong>on</strong>ic and fermi<strong>on</strong>icdegrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom equals 0 when c<strong>on</strong>sidering R modes, and 1 2when c<strong>on</strong>sidering NSmodes.On a sidenote, remark that the fact that a R = 0 can be intuitively understoodby realizing that both α and d are integer moded operators, but that since <strong>on</strong>e obeyscommutati<strong>on</strong> relati<strong>on</strong>s and the other anticommutati<strong>on</strong> relati<strong>on</strong>s, their normal orderingc<strong>on</strong>tants will carry opposite signs, and hence annihilate.Moving <strong>on</strong> to the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectra, we will now switch to space-time lightc<strong>on</strong>egauge. This is possible because <str<strong>on</strong>g>of</str<strong>on</strong>g> residual gauge symmetries left after gauge fixingthe world sheet metric, similar to the bos<strong>on</strong>ic string case. Moreover, a similar thing alsoapplies to the fermi<strong>on</strong>ic maps, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> which we can setX + (σ, τ) = x + + p + τ, (3.35)ψ + (σ, τ) = 0. (3.36)If <strong>on</strong>e were to go <strong>on</strong>e step further, <strong>on</strong>e would find that <strong>on</strong>e could still relate the X −and ψ − modes to the modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the transverse oscillators, thereby effectively eliminatingtwo sets <str<strong>on</strong>g>of</str<strong>on</strong>g> modes, and keeping <strong>on</strong>ly the transverse (raising and lowering) modes. Thezero modes are still present for all directi<strong>on</strong>s, where applicable. As for the bos<strong>on</strong>ic case,transverse modes will be denoted with a superscript i . Using the previously stated factthat D = 10 for superstring theories, we are thus left with eight transverse directi<strong>on</strong>s.3.4.1 <str<strong>on</strong>g>Open</str<strong>on</strong>g> stringsSpecializing to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> open superstrings, we need to differentiate between the Ram<strong>on</strong>dand Neveu-Schwarz sectors.Neveu-Schwarz sectorApplying the mass-shell c<strong>on</strong>diti<strong>on</strong> to the NS sector results in the mass formulaα ′ M 2 =+∞∑n=1α i −nα i n ++∞∑r= 1 2rb i −rb i r − 1 2 , (3.37)where summati<strong>on</strong> over i is understood, and where as anticipated earlier we alreadyincorporated the result a NS = 1 2. This immediatly tells us thatα ′ M 2 |0〉 NS = − 1 2 |0〉 NS, (3.38)where |0〉 NS describes the vacuum <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string NS sector. We find our old foo,the tachy<strong>on</strong>, back with a vengeance. It appears that simply adding fermi<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>


CHAPTER 3. SUPERSTRINGS 46freedom to our theory does not suffice to get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> it. We will need to be more clever ifwe want to beat it. Remark that this ground state is unique, hence describes a spin 0state, hence is bos<strong>on</strong>ic.We can c<strong>on</strong>struct a first excited state by acting <strong>on</strong>ce with a b raising operator.Remember that the b’s are half-integer moded, and thus b i is lower in energy than− 1 2α−1 i . Thus, we identify the first excited state asb i |0〉− 1 NS . (3.39)2We have eight sets <str<strong>on</strong>g>of</str<strong>on</strong>g> transverse oscillators, and thus also eight b i operators. So we find− 1 2ourselves with a state that transforms under SO(8), and hence is a space-time vectorbos<strong>on</strong>. This should be a massless state (recall the similar discussi<strong>on</strong> in Chapter 2). Asec<strong>on</strong>d look at Eq. 3.37 learns us that acting with α−n i increases the mass with m, 4while acting with b i −r increases the mass with r. Since our groundstate has mass − 1 2 ,and r = 1 2for our first excited state, we indeed verify that this is true. (Not knowing thevalue <str<strong>on</strong>g>of</str<strong>on</strong>g> a NS , and applying the inverse reas<strong>on</strong>ing is again a way to see that a NS shouldbe 1 2.) This is good because we find back our beloved phot<strong>on</strong>.The sec<strong>on</strong>d excited state can be obtained either by applying <strong>on</strong>ce an α raising operator,or by applying two b raising operators. Beware though, the b’s satisfy anticommutati<strong>on</strong>relati<strong>on</strong>s, and so we can not excite twice in the same directi<strong>on</strong> with thesame operator, as ( b i 2r)= 0. This greatly diminishes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> b raising operatorcombinati<strong>on</strong>s we can form. In this particular case, we can choose <strong>on</strong>e out <str<strong>on</strong>g>of</str<strong>on</strong>g> eight b i − 1 2operators for the first operator, and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the seven remaining b j for the sec<strong>on</strong>d <strong>on</strong>e.− 1 2Also keeping in mind that b i b j = −b j b i , further diminishing the number <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilitieswith a factor two. We are left with (8 ×7)/2 = 28 distinct possible states. Add− 1 2 − 1 − 1 − 1 2 2 2to these the eight states we obtain by applying an α− i operator, and we obtain 36 statesin total for the sec<strong>on</strong>d excited state with mass α ′ M 2 = 1 2 .Generalizing this to the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum, we find that we can encode the number<str<strong>on</strong>g>of</str<strong>on</strong>g> states at every mass level using the generating functi<strong>on</strong>f ′ NS (x) =+∞ ∏n=1(1 + x n−1 21 − x n ) 8. (3.40)We recognize the denominator as encoding states resulting from acting with bos<strong>on</strong>icmodes. The numerator encodes the states resulting from acting with fermi<strong>on</strong>ic modes.( 8Indeed, 1 + x 2) n−1 is in fact nothing but a polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g> which the coefficients willequal ( 8m), with m ∈ {1, . . .,8}, corresp<strong>on</strong>ding exactly to all possible ways <str<strong>on</strong>g>of</str<strong>on</strong>g> combiningeight anticommuting b operators with mode number n − 1 2 . Defining4 See Eq. 3.29.f NS (x) = 1 √ xf ′ NS (x) = 1 √ x +∞ ∏n=1(1 + x n−1 21 − x n ) 8, (3.41)


CHAPTER 3. SUPERSTRINGS 47to again make the exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> x match the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the appropriate state, the first fewterms in the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f NS readRam<strong>on</strong>d sectorf NS (x) = 1x −1 2 + 8x 0 + 36x 1 2 + 128x 1 + 402x 3 2 + 1152x 2 + . . .. (3.42)The mass-shell c<strong>on</strong>diti<strong>on</strong> applied to the Ram<strong>on</strong>d sector delivers us the mass formulaα ′ M 2 =+∞∑n=1α i −nα i n ++∞∑m=1d i −md i m, (3.43)where again we incorporated the c<strong>on</strong>diti<strong>on</strong> a R = 0. Applying α i −n or d i −m thus raisesthe mass with n or m units respectively.The good news is that we see that there is no tachy<strong>on</strong> in the open string R sector!The, at first sight, bad news is that the groundstate is degenerate. However, we will beable to turn this to our advantage later <strong>on</strong>. Recall that the d modes satisfy the algebra{d µ m, d ν n} = η µν δ m+n,0 .The big difference with the NS case is that this time around there are anticommutingzero modes which, as the above equati<strong>on</strong> dem<strong>on</strong>strates, satisfy a ten-dimensi<strong>on</strong>al Cliffordalgebra 5 (except for a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, cfr. Eq. 3.3, which can be accounted for by rescalingthe d 0 operators with a factor √ 2.), indeed c<strong>on</strong>firming that the groundstate is degenerate.Given that the d µ ’s satisfy a Clifford algebra, the groundstates in the R sector shouldform a representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this algebra, and hence we can write thatd µ 0 |a〉 = √ 1 Γ µ2ba|b〉, (3.44)with (|a〉, |b〉) groundstates and Γ µ ba forming a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2⌊D/2⌋ -dimensi<strong>on</strong>al Cliffordalgebra. Given that D = 10 in this case, this is a 32-dimensi<strong>on</strong>al algebra. It can beshown that these ten-dimensi<strong>on</strong>al spinors can actually be reduced to eight-dimensi<strong>on</strong>alMajorana-Weyl spinors having 16 real comp<strong>on</strong>ents, amounting to two times eight groundstates <str<strong>on</strong>g>of</str<strong>on</strong>g> two opposite chiralities; sixteen in total if you prefer. We denote these by |a〉and |ā〉. For a further discussi<strong>on</strong> <strong>on</strong> how <strong>on</strong>e can combine the different d µ 0 operators into“raising” and “lowering” operators, see §3.1 in [17].The fact that the groundstate is degenerate immediatly makes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> statesin the R sector grow c<strong>on</strong>siderably bigger compared to the NS sector. On the other hand,the NS sector c<strong>on</strong>tains twice as many mass levels, because the b operators are half-integermoded. This already points out two discrepancies between both spectra: a difference inmass levels, and a difference in states in corresp<strong>on</strong>ding mass levels. Noticing that theR ground states are space-time spinors, we can identify them as space-time fermi<strong>on</strong>s.Acting <strong>on</strong> them with the raising operators keeps creating space-time spinor states, and5 Remember that switching to space-time light-c<strong>on</strong>e gauge did not eliminate the zero modes.


CHAPTER 3. SUPERSTRINGS 48hence, fermi<strong>on</strong>s. Hence we see that if we keep all states <str<strong>on</strong>g>of</str<strong>on</strong>g> both sectors, we will obtain adifferent number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time fermi<strong>on</strong>s and bos<strong>on</strong>s, while if space-time supersymmetrywere respected these numbers should be equal. Lucky for us, there is a way to obtainsuch a space-time supersymmetric spectrum, and we will so<strong>on</strong> enough see how. Butfirst, we finish c<strong>on</strong>tructing the unc<strong>on</strong>strainted R spectrum.Apart from the degeneracy in ground states, the spectrum is c<strong>on</strong>structed in the sameway as always. Only this time, we can let the raising operators act <strong>on</strong> several groundstates. We thus find that the first excited level with mass α ′ M 2 = 1 can be reached byapplyingα i −1|a〉 ; α i −1|ā〉 ; b i −1|a〉 ; b i −1|ā〉. (3.45)We thus find that there are 8 × 16 × 2 = 256 states at the first mass level, 128 for eachchirality. The generating functi<strong>on</strong> reads+∞ ∏f R (x) = 16The first few terms in the expansi<strong>on</strong> aren=1( 1 + xn1 − x n ) 8. (3.46)f R (x) = 16x 0 + 256x 1 + 2304x 2 + 15360x 3 + . . .. (3.47)Notice by comparing this to Eq. 3.42 that at corresp<strong>on</strong>ding mass levels, the Ram<strong>on</strong>dsector c<strong>on</strong>tains twice as many states.3.4.2 GSO projecti<strong>on</strong>As we have just seen, the NS sector c<strong>on</strong>tains a tachy<strong>on</strong>, which is something we wouldvery much like to get rid <str<strong>on</strong>g>of</str<strong>on</strong>g>. Not <strong>on</strong>ly that, but moreover there is a different number <str<strong>on</strong>g>of</str<strong>on</strong>g>states in corresp<strong>on</strong>ding mass levels between the NS sector (which are space-time bos<strong>on</strong>s)and R sector (which are space-time fermi<strong>on</strong>s). This is bad, because if supersymmetrywere to be preserved, both numbers would be equal.In order to solve this sneaky problem, we will use an ingenious little sorting device,called the GSO projecti<strong>on</strong>. 6 Looking back at Eqs. 3.42 and 3.47, <strong>on</strong>e sees that it wouldturn out really great if <strong>on</strong>e were to find a way to eliminate the half-integer mass levels<str<strong>on</strong>g>of</str<strong>on</strong>g> the NS sector, and half the states <str<strong>on</strong>g>of</str<strong>on</strong>g> the R sector. This sec<strong>on</strong>d part does not seemtoo complicated; simply project out <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> both chiralities. For the first requirement,we will need to find a way to separate half-integer from integer mass modes.To reach our objectives, we introduce two operators, <strong>on</strong>e for the NS sector, and <strong>on</strong>efor the R sector, but both resp<strong>on</strong>ding to the name <str<strong>on</strong>g>of</str<strong>on</strong>g> G-parity operator. For the NSsector, we define this operator as 7G = (−1) F+1 with F =∞∑b i −rb i r. (3.48)r= 1 26 Originally introduced by Gliozzi, Olive and Scherk.7 Some references include the “-1” term in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F.


CHAPTER 3. SUPERSTRINGS 49F, when acting <strong>on</strong> a NS state, returns the number <str<strong>on</strong>g>of</str<strong>on</strong>g> times a fermi<strong>on</strong>ic operator hasbeen acted <strong>on</strong> the groundstate in order to obtain this state. So we see thatG|0〉 = −1, (3.49)and that acting <strong>on</strong> other states, G will be 1 for half-integer mass levels (levels, notmasses!) and -1 for integer mass levels. The GSO projecti<strong>on</strong> for the NS sector c<strong>on</strong>sistsin keeping <strong>on</strong>ly those states with positive G-parity. This way, we eliminate the tachy<strong>on</strong>from the spectrum, as well as all other states with half-integer mass, which was exactlywhat we wanted.For the R sector, G becomes a generalized chirality operator,∞∑G = Γ 11 (−1) F with F = d i −rd i r, (3.50)with Γ 11 the ten-dimensi<strong>on</strong>al chirality operator. The GSO projecti<strong>on</strong> in the R sectorc<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> keeping <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> both chiralities. Which <strong>on</strong>e is purely a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> choice.This effectively eliminates half <str<strong>on</strong>g>of</str<strong>on</strong>g> all states at every mass level.Since the result is too beautiful not to menti<strong>on</strong>, we will take a quick look at themodified generating functi<strong>on</strong>s for the truncated (i.e. what is left after performing theGSO projecti<strong>on</strong>) spectra. To update f R (x) (Eq. 3.46), it suffices to change the factorin fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the product from 16 to 8:+∞ ∏f R (x) −→ fR GSO (x) = 8n=1n=1( 1 + xn1 − x n ) 8. (3.51)In the NS sector, we need to subtract all states obtained by acting with an even number<str<strong>on</strong>g>of</str<strong>on</strong>g> raising b operators from the full spectrum. This can be achieved by c<strong>on</strong>sidering thegenerating functi<strong>on</strong>1+∞ ∏√ xn=1(1 − x n−1 21 − x n ) 8= 1x −1 2 − 8x 0 + 36x 1 2 − 128x 1 + . . . , (3.52)in which we see that states corresp<strong>on</strong>ding to an odd number <str<strong>on</strong>g>of</str<strong>on</strong>g> b operators carry a − sign,while states corresp<strong>on</strong>ding to an even number <str<strong>on</strong>g>of</str<strong>on</strong>g> b operators carry a + sign. Howeverwe see that when we subtract Eq. 3.52 from the unc<strong>on</strong>strained spectrum generated byEq. 3.41, we will double the number <str<strong>on</strong>g>of</str<strong>on</strong>g> states that survive, so we need to divide by anadditi<strong>on</strong>al factor <str<strong>on</strong>g>of</str<strong>on</strong>g> two to rectify this. C<strong>on</strong>cretely, our new generating functi<strong>on</strong> becomesf NS (x) −→ f GSONS (x) = 12 √ x⎡∞∏⎣n=1(1 + x n−1 21 − x n ) 8−∞∏n=1( ) ⎤ 81 − x n−1 2⎦.1 − x n (3.53)At first sight, this looks like bad news, but incredibly enough, it was proven by CarlGustav Jacobi in 1829 (!) that indeed,⎡ ( ) 8 ( ) ⎤ 81∞∏2 √ ⎣1 + x n−1 2∞∏ 1 − x n−1 2∞∏( )x 1 − x n −⎦ 1 + xn 81 − x n = 81 − x n , (3.54)n=1n=1n=1


CHAPTER 3. SUPERSTRINGS 50miraculously c<strong>on</strong>firming our hopes that the NS and R sectors, after truncati<strong>on</strong>, do indeedgive rise to an equal number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time bos<strong>on</strong>s and fermi<strong>on</strong>s at each and every masslevel.Note that the match between both spectra does not prove space-time supersymmetry.But it is by any means a solid indicati<strong>on</strong>. Space-time supersymmetry can however beproven in the RNS formalism, but this is a highly n<strong>on</strong>-trivial endeavour.3.4.3 Closed stringsAs we already saw earlier, for closed strings we can combine R and NS c<strong>on</strong>diti<strong>on</strong>s infour distinct ways: (NS,NS), (NS,R), (R,NS) and (R,R). In order to obtain a space-timesupersymmetric spectrum though, we again need to perform the GSO projecti<strong>on</strong>. Forthe NS sector, this does not change much as far as our choices are c<strong>on</strong>cerned, howeverfor the R sector, this means we can choose between two chiralities, further increasingour number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible choices.Essentially, this gives rise to two types <str<strong>on</strong>g>of</str<strong>on</strong>g> superstring theories: Type IIA and TypeIIB. Note that also in the superstring case, closed strings should satisfy the levelmatchingc<strong>on</strong>diti<strong>on</strong>, which still states that the left- and right-moving states shouldhave the same mass. From this we c<strong>on</strong>clude that the full spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> both theories isobtained by tensoring left- and right-moving states <str<strong>on</strong>g>of</str<strong>on</strong>g> equal mass level.Type IIAThe Type IIA theory is the <strong>on</strong>e that results when <strong>on</strong>e chooses opposite chiralities for theleft- and right-moving R sectors. They should be chosen opposite, but which is whichdoes not matter. The massless states <str<strong>on</strong>g>of</str<strong>on</strong>g> this theory are summarized in Table 3.1. Thechiralities are denoted by R and ¯R. Only massless states are shown because first <str<strong>on</strong>g>of</str<strong>on</strong>g> allwe will <strong>on</strong>ly be interested in those, and sec<strong>on</strong>d, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> states at the first massivelevel is. . . massive.Looking at the massless states, our attenti<strong>on</strong> is grabbed by the (NS,NS) sector.Massless states in this sector are created by acting up<strong>on</strong> the vacuum state much in thesame way as for obtaining the massless bos<strong>on</strong>ic closed string states (cfr. Eq. 2.138).This again suggests a decompositi<strong>on</strong> in a tracless symmetric and antisymmetric part,and a part that is proporti<strong>on</strong>al to the unit matrix. In other words, we find back ourg µν , B µν and Φ fields!The (R,NS) and (NS,¯R) sectors give rise to two gravitinos with opposite chirality(<strong>on</strong>e for each sector), and two dilatinos, also with opposite chirality. The fact that twogravitinos are present indicates that space-time is N = 2 supersymmetric. 8The (R,¯R) sector gives rise to 64 massless states (8×8). These can be decomposed ina vector gauge field A µ and an antisymmetric three-form gauge field A µνρ . Notice thatA µ c<strong>on</strong>tains 8 states, and that A µνρ c<strong>on</strong>tains ( 83)= 56 states, the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> which indeed8 This means that there are two supersymmetric transformati<strong>on</strong>s, and hence the doublets (X, ψ) getexpanded to quadruplets (X 1, X 2, ψ 1, ψ 2).


CHAPTER 3. SUPERSTRINGS 51gives back our 64 massless states. These gauge fields are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called Ram<strong>on</strong>d-Ram<strong>on</strong>dfields for obvious reas<strong>on</strong>s.Type IIBThe type IIB theory results from choosing identical chiralities for the R sector <str<strong>on</strong>g>of</str<strong>on</strong>g> bothleft- and right-movers. The massless states <str<strong>on</strong>g>of</str<strong>on</strong>g> this theory can also be found in 3.1. We<strong>on</strong>ly c<strong>on</strong>sider <strong>on</strong>e chirality, namely R.The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the (NS,NS) sector is exactly the same as for the Type IIA theory,and so also here we find back our g µν , B µν and Φ fields.The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the (R,NS) and (NS,R) sectors is also the same, except for the factthat in the Type IIB theory the dilatinos and gravitinos have the same chirality.The (R,R) sector gives rise to quite different Ram<strong>on</strong>d-Ram<strong>on</strong>d gauge fields though,given that this time both chiralities are the same. It turns out that the massless TypeIIB (R,R) states can be regrouped in a zero-form scalar gauge field A, a two-formgauge(field A µν and a self-dual four-form gauge field A µνρσ . Note that also this time,8) (0 + 8)2 +1 82(4)= 1 + 28 + 35 = 64, as it <str<strong>on</strong>g>of</str<strong>on</strong>g> course should.Type IIAType IIB|0〉 RL × |0〉 ¯R |0〉 RL × |0〉 RR˜bi |0〉− 1 NSL × b j |0〉2− 1 NSR˜bi |0〉− 1 NSL × b j |0〉22− 1 NSR2˜bi |0〉− 1 NSL × |0〉 RR˜bi |0〉− 1 NSL × |0〉 RR22|0〉 ¯RL × b i |0〉− 1 NSR |0〉 RL × b i |0〉− 1 NSR22Table 3.1: Massless states for both Type II theories. The subscript L denotes left-movers,R stands for right-movers.Other superstring theoriesThe laws <str<strong>on</strong>g>of</str<strong>on</strong>g> logic dictate that if there are two Type II theories, there must be at least<strong>on</strong>e Type I theory. There indeed is such a theory, and it is a theory <str<strong>on</strong>g>of</str<strong>on</strong>g> unorientedstrings (remember: no B µν field, or any other antisymmetric state). For the sake <str<strong>on</strong>g>of</str<strong>on</strong>g>completeness we also menti<strong>on</strong> the two heterotic string theories: E 8 × E 8 and SO(32).These are theories in which <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the left- and right-moving modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the closed stringis supersymmetric, and the other <strong>on</strong>e is bos<strong>on</strong>ic. The names <str<strong>on</strong>g>of</str<strong>on</strong>g> these theories corresp<strong>on</strong>dto their symmetry groups.3.5 SummaryThis chapter has given a very brief introducti<strong>on</strong> to the superstring, focusing mainly<strong>on</strong> the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string spectrum and how to get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> the problems


CHAPTER 3. SUPERSTRINGS 52associated with the unc<strong>on</strong>strained theory using the GSO projecti<strong>on</strong>, and <strong>on</strong> the twoType II theories resulting from the closed string spectra. The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> thischapter was to obtain the massless fields c<strong>on</strong>tained in the Type II theories, given thatthese are the <strong>on</strong>es that interest us in the remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this writing, and getting there asfast as possible without being too sloppy. We saw that in the end we obtained spacetimebos<strong>on</strong>s and fermi<strong>on</strong>s, and that their numbers agree at every mass level which is agood indicati<strong>on</strong> that space-time preserves supersymmetry. We also saw that both TypeII theories c<strong>on</strong>tain the (more or less) same g µν , B µν and Φ fields we already encounteredearlier in bos<strong>on</strong>ic string theory. The Ram<strong>on</strong>d-Ram<strong>on</strong>d fields both theories spawned werequite different though, being <strong>on</strong>e- and three-form gauge fields for the Type IIA theory,and zero-, two- and self-dual four-form gauge fields for the Type IIB theory.We omitted a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> the technical subtleties <str<strong>on</strong>g>of</str<strong>on</strong>g> superstring theory. In particular, wedid not go deeply into supersymmetry, and completely disregarded the super-Virasoroalgebra, spawned by the modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy-momentum tensor and supercurrent expansi<strong>on</strong>s.Readers dissatisfied and/or annoyed by such a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> detail and rigour areurged to c<strong>on</strong>sult the given reference works cited in the introductory chapter to remedythis ailment. Complementing these, a good number <str<strong>on</strong>g>of</str<strong>on</strong>g> equally good review papers arewidely available <strong>on</strong> the internet, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which are also listed in the bibliography.


Chapter 4C<strong>on</strong>formal Invariance“This has not, however, stopped [Disaster Area’s] earningsfrom pushing back the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> pure hypermathematics,and their chief research accountant has recentlybeen appointed Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor <str<strong>on</strong>g>of</str<strong>on</strong>g> Neomathematics atthe University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maximegal<strong>on</strong>, in recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bothhis General and his Special Theories <str<strong>on</strong>g>of</str<strong>on</strong>g> Disaster AreaTax Returns, in which he proves that the whole fabric <str<strong>on</strong>g>of</str<strong>on</strong>g>the space-time c<strong>on</strong>tinuum is not merely curved, it is infact totally bent.”Douglas AdamsHitchhiker’s Guide to the GalaxyInstead <str<strong>on</strong>g>of</str<strong>on</strong>g> focussing <strong>on</strong> the mathematical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>formal field theory (CFT),this chapter aims to bring forward some <str<strong>on</strong>g>of</str<strong>on</strong>g> the main ideas behind it, and to motivateits usefulness, if not necessity, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> string theory.The key issue is that so far, we have <strong>on</strong>ly c<strong>on</strong>sidered flat space-times; 26-dimensi<strong>on</strong>alfor bos<strong>on</strong>ic string theory and 10-dimensi<strong>on</strong>al for superstring theory. We are howeververy interested in knowing what happens when we c<strong>on</strong>sider curved space-times. Not<strong>on</strong>ly because the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> previously menti<strong>on</strong>ed space-times exceeds our own“visible” space-time, meaning ways need to be found to make those extra dimensi<strong>on</strong>s“invisible,” a popular way <str<strong>on</strong>g>of</str<strong>on</strong>g> doing so being to curl them up, but also because we knowfor a fact that our own beloved four-dimensi<strong>on</strong>al space-time is in fact curved itself. Itturns out that describing strings in general space-time backgrounds while requesting thatthe same symmetries we have in flat space-time are preserved, induces some remarkablec<strong>on</strong>straints <strong>on</strong> the allowed world sheet theories. These c<strong>on</strong>straints however do not <strong>on</strong>lycome from the curved space-time, but also from the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> background fields inbos<strong>on</strong>ic string theory as well as both Type II theories (the <strong>on</strong>es we are interested in).To see where these background fields come from, recall that up<strong>on</strong> analysing thespectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantized bos<strong>on</strong>ic and Type II closed strings, we found several masslessparticles they all had in comm<strong>on</strong>. Since these are quantum field theories, it is logical53


CHAPTER 4. CONFORMAL INVARIANCE 54to expect that these particles are the quantized products <str<strong>on</strong>g>of</str<strong>on</strong>g> classical fields. Hence, wemight raise the questi<strong>on</strong> if we should not have c<strong>on</strong>sidered these fields, and their effects<strong>on</strong> the string acti<strong>on</strong>, before we quantized our string acti<strong>on</strong>, which is exactly what thischapter investigates.For all intended purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, it suffices to look at this problem for thespecific case <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>ic string theory.4.1 C<strong>on</strong>formal Field Theory Jr.Before anything else, it should again be duly noted that the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is not toexplain things, but merely to get a point accross, the point being that c<strong>on</strong>formal fieldtheory is an absolute must for string theory.With that in mind, let us move <strong>on</strong>. C<strong>on</strong>sidering a general coordinate transformati<strong>on</strong>x −→ x ′ , <strong>on</strong>e finds that the metric changes according tog µν (x) −→ g ′ µν(x′ ) = ∂xα∂x ′µ ∂x β∂x ′ν g αβ (x) . (4.1)The group <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>formal transformati<strong>on</strong>s is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> the subset <str<strong>on</strong>g>of</str<strong>on</strong>g> these generalcoordinate transformati<strong>on</strong>s that preserve the angle between two vectors. C<strong>on</strong>cretely, thismeans that they leave the metric invariant, up to a rescaling. 1 Hence, when applying ac<strong>on</strong>formal transformati<strong>on</strong>, the metric changes according tog µν (x) −→ g µν′ (x′ ) = Ω(x)g µν (x). (4.2)The transformati<strong>on</strong>s that obey this property are translati<strong>on</strong>s, rotati<strong>on</strong>s, dilatati<strong>on</strong>s, andthe so-called special c<strong>on</strong>formal transformati<strong>on</strong>s which vary a vector x µ according toδx µ = b µ x 2 − 2x µ b · x, (4.3)with b µ an infinitesimal translati<strong>on</strong>. If <strong>on</strong>e specializes to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Minkowski metric,and c<strong>on</strong>siders an infinitesimal coordinate transformati<strong>on</strong> x µ −→ x µ + ǫ µ , <strong>on</strong>e can findthe c<strong>on</strong>straint <strong>on</strong> the parameter in flat space-time to be(δ µν + (D − 2)∂ µ ∂ ν ) ∂ · ǫ = 0, (4.4)with D the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. For D > 2, the parameter ǫ can be at mostquadratic in x, but if D = 2, as is the case for the string world sheet, this c<strong>on</strong>straint doesnot apply. The c<strong>on</strong>sequence there<str<strong>on</strong>g>of</str<strong>on</strong>g> is that the associated generator algebra is infinitedimensi<strong>on</strong>al. To see this, and focussing <strong>on</strong> the string world sheet, introduce coordinatesz = τ − iσ, (4.5)¯z = τ + iσ. (4.6)1 Note that this is not the same as a Weyl rescaling, which does not entail a change <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates.


CHAPTER 4. CONFORMAL INVARIANCE 55One finds, after c<strong>on</strong>sidering the right change in the metric, that∂ z¯ǫ = 0 = ∂¯z ǫ, (4.7)which is really great because this implies that ǫ = ǫ (z), and likewise ¯ǫ = ¯ǫ (¯z). Thismeans that we can expandǫ (z) = −+∞∑n=−∞a n z n+1 , (4.8)and a similar expressi<strong>on</strong> for ¯ǫ. This introduces an infinite amount <str<strong>on</strong>g>of</str<strong>on</strong>g> generators l n =−z n+1 ∂ z , in term giving rise to an infinite amount <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>served charges. C<strong>on</strong>servedcharges amount to restricti<strong>on</strong>s <strong>on</strong> the theory, which is good news, because the morec<strong>on</strong>strained a theory is, the more powerful it is. Added to this is the fact that byintroducing complex coordinates, or if you want by formulating the world sheet theory<strong>on</strong> the complex plane, <strong>on</strong>e can use all powerful tools <str<strong>on</strong>g>of</str<strong>on</strong>g> complex analysis, even more soif we redefine our coordinates z and ¯z asz = e τ−iσ , (4.9)¯z = e τ+iσ . (4.10)These coordinates map the entire string to c<strong>on</strong>centric circles with radius e τ . We see thatthe infinite past <strong>on</strong> the world sheet corresp<strong>on</strong>ds to the origin, and as time increases, sodoes the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the circle. When <strong>on</strong>e quantizes this theory, the equal time commutatorsthus become equal radius commutators, hence the name radial quantizati<strong>on</strong>.The name “c<strong>on</strong>formal field theory” suggests that an object called c<strong>on</strong>formal fieldshould exist. Indeed, it does, and specializing to the case at hand it is defined as a fieldφ(z, ¯z) that transforms under c<strong>on</strong>formal transformati<strong>on</strong>s as 2( ) ∂zφ(z ¯z) −→ φ ′ ′ h ( ∂¯z′)¯h(z, ¯z) =φ ( z ′ (z) , ¯z ′ (¯z) ) . (4.11)∂z ∂¯zThe numbers h and ¯h are called the c<strong>on</strong>formal weights <str<strong>on</strong>g>of</str<strong>on</strong>g> φ. Notice that c<strong>on</strong>formalfields transform as tensors. As such, a c<strong>on</strong>formal field theory is a field theory whichobeys c<strong>on</strong>formal invariance, i.e. which is invariant under c<strong>on</strong>formal transformati<strong>on</strong>s. Inparticular, it is a scale invariant theory, implying vanishing β-funti<strong>on</strong>s.Talking about tensors, a very important <strong>on</strong>e is the energy-moment tensor. As it turnsout, when <strong>on</strong>e formulates the world sheet theory as a (quantum) c<strong>on</strong>formal field theoryusing the coordinates as in Eqs. 4.9 and 4.10, under finite c<strong>on</strong>formal transformati<strong>on</strong>sthis tensor transforms as( ) ∂z′ 2(T zz (z) = T z∂z′ z ′ z′ ) + c12 D ( z ′) z , (4.12)2 Also quasi-c<strong>on</strong>formal fields exist, which transform the same, but <strong>on</strong>ly under the so-called restrictedc<strong>on</strong>formal group, which is the c<strong>on</strong>formal group minus rotati<strong>on</strong>s.


CHAPTER 4. CONFORMAL INVARIANCE 56where D (z ′ ) zstands for the Schwarzian derivative, 3D ( z ′) z = ∂ z (z ′ )∂z 3 (z ′ ) − 3 (2 ∂2z z ′) 2(∂ z z ′ ) 2 . (4.13)The important thing is that we are now faced with a c<strong>on</strong>formal anomaly c, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten alsocalled central charge, a term that signals the breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>formal invariance forgeneral c<strong>on</strong>formal transformati<strong>on</strong>s in the quantum theory if c ≠ 0. The c<strong>on</strong>sequencehere<str<strong>on</strong>g>of</str<strong>on</strong>g> is that the trace <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy-momentum tensor no l<strong>on</strong>ger vanishes, but nowbecomesT α α = − c12 R(2) , (4.14)with R (2) representing the Ricci scalar <str<strong>on</strong>g>of</str<strong>on</strong>g> the world sheet. This implies that we willrun into problems when c<strong>on</strong>sidering n<strong>on</strong>-flat world sheet space-times, or at least severerestricti<strong>on</strong>s as to the possible c<strong>on</strong>sistent c<strong>on</strong>figurati<strong>on</strong>s.On a final note for interested and/or intruiged parties, all <strong>on</strong>e could ever wish toknow about c<strong>on</strong>formal field theory, and then some, can be found in [4].4.2 <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory vs. QFT vs. General RelativityRefreshing the Polyakov acti<strong>on</strong> we used in order to study the bos<strong>on</strong>ic string (Eq. 2.5),S σ = − 1 2 T ∫d 2 σ √ −hh αβ η µν ∂ α X µ ∂ β X ν ,we see that a possible generalizati<strong>on</strong> to curved backgrounds naturally imposes itself,namelyS g = − 1 ∫4πα ′ d 2 σ √ −hh αβ g µν (X)∂ α X µ ∂ β X ν , (4.15)where we have simply replaced the Minkwoskian metric with an arbitrary, n<strong>on</strong>-trivial,field-dependent metric. One might argue that this is actually using results before havingobtained them, as the g µν field came about by c<strong>on</strong>structing the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantizedclosed string (or if you prefer: is generated by the strings themselves), but it can beshown without great difficulty 4 by c<strong>on</strong>sidering perturbati<strong>on</strong>s around η µν that this acti<strong>on</strong>does indeed comply with the way the gravit<strong>on</strong> arises in string theory.That seems easy enough, but we have seen in the previous chapters that the bos<strong>on</strong>icstring theory, as well as the (NS,NS) sector <str<strong>on</strong>g>of</str<strong>on</strong>g> both Type II superstring theories c<strong>on</strong>tainnot <strong>on</strong>e, but three massless bos<strong>on</strong>ic fields: 5 the space-time metric g µν which we just3 Note that it seems like every<strong>on</strong>e uses their own little symbol to represent this functi<strong>on</strong>. We follow[14].4 You might ask yourself: “So why d<strong>on</strong>’t you do it here?” The answer is that this short dem<strong>on</strong>strati<strong>on</strong>deals with vertex operators, and hence string interacti<strong>on</strong>s, which the author <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis has purposfullyleft out <str<strong>on</strong>g>of</str<strong>on</strong>g> his writings.5 The Type II theories also c<strong>on</strong>tain massless fields in the other sectors as we saw <str<strong>on</strong>g>of</str<strong>on</strong>g> course, but thefields originating from the (NS,NS) sector are the <strong>on</strong>ly <strong>on</strong>es they have in comm<strong>on</strong> with each other, andwith the bos<strong>on</strong>ic theory.


CHAPTER 4. CONFORMAL INVARIANCE 57dealt with, the anti-symmetric Kalb-Ram<strong>on</strong>d field B µν and the dilat<strong>on</strong> field Φ. These aresometimes referred to as the universal factor. So we should also find a way to incorporatethese last two fields in our acti<strong>on</strong> since they are equally part <str<strong>on</strong>g>of</str<strong>on</strong>g> the background. Ourprevious recipe can be applied without too much difficulty to the B µν field, 6S B = − 14πα ′ ∫d 2 σǫ αβ B µν (X) ∂ α X µ ∂ β X ν , (4.16)in which ǫ αβ is the usual anti-symmetric tensor density with comp<strong>on</strong>ents ǫ 01 = −ǫ 10 = 1and ǫ 00 = ǫ 11 = 0, but the dilat<strong>on</strong> coupling is c<strong>on</strong>siderably more subtle. The right wayto incorporate it turns out to beS Φ = − 14π∫d 2 σ √ −hΦ(X) R (2) , (4.17)in which R (2) again represents the world sheet Ricci scalar. Notice that this acti<strong>on</strong> is<strong>on</strong>e order higher in α ′ than Eqs. 4.15 and 4.16. The full updated Polyakov acti<strong>on</strong> thusbecomesS σ = S g + S B + S Φ = − 14πα ′ ∫− 14π∫( √−hh )d 2 σαβ g µν + ǫ αβ B µν ∂ α X µ ∂ β X νd 2 σ √ −hΦ(X)R (2) . (4.18)Unfortunately, some bad news awaits us (yet again). This updated form still preservesparameterizati<strong>on</strong> invariance, and classicaly, both S g and S B c<strong>on</strong>serve Weyl invariance,but S Φ does not. 7 This is bad news, as we needed Weyl invariance to be able to gaugefix our metric, in turn to be able to quantize our theory. Moreover, when c<strong>on</strong>sideringEq. 4.18 as describing a quantum field theory, Weyl invariance gets broken (for n<strong>on</strong>trivialmetrics) in general due to quantum effects. Recall that a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Weylinvariance was the tracelessness <str<strong>on</strong>g>of</str<strong>on</strong>g> the enery-momentum tensor. Hence, breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g>Weyl invariance will be reflected in the trace <str<strong>on</strong>g>of</str<strong>on</strong>g> T αβ . More generally speaking, breakdown<str<strong>on</strong>g>of</str<strong>on</strong>g> scale invariance in quantum field theories is usually associated with the n<strong>on</strong>-vanishing<str<strong>on</strong>g>of</str<strong>on</strong>g> the β-functi<strong>on</strong>. Calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the less enjoyable variety based <strong>on</strong> an α ′ powerexpansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 4.18 reveal thatT α α = − 12α ′βg µνh αβ ∂ α X µ ∂ β X ν − 12α ′βB µνǫ αβ ∂ α X µ ∂ β X ν − 1 2 βΦ R (2) , (4.19)6 Some authors include a complex factor i in this acti<strong>on</strong>.7 To be exact, it does not except when Φ is c<strong>on</strong>stant. In that case, S Φ ∼ χ M = − 14πRd 2 σ √ −hR (2) ,which is the Euler characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> the manifold. This is a topological invariant, and thus unaffected byWeyl rescalings.


CHAPTER 4. CONFORMAL INVARIANCE 58in which 8β g µν = α ′ (R µν + 2∇ µ ∇ ν Φ − 1 4 H µκσH κσν)+ O ( α ′2) , (4.20)(βµν B = α ′ − 1 )2 ∇κ H κµν + ∇ κ ΦH κµν + O ( α ′2) , (4.21)( D − 26β Φ = α ′ 6α ′ − 1 2 ∇2 Φ + ∇ κ Φ∇ κ Φ − 1 )24 H κµνH κµν + O ( α ′2) , (4.22)where we usedH κµν = ∂ κ B µν + ∂ µ B νκ + ∂ ν B κµ .These are the generalized Einstein equati<strong>on</strong>s for the fields under c<strong>on</strong>siderati<strong>on</strong>. Notethat the expansi<strong>on</strong> in α ′ is <strong>on</strong>ly valid if the typical length scale <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time (usuallyexpressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ricci scalar) is much larger than α ′ , or equivalently if spacetimeis <strong>on</strong>ly slightly curved at the string length scale (recall that l 2 s = 2α ′ ). The acti<strong>on</strong>for the scalar field, being <strong>on</strong>e order higher in α ′ , can be c<strong>on</strong>sidered as a first orderperturbative correcti<strong>on</strong>.Demanding that Weyl invariance is still respected implies that all above menti<strong>on</strong>edβ-functi<strong>on</strong>s should vanish, in turn demanding that the world sheet theory is describedby a c<strong>on</strong>formal field theory, i.e. a scale invariant theory. It should be noted that whenβ g = β B = 0, we are left withT α α = − 1 2 βΦ R (2) , (4.23)which as we saw is exactly the c<strong>on</strong>formal anomaly that arises when <strong>on</strong>e quantizes atwo-dimensi<strong>on</strong>al c<strong>on</strong>formal field theory. Hence, when β g = β B = 0, Eq. 4.18 describesa c<strong>on</strong>formal field theory with central charge equaling β Φ . 9 Since β Φ should also vanish,we are left with an anomaly free c<strong>on</strong>formal field theory.Furthermore, it is worth pointing out that when all above β-functi<strong>on</strong>s are set to zero,what remains are sec<strong>on</strong>d order differential equati<strong>on</strong>s for the background fields. As itturns out, these can be regrouped into <strong>on</strong>e single acti<strong>on</strong>,S = 12κ 2 0∫d D X √ −Ge −2φ [R + 4∇ µ Φ∇ µ Φ − 1 12 H µνλH µνλ2 (D − 26)−3α ′ + O ( α ′)] , (4.24)in which κ 0 represents a c<strong>on</strong>stant with no physical significance, as it can be absorbed ina redefiniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Φ. Varying this acti<strong>on</strong> with respect to the background fields results insaid differential equati<strong>on</strong>s. Remark that from this, if <strong>on</strong>e splits Φ into its expectati<strong>on</strong>value Φ 0 and the deviati<strong>on</strong> there<str<strong>on</strong>g>of</str<strong>on</strong>g>, Φ −→ Φ 0 + Φ, <strong>on</strong>e can identify g s = e Φ 0. In otherwords, the expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar field Φ defines the string coupling c<strong>on</strong>stant.If so wanted, <strong>on</strong>e could redefine the metric G µν −→ ˜G µν by multiplying with a suitable8 Readers curious as to the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the derivati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these β-functi<strong>on</strong>s are referred to §2.1.3 in [5].9 It can be shown that when β g = β B = 0, β Φ is c<strong>on</strong>stant.


CHAPTER 4. CONFORMAL INVARIANCE 59power <str<strong>on</strong>g>of</str<strong>on</strong>g> e Φ in order to bring the gravitati<strong>on</strong>al part <str<strong>on</strong>g>of</str<strong>on</strong>g> the acti<strong>on</strong> to the standard Hilbertform 1 ∫2κ d X√D − ˜GR, allowing <strong>on</strong>e to identifyκ ≡ κ 0 e Φ 0= √ 8πG N , (4.25)with G N Newt<strong>on</strong>’s gravitati<strong>on</strong>al c<strong>on</strong>stant. Details can be found in §3.7 in [18] or §2.7in [12].4.3 SummaryThe few preceding pages attempted to highlight some <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>a c<strong>on</strong>formal field theory. Then a short review was given <str<strong>on</strong>g>of</str<strong>on</strong>g> the problems associated withthe generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (bos<strong>on</strong>ic) string theory from flat space-time to curved space-times,further including the Kalb-Ram<strong>on</strong>d and scalar Φ background fields, and it was shownthat the resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these problems demanded that the world sheet theory be describedby a c<strong>on</strong>formal field theory. It was further brought forward that the expectati<strong>on</strong> value<str<strong>on</strong>g>of</str<strong>on</strong>g> the Φ field in fact determines the string coupling g s .


Chapter 5Branes“Many speak <str<strong>on</strong>g>of</str<strong>on</strong>g> the legendary and gigantic starship Titanic,a majestic and luxurious cruise liner [which] hadthe misfortune to be built in the very earliest days <str<strong>on</strong>g>of</str<strong>on</strong>g> ImprobabilityPhysics, l<strong>on</strong>g before this difficult and cussedbranch <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge was fully, or at all, understood. Thedesigners and engineers decided, in their innocence, tobuild a prototype Improbability Field into it, which wasmeant, supposedly, to ensure that it was Infinitely Improbablethat anything would ever go wr<strong>on</strong>g with anypart <str<strong>on</strong>g>of</str<strong>on</strong>g> the ship. They did not realize that because <str<strong>on</strong>g>of</str<strong>on</strong>g> thequasi-reciprocal and circular nature <str<strong>on</strong>g>of</str<strong>on</strong>g> all Improbabilitycalculati<strong>on</strong>s, anything that was Infinitely Improbable wasactually very likely to happen almost immediatly.”Douglas AdamsHitchhiker’s Guide to the GalaxyDespite its name, string theory does not exclusively handle about strings. Other physicalobjects also inhabit this theory, am<strong>on</strong>gst which we find the D-<strong>branes</strong> and NS5-<strong>branes</strong>,both being special cases <str<strong>on</strong>g>of</str<strong>on</strong>g> general p-<strong>branes</strong>: objects that extend in p dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>space. This chapter aims to introduce these two protag<strong>on</strong>ists, c<strong>on</strong>centrating <strong>on</strong> theType II superstring theory case, since that is the <strong>on</strong>e that c<strong>on</strong>cerns us in the carried outresearch.5.1 Dp-<strong>branes</strong>A Dp-brane is a physical object that lives in D-dimensi<strong>on</strong>al space-time, and extendsin p spatial dimensi<strong>on</strong>s (with p < D), and hence describes a (p + 1)-dimensi<strong>on</strong>al worldvolume. One does not always specify the p, in which case <strong>on</strong>e simply talks about D-<strong>branes</strong>. The defining property <str<strong>on</strong>g>of</str<strong>on</strong>g> a D-brane is that open strings with Dirichlet boundary60


CHAPTER 5. BRANES 61c<strong>on</strong>diti<strong>on</strong>s can end <strong>on</strong> them; i.e. that the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> an open string satifsying Dirichletboundary c<strong>on</strong>diti<strong>on</strong>s are located <strong>on</strong> a D-brane. 1What makes D-<strong>branes</strong> so extremely interesting is that they provide a way to introducegauge symmetries in string theory, which in turn hints at a possible way to createstandard model-like models from a stringy perspective.The easiest way to motivate the necessity for D-<strong>branes</strong> is by c<strong>on</strong>sidering T-duality.Hence, this secti<strong>on</strong> will start with a short expositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this subject. Then we will have alook at the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge fields generated by the closed strings in the two TypeII superstring theories <strong>on</strong> the possible D-<strong>branes</strong> in these theories. We will c<strong>on</strong>clude byhighlighting a possible low-energy acti<strong>on</strong> that describes the world volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a D-brane.5.1.1 T-dualityTo make our lives easier, we will again go back for a sec<strong>on</strong>d to the bos<strong>on</strong>ic string theoryand its corresp<strong>on</strong>ding 26-dimensi<strong>on</strong>al space-time. We will investigate what happenswhen we <strong>compact</strong>ify <strong>on</strong>e spatial dimensi<strong>on</strong>. Compactifying in essence comes down totaking a dimensi<strong>on</strong>, and identifying (at least) two points in this dimensi<strong>on</strong> with eachother. A natural way <str<strong>on</strong>g>of</str<strong>on</strong>g> doing so, is to c<strong>on</strong>sider this dimensi<strong>on</strong> to be curled up into acircle.We will start by c<strong>on</strong>sidering what happens to closed strings, and then have a lookat what changes for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> open strings.Closed stringsThe first thing to do, is simply to choose <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the 25 spatial dimensi<strong>on</strong>s to <strong>compact</strong>ify.We will not try to be original, but instead choose to do as everybody else, and hencechoose the 25 th dimensi<strong>on</strong>. As such, <strong>compact</strong>ifying this dimensi<strong>on</strong> amounts to statingthat this dimensi<strong>on</strong> satisfies the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> a circle with some arbitrary (but fixed, <str<strong>on</strong>g>of</str<strong>on</strong>g>course) radius R. Now, a closed string with a comp<strong>on</strong>ent that lives in this dimensi<strong>on</strong>obviously has to go around the entire circle at least <strong>on</strong>ce. But nothing forbids it <str<strong>on</strong>g>of</str<strong>on</strong>g>winding around it multiple times. Just think <str<strong>on</strong>g>of</str<strong>on</strong>g> an elastic that you wind around acurled up poster or something: you can wrap it around just <strong>on</strong>ce, but nothing forbidsyou from making a figure-<str<strong>on</strong>g>of</str<strong>on</strong>g>-eight with your elastic and hence wrapping it around twice.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this newly acquired freedom, our original closed string boundary c<strong>on</strong>diti<strong>on</strong>,Eq. 2.16, gets modified with an extra term as follows:X 25 (σ + π, τ) = X 25 (σ, τ) + 2πRW. (5.1)Herein, W ∈is called the winding number, and expresses how many times the stringwinds around the circular dimensi<strong>on</strong>. The directi<strong>on</strong> in which the string is winded isencoded in the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> W. This extra term is explained by the simple observati<strong>on</strong> 2that the closed string boundary c<strong>on</strong>diti<strong>on</strong> relates <strong>on</strong>e and the same point <strong>on</strong> our string,1 This immediatly implies that a string and a D1-brane are two separate things.2 The simpler an observati<strong>on</strong>, the l<strong>on</strong>ger it usually takes to figure it out.


CHAPTER 5. BRANES 62but if the string is wound a number <str<strong>on</strong>g>of</str<strong>on</strong>g> times then simply stating that X 25 (σ + π, τ) =X 25 (σ, τ) would identify the wr<strong>on</strong>g points!The next thing to do is <str<strong>on</strong>g>of</str<strong>on</strong>g> course to take a look at the mode expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our string,and see if anything has changed. The first thing to note is that nothing changes in the24 spatial dimensi<strong>on</strong>s that were left un<strong>compact</strong>ified, and hence the mode expansi<strong>on</strong> inthese dimensi<strong>on</strong>s also does not change. In the 25 th dimensi<strong>on</strong> however, for exactly thesame reas<strong>on</strong> menti<strong>on</strong>ed just earlier, we should add an extra term to account for thewinding <str<strong>on</strong>g>of</str<strong>on</strong>g> the string. The sec<strong>on</strong>d thing to note is that <strong>compact</strong>ifying does not changeanything to the oscillator modes. And the third and final thing to note is that due tothe <strong>compact</strong>ificati<strong>on</strong>, the momentum in the 25 th dimensi<strong>on</strong> becomes quantized. In orderto see this, recall e.g. the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Kaluza-Klein <strong>compact</strong>ificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a free massless scalarfield ψ (x µ , y) living in a D +1-dimensi<strong>on</strong>al Minkowski space <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e dimensi<strong>on</strong>, y,is <strong>compact</strong>ified, satisfying the massless Klein-Gord<strong>on</strong> equati<strong>on</strong>( + ∂2y)ψ = 0, (5.2)where = ∂ µ ∂ µ with µ ∈ {0, . . .,D − 1}. Given that y is periodic, so is the Fourier expansi<strong>on</strong>in this dimensi<strong>on</strong>, and hence as a general soluti<strong>on</strong> to the Klein-Gord<strong>on</strong> equati<strong>on</strong>we findψ (x µ , y) =+∞∑n=−∞e i n R y ψ k (x µ ), (5.3)in which R is the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>compact</strong>ified dimensi<strong>on</strong>, and e i n R y = e ipyy , implying thatp y = n R . (5.4)In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the string, the same argument holds (recall that the X µ ’s are scalar fields),but with this distincti<strong>on</strong> that we definep 25 = K R , (5.5)where we have defined the Kaluza-Klein excitati<strong>on</strong> number K ∈. Taking all this intoaccount, and starting from the generic soluti<strong>on</strong>X 25 (σ, τ) = x 25 + 2α ′ p 25 τ + 2RWσ + . . ., (5.6)splitting in left- and right-movers leaves us withXR 25 (τ − σ) = 1 (x 25 − ˜x 25) +(α ′K )2R − WR (τ − σ) + oscillators,XL 25 (τ + σ) = 1 (x 25 + ˜x 25) +2(α ′K R + WR )(τ + σ) + oscillators, (5.7)where ˜x 25 is some arbitrary c<strong>on</strong>stant that cancels in the sum, which will prove itselfvery useful in a sec<strong>on</strong>d.


CHAPTER 5. BRANES 63We should again define α 0 and ˜α 0 operators in such a way that we can “completethe sum” when we take the derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the expansi<strong>on</strong>s. To this end, we define√2α ′ α0 25 = α ′K R− WR, (5.8)√2α′˜α 250 = α ′K R+ WR. (5.9)Now that we have these at our disposal, recall the (still unchanged) c<strong>on</strong>diti<strong>on</strong> expressedin Eq. 2.99, as well as the definti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L m in Eq. 2.97, and defineM 2 = −24∑µ=0p µ p µ , (5.10)i.e. the mass in the 25-dimensi<strong>on</strong>al n<strong>on</strong>-<strong>compact</strong> space-time. Using all this, we find that0 = L 0 − 1,⎡= 1 ⎣ ( α 25 ) 224∑0 + α µ 02α 0µ +µ=0= ˜L 0 − 1,⎡= 1 )⎣ 25 224∑ (˜α 0 + ˜α µ 02˜α 0µ +µ=025∑+∞∑ν=0 n=125∑+∞∑ν=0 n=1α ν −nα nν⎤⎦ − 1,˜α ν −n˜α nν⎤⎦ − 1. (5.11)Remembering that for the closed bos<strong>on</strong>ic string we defined α µ 0 = 1 2 l sp µ (but now withµ < 25) and definingthe above tells us thatN R =N L =25∑∑α−nα ν nν , (5.12)ν=0 n>025∑∑˜α −n˜α ν nν , (5.13)ν=0 n>012 α′ M 2 = ( α025 ) 2+ 2NR − 2 =(5.14))25 2 (˜α 0 + 2NL − 2. (5.15)Filling in Eqs. 5.8 and 5.9, and taking sum and difference allows us to c<strong>on</strong>clude that[ (αN R − N L = −1 ′ )K 2 ( α ′ ) ]4α ′ R − WR K 2−R + WR= KW, (5.16)


CHAPTER 5. BRANES 64meaning that the level-matching c<strong>on</strong>diti<strong>on</strong> got somewhat altered, and[ (K ) 2 ( ) ]WR2α ′ M 2 = α ′ +R α ′ + 2N L + 2N R − 4. (5.17)This last equati<strong>on</strong> hides a symmetry, namely it is invariant under the simultaneoustransformati<strong>on</strong>s {R −→ ˜R = α ′ R −1 ,(5.18)W ←→ K.This symmetry is exactly what is called T-duality, and it teaches us that for closedstrings <strong>compact</strong>ificati<strong>on</strong> <strong>on</strong> a circle <str<strong>on</strong>g>of</str<strong>on</strong>g> radius R is physically equivalent to, and evenindistinguishable from, <strong>compact</strong>ificati<strong>on</strong> <strong>on</strong> a circle <str<strong>on</strong>g>of</str<strong>on</strong>g> radius α ′ R −1 . You might w<strong>on</strong>derwhy it is called a duality and not a symmetry. The reas<strong>on</strong> is simple: it is <strong>on</strong>ly asymmetry in the closed string case, but not in the open string case as we will so<strong>on</strong> findout. However, we will still be able to map soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e theory to soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> another,hence we are left with a duality. According to [11] (p.38), the “T” stands for “targetspace,” being as we map different space-time c<strong>on</strong>figurati<strong>on</strong>s into <strong>on</strong>e another.At any rate, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> performing a T-duality transformati<strong>on</strong> <strong>on</strong> the closed stringalso entails that <strong>on</strong>e changesX 25R −→ −X 25R ; X 25L −→ X 25L . (5.19)This mapping is obvious for the zero modes, in which case it simply follows from Eqs.5.8 and 5.9, but for the other modes we need to impose this. We can do this, as thischanges nothing to the physics <str<strong>on</strong>g>of</str<strong>on</strong>g> our theory. This map leaves all physical quantities<str<strong>on</strong>g>of</str<strong>on</strong>g> the theory unchainged, and hence truely c<strong>on</strong>stitutes a symmetry. This allows <strong>on</strong>e toexpress the theory using an equivalent coordinate ˜X defined aswith the generic expansi<strong>on</strong>˜X 25 (σ, τ) = X 25L (τ + σ) − X 25R (τ − σ), (5.20)˜X 25 (σ, τ) = ˜x 25 + 2α ′K R σ + 2RWτ25 + oscillators. (5.21)We note that R can take <strong>on</strong> a specific value at which the theory is self-dual, namelyR = √ α ′ . At this radius, the massless closed string spectrum gets modified so as toacquire two SU(2) gauge groups, <strong>on</strong>e left-moving and <strong>on</strong>e right-moving. For a shortdiscussi<strong>on</strong>, see [12] §3.3.It is worth pointing out a major difference between Kaluza-Klein (KK) <strong>compact</strong>ificati<strong>on</strong>and T-duality. With KK <strong>compact</strong>ificati<strong>on</strong>, what <strong>on</strong>e does is <strong>compact</strong>ify adimensi<strong>on</strong>, so that <strong>on</strong>e can make it “disappear” by choosing it infinitally small (R −→ 0limit), in which case its physics decouple from that in the other dimensi<strong>on</strong>s. This ispossible, because in KK theory, <strong>on</strong>e <strong>on</strong>ly has a mass-squared-like factor going as ∼ R −2 .With T-duality however, two mass-squared-like terms appear, <strong>on</strong>e going as ∼ R −2 andanother going as ∼ R 2 . You simply cannot make them both disappear simultaneously!


CHAPTER 5. BRANES 65<str<strong>on</strong>g>Open</str<strong>on</strong>g> stringsNext, we turn ourselves to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string. We c<strong>on</strong>sider an open string obeyingNeumann boundary c<strong>on</strong>diti<strong>on</strong>s in all 25 spatial dimensi<strong>on</strong>s, for which the expansi<strong>on</strong>was given by Eq. 2.41, which we refresh:X µ (σ, τ) = x µ + l 2 sp µ τ + il s∑n≠01n αµ ne −inτ cos (nσ).Again <strong>compact</strong>ifying the X 25 dimensi<strong>on</strong>, this time we do not need to include any specialextra terms as in the closed string case. It remains true however that the p 25 momentumcomp<strong>on</strong>ent becomes quantized, so that p 25 = nR −1 with n ∈. Further recalling thatwe defined α µ 0 = l sp µ , we find for the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X 25 :∑X 25 (σ, τ) = x 25 + l s α0 25 1τ + il sn α25 n e −inτ cos (nσ). (5.22)Although we did not do so before because it did not bare any interesting features withit at the time, we will now also expand this into left- and right-movers. We may do so,as we can c<strong>on</strong>sider the oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an open string to be superpositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> left- andright-movers that combine into standing waves. We will do so, because <str<strong>on</strong>g>of</str<strong>on</strong>g> course, wewould like to be able to formulate the theory using a “dual coordinate” ˜X 25 , just as inthe closed string case. This expansi<strong>on</strong> amounts t<strong>on</strong>≠0XR 25 (τ − σ) = x25 − ˜x 25+ 1 2 2 l sα0 25 (τ − σ) + i l ∑s 12 n α25 n e −in(τ−σ) , (5.23)n≠0∑XL 25 (τ + σ) = x25 + ˜x 25+ 1 2 2 l sα0 25 (τ + σ) + i l s2n≠01n α25 n e −in(τ+σ) , (5.24)where again ˜x 25 is an as-<str<strong>on</strong>g>of</str<strong>on</strong>g>-yet arbitrary c<strong>on</strong>stant that cancels in the sum. The biggestdifference with the closed string case, is that this time there is <strong>on</strong>ly <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> modes (i.e.,there are no ˜α’s). T-dualizing by sending R −→ ˜R = α ′ R −1 will again send X R −→ −X Rand X L −→ X L , and so we define the dual coordinate ˜X 25 (σ, τ) = X L − X R , whichexplicitely becomes∑˜X 25 (σ, τ) = ˜x 25 + l s α0 25 1σ + l sn α25 n e −inτ sin(nσ). (5.25)We see that the zero-mode gets multiplied by σ instead <str<strong>on</strong>g>of</str<strong>on</strong>g> τ, as was the case for X 25 ,and that the cos (nσ) got exchanged for −i sin(nσ). This hints at something that turnsout to be true, namelyn≠0∂ σ X 25 = ∂ τ ˜X25 , (5.26)∂ τ X 25 = ∂ σ ˜X25 , (5.27)


CHAPTER 5. BRANES 66i.e. our original Neumann boundary c<strong>on</strong>diti<strong>on</strong>s got transformed into Dirichlet boundaryc<strong>on</strong>diti<strong>on</strong>s! Had we started out with Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s, it is easy to seefrom Eq. 2.39 that the same would have happened but the other way around, i.e. wewould have found that D boundary c<strong>on</strong>diti<strong>on</strong>s got turned into N boundary c<strong>on</strong>diti<strong>on</strong>s.Furthermore, we note that˜X 25 (π, τ) − ˜X 25 (0, τ) = 2π ˜Rn, (5.28)meaning our string has to wrap an integer time around the T-dualized circle. This isquite an interesting observati<strong>on</strong>, given that if a string has Neumann boundary c<strong>on</strong>diti<strong>on</strong>sin some (<strong>compact</strong>) directi<strong>on</strong>, it can not have a winding number in that directi<strong>on</strong>.Intuitively this is clear: the string can move freely in that directi<strong>on</strong>, so nothing can forceit to keep its endpoints fixed. But since it can move, it also gains momentum. In theT-dual picture, this observati<strong>on</strong> gets inversed: the string endpoints become fixed, so itcan wind (and as Eq. 5.28 shows, it is even forced to), but since it cannot move, itcannot gain any momentum.The crucial point in all this, is that as far as closed strings are c<strong>on</strong>cerned, thereis no physically significant difference between <strong>compact</strong>ificati<strong>on</strong> <strong>on</strong> a circle <str<strong>on</strong>g>of</str<strong>on</strong>g> radius R,or a circle <str<strong>on</strong>g>of</str<strong>on</strong>g> radius ˜R = α ′ /R. For open strings however, this is not the same, andthat is something we do not like, because T-duality seemed like a really nice idea andvery powerful tool. So how can we fix this awkward little problem? Answer: introduceD-<strong>branes</strong>! So in order to make sense <str<strong>on</strong>g>of</str<strong>on</strong>g> this picture, it has been proposed (and thispropositi<strong>on</strong> has since been developped in full glory) that an open string with Dirichletboundary c<strong>on</strong>diti<strong>on</strong>s does not have its endpoints fixed to some arbitrary points in spacetimethat somehow are more special than their neighbours, but instead that its endpointslie <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical object that lives in (p + 1)-dimensi<strong>on</strong>al space-time. Theendpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> the string are free to move <strong>on</strong> this surface, but are bound to remain fixed indirecti<strong>on</strong>s perpendicular to it. This object is called a Dp-brane, with the D referencingto Dirichlet for obvious reas<strong>on</strong>s. So in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> our original string that had Neumannboundary c<strong>on</strong>diti<strong>on</strong>s in all 25 spatial dimensi<strong>on</strong>s, we can now interpret this as an openstring whose endpoints live <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a space-time-filling D25-brane. Since thesurface <str<strong>on</strong>g>of</str<strong>on</strong>g> this D-brane comprises all <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, the open string is free to move as itpleases. When we <strong>compact</strong>ify the X 25 directi<strong>on</strong> and T-dualize it however, what happens“underneath the surface” is that we remove <strong>on</strong>e dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our D-brane, making it aD24-brane that does no l<strong>on</strong>ger extend in the X 25 directi<strong>on</strong>. Hence, since this brane stilllives in a 25 spatial-dimensi<strong>on</strong>al world, its positi<strong>on</strong> must be fixed in the X 25 dimensi<strong>on</strong>, 3which explains why suddenly our open string gains Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s in thisdirecti<strong>on</strong> and is forced to wrap an integer number <str<strong>on</strong>g>of</str<strong>on</strong>g> times around it.This idea can easily be generalized to <strong>compact</strong>ificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than <strong>on</strong>e spatialdimensi<strong>on</strong>. Remark however that because an open string wraps around a circular directi<strong>on</strong>,and hence has both its endpoints identified in this directi<strong>on</strong>, does not make ita closed string! The endpoints can still take <strong>on</strong> different values in the other directi<strong>on</strong>s.3 C<strong>on</strong>sider e.g. a disc in the x − y plane that lives in a 3D world. If this disc cannot move in the zdirecti<strong>on</strong>, when we project it <strong>on</strong>to the z-axis it is bound to take <strong>on</strong> a fixed value.


CHAPTER 5. BRANES 67Also remark that it are <strong>on</strong>ly the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string that are fixed; all otherpoints <strong>on</strong> the string are still free to move as they please.D-<strong>branes</strong>As we have just introduced them, Dp-<strong>branes</strong> are physical objects that extend in p spatialdimensi<strong>on</strong>s, and whose defining property is that the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> open strings satisfyingDirichlet boundary c<strong>on</strong>diti<strong>on</strong>s can (or even have to) end <strong>on</strong> them. We see that in essence,D-<strong>branes</strong> were present right from the start, <strong>on</strong>ly betraying their presence through theDirichlet boundary c<strong>on</strong>diti<strong>on</strong>s which first got dismissed as being unphysical due to thefact that they break Poincaré invariance. As a c<strong>on</strong>sequence, they <strong>on</strong>ly grew in popularitywhen T-duality was discovered in 1989.As an intuitive argument 4 as to why these objects should behave like physical objects,c<strong>on</strong>sider this next scenario. An open string fixed to a D-brane moves around untilsomehow both its endpoints meet. As <str<strong>on</strong>g>of</str<strong>on</strong>g> that moment, the string becomes a closedstring, and hence is no l<strong>on</strong>ger bound to the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> this D-brane. Instead, it can get<str<strong>on</strong>g>of</str<strong>on</strong>g>, and roam around in space-time, enjoying the sight. But at some point, it might hitanother D-brane, at which time it can “open up” again, and become fixed to the surface<str<strong>on</strong>g>of</str<strong>on</strong>g> this other D-brane. In this case, two D-<strong>branes</strong> will have exchanged a (closed) string,and hence, talked to each other. Only physical objects can interact, hence implying thatD-<strong>branes</strong> should indeed be physical.Something crucial happens to the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> open strings with Dirichlet boundaryc<strong>on</strong>diti<strong>on</strong>s. We now know that if a string has Neumann c<strong>on</strong>diti<strong>on</strong>s in some directi<strong>on</strong>s, letus say 0 to p (with 1 ≤ p < 25), and Dirichlet in the others, this amounts to saying thatthis string has endpoints lying <strong>on</strong> a p-brane. We can now denote the Neumann directi<strong>on</strong>swith an index n and the Dirichlet directi<strong>on</strong>s with an index d, i.e. X µ = { X n , X d} withn ∈ {0, . . .,p} and d ∈ {p + 1, . . .,25}. The next step is to combine X 0 and X 1 intolight-c<strong>on</strong>e coordinates, so that we can use the light-c<strong>on</strong>e gauge to c<strong>on</strong>struct the spectrum<str<strong>on</strong>g>of</str<strong>on</strong>g> this string. After we do this, we are left with (p − 1) transverse Neumann directi<strong>on</strong>s,and thus (p − 1) α−1 i operators (i ∈ {2, . . .,p}) we can let act <strong>on</strong> our groundstate. Ifwe use these operators, we create a massless state, just as we saw in Chapter 2, butthis time in (p − 1) <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong>s in which our Dp-brane is stretched. We create aphot<strong>on</strong> that lives <strong>on</strong> the D-brane! Hence, every Dp-brane has a Maxwell field living <strong>on</strong>its world volume. The α−1 d operators generate states that from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> theD-brane transform as scalars. All these fields are perpendicular to the D-brane worldvolume. They can be regarded as excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane itself.This last point gives rise to a nice way <str<strong>on</strong>g>of</str<strong>on</strong>g> eliminating tachy<strong>on</strong>s from the open stringbos<strong>on</strong>ic spectrum. It has been suggested that a space-time filling D25-brane is unstablebecause <str<strong>on</strong>g>of</str<strong>on</strong>g> the tachy<strong>on</strong> that lives <strong>on</strong> its world volume. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this, the D25-branewould actually decay, and the products <str<strong>on</strong>g>of</str<strong>on</strong>g> this decay would be closed strings. This isalso true for Dp-<strong>branes</strong> with p < 25. As a c<strong>on</strong>sequence, bos<strong>on</strong>ic string theory couldvery well not c<strong>on</strong>tain any stable D-<strong>branes</strong> at all. As <str<strong>on</strong>g>of</str<strong>on</strong>g> yet, no way has been found toeliminate the closed string tachy<strong>on</strong>, though.4 This argument has been taken from [5].


CHAPTER 5. BRANES 68The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Maxwell field <strong>on</strong> the D-brane has a very important c<strong>on</strong>sequence.C<strong>on</strong>sider the countour integral ∮⃗E · d ⃗ l. (5.29)CWhen we c<strong>on</strong>sider the electric field to be static, and this c<strong>on</strong>tour to be lying somewhere inordinary space, we can invoke Stokes’ theorem in combinati<strong>on</strong> with the (static) Maxwellequati<strong>on</strong> ∇ × ⃗ E = 0 to obtain∮C∫⃗E · d ⃗ l =S(∇ × E ⃗ )d⃗a = 0. (5.30)When c<strong>on</strong>sidering <strong>compact</strong> dimensi<strong>on</strong>s, something fundamental changes, namely thec<strong>on</strong>tour no l<strong>on</strong>ger bounds a surface since there is no “inner space” anymore. As ac<strong>on</strong>sequence, Eq. 5.29 can take <strong>on</strong> n<strong>on</strong>-zero values. Generalizing to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a vectorpotential A µ , and c<strong>on</strong>sidering its comp<strong>on</strong>ent al<strong>on</strong>g the <strong>compact</strong> dimensi<strong>on</strong> (say x 25 ),defineW q = e iq H c dx25 A 25. (5.31)This quantity is called a Wils<strong>on</strong> line, and it takes <strong>on</strong> a c<strong>on</strong>stant value in the <strong>compact</strong>interval [0, 2π]. Now we can c<strong>on</strong>sider a setup with several parallel Dp-<strong>branes</strong>, say N<str<strong>on</strong>g>of</str<strong>on</strong>g> them. We can thus c<strong>on</strong>sider several different open string c<strong>on</strong>figurati<strong>on</strong>s, in generaldefined by two labels i and j, respectively labeling the Dp-brane <strong>on</strong> which the stringstarts (σ = 0) and ends (σ = π). Now, suppose <strong>on</strong>e directi<strong>on</strong> is <strong>compact</strong>ified, andthat our Dp-<strong>branes</strong> wrap around this directi<strong>on</strong>. Due to the Maxwell field living <strong>on</strong> theD-<strong>branes</strong>, they will acquire a Wils<strong>on</strong> line θ i al<strong>on</strong>g the <strong>compact</strong> dimensi<strong>on</strong>. Amazinglyenough, when we take the T-dual <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>compact</strong> dimensi<strong>on</strong>, the resulting D(p − 1)-<strong>branes</strong> will positi<strong>on</strong> themselves <strong>on</strong> the dual circle at angles θ i . This means that anopen string lying <strong>on</strong> <strong>branes</strong> i and j in the original descripti<strong>on</strong> will stretch <strong>on</strong> the dualcircle between angles θ i and θ j . The labels i, j are called “Chan-Pat<strong>on</strong> charges.” Thismechanism introduces gauge groups as follows: k coincident <strong>branes</strong> give rise to a U(k)group, while l seperate <strong>branes</strong> make for a U(1) l group.5.1.2 D-<strong>branes</strong> in Type IIA and Type IIB theoriesRecall the coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> the string to the Kalb-Ram<strong>on</strong>d field shown in Eq. 4.16,S B = − 1 ∫4πα ′ d 2 σǫ αβ B µν (X) ∂ α X µ ∂ β X ν .This is in fact a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> a vector field to a gauge field,∫dx µS A = q dτA µdτ , (5.32)where q represents the coupling c<strong>on</strong>stant to this field (e.g. electric charge). This generalizati<strong>on</strong>implies that a string couples electrically to the Kalb-Ram<strong>on</strong>d field.


CHAPTER 5. BRANES 69Generally speaking though, c<strong>on</strong>sidering a p-form gauge field A p , we can c<strong>on</strong>structfrom it a field strength F p+1 , and a dual field strength by taking the Hodge dual ⋆F p+1which is a (D − p − 1)-form. Recalling the form formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Maxwell’s equati<strong>on</strong>s forthe Maxwell field A µ and associated field strength F = dA in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sources,dF = ⋆J m ; d ⋆ F = J e , (5.33)in which J m represents the magnetic source and J e represents the electric source, wecan generalize this to a p-form gauge field. The important thing to note is that if abrane couples to such a field, it acquires a charge, and these charges can be computedby integrating the field strengths over a sphere surrounding the brane. So looking atthe electrical coupling, we see that in order to compute the charge, we would need tointegrate over a (D − p − 1)-sphere, and in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic coupling over a (p + 1)sphere. Geometry tells us that a (D − p − 1)-sphere can surround a (p − 1)-dimensi<strong>on</strong>alobject, while a (p+1) sphere surrounds a (D−p−3)-dimensi<strong>on</strong>al object. The importantc<strong>on</strong>clusi<strong>on</strong> to draw from all this, is that the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge field defines towhat type <str<strong>on</strong>g>of</str<strong>on</strong>g> brane it can couple.Having established all this, this immediatly begs the questi<strong>on</strong> if also D-<strong>branes</strong> coupleto any fields, and hence acquire charge under those fields? C<strong>on</strong>sidering the above,we could reformulate the questi<strong>on</strong> as: what gauge fields do we have at our disposal?The answer, as we saw in Chapter 3, depends <strong>on</strong> what type <str<strong>on</strong>g>of</str<strong>on</strong>g> superstring theory <strong>on</strong>ec<strong>on</strong>siders.Type IIAIn the Type IIA theory gauge fields A µ and A µνρ are present. Electrically, this couplesto Dp-<strong>branes</strong> with p ∈ (0, 2), and magnetically to Dp-<strong>branes</strong> with p ∈ (4, 6). It is worthpointing out that a D8-brane can actually also occur. This requires a nine-form gaugefield, which in ten-dimensi<strong>on</strong>al space-time is n<strong>on</strong>dynamical. In short: the Type IIAtheory allows for stable Dp-<strong>branes</strong> with p even.Type IIBIn the Type IIB theory gauge fields A, A µν and A µνρσ are present. This couples electricallyto Dp-<strong>branes</strong> with p ∈ {−1, 1, 3}, and magnetically to Dp-<strong>branes</strong> with p ∈ {3, 5, 7}.The D(−1)-brane the zero-form gauge field couples to is called a D-instant<strong>on</strong> [13], anobject which is localized in space and time. Furthermore we see that a D3-brane appearstwice. This is actually the same brane twice; it is self-dual. In some cases, space-time fillingD9-<strong>branes</strong> can also occur. In short: the Type IIB theory allows for stable Dp-<strong>branes</strong>with p odd.BPSAnother important feature <str<strong>on</strong>g>of</str<strong>on</strong>g> all D-<strong>branes</strong> present in both Type II theories is thatthey preserve half <str<strong>on</strong>g>of</str<strong>on</strong>g> the supersymmetries present in the theories without D-<strong>branes</strong>. A


CHAPTER 5. BRANES 70heuristic argument to make this claim somewhat more acceptable is that open stringscan in fact be regarded as being excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a D-brane world volume. <str<strong>on</strong>g>Open</str<strong>on</strong>g> stringshave <strong>on</strong>ly half the supersymmetries closed strings have, implying that also D-<strong>branes</strong>preserve <strong>on</strong>ly half <str<strong>on</strong>g>of</str<strong>on</strong>g> them. An important c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this is that D-<strong>branes</strong> exert n<str<strong>on</strong>g>of</str<strong>on</strong>g>orce <strong>on</strong> each other. They can exchange (closed) strings, and they attract each othergravitati<strong>on</strong>ally, but the net result <str<strong>on</strong>g>of</str<strong>on</strong>g> these interacti<strong>on</strong>s is zero. Often, <strong>on</strong>e says that anobject satisfying this c<strong>on</strong>diti<strong>on</strong> is a (half-)BPS state, where BPS stand for the namesBogomolny, Prasad and Sommerfield.5.1.3 T-duality in Type IIA and Type IIB theoriesWithout going into details, if we c<strong>on</strong>sider for example the <strong>compact</strong>ificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the X 9directi<strong>on</strong> in the Type II superstring theories, followed by carrying out T-duality in thisdirecti<strong>on</strong>, we will still obtain thatBy virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> world sheet supersymmetry, alsoX 9 R −→ −X 9 R ; X 9 L −→ X 9 L. (5.34)ψ 9 R −→ −ψ 9 R ; ψ 9 L −→ ψ 9 L. (5.35)In other words, we reverse the chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ram<strong>on</strong>d sector right-movers, because wealter the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the d 9 0 operator. As was pointed out earlier, this operator is related tothe Dirac Γ-matrices by the relati<strong>on</strong> Γ µ = √ 2d µ 0 . Given that the chirality operator Γ11is defined asΓ 11 = Γ 0 Γ 1 . . .Γ 9 , (5.36)reversing the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these matrices effectively inverses the chirality. As such,T-duality maps the Type IIA theory into the Type IIB theory, and vice versa. If weT-dualize another dimensi<strong>on</strong>, we will again reverse chiralities, and come back to thetheory we started out with, and so forth.5.1.4 Dirac-Born-Infeld Acti<strong>on</strong>To describe the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> our D-<strong>branes</strong>, we still need to c<strong>on</strong>coct an acti<strong>on</strong> for them.A popular low-energy acti<strong>on</strong> is the so-called Dirac-Born-Infeld (<str<strong>on</strong>g>DBI</str<strong>on</strong>g>) acti<strong>on</strong>. We willnot derive this acti<strong>on</strong> in full detail, but merely sketch the derivati<strong>on</strong>. Details can befound in e.g. [12] §4.2, and [13] §8.5.1.Before we devise this acti<strong>on</strong>, we can already start by guessing what different c<strong>on</strong>tributi<strong>on</strong>swe need by comparing to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a string. So the first thing we would need,is a term that describes the embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> the brane in the external space-time. Sec<strong>on</strong>d,we will need to c<strong>on</strong>sider c<strong>on</strong>tributi<strong>on</strong>s from coupling to the B µν field (since D-<strong>branes</strong>live in the same space-time as closed strings, and hence also feel the fields generated bythese last <strong>on</strong>es), as well as the acti<strong>on</strong> for the Maxwell field A µ generated by the openstrings ending <strong>on</strong>, and itself living <strong>on</strong> the D-brane.


CHAPTER 5. BRANES 71The embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dp-brane in space-time can be achieved, just as for the string,by first defining a set <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates σ n with n ∈ {0, . . .,p} <strong>on</strong> the brane. This allowsus to write the pullback <str<strong>on</strong>g>of</str<strong>on</strong>g> the space-time metric g µν to the brane, and write down thefirst part <str<strong>on</strong>g>of</str<strong>on</strong>g> our acti<strong>on</strong> asS p = −T p∫d p+1 σe −Φ √− det g µν (X)∂ α X µ ∂ β X ν , (5.37)where as usual ∂ α,β denotes derivati<strong>on</strong> with respect to σ α,β . We need to include a factore −Φ ∼ gs−1 in this acti<strong>on</strong> because this is in fact an open string tree level acti<strong>on</strong>.Moving <strong>on</strong> to the B µν an A µ fields, recall that the Kalb-Ram<strong>on</strong>d coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> a stringwas given by Eq. 4.16 which we repeat for c<strong>on</strong>venience,S B = − 1 ∫2πls2 d 2 σǫ αβ B µν (X)∂ α X µ ∂ β X ν , (5.38)and use that the coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> A µ to the world sheet boundary ∂M is given by∫S A = dτA µ ∂ t X µ . (5.39)∂MIf we want to mimick this behaviour for the D-brane, we are not free to take anycombinati<strong>on</strong> as we please. Space-time gauge invariance imposes a choice <strong>on</strong> us. Thepoint is that S A is invariant under a space-time gauge transformati<strong>on</strong> A µ −→ A µ +∂ µ f,but when applying a space-time gauge transformati<strong>on</strong> B µν −→ B µν + ∂ µ Λ ν − ∂ ν Λ µ wepick up a boundary termδS B = − 1 ∫2πls2 dτΛ µ ∂ τ x µ . (5.40)∂MTo cancel this boundary term and restore gauge invariane, we see that A µ should transformsimultaneously according toA µ −→ A µ − 12πls2 Λ µ . (5.41)From this we can c<strong>on</strong>clude that the <strong>on</strong>ly way to inlucde both fields in our acti<strong>on</strong> is byusing the combinati<strong>on</strong>B µν + 2πα ′ F µν (5.42)which remains invariant under both symmetries.By c<strong>on</strong>sidering the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a D2-brane in Minkowski space-time, extended in directi<strong>on</strong>sX 1 and X 2 (i.e. ( σ 0 , σ 1 , σ 2) = ( t, X 1 , X 2) ) <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e dimensi<strong>on</strong> is <strong>compact</strong>ified,say X 2 , <strong>on</strong>e can show that up<strong>on</strong> T-dualizing the <strong>compact</strong>ified dimensi<strong>on</strong>, the remainingD1-brane is tilted with respect to the X 1 directi<strong>on</strong>, namely the dualized directi<strong>on</strong> X ′2satisfiesX ′2 = 2πα ′ X 1 F 12 , (5.43)


CHAPTER 5. BRANES 72where F 12 is the (12) comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the Maxwell field strength living <strong>on</strong> the D2-branewhich is taken to be c<strong>on</strong>stant. The tilting angle is given by θ = tan −1 (2πα ′ F 12 ). Because<str<strong>on</strong>g>of</str<strong>on</strong>g> this, the new pullback from the metric to the brane becomes⎡⎤−1 ∂ 1 X ′2 0 . . . 0∂ 1 X ′2 1 0 . . . 0g αβ =0 0 0 . . . 0(5.44).⎢ . . . .. . ⎥⎣⎦0 0 0 . . . 0resulting in the acti<strong>on</strong> for the D1-brane (we ignore the e −Φ factor)∫ √∫ √S D1 ∼ d 2 σ 1 + (∂ 1 X ′2 ) 2 = d 2 σ 1 + (2πα ′ F 12 ) 2 . (5.45)By boosting and rotating the D-brane, <strong>on</strong>e can bring F µν in block-diag<strong>on</strong>al form, whichallows <strong>on</strong>e to write the Dp-brane generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the above acti<strong>on</strong> as∫ √S Dp ∼ d p+1 σ − det(η µν + 2πα ′ F µν ). (5.46)This acti<strong>on</strong> is called the Born-Infeld acti<strong>on</strong>. By further applying T-dualizing arguments,<strong>on</strong>e can obtain the full Dirac-Born-Infeld acti<strong>on</strong> which also incorporates n<strong>on</strong>-trivialbackgrounds and the Kalb-Ram<strong>on</strong>d field,∫S Dp = −T p d p+1 σe√− −Φ det(g αβ + B αβ + 2πα ′ F αβ ), (5.47)where indices αβ denote the pullbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields to the brane.The explicit form <str<strong>on</strong>g>of</str<strong>on</strong>g> T p can be computed by analysing the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed loopbetween two parallel Dp-<strong>branes</strong>, and results inT p =Applying T-duality further results in a recursi<strong>on</strong> relati<strong>on</strong>,1(2π) p l p+1s g s. (5.48)T p−1 = (2πl s )T p . (5.49)On a final note, we point the reader to an alternative derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>,which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> computing the β-functi<strong>on</strong> for the A µ gauge field, and solving itsequati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. Details can be found in [5], §2.3.3.1.


CHAPTER 5. BRANES 735.2 NS5-<strong>branes</strong>You might be tempted into thinking that “NS-<strong>branes</strong> are <strong>branes</strong> <strong>on</strong> which strings withNeveu-Schwarz boundary c<strong>on</strong>diti<strong>on</strong>s end.” This is however as far as possible from thetruth as could be. Matter <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact is that strings cannot end <strong>on</strong> NS5-<strong>branes</strong>!We saw that a p-form gauge field can couple electrically to a (p − 1)-brane, andmagnetically to a (D − p − 4)-brane. We also saw that the string, which is a 1-brane,if a Kalb-Ram<strong>on</strong>d field is present, couples electrically to this field. Hence, we shouldexpect that there is also a (D − 1 − 4) = 5-brane that couples to this field. This branedoes indeed exist (by which we mean that it is stable), and is exactly what is called theNS5-brane. It is called such because it arises from a gauge field which originates fromthe NS-NS sector in superstring theories. It is also sometimes referred to as the solit<strong>on</strong>icfivebrane. Remark that the B µν field is absent from Type I string theory due to the factthat this is an unoriented theory, and hence this theory c<strong>on</strong>tains no NS5-<strong>branes</strong>.NS5-<strong>branes</strong> are characterized by a string tensi<strong>on</strong> T NS5 that goes asT NS5 ∼ 1 gs2 . (5.50)Comparing this to the tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the string (T s ∼ g 0 s) and D-<strong>branes</strong> (T Dp ∼ g −1s ) revealsthat the NS5-brane is much heavier than other types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>branes</strong> at weak coupling. Anotherimportant property is that NS5-<strong>branes</strong> are also BPS states. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this,they do not feel each other, or other BPS states such as D-<strong>branes</strong>, if they are combinedin such a way that the resulting c<strong>on</strong>figurati<strong>on</strong> remains BPS.What makes them very interesting though is that although strings cannot end <strong>on</strong>them, D-<strong>branes</strong> actually can. Which c<strong>on</strong>figurati<strong>on</strong>s are actually possible, and which arenot, is determined by principles <str<strong>on</strong>g>of</str<strong>on</strong>g> charge c<strong>on</strong>servati<strong>on</strong>. We will not go into this, butinterested parties are referred to [20] and [21]. The same principles <str<strong>on</strong>g>of</str<strong>on</strong>g> charge c<strong>on</strong>servati<strong>on</strong>also dictate that D-<strong>branes</strong> and NS5-<strong>branes</strong> stretch out to infinity; i.e. they can not havedefinite start- and endpoints like e.g. an open string. Only D-<strong>branes</strong> can have these ifthey end <strong>on</strong> NS5-<strong>branes</strong>.5.3 SummaryWe introduced T-duality, and showed that it highly motivates the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dp<strong>branes</strong>.Some properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these D-<strong>branes</strong> were presented, and we analysed whichc<strong>on</strong>figurati<strong>on</strong>s are possible in Type IIA and IIB superstring theory. Finally, we shed adim light <strong>on</strong> the NS5-brane, and hinted at some <str<strong>on</strong>g>of</str<strong>on</strong>g> its most important features.


Part IIIResearch75


Chapter 6Setting“Alis<strong>on</strong> I’ll drink your wineI’ll wear your clothes when we’re both highAlis<strong>on</strong>, I said we’re sinkingBut she laughs, and tells me its just fineI guess she’s out there, somewhere...”SlowdiveAlis<strong>on</strong>The research carried out in this thesis is based <strong>on</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> Raphael Benichou’s doctoralthesis, [3]. The aim is to remake a computati<strong>on</strong> which is carried out using a twodimensi<strong>on</strong>alc<strong>on</strong>formal field theory in said document, using the space-time based <str<strong>on</strong>g>DBI</str<strong>on</strong>g>acti<strong>on</strong>, and check to which extend both methods give rise to the same results.6.1 General settingThe setting we c<strong>on</strong>sider is that <str<strong>on</strong>g>of</str<strong>on</strong>g> a number k <str<strong>on</strong>g>of</str<strong>on</strong>g> NS5-<strong>branes</strong> in flat space-time, extendingin dimensi<strong>on</strong>s x µ=0,...,5 , equally spread <strong>on</strong> a circle <str<strong>on</strong>g>of</str<strong>on</strong>g> radius ρ 0 in the (x 6 , x 7 ) plane, andsituated at the origin in the (x 8 , x 9 ) plane (cfr. Fig. 6.1). We call this an NS5-ring.x 8,9x 7x 6ρ 0NS5-braneFigure 6.1: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the general background setting.We c<strong>on</strong>sider a D4-brane, extending in dimensi<strong>on</strong>s x 0,1,2,3,6 (see Table 6.1). In dimensi<strong>on</strong>sx 0,1,2,3 it does not feel the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-<strong>branes</strong>, in the x 6 directi<strong>on</strong> however,76


CHAPTER 6. SETTING 77it does. This should be understood as follows. Recall that D- and NS5-<strong>branes</strong> are BPSobjects. However, this does not mean that we can put them together in an arbitrary wayand expect the result to also be BPS. Such BPS preserving c<strong>on</strong>figurati<strong>on</strong>s do neverthelessexist for these two objects. This implies that they will c<strong>on</strong>figure themselves in sucha way that the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravitati<strong>on</strong>al attracti<strong>on</strong> between both objects (attractive)and the force due to the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> closed strings (repulsive) cancels. If we were toplace a D4-brane in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-ring that deviates from such an equilibriumc<strong>on</strong>figurati<strong>on</strong>, the D4-brane will move due to the n<strong>on</strong>-cancelling <str<strong>on</strong>g>of</str<strong>on</strong>g> the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> menti<strong>on</strong>edforces till the c<strong>on</strong>figurati<strong>on</strong> becomes stable. Once such a stable c<strong>on</strong>figurati<strong>on</strong> is reached,it will remain stable forever. As such, we can basically place our D4-brane in any suchequilibrium positi<strong>on</strong>, and rest assured that it will stay there. The NS5-<strong>branes</strong> curve thespatial dimensi<strong>on</strong>s normal to its world volume. Hence, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-<strong>branes</strong>is felt by the D4-brane through the curvature in the x 6 directi<strong>on</strong>. What makes theD4-brane particularly interesting in this setup, is that four <str<strong>on</strong>g>of</str<strong>on</strong>g> its space-time directi<strong>on</strong>scorresp<strong>on</strong>d to a four-dimensi<strong>on</strong>al Minkowski space-time. For, and <strong>on</strong>ly for bound states,the x 6 directi<strong>on</strong> is “invisible.” A word <str<strong>on</strong>g>of</str<strong>on</strong>g> explanati<strong>on</strong> is in order.Dim: 0 1 2 3 4 5 6 7 8 9NS5 × × × × × ×D4 × × × × ×Table 6.1: Dimensi<strong>on</strong>al overlap between D4- and NS5-<strong>branes</strong>.6.2 What’s in a title?The title <str<strong>on</strong>g>of</str<strong>on</strong>g> this dissertati<strong>on</strong> reads“<str<strong>on</strong>g>DBI</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Open</str<strong>on</strong>g> <str<strong>on</strong>g>String</str<strong>on</strong>g> <str<strong>on</strong>g>Bound</str<strong>on</strong>g> <str<strong>on</strong>g>States</str<strong>on</strong>g> <strong>on</strong> N<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong>.”In Part I <str<strong>on</strong>g>of</str<strong>on</strong>g> this document, the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> open strings, D-<strong>branes</strong> and the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>have all been reviewed. There remain two c<strong>on</strong>cepts that have not been menti<strong>on</strong>ed yet:what do we understand under bound states, and what are n<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong>? It isalso worth sheding a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> extra light <strong>on</strong> the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> approach.6.2.1 Compact vs. n<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong>We have seen that D-<strong>branes</strong>, when present in some directi<strong>on</strong>, are forced to stretch out toinfinity in that directi<strong>on</strong> due to arguments related to charge c<strong>on</strong>servati<strong>on</strong>. There is <strong>on</strong>eexcepti<strong>on</strong> to the rule, and that is when D-<strong>branes</strong> touch NS5-<strong>branes</strong>. We can c<strong>on</strong>sidertwo cases: <strong>on</strong>e where a D-brane “hits” <strong>on</strong>ly <strong>on</strong>e NS5-brane, and <strong>on</strong>e where it “hits” twoNS5-<strong>branes</strong>. We provide “hits” with quotati<strong>on</strong> marks, because as menti<strong>on</strong>ed earlier,these c<strong>on</strong>figurati<strong>on</strong>s are in fact static. Nevertheless, we will assume it to be dynamicjust for the sake <str<strong>on</strong>g>of</str<strong>on</strong>g> argument.


CHAPTER 6. SETTING 78If we imagine a D1-brane stretching out in x 6 approaching and ultimately hitting anNS5-brane, it will be cut into two pieces, namely two semi-<strong>compact</strong> D1-<strong>branes</strong>. Theyare semi-<strong>compact</strong>, because <strong>on</strong> <strong>on</strong>e side they stretch out to infinity, while <strong>on</strong> the otherthey end <strong>on</strong> the NS5-brane.If we imagine a D1-brane stretching out in x 6 hitting two NS5-<strong>branes</strong>, it will be cutinto three pieces, namely two semi-<strong>compact</strong> D1-<strong>branes</strong> and <strong>on</strong>e <strong>compact</strong> D1-brane, i.e.a D-brane that ends <strong>on</strong> both sides <strong>on</strong> an NS5-brane.Both these possibilities are illustrated in Fig. 6.2. A n<strong>on</strong>-<strong>compact</strong> D-brane is thussimply a brane that extends to infinity <strong>on</strong> both sides.D1-braneD1-braneCompactD1NS5-ringSemi-CompactD1Semi-<strong>compact</strong>D1NS5-ringSemi-<strong>compact</strong>D1Figure 6.2: Graphical illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (semi)-<strong>compact</strong> D1-<strong>branes</strong> in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> anNS5-ring.6.2.2 <str<strong>on</strong>g>Bound</str<strong>on</strong>g> statesIt has been menti<strong>on</strong>ed before that open strings can be regarded as excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> D-<strong>branes</strong>. Such an open string satisfies Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s in the directi<strong>on</strong>snormal to the brane, meaning in c<strong>on</strong>creto that the endpoints <str<strong>on</strong>g>of</str<strong>on</strong>g> such a string are attachedto the world volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane. But as l<strong>on</strong>g as they remain attached, they are freeto move <strong>on</strong> it as they please.In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an NS5-ring, things change. Focusing again <strong>on</strong> a D1-<strong>branes</strong>tretched in the x 6 directi<strong>on</strong>, an open string attached to the brane can in principlemove freely al<strong>on</strong>g the brane. When the D1-brane is located close enough to the NS5-ring however, something radical happens: some excitati<strong>on</strong>s close to the NS5-ring remainbound, i.e. they cannot move anymore! Such a state is exactly what is called a boundstate. This is illustrated in Fig. 6.3.6.2.3 <str<strong>on</strong>g>DBI</str<strong>on</strong>g> approachThe Dirac-Born-Infeld acti<strong>on</strong> is said to be a low-energy acti<strong>on</strong>. What does this entail?For <strong>on</strong>e, the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> is c<strong>on</strong>structed entirely out <str<strong>on</strong>g>of</str<strong>on</strong>g> the massless fields present in the((NS,NS)-sector <str<strong>on</strong>g>of</str<strong>on</strong>g> the open) string spectrum. In other words, the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> <strong>on</strong>lyc<strong>on</strong>siders the lowest energy excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the open string. As such, when we vary the<str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> to obtain the excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane it describes, and hence the spectrum


CHAPTER 6. SETTING 79<str<strong>on</strong>g>of</str<strong>on</strong>g> the open strings living <strong>on</strong> it, we <strong>on</strong>ly look at low-energetic particles, meaning thelowest excitati<strong>on</strong> states. In c<strong>on</strong>creto, these are the scalar and vector particles.Also, the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> is <strong>on</strong>ly valid if the string coupling is weak. If this is not thecase, <strong>on</strong>e should c<strong>on</strong>sider extra terms in a perturbative g s expansi<strong>on</strong>.6.3 Geometrical settingLet us now return to our ten-dimensi<strong>on</strong>al Minkowski space-time, with a ring <str<strong>on</strong>g>of</str<strong>on</strong>g> NS5-<strong>branes</strong> extending in x µ=0,...,5 . The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> these NS5-<strong>branes</strong> makes the flat spacetimecurved, resulting in the following metric (which is valid also if the NS5-<strong>branes</strong> arenot spread <strong>on</strong> a circle):⎧⎪⎨ ds 2 = η µν dx µ dx ν + Hδ ij dx i dx je⎪⎩2Φ = e 2Φ 0H(6.1)= ⋆ 4 dHH (3)with i, j ∈ {6, 7, 8, 9}, H defined as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the positi<strong>on</strong>s x i a <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-<strong>branes</strong> asH(x i ) = 1 +k∑ α ′|x i − x i 2, (6.2)a|a=1and ⋆ 4 the Hodge dual in x i=6,...,9 , making H (3) the three-from field strength <str<strong>on</strong>g>of</str<strong>on</strong>g> theKalb-Ramod field. Note that the NS5-<strong>branes</strong> behave like black holes. By specializingto the case <str<strong>on</strong>g>of</str<strong>on</strong>g> NS5-<strong>branes</strong> spread <strong>on</strong> a circle, introducing the coordinates{(x 6 , x 7 ) = ρ 0 chr sinθ (cos ψ, sinψ),(x 8 , x 9 (6.3)) = ρ 0 shr cos θ (cos φ,sinφ) ,D1-branex 6x 7 x xboundstatefreestatex 7D1-braneCompact D1x 7 x xx 6NS5-ringNS5-ringx 6NS5Figure 6.3: Graphical illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bound states. When the D-brane is far enough, theexcitati<strong>on</strong>s are free (left). When the brane is close enough, they become bound (mid). Ifthe brane gets even closer, it gets cut in three pieces, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which is a <strong>compact</strong> D-branefixed between two NS5-<strong>branes</strong>. Also these states are bound (right).


CHAPTER 6. SETTING 80with r ∈Ê+, 0 ≤ θ ≤ π 2and 0 ≤ φ, ψ ≤ 2π, c<strong>on</strong>sidering the double scaling limitg s ,ρ 0√α ′ρ 0g s√α ′−→ 0, (6.4)= c<strong>on</strong>stant, (6.5)and performing a T-duality al<strong>on</strong>g the angular φ directi<strong>on</strong>, <strong>on</strong>e is left with the geometry⎧[ ( ) dω 2 ( ) ]dω2⎪⎨ ds 2 = dx µ dx µ + α ′ k dr 2 + coth 2 k + dψ + dθ 2 + tan 2 θ ,k(6.6)⎪⎩ e 2Φ = g2 eff 1k sh 2 r cos 2 θ ,with k the number <str<strong>on</strong>g>of</str<strong>on</strong>g> NS5-<strong>branes</strong>, ω the T-dual coordinate to φ, and g eff given by√kα ′g eff = e Φ 0. (6.7)ρ 0Note that the Kalb-Ram<strong>on</strong>d field has vanished. Further note that although we nowfind ourselves with three <strong>compact</strong> dimensi<strong>on</strong>s (θ, φ and ψ), we did not <strong>compact</strong>ify anydimensi<strong>on</strong>. All we did was introduce a change <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates, just like <strong>on</strong>e could reachany point <strong>on</strong> the flat (x, y)-plane by specifying an angle and a radius. By introducingsuch a <strong>compact</strong> coordinate, <strong>on</strong>e does not <strong>compact</strong>ify a dimensi<strong>on</strong>.It is worth pauzing an extra sec<strong>on</strong>d at this, since this is exactly what sets this approachapart from the Kaluza-Klein-like approach where <strong>on</strong>e does <strong>compact</strong>ify a dimensi<strong>on</strong>in order to make it invisible (or more precisely: make the physics in that dimensi<strong>on</strong>decouple from the physics in the other dimensi<strong>on</strong>s). We do not <strong>compact</strong>ify, but c<strong>on</strong>sidera setting in which states appear that are fixed in some dimensi<strong>on</strong>, limiting their freedom<str<strong>on</strong>g>of</str<strong>on</strong>g> movement to the remaining dimensi<strong>on</strong>s, thereby from a physical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view makingthe “static” dimensi<strong>on</strong> “invisible.”The bracketed part <str<strong>on</strong>g>of</str<strong>on</strong>g> the geometry described by Eq. 6.6 can be decomposed as thedirect product <str<strong>on</strong>g>of</str<strong>on</strong>g> two two-dimensi<strong>on</strong>al geometries. One is the bell,⎧⎨ds 2 = α ′ k [ dθ 2 + tan 2 θ dω 2] ,⎩e 2Φ = g2 effcos 2 θ , (6.8)and the other is the trumpet,⎧⎨ds 2 = α ′ k [ dr 2 + coth 2 r dψ 2] ,⎩e 2Φ = e2Φ 0sh 2 r . (6.9)We will not be c<strong>on</strong>cerned by the six-dimensi<strong>on</strong>al Minkowski and two-dimensi<strong>on</strong>al bellgeometries, as the physics in these geometries is already quite well understood. Weinstead focus <strong>on</strong> what happens in the trumpet.


CHAPTER 6. SETTING 81It was menti<strong>on</strong>ed above that <strong>compact</strong> D-<strong>branes</strong> coined between two NS5-<strong>branes</strong> alsoexhibit bound states. These bound states are massless. C<strong>on</strong>trary to this, it has beenshown in [3] that the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the bound states appearing <strong>on</strong> n<strong>on</strong>-<strong>compact</strong> D-<strong>branes</strong>in the close vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-ring have a small mass. Recalling that these statesare bound in the x 6 directi<strong>on</strong>, they can <strong>on</strong>ly move in the x 0,1,2,3 directi<strong>on</strong>s anymore,which corresp<strong>on</strong>d exactly to a 4D-Minkowski space-time. It has been proven, still in [3],that these massive bound states corresp<strong>on</strong>d to massive gauge bos<strong>on</strong>s in a 4D Minkowskispace-time. This is very interesting, because it allows for yet another building block <str<strong>on</strong>g>of</str<strong>on</strong>g>the Standard Model to be recreated in string theory. Even though it is not yet fullyunderstood how to use this piece <str<strong>on</strong>g>of</str<strong>on</strong>g> the Standard Model puzzle, at least it is sure to bepresent. This result was shown using exact computati<strong>on</strong>s in a c<strong>on</strong>formal field theoreticalapproach. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach is that it is exact. The drawback however isthat such a c<strong>on</strong>formal field theoretical formulati<strong>on</strong> is <strong>on</strong>ly known for a limited number<str<strong>on</strong>g>of</str<strong>on</strong>g> setups, and in particular it is not known in the regi<strong>on</strong> far away from the NS5-ring.On the other hand, the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> approach is easily generalizable to this regi<strong>on</strong>, but is <strong>on</strong>lyvalid when the space-time curvature is small at the string length scale. Hence, it isinteresting to find out to which extend both methods agree in the regi<strong>on</strong> where they areboth applicable, so as to be able to judge if whether or not the approximate formulati<strong>on</strong>is exact enough to be useful in the far-away regi<strong>on</strong>.Returning to the factorized space-time, remark that since we assumed our D4-braneto live in x 0,1,2,3,6 , it also gets factorized, namely into a D3-brane living in x 0,1,2,3 , and aD1-brane living in the trumpet geometry. However, we are faced with the problem thatthe trumpet geometry explodes as r −→ 0 (see Eq. 6.9 and Fig. 6.4). The problem liesin the fact that, as can be seen from Eq. 6.9, as r approaches 0, e Φ −→ ∞, indicatingthat we can no l<strong>on</strong>ger assume the coupling to be weak. As such, if we want to use the<str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>, we should c<strong>on</strong>sider extra terms in a perturbative g s expansi<strong>on</strong>.Figure 6.4: Graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the trumpet (l) and cigar (r) geometries.


CHAPTER 6. SETTING 82But we can perform a T-duality <strong>on</strong> the circular ψ dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the trumpet, resultingin the cigar geometry (see Fig. 6.4), and the change <str<strong>on</strong>g>of</str<strong>on</strong>g> our D4-brane to a D5-brane.In factorized terms, our D3-“Minkowski”-brane remains unchainged, but the D1-branein the trumpet geometry now becomes a D2-brane covering the entire cigar geometry.This geometry is given by⎧⎨ds 2 = α ′ k [ dρ 2 + tanh 2 ρ dτ 2] ,⎩e 2Φ = e2Φ 0ch 2 ρ . (6.10)As far as the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the NS5-<strong>branes</strong> goes in these geometries, <strong>on</strong> the trumpet <strong>on</strong>ecan c<strong>on</strong>sider them to be at infinity <strong>on</strong> the exploding plane at r = 0, and at the origin<strong>on</strong> the cigar.6.4 RoadmapWe have now come to a point where we managed to isolate our test subject in a geometrywe know how to handle. So how should we proceed from here <strong>on</strong>?We cannot simply write down the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> for a D-brane in some geometry, aD2-brane in the cigar geometry in our specific case, and start varying around. Whatwe first need to do is to find the classical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane in this geometry.The classical soluti<strong>on</strong> is what <strong>on</strong>e finds when <strong>on</strong>e varies the unperturbed <str<strong>on</strong>g>DBI</str<strong>on</strong>g> D-braneacti<strong>on</strong> with respect to the coordinates or fields <strong>on</strong>e ultimately wants to vary, or moreprecisely can vary. This soluti<strong>on</strong> effectively extremizes the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>, thus c<strong>on</strong>stitutingthe equilibrium soluti<strong>on</strong> around which we will want to perturb. As a specific example,c<strong>on</strong>sider a D1-brane in the cigar and trumpet geometries. As will be shown in the nextchapter, the classical soluti<strong>on</strong>s for these c<strong>on</strong>figurati<strong>on</strong>s are given bytrumpet:cigar:sin(ψ − ψ 0 ) = Cchρ , (6.11)sin (τ − τ 0 ) = Cshρ . (6.12)Minimizing the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane in these c<strong>on</strong>figurati<strong>on</strong>s, these equati<strong>on</strong>s also tell ushow the brane will positi<strong>on</strong> itself in these geometries, i.e. they represent the embeddings<str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane in the geometry. In these embeddings, we see the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> twointegrati<strong>on</strong> c<strong>on</strong>stants, C and ψ 0 and τ 0 for the trumpet and cigar respectively. ψ 0 andτ 0 are angles with no physical interpretati<strong>on</strong>; they simply define an <str<strong>on</strong>g>of</str<strong>on</strong>g>fset compared tothe origin in that directi<strong>on</strong>, which amounts to rotating the brane around geometriesthat are symmetrical in that directi<strong>on</strong>, hence not changing the physics. The c<strong>on</strong>stant Chowever has a very distinct interpretati<strong>on</strong>: it can be c<strong>on</strong>sidered as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> distance<str<strong>on</strong>g>of</str<strong>on</strong>g> the D1-brane to the NS5-ring, as is shown in Figure 6.5.Once we have found the classical soluti<strong>on</strong>, we can start thinking about varying theacti<strong>on</strong>. For this, <strong>on</strong>e simply introduces perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates and/or fields (e.g.the Maxwell field living <strong>on</strong> the D-brane). These perturbati<strong>on</strong>s will enter the acti<strong>on</strong>


CHAPTER 6. SETTING 83through the induced metric, Kalb-Ram<strong>on</strong>d field and Maxwell field strength, these lasttwo <str<strong>on</strong>g>of</str<strong>on</strong>g> course <strong>on</strong>ly if present. Specifically, given the general pullback form,T αβ = ∂Xµ∂X α ∂X ν∂X β T µν, (6.13)with T µν some arbitrary tensor, partial derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong>s will appear. Assuch, when <strong>on</strong>e computes the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting matrix (recall the general√−gαβ + B αβ + 2πα ′ F αβ term in the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>), and expands the square root, <strong>on</strong>eis typically left with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> zero, first and sec<strong>on</strong>d order partial derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> theexpansi<strong>on</strong>s. By computing the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this Lagrangian density, <strong>on</strong>eobtains a differential equati<strong>on</strong> for the perturbati<strong>on</strong>s. By solving this equati<strong>on</strong>, <strong>on</strong>e cananalyse the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong>s.Summarized in short, to obtain the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a D-brane usingthe <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong>, and hence <str<strong>on</strong>g>of</str<strong>on</strong>g> the low-energy excitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the D-brane, <strong>on</strong>e shouldfirst write down the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> for the D-brane in the geometry under c<strong>on</strong>siderati<strong>on</strong>,compute the classical soluti<strong>on</strong>, introduce perturbati<strong>on</strong>s, compute the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> these perturbati<strong>on</strong>s, and combine them into a differential equati<strong>on</strong>. The soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>this differential equati<strong>on</strong> tells you the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong>s.6.5 How to recognize bound statesThe last questi<strong>on</strong> left to answer is how to known whether or not the spectrum c<strong>on</strong>tainsbound states.The crucial point is that in order to solve the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the perturbati<strong>on</strong>s,<strong>on</strong>e always proposes a factorized soluti<strong>on</strong> c<strong>on</strong>taining a quantum mechanical e iEtterm to remove the always present ∂ 2 t term. This term is always present, because theperturbati<strong>on</strong>s are always c<strong>on</strong>sidered to be time dependent, which by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> the pullbackmechanism amounts to such a sec<strong>on</strong>d time derivative. This introduces the energy<str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s in the differential equati<strong>on</strong>.Using E 2 = m 2 + p 2 , we can relate this energy to the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles. If <strong>on</strong>emanages to solve the differential equati<strong>on</strong>s resulting from the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, <strong>on</strong>ecan also derive which values <str<strong>on</strong>g>of</str<strong>on</strong>g> E 2 are allowed by the soluti<strong>on</strong>. A priori, if nothingbounds the particles, this energy is arbitrary since nothing bounds their impulse, i.e.p ∈ [0, +∞[, resulting in a c<strong>on</strong>tinuous spectrum. However, for a bound state p = 0, andso the small mass (E 2 = m 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle will reveal itself through a discrete value <str<strong>on</strong>g>of</str<strong>on</strong>g>the energy laying below the c<strong>on</strong>tinuum spectrum.


CHAPTER 6. SETTING 84Figure 6.5: D1-brane embeddings in trumpet (top-left: C = 0.1, mid-left: C = 1,bottom-left: C = 5) and cigar (top-right: C = 0.1, mid-right: C = 1, bottom-right:C = 5) geometries.


Chapter 7A First Example“Le temps n’apprécie rien qui se fait sans lui...”Lambic Brewery, BrusselsWritten <strong>on</strong> a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> wood patientlyhanging in the fermentati<strong>on</strong> chamber.As a way <str<strong>on</strong>g>of</str<strong>on</strong>g> getting acquainted with the problem at hand, a good place to start is toretrace the steps needed in order to obtain the results reported in [6]. In this article,a calculati<strong>on</strong> is carried out in secti<strong>on</strong> 4 ressembling the <strong>on</strong>e we will ultimately want tomake. The problem at hand is to find the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a D1-brane living <strong>on</strong> the cigartarget space using the small fluctuati<strong>on</strong> <str<strong>on</strong>g>DBI</str<strong>on</strong>g> analysis. We will also perform the samecomputati<strong>on</strong> for a D1-brane living <strong>on</strong> the trumpet, a case <str<strong>on</strong>g>of</str<strong>on</strong>g> interest since the D2-brane<strong>on</strong> the cigar we want to analyse came about by T-dualizing a D1-brane <strong>on</strong> the trumpet.As was menti<strong>on</strong>ed earlier, we should be careful when interpreting the results <str<strong>on</strong>g>of</str<strong>on</strong>g> thiscomputati<strong>on</strong>, since the exploding <str<strong>on</strong>g>of</str<strong>on</strong>g> the Φ field near the trumpet origin alerts us thatwe should also take into account extra perturbative terms. Nevertheless, despite this,going from the cigar to the trumpet is so easy, that this result will c<strong>on</strong>stitute a firstindicati<strong>on</strong> whether or not we are <strong>on</strong> the right track (<str<strong>on</strong>g>of</str<strong>on</strong>g> finding bound states, that is).In all the computati<strong>on</strong>s in this and the next chapter, we set α ′ = 1.7.1 D1-brane <strong>on</strong> the cigar7.1.1 Metric and acti<strong>on</strong>The cigar metric is given byds 2 = (dρ) 2 + (tanh ρ) 2 dτ 2 ; e −Φ = e −Φ 0chρ. (7.1)85


CHAPTER 7. A FIRST EXAMPLE 86The <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> for a D1-brane thus becomes 1 (r is the coordinate <strong>on</strong> the D-brane)∫S D1 = −T 1 dre −Φ√ ∫detg αβ = −T 1 e −Φ 0drchρ √ det g αβ . (7.2)Since there is <strong>on</strong>ly <strong>on</strong>e coordinate, we find the following for the induced metric:g αβ = g rr =( ) ∂ρ 2 ( ) ∂τ 2+ tanh 2 ρ . (7.3)∂r∂rDenoting ∂ r X = X ′ , our acti<strong>on</strong> takes <strong>on</strong> the form∫ √S D1 = −T 1 e −Φ 0dr ch 2 ρ (ρ ′ ) 2 + sh 2 ρ (τ ′ ) 2 . (7.4)Using reparameterizati<strong>on</strong> invariance to fixr = shρ, (7.5)we find thatS D1 = −T 1 e −Φ 0∫√dr 1 + r 2 (τ ′ ) 2 . (7.6)7.1.2 Classical soluti<strong>on</strong>The equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for r become( ) ∂L0 = ∂ r∂ (∂ r τ)[= ∂ r − 1 2r 2 τ ′ ]√2 1 + r 2 τ ′= r2 τ ′′ + 2rτ ′√− 1 r 2 τ ′ ( 2r(τ ′ ) 2 + 2r 2 τ ′ τ ′′)1 + r 2 (τ ′ ) 2 2(1 + r 2 (τ ′ ) 2) 3/20 = rτ ′′ + 2τ ′ + r 2 ( τ ′) 3 . (7.7)This can be verified by the relati<strong>on</strong> (recall that r = shρ)sin (τ − τ 0 ) = Cshρ , (7.8)with τ 0 and C c<strong>on</strong>stant. This gives the embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> τ, and agrees with the D1 cig entryin Table 2, p.4 in the article.1 Note that since at the moment we do not c<strong>on</strong>sider a timelike coordinate <strong>on</strong> the brane, we takepdet gαβ instead <str<strong>on</strong>g>of</str<strong>on</strong>g> p − det g αβ .


CHAPTER 7. A FIRST EXAMPLE 877.1.3 Adding perturbati<strong>on</strong>sThe next step is to add perturbati<strong>on</strong>s. For this, we need to introduce time. We do thisby modifying the metric,ds 2 = − 1 k dt2 + dρ 2 + th 2 ρ dτ 2 , (7.9)in which k is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> NS5-<strong>branes</strong> spread out <strong>on</strong> the circle. Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> scaling thetimelike dimensi<strong>on</strong> with k −1 we could also have scaled (all) the spacelike dimensi<strong>on</strong>swith k as was d<strong>on</strong>e in Eq. 6.6, and <strong>on</strong>e founds both methods in the literature. In terms<str<strong>on</strong>g>of</str<strong>on</strong>g> r this becomes (we also include the restatement <str<strong>on</strong>g>of</str<strong>on</strong>g> e −Φ )⎧⎨ds 2 = − 1 k dt2 + dr21 + r⎩2 + r21 + r 2dτ2 ,(7.10)e −Φ = e 0√ −Φ 1 + r 2 .Now we c<strong>on</strong>sider perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> τ by stating that( ) Cτ = arcsin + δτ (r, t). (7.11)rHence, we see that the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the induced metric becomeUsing∂ r τ =(∂ r τ) 2 =g rt = g tr =g tt = −1k +r21 + r 2 (∂ tδτ) 2 , (7.12)g rr = 11 + r 2 + r21 + r 2 (∂ rτ) 2 , (7.13)r21 + r 2 (∂ tδτ)(∂ r τ). (7.14)−Cr 2 √1 − C2r 2 + (∂ r δτ), (7.15)C 2( ) − 2C √(∂ rδτ)+ (∂ r δτ) 2 , (7.16)r 4 1 − C2r 2 r 2 1 − C2r 2<strong>on</strong>e finds that⎡g αβ =⎢⎣⎡r 2⎣1 + r 2−1k +⎡r21 + r 2 (∂ tδτ) 2 r 2⎣1 + r 2⎤−C√ + (∂ r δτ)r 2 1 − C2r 2⎦(∂ t δτ)⎡1⎣ 11 + r 2 1 − C2−C√ + (∂ r δτ)r 2 1 − C2r 2⎤⎦(∂ t δτ)+ r 2 (∂ r δτ) 2 − 2C √(∂ rδτ)⎦r 2 1 − C2(7.17)r 2 ⎤⎤.⎥⎦


CHAPTER 7. A FIRST EXAMPLE 88From this, <strong>on</strong>e computes that up to sec<strong>on</strong>d order− ( 1 + r 2) ( ) √1det g αβ = ( )[1 + r 2 1 − C2k 1 − C2r 2 (∂ r δτ) 2 − 2C 1 − C2r 2 (∂ rδτ)r 2 ( ) ]−kr21 + r 2 1 − C2r 2 (∂ t δτ) 2 + O (3). (7.18)This finally allows us to compute the Lagrangian density:√L <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = −T 1 e −Φ 0− (1 + r 2 ) detg αβ[)≈ −T 1 e −Φ 10√ ( ) 1 +(1 r2− C22 r 2 (∂ r δτ) 2k 1 − C2r 2kr 2 ) √−(12 (1 + r 2 − C2) r 2 (∂ t δτ) 2 − C 1 − C2r 2 (∂ rδτ)− 1 ) ) ](4C(1 2 − C28 r 2 (∂ r δτ) 2 + O (3)[L <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = − T 1e −Φ 01√ √ − C (∂ r δτ)k 1 − C2r√2kr 2) 3/2]−2 (1 + r 2 1 − C2) r 2 (∂ tδτ) 2 +(1 r2− C22 r 2 (∂ r δτ) 2 . (7.19)1This result agrees with Eq. (5) in the original paper, except for an overal factor <str<strong>on</strong>g>of</str<strong>on</strong>g> √kwhich has been forgotten in the article, and a minus sign in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the first order termwhich is due to the fact that we used τ = arcsin ( ) (Cr +δτ instead <str<strong>on</strong>g>of</str<strong>on</strong>g> τ = arccos C)r +δτwhich was used in the article. This sign is <str<strong>on</strong>g>of</str<strong>on</strong>g> no importance, as the linear term doesnot c<strong>on</strong>tribute to the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. Also note a typo in the article in the term∼ (∂ r δτ) 2 , where the author wrote ( √ ) 3/2 . . . instead <str<strong>on</strong>g>of</str<strong>on</strong>g> (. . .) 3/2 .


CHAPTER 7. A FIRST EXAMPLE 897.1.4 Perturbed equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>We proceed to computing the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the perturbati<strong>on</strong> δτ:∂L0 = ∂ µ∂ (∂ µ δτ) = ∂ ∂Lt∂ (∂ t δτ) + ∂ ∂Lr∂ (∂ r δτ)⎡ √ ⎤ [= ∂ t⎣ −kr2 1 − C2( ) 3/2]r 21 + r 2 (∂ t δτ) ⎦ + ∂ r r 2 1 − C2r 2 (∂ r δτ)= − kr21 + r 2 √1 − C2+(∂2r 2 t δτ ) + 2r( ) 3/2) (r 2 1 − C2 (∂2r 2 r δτ )0 = − kr (∂21 + r 2 t δτ ) )+(2 + C2r 2 (∂ r δτ) + r[) 3/2 (1 − C2r 2 + 3C2r√1 − C2r 2 ](∂ r δτ)(1 − C2r 2 ) (∂2r δτ ) . (7.20)In order to eliminate the time derivative, we fill in δτ = X (r)e iEt , giving us)0 = r(1 − C2 (∂2r 2 r X ) )+(2 + C2r 2 (∂ r X) + krE21 + r2X. (7.21)7.1.5 Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the PDETo find the soluti<strong>on</strong>s to the differential equati<strong>on</strong> expressed in Eq. 7.21, we will transformit into a hypergeometric equati<strong>on</strong>, which is a sec<strong>on</strong>d order partial differential equati<strong>on</strong>obeying the general form0 = z (1 − z) ∂ 2 zX + ((c − (a + b + 1) z)∂ z X − abX, (7.22)with a, b and c some arbitrary coefficients. The soluti<strong>on</strong>s to the hypergeometric equati<strong>on</strong>can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypergeometric functi<strong>on</strong>s. These can be found e.g. in[1] Ch. 2 and [8] Ch. 9.To be able to rewrite Eq. 7.21 into a hypergeometric equati<strong>on</strong>, we introduce thechange <str<strong>on</strong>g>of</str<strong>on</strong>g> variables:r 2 = w, (7.23)w = ( 1 + C 2) z − 1. (7.24)The first substiti<strong>on</strong> makes for the following change in derivatives:∂ 2∂r2= ∂w∂r∂∂r = ∂w ∂∂r ∂w = 2√ w∂ w ,[ ]∂ ∂w ∂= 4w∂w 2 + 2∂ w . (7.25)∂w ∂r ∂w


CHAPTER 7. A FIRST EXAMPLE 90Using this, we find0 = k√ wE 2 ((1 + w) X + 2 + C2w)2 √ w∂ w X + √ w(= kE2(1 + w) X + 4 + 2C2w + 2 − 2C2w)∂ w X +) (1 − C2 [4w∂2w X + 2∂ w X ]w(1 − C2w)4w∂ 2 wX= kE2(1 + w) X + 6∂ wX + 4 ( w − C 2) ∂ 2 wX. (7.26)The sec<strong>on</strong>d substituti<strong>on</strong> results in0 = 4((1 + C2 ) z − 1 − C 2)(1 + C 2 ) 2 ∂ 2 zX +Multiplying through with −z ( 1 + C 2) /4 we get6(1 + C 2 ) ∂ zX +kE 2((1 + C 2 X. (7.27))z)0 = z(1 − z)∂zX 2 − 3 2 z∂ zX − kE2 X, (7.28)4which is the hypergeometric equati<strong>on</strong> we were looking for. The coefficients are given bya = 1 (1 + √ )1 + 4kE42 ; b = 1 (1 − √ )1 + 4kE42 ; c = 0.These coefficients obey c = 1 − m, with m ∈Æ, and a and b /∈ {0, −1, −2, . . .,1 − m},which according to e.g. case 5 <strong>on</strong> p.1012 in [8] means that the general soluti<strong>on</strong> is givenbyThis soluti<strong>on</strong> is valid foru = z m 2F 1 (a + m, b + m; 1 + m; z) (7.29)( 1= z 2 F 1(5 + √ )1 − 4kE42 , 1 (5 − √ ) )1 − 4kE42 ; 2;z . (7.30)|z| =(1 + r 2 )∣(1 + C 2 ) ∣ < 1.To obtain the soluti<strong>on</strong>s for |z| > 1, <strong>on</strong>e has to use hypergeometric identities, whichamounts to expressing a hypergeometric functi<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> other hypergeometric functi<strong>on</strong>s.Specifically, <strong>on</strong>e can express a 2 F 1 (. . .,z) functi<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> two 2 F 1(. . .,z−1 )functi<strong>on</strong>s. A look <strong>on</strong> p. 105 in [1] learns us that our hypergeometric functi<strong>on</strong> (Eq. 7.29)is <str<strong>on</strong>g>of</str<strong>on</strong>g> the same form as u 5 in Eq. 17 in the book. Page 108 then tells us that we canexpress this u 5 as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> u 3 and u 4 , two hypergeometric functi<strong>on</strong>s that are indeed <str<strong>on</strong>g>of</str<strong>on</strong>g>the right form 2 F 1(. . .,z−1 ) , namelyu 5 =Γ (2 − c)Γ(b − a)Γ (1 − a)Γ(b + 1 − c) eiπ(1−c) u 3Γ (2 − c)Γ(a − b)Γ (1 − b) Γ (a + 1 − c) eiπ(1−c) u 4 , (7.31)


CHAPTER 7. A FIRST EXAMPLE 91with Γ the Euler gamma functi<strong>on</strong>, andu 3 = (−z) −a 2F 1(a, a + 1 − c; a + 1 − b; z−1 ) , (7.32)u 4 = (−z) −b 2F 1(b + 1 − c, b; b + 1 − a; z−1 ) . (7.33)The large r soluti<strong>on</strong> to our hypergeometric equati<strong>on</strong> thus becomesu = C 1 (−1) 1 4(5+ √ ( )11+4kE 2 ) 1 + C21 + r 2(1 + √ 1 + 4kE 2 ), 1 4( 1× 2 F 14+ C 2 (−1) 4(3− 1 √ ( )11+4kE 2 ) 1 + C21 + r 2× 2 F 1( 14(5 − √ 1 + 4kE 2 ), 1 44(1+ √ 1+4kE 2 )(5 + √ )1 + 4kE 2 ; 1 + 1 √)1 + 4kE22 ; z −14(1− √ 1+4kE 2 )(1 − √ )1 + 4kE 2 ; 1 − 1 √)1 + 4kE22 ; z −1 ,(7.34)withC 1 =C 2 =( )Γ − 1 2√1 + 4kE 2( ) ( ), (7.35)Γ 34 − 1 4√1 + 4kE 2 Γ 54 − 1 4√1 + 4kE 2( )Γ 12√1 + 4kE 2( ) ( ). (7.36)Γ 34 + 1 4√1 + 4kE 2 Γ 54 + 1 4√1 + 4kE 2This looks nothing less than atrocious, but can be approximated for r −→ ∞ by using2F 1 (a, b; c; 0) = 1, resulting inu = C 1 (−1) 1 4(5+ √ 1+4kE 2 ) ( 1 + C 2)1 4(1+ √ 1+4kE 2 ) r12(1+ √ 1+4kE 2 )+ C 2 (−1) 1 4(3− √ 1+4kE 2 ) ( 1 + C 2)1 4(1− √ 1+4kE 2 ) r12(1− √ 1+4kE 2 ) . (7.37)7.2 D1-brane <strong>on</strong> the trumpetWe will redo the calculati<strong>on</strong> carried out in the previous secti<strong>on</strong> for the trumpet geometry.The computati<strong>on</strong> is very similar, and hence c<strong>on</strong>siderably less steps will be shown explicitely.Recall that this setup suffers from bad string coupling behaviour at the origin,and that hence we should be careful when interpreting the <str<strong>on</strong>g>DBI</str<strong>on</strong>g> analysis, as we shouldin fact c<strong>on</strong>sider extra perturbative terms. However, because this setup is T-dual to thewell-behaved D2-brane in the cigar, these results nevertheless give a first indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>what to expect.


CHAPTER 7. A FIRST EXAMPLE 927.2.1 Metric and acti<strong>on</strong>The trumpet metric is given byds 2 = (dρ) 2 + (coth ρ) 2 dψ 2 ; e −Φ = e −Φ 0shρ. (7.38)The <str<strong>on</strong>g>DBI</str<strong>on</strong>g> acti<strong>on</strong> for a D1-brane thus becomes (r is the coordinate <strong>on</strong> the D-brane)∫S D1 = −T 1 dr e −Φ√ ∫det g αβ = −T 1 e −Φ 0dr shρ √ det g αβ . (7.39)The induced metric becomesg αβ = g rr =( ) ∂ρ 2 ( ) ∂ψ 2+ coth 2 ρ . (7.40)∂r∂rDenoting ∂ r X = X ′ , our acti<strong>on</strong> takes <strong>on</strong> the form∫ √S D1 = −T 1 e −Φ 0dr sh 2 ρ (ρ ′ ) 2 + ch 2 ρ (ψ ′ ) 2 . (7.41)Using reparameterizati<strong>on</strong> invariance to fixr = chρ, (7.42)we find thatS D1 = −T 1 e −Φ 0∫√dr 1 + r 2 (ψ ′ ) 2 . (7.43)7.2.2 Classical soluti<strong>on</strong>The equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for r become( ) ∂L0 = ∂ r∂∂ r ψ= r2 ψ ′′ + 2rψ ′√− 1 r 2 ψ ′ ( 2r(ψ ′ ) 2 + 2r 2 ψ ′ ψ ′′)r 2 − 1 (ψ ′ ) 2 2(r 2 − 1 (ψ ′ ) 2) 3/20 = rψ ′′ + 2ψ ′ + r 2 ( ψ ′) 3 . (7.44)This can be verified by the relati<strong>on</strong> (recall that r = chρ)with ψ 0 and C c<strong>on</strong>stant. This gives the embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ.sin(ψ − ψ 0 ) = Cchρ , (7.45)


CHAPTER 7. A FIRST EXAMPLE 937.2.3 Adding perturbati<strong>on</strong>sWe again need to introduce time in order to be able to perturb the system. Just as forthe cigar, we do this by modifying the metric tods 2 = − 1 k dt2 + dρ 2 + coth 2 ρ dψ 2 , (7.46)which in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> r becomes⎧⎨ds 2= − 1 k dt2 + dr2r⎩2 − 1 +e −Φ = e 0√ −Φ r 2 − 1.r2r 2 − 1 dψ2 ,(7.47)The perturbati<strong>on</strong>s are given byψ = arcsin( Cr)+ δψ (r, t), (7.48)resulting in the induced perturbed metric⎡g αβ =⎢⎣⎡r 2⎣r 2 − 1−1k +r2r 2 − 1 (∂ tδψ) 2 r 2−C√ + (∂ r δψ)r 2 1 − C2r 2Up to sec<strong>on</strong>d order, <strong>on</strong>e finds thatkr2r 2 − 1⎤⎦(∂ t δψ)− ( r 2 − 1 ) 1det g αβ = ( )k 1 − C2r 2−(1 − C2⎡⎣r 2 − 1⎡1r 2 − 1−C√ + (∂ r δψ)r 2 1 − C2r 2⎣ 11 − C2⎤⎦(∂ t δψ)+ r 2 (∂ r δψ) 2 − 2C √(∂ rδψ)⎦r 2 1 − C2(7.49)( ) √[1 + r 2 1 − C2r 2 (∂ r δψ) 2 − 2C 1 − C2r 2 (∂ rδψ)r 2 )(∂ t δψ) 2 ]+ O (3). (7.50)r 2 ⎤⎤.⎥⎦The Lagrangian density thus becomes√L <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = −T 1 e −Φ 0− (r 2 − 1) detg αβ[= − T 1e −Φ 01√ √ − C (∂ r δψ)k 1 − C2r√2kr 2) 3/2]−2 (r 2 1 − C2− 1) r 2 (∂ tδψ) 2 +(1 r2− C22 r 2 (∂ r δψ) 2 . (7.51)


CHAPTER 7. A FIRST EXAMPLE 947.2.4 Perturbed equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>We again proceed to computing the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the perturbati<strong>on</strong> δψ,∂L0 = ∂ µ∂ (∂ µ δψ) = ∂ ∂Lt∂ (∂ t δψ) + ∂ ∂Lr∂ (∂ r δψ)⎡ √ ⎤ [= ∂ t⎣ −kr2 1 − C2( ) 3/2]r 2r 2 (∂ t δψ) ⎦ + ∂ r r 2 1 − C2− 1r 2 (∂ r δψ)= − kr (∂2r 2 − 1 t δψ ) )+(2 + C2r 2 (∂ r δψ) + r(1 − C2r 2 ) (∂2r δψ ) . (7.52)Filling in δψ = X (r)e iEt , this finally give us the following differential equati<strong>on</strong>:)0 = r(1 − C2 (∂2r 2 r X ) )+(2 + C2r 2 (∂ r X) + krE2r 2 X. (7.53)− 17.2.5 Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the PDETo transform Eq. 7.53 into a hypergeometric equati<strong>on</strong>, the needed change <str<strong>on</strong>g>of</str<strong>on</strong>g> variablesare almost the same as for the cigar, namelyThe first substiti<strong>on</strong> amounts toThe sec<strong>on</strong>d substituti<strong>on</strong> results inr 2 = w, (7.54)w = ( C 2 − 1 ) z + 1. (7.55)0 = kE2(w − 1) X + 6∂ wX + 4 ( w − C 2) ∂ 2 wX. (7.56)(z − 1)0 = 4(C 2 − 1) ∂2 zX +6(C 2 − 1) ∂ zX +Multiplying through with −z ( C 2 − 1 ) /4 we getThe coefficients are still given bya = 1 (1 + √ )1 + 4kE42resulting in the same general soluti<strong>on</strong>,kE 2((C 2 X. (7.57)− 1)z)0 = z(1 − z)∂zX 2 − 3 2 z∂ zX − kE2 X. (7.58)4; b = 1 4(1 − √ 1 + 4kE 2 ); c = 0,u = z m 2F 1 (a + m, b + m; 1 + m; z)( 1= z 2 F 1(5 + √ )1 + 4kE42 , 1 (5 − √ ) )1 + 4kE42 ; 2;z . (7.59)


CHAPTER 7. A FIRST EXAMPLE 95This time however, the soluti<strong>on</strong> is valid for|z| =(r 2 − 1)∣(C 2 − 1) ∣ < 1.The analytic c<strong>on</strong>tinuati<strong>on</strong>, obtained in the same way as for the cigar, is given byu = C 1 (−1) 1 4(5+ √ 1+4kE 2 ) ( C 2 − 1 )1 4(1+ √ 1+4kE 2 ) r12(1+ √ 1+4kE 2 )+ C 2 (−1) 1 4(3− √ 1+4kE 2 ) ( C 2 − 1 )1 4(1− √ 1+4kE 2 ) r12(1− √ 1+4kE 2 ) , (7.60)withC 1 =C 2 =( )Γ − 1 2√1 + 4kE 2( ) ( ), (7.61)Γ 34 − 1 4√1 + 4kE 2 Γ 54 − 1 4√1 + 4kE 2( )Γ 12√1 + 4kE 2( ) ( ). (7.62)Γ 34 + 1 4√1 + 4kE 2 Γ 54 + 1 4√1 + 4kE 2


Chapter 8Computati<strong>on</strong>s“Trilingue! hablo espanol, franceset le language des bêtesJ’accepte d’utiliser la manière forte quand elle s’y prête”La Cliqua (Rocca)Comme Une SarbacaneThis chapter will go through all necessary moti<strong>on</strong>s to compute the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>for the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a D2-brane in a cigar geometry. Already giving away a majorspoiler, we will stumble <strong>on</strong> a problem for which no apparent soluti<strong>on</strong> seems to be athand.8.1 Metric and field strengthThe geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the cigar is given by{ds 2 = − 1 k dt2 + dρ 2 + tanh 2 ρ dτ 2 ,e −Φ= e −Φ 0chρ.(8.1)The metric thus isThe D2-brane acti<strong>on</strong> is given byS D2 = −T 2 e Φ 0⎡⎤−10 0kg µν = ⎢⎣0 1 0 ⎥⎦ . (8.2)0 0 tanh 2 ρ∫√dαdβchρ − det(g αβ + 2πF αβ ), (8.3)96


CHAPTER 8. COMPUTATIONS 97and the induced metric g αβ equalsg αβ =⎡⎢⎣⎤−k −1 0 00 (∂ α ρ) 2 + th 2 ρ (∂ α τ) 2 ∂ α ρ∂ β ρ + th 2 ρ∂ α τ∂ β τ ⎥⎦ . (8.4)0 ∂ α ρ∂ β ρ + th 2 ρ∂ α τ∂ β τ (∂ β ρ) 2 + th 2 ρ (∂ β τ) 2Using parameterizati<strong>on</strong> invariance to set{α= chρ,β = τ,(8.5)we find the induced metric to be⎡−1⎤0 0kg αβ =1⎢0⎣ α 2 0− 1 ⎥α 2 ⎦ , (8.6)− 10 0α 2and the induced field strengthF αβ =⎡⎢⎣0 0 00 0 F ατ0 −F ατ 0⎤⎥⎦ , (8.7)withF ατ =1√α 2 − 1 F ρτ. (8.8)8.2 Classical soluti<strong>on</strong>To find the embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> the D2-brane, we use a Lagrange multiplier, as shown in [15],§4.2. We need to minimizeS D2 − √ λ (∫ ) ∫ √ ( ) 1 1F − N = A dαdτ αk k√2 α 2 + 4π2 Fατ2 − √ λ ∫Fdαdτ √ ατk α 2 − 1= √ A ∫ [ √1dαdτ + α 2 π 2 Fατ 2 − λ ]F√ ατ, (8.9)k A α 2 − 1with A = T 2 e −Φ 0. We find thatδ (S − λ . . .)δF ατ= A √k∫[4π 2 α 2 F ατdαdτ √ − λ ]δF. (8.10)1 + 4π 2 α 2 F ατ A


CHAPTER 8. COMPUTATIONS 98Hence,Using Eq. 8.8, we are finally left withwhere we have defined C = λ2πA .(4π 2 α 2 ) 2 Fατ 2 = λ2 (1 + 4π 2A 2 α 2 Fατ2 )⇓]4π 2 α 2 Fατ[4π 2 2 α 2 − λ2A 2 = λ2A 2⇓4π 2 α 2 Fατ 2 λ 2=4π 2 α 2 A 2 − λ 2⇓λ2πF ατ =α √ (8.11)4πα 2 A 2 − λ2. 2πF ρτ = C√ α 2 − 1α √ α 2 − C 2 =8.3 Field strength variati<strong>on</strong>√ C tanh ρ(8.12)chρ 2 − C2, Since our D2-brane is spread out over the entire cigar, we cannot perturb it in the ρand τ directi<strong>on</strong>s. We can however perturb the Maxwell field that lives <strong>on</strong> it. Therefore,c<strong>on</strong>siderA µ −→ A µ + δα µ (t, ρ, τ). (8.13)The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field strength thus becomesDenoting ˜F ατ = F ατ + δF ατ , we find that⎡−1kg αβ + 2π ˜F αβ =⎢⎣− 2π∂ tα ρ√α 2 − 1Up to sec<strong>on</strong>d order, we find that− det(g αβ + 2π ˜F)αβδF ρτ = ∂ ρ α τ − ∂ τ α ρ = f. (8.14)2π∂ t α ρ√α 2 − 11α 2 − 1−2π∂ t α τ − 2π √α 2 − 1 [F ρτ + f]= 1α 2 k − 4π2 (∂ t α τ ) 2α 2 − 14π 2k (α 2 − 1)2π∂ t α τ2π√α 2 − 1 [F ρτ + f]α 2 − 1α 2⎤. (8.15)⎥⎦− 4π2 (∂ t α ρ ) 2α 2 +[F2ρτ + 2F ρτ f + f 2] . (8.16)


CHAPTER 8. COMPUTATIONS 998.4 Regularized LagrangianBefore varying the acti<strong>on</strong> c<strong>on</strong>taining the perturbed field strength, and ultimatly computingthe equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the fluctuati<strong>on</strong>, we note that we will again need toinvoke the Lagrange multiplier. As such, we first computeL <str<strong>on</strong>g>DBI</str<strong>on</strong>g> −λf√k (α 2 − 1) . (8.17)To this end, the first thing to do is to expand the Lagrangian density,√L <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = A −α 2 det(g αβ + 2π ˜F)αβ{ 1= Ak − 4π2 α 2α 2 − 1 (∂ tα τ ) 2 − 4π 2 (∂ t α ρ ) 2 + 4π2 α 2k (α 2 − 1) F ρτ2}+ 8π2 α 2k (α 2 − 1) F ρτf + 4π2 α 2k (α 2 − 1) f2= A√(α 2 − 1) + 4π 2 α 2 F 2 ρτk (α 2 − 1){4π 2 α 2 k1 −(α 2 − 1) + 4π 2 α 2 Fρτ2 (∂ t α τ ) 24π 2 ( α 2 − 1 ) k−(α 2 − 1) + 4π 2 α 2 Fρτ2 (∂ t α ρ ) 2 8π 2 α 2+(α 2 − 1) + 4π 2 α 2 Fρτ2 F ρτ f4π 2 α 2+(α 2 − 1) + 4π 2 α 2 Fρτ2 f}. 2 (8.18)For the expansi<strong>on</strong>, we find up to sec<strong>on</strong>d order:√{(α 2 − 1) + 4π 2 α 2 Fρτ2 2π 2 α 2 kL <str<strong>on</strong>g>DBI</str<strong>on</strong>g> ≈ Ak (α 2 1 −− 1) (α 2 − 1) + 4π 2 α 2 Fρτ2 (∂ t α τ ) 22π 2 ( α 2 − 1 ) k−(α 2 − 1) + 4π 2 α 2 Fρτ2 (∂ t α ρ ) 2 4π 2 α 2+(α 2 − 1) + 4π 2 α 2 Fρτ2 F ρτ f[]2π 2 α 28π 4 α 4 Fρτ2 +(α 2 − 1) + 4π 2 α 2 Fρτ2 − ( )(α 2 − 1) + 4π 2 α 2 Fρτ2 2f}. 2 (8.19)Looking back at Eq. 8.17, we see we <strong>on</strong>ly need to c<strong>on</strong>sider the term ∼ F ρτ in thisexpansi<strong>on</strong> when computing the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrange multiplier. We will want bothterms to annul each other, as otherwise the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> will c<strong>on</strong>tain c<strong>on</strong>stantterms (i.e. without f) we do not want. Anticipating this result, in order not to clutterpages with unreadable derivati<strong>on</strong>s, we work out the ∼ F ρτ term when filling in the


CHAPTER 8. COMPUTATIONS 100classical soluti<strong>on</strong> Eq. 8.12:O(1)[L <str<strong>on</strong>g>DBI</str<strong>on</strong>g> ] =4π 2 α 2 A√ F ρτ fk (α 2 − 1)√(α 2 − 1) + 4π 2 α 2 Fρτ2A 2πα 2 λ √ α= √ 2 − 1k (α 2 − 1) α √ f4π 2 α 2 A 2 − λ√(α 2( 2 − 1) + λ2 α 2 − 1 )4π 2 α 2 A 2 − λ 2= A √k2πλα√4π 2 α 2 A 2 − λ 2 √4π 2 α 2 A 2 − λ 2√(α 2 − 1)(4π 2 α 2 A 2 − λ 2 ) + λ 2 (α 2 − 1) f= A √k2πλα√(α 2 − 1)4π 2 α 2 A 2f=λf√k (α 2 − 1) . (8.20)We thus indeed find thatL <str<strong>on</strong>g>DBI</str<strong>on</strong>g> −λf√ = 0, (8.21)k (α 2 − 1)as we hoped. Further using the classical soluti<strong>on</strong> to simplify the factor in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> whatis left <str<strong>on</strong>g>of</str<strong>on</strong>g> our Lagrangian density, we see that√(α 2 − 1) + 4π 2 α 2 F 2 ρτk (α 2 − 1)=√1k + C 2k (α 2 − C 2 ) =α√k (α 2 − C 2 ) , (8.22)leaving us with{αL <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = A √k (α 2 − C 2 ) − 2π2 α √ k (α 2 − C 2 )α 2 (∂ t α τ ) 2 − 2π2√ k (α 2 − C 2 )(∂ t α ρ ) 2− 1α[f 22π 2 α 2 [( α 2 − 1 ) + 4π 2 α 2 F 2 ] ]ρτ − 8π 4 α 4 Fρτ2 + √ [ ]k (α 2 − 1) + 4π 2 α 2 Fρτ2 3/2√ .α 2 − 1(8.23)If <strong>on</strong>e further fills in the classical soluti<strong>on</strong> for F ρτ , <strong>on</strong>e finds thatL <str<strong>on</strong>g>DBI</str<strong>on</strong>g> = 2π 2 A √ {k (α 2 − C 2 α)2π 2 [k (α 2 − C 2 )] − αα 2 − 1 (∂ tα τ ) 2 − (∂ tα ρ ) 2α(α 2 − C 2)+k (α 2 − 1)α[(∂ ρ α τ ) 2 − 2 (∂ ρ α τ ) (∂ τ α ρ ) + (∂ τ α ρ ) 2] } . (8.24)


CHAPTER 8. COMPUTATIONS 1018.5 Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>From the Lagrangian density expressed in Eq. 8.24, we will now compute the equati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. We start with α ρ .∂ µ∂L∂ (∂ µ α ρ ) = ∂ t( ) ( ∂L ∂L+ ∂ τ∂ (∂ t α ρ )= ∂ t(− 2 (∂ tα ρ )α)∂ (∂ τ α ρ )) ( (2 α 2 − C 2)+ ∂ τk (α 2 − 1)α [(∂ τα ρ ) − (∂ ρ α τ )]= − ( ∂ 2 t α ρ)−(α 2 − C 2)k (α 2 − 1) (∂ τf) . (8.25)The equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for α τ are unfortunatly a tad more complicated.( ) ( )∂L ∂L ∂L∂ µ∂ (∂ µ α τ ) = ∂ t + ∂ ρ∂ (∂ t α τ ) ∂ (∂ ρ α τ )( ) [−2α= ∂ tα 2 − 1 (∂ tα τ ) + ∂α(2 α 2∂ρ ∂ − C 2) ]αk (α 2 − 1)α f= − ( ∂ 2 t α τ)+α 2 − C 2kα 2 (∂ ρ f) + −α2 ( α 2 + 1 ) + 3C 2 α 2 − C 2kα 3 (α 2 − 1) 1/2 f. (8.26))From this we c<strong>on</strong>clude that⎧ (( )⎪⎨ ∂2 α 2 − C 2)t α ρ = −k (α 2 − 1) (∂ τf) ,(( )⎪⎩ ∂2 α 2 − C 2) (t α τ =kα 2 (∂ ρ f) − α2 α 2 + 1 ) − C 2 ( 3α 2 − 1 )kα 3 (α 2 − 1) 1/2 f.(8.27)8.6 Road to differential equati<strong>on</strong>We are looking for the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f. We need to c<strong>on</strong>struct this using Eq.8.27. To combine both equati<strong>on</strong>s into <strong>on</strong>e single equati<strong>on</strong> for f, we need to derive thefirst equati<strong>on</strong> with respect to τ, the sec<strong>on</strong>d equati<strong>on</strong> with respect to ρ, and then finallytake the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> these derivati<strong>on</strong>s. The first <strong>on</strong>e is again the easiest;(α∂t 2 2 − C 2) ((∂ τ α ρ ) = − ∂2k (α 2 − 1) τ f ) . (8.28)


CHAPTER 8. COMPUTATIONS 102The sec<strong>on</strong>d <strong>on</strong>e needs some more care, as the factor preceding the partial derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g>f is α-dependent. We see that(α∂t 2 2 − C 2) ((∂ ρ α τ ) = ∂2kα 2 ρ f ) ( − α2 α 2 + 1 ) − C 2 ( 3α 2 − 1 )kα 3 (α 2 − 1) 1/2 (∂ ρ f)+ (∂ ρ f) √ ( α 2α 2 − C 2 )− 1∂ αkα 2Using∂ α(α2 ( α 2 + 1 ) − C 2 ( 3α 2 − 1 )kα 3 (α 2 − 1) 1/2 )− f √ α 2 − 1∂ α(α2 ( α 2 + 1 ) − C 2 ( 3α 2 − 1 )kα 3 (α 2 − 1) 1/2 )∂ α( α 2 − C 2kα 2 )= − α4 + α 2 − 3C 2 α 2 + C 2[(α 2 − 1) α] 2 ,. (8.29)= α4 ( −3 + 6C 2) + α 2 ( 1 − 7C 2) + 3C 2kα 4 (α 2 − 1) 3/2 , (8.30)this amounts to∂ 2 t (∂ ρ α τ ) =(α 2 − C 2) (∂2kα 2 ρ f ) (α 4 + α 2 ( 1 − 5C 2) + 3C 2)−kα 3 (α 2 − 1) 1/2 (∂ ρ f)(3C 2 + α 2 ( 1 − 7C 2) + α 4 ( −3 + 6C 2))−kα 4 (α 2 f. (8.31)− 1)8.7 Differential equati<strong>on</strong>Subtracting Eq. 8.28 from Eq. 8.31, we find that(∂2t f ) (α 2 − C 2) (= ∂2kα 2 ρ f ) (α 4 + α 2 ( 1 − 5C 2) + 3C 2)−kα 3 (α 2 − 1) 1/2 (∂ ρ f)(3C 2 + α 2 ( 1 − 7C 2) + α 4 ( −3 + 6C 2))−kα 4 (α 2 f− 1)(α 2 − C 2) (+ ∂2k (α 2 − 1) τ f ) . (8.32)We still have ρ derivatives working in <strong>on</strong> f. We replace these by α derivatives by using∂∂ρ = ∂α ∂∂ρ ∂α = (shρ)∂ α = ( α 2 − 1 ) 1/2∂α , (8.33)∂ 2∂ρ 2 = ∂α ( )∂ ∂α ∂= α∂ α + ( α 2 − 1 ) ∂ 2∂ρ ∂α ∂ρ ∂αα, (8.34)


CHAPTER 8. COMPUTATIONS 103which delivers0 = − ( ∂t 2 f ) (α 2 − C 2) (+ ∂2k (α 2 − 1) τ f ) (α4 ( 6C 2 − 3 ) + α 2 ( −7C 2 + 1 ) + 3C 2)−kα 4 (α 2 f− 1)+ 1 [α 5kα 3 − α 4 − α 3 C 2 + ( 5C 2 − 1 ) α 2 − 3C 2] (∂ α f)(α 2 − C 2) ( α 2 − 1 )+kα 2 (∂2α f ) . (8.35)To get a sec<strong>on</strong>d order partial differential equati<strong>on</strong> in ∂ α , we suppose thatf(t, ρ, τ) = e iEt e iLτ f(ρ), (8.36)which finally delivers the sought after equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for f:0 =[kE ( 2 − L2 α 2 − C 2) (k (α 2 − α4 6C 2 − 3 ) + α 2 ( −7C 2 + 1 ) ]+ 3C 2− 1)kα 4 (α 2 f− 1)+ 1kα 3 (α 5 − α 4 − α 3 C 2 + ( 5C 2 − 1 ) α 2 − 3C 2) (∂ α f)(α 2 − C 2) ( α 2 − 1 )kα 2 (∂2α f ) . (8.37)8.8 Hypergeometric equati<strong>on</strong>?We introduce the change <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinatesThe partial derivatives thus becomeThus, we find that[kE ( 2 − L2 ω − C 2)0 =α 2 −→ ω. (8.38)∂∂α = ∂w ∂∂r ∂w = 2√ w∂ w ,∂ 2∂α 2 = ∂w [ ]∂ ∂w ∂= 4w∂w 2 + 2∂ w . (8.39)∂r ∂w ∂r ∂w(− ω2 6C 2 − 3 ) + ω ( −7C 2 + 1 ) ]+ 3C 2ω 2 f(ω − 1)(ω − 1)+ 2 [ω 5/2 − ω 3/2 C 2 + ω ( 4C 2 − 2 ) + 2C 2] (∂ ω f)ω+ 4 ( ω − C 2) (ω − 1) ( ∂ωf 2 ) . (8.40)We can already see that what we did in the previous chapter will not work this time.The problem lies in the abundant presence <str<strong>on</strong>g>of</str<strong>on</strong>g> w in the ∼ f and ∼ ∂ ω f terms. But let us


CHAPTER 8. COMPUTATIONS 104see what comes out anyway. C<strong>on</strong>centrating <strong>on</strong> the ∼ ∂ 2 ω term, we see we can put thisterm in the right form by applying the substituti<strong>on</strong>The sec<strong>on</strong>d order term hereby becomesω −→ −z ( 1 − C 2) + 1. (8.41)4 ( ω − C 2) (ω − 1) ( ∂ 2 ωf ) −→ −4 (1 − z)z. (8.42)The <strong>on</strong>ly thing left to do is multiply through by −4 −1 . Going through the same moti<strong>on</strong>sfor the other terms, the fully transformed equati<strong>on</strong> becomes (courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematica):0 ={ [2 − ( −5C 2 + 5 + kE 2) z + ( C 2 − 1 ) ( 6C 2 − 3 − 2kE 2) z 2 − ( C 2 − 1 ) 2kE 2 z 3+ L 2 (z − 1) ( 1 + ( C 2 − 1 ) z ) ] [2× 4z ( 1 + ( C 2 − 1 ) z ) ] } −12f−{ [− 2 + 6C 2 + 2z − 6C 2 z + 4C 4 z − C 2 ( 1 + ( C 2 − 1 ) z ) 3/2+ ( 1 + ( C 2 − 1 ) z ) ] [5/2× 2 ( C 2 − 1 )( 1 + ( C 2 − 1 ) z ) ] } −1∂ z f+ z (1 − z)∂ 2 zf. (8.43)This is decidely not a hypergeometric equati<strong>on</strong>.


Chapter 9C<strong>on</strong>clusi<strong>on</strong> & Final Thoughts“I know what I’ve d<strong>on</strong>e, but tell me what did I miss?”Queens Of The St<strong>on</strong>e AgeSick, Sick, SickWe derived the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a D2-brane in the cigargeometry, and managed to combine them into a sec<strong>on</strong>d order partial differential equati<strong>on</strong>,Eq. 8.37. We unfortunately found out that we run into problems when we try to rewritethis equati<strong>on</strong> as a hypergeometric equati<strong>on</strong>, preventing us from obtaining the spectrum<str<strong>on</strong>g>of</str<strong>on</strong>g> the D2-brane fluctuati<strong>on</strong>s, and c<strong>on</strong>cluding the research.The problems arise starting from Eq. 8.27, where the ρ derivative also acts <strong>on</strong> thefactor in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>. This happens a sec<strong>on</strong>d time right after in Eq. 8.29,resulting in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> α-dependent terms in the zero-order and first-order differentialterms that were absent from the D1-brane case. T-duality however str<strong>on</strong>gly suggeststhat it should nevertheless be possible to rewrite Eq. 8.37 as a hypergeometric equati<strong>on</strong>,although this seems a rather n<strong>on</strong>-trivial task.105


Bibliography[1] Bateman H, Higher Transcendental Functi<strong>on</strong>s, Vol. 1, McGraw-Hill, (1953)[2] Becker K., Becker M. & Schwarz J.H., <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory and M-Theory, CambrigeUniversity Press, (2007)[3] Benichou R., Supercordes, théories c<strong>on</strong>formes et dualité holographique, DoctoralThesis, Université Pierre et Marie Curie, (2009)[4] Di Francesco P., Mathieu P. & Sénéchal D., C<strong>on</strong>formal Field Theory, Springer-Verlag, (1997)[5] Förste S., <str<strong>on</strong>g>String</str<strong>on</strong>g>s, Branes and Extra Dimensi<strong>on</strong>s, hep-th/0110055v3, (2002)[6] Fotopoulos A., Semiclassical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D-<strong>branes</strong> in SL(2)/U(1) gauged WZWmodel, hep-th/0304015v2, (2003)[7] Give<strong>on</strong> A. & Kutasov D., Brane Dymanics and Gauge Theory, hep-th/9802067,(1998)[8] Gradshteyn I.S., Ryzhik I.M., Table <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrals, Series, and Products (7 th ed.),Elsevier, (2007)[9] Green M.B., Schwarz J. H. & Witten E., Superstring theory: Volume 1, CambridgeUniversity Press, (1987)[10] Hanany A. & Witten E., Type IIB Superstrings, BPS M<strong>on</strong>opoles, And Three-Dimensi<strong>on</strong>al Gauge Dynamics, hep-th/9611230, (1996)[11] ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t G., Introducti<strong>on</strong> to <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory, Lecture Notes available atwww.phys.uu.nl/~tho<str<strong>on</strong>g>of</str<strong>on</strong>g>t/lectures/stringnotes.pdf[12] Johns<strong>on</strong> C. V., D-Brane Primer, hep-th/0007170, (2000)[13] Kiritsis E., <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory in a Nutshell, Princet<strong>on</strong> University Press, (2007)[14] Lüst D. & Theisen S., Lectures <strong>on</strong> <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory, Springer-Verlag, (1989)[15] Maldacena J., Moore G., Seiberg N., Geometrical interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D-<strong>branes</strong> ingauged WZW models, hep-th/0105038, (2001)107


BIBLIOGRAPHY 108[16] Polchinski J., What is <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory?, hep-th/9411028, (1994)[17] Polchinski J., Notes <strong>on</strong> D-Branes, hep-th/9602052v2, (1996)[18] Polchinski J., <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory: Volume 1, An Introducti<strong>on</strong> to the Bos<strong>on</strong>ic <str<strong>on</strong>g>String</str<strong>on</strong>g>,Cambridge University Press, (1998)[19] Shapiro J. A., Reminiscence <strong>on</strong> the birth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory, hep-th/0711.3448v2,(2007)[20] Strominger A., <str<strong>on</strong>g>Open</str<strong>on</strong>g> P-Branes, hep-th/9512059, (1995)[21] Townsend P.K., Brane Surgery, hep-th/9609217v2, (1996)[22] Van Proeyen A., Freedman D. Z., Supergravity, work in progress[23] http://xkcd.com/171/[24] Zwiebach B., A First Course in <str<strong>on</strong>g>String</str<strong>on</strong>g> Theory (2 nd ed.), Cambridge UniversityPress, (2009)


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Abbreviati<strong>on</strong>sBPSCFTD<str<strong>on</strong>g>DBI</str<strong>on</strong>g>EOMGSGSOKKNNSP.B.’sPDEQCDQFTRRNSSUSYBogomolny-Prasad-SommerfieldC<strong>on</strong>formal Field TheoryDirichletDirac-Born-InfeldEquati<strong>on</strong>s Of Moti<strong>on</strong>Green-SchwarzGliozzi-Scherk-OliveKaluza-KleinNeumannNeveu-SchwarzPoiss<strong>on</strong> BracketsPartial Differential Equati<strong>on</strong>Quantum ChromoDynamicsQuantum Field TheoryRam<strong>on</strong>dRam<strong>on</strong>d-Neveu-SchwarzSUper SYmmetry109


⌈I’m so glad you cameI’m so glad you rememberedTo see how we’re endingOur last dance together. . .⌋[ The Cure (R. Smith) - Last Dance ]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!