13.07.2015 Views

DBI Analysis of Open String Bound States on Non-compact D-branes

DBI Analysis of Open String Bound States on Non-compact D-branes

DBI Analysis of Open String Bound States on Non-compact D-branes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 2. BOSONIC STRINGS 232.6.2 Energy-momentum tensor and Hamilt<strong>on</strong>ianWe have come to a point where we can no l<strong>on</strong>ger ignore the energy-momentum tensorT αβ , defined asT αβ = − 2 1 δL√ σ, (2.58)T −h δhαβ or if you prefer, as the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian (density) with respect to the (worldsheet) metric. In this equati<strong>on</strong>, L σ represents the Lagrangian density as it appears inthe Polyakov acti<strong>on</strong> defined in Eq. 2.5. Using the Polyakov acti<strong>on</strong> and<strong>on</strong>e finds that∫δSδh αβ = −1 2 T= − 1 2 T √ ∫−h{( √ ) ∂ −hd 2 σ∂h αβd 2 σδ √ −h = − 1 2√−hhαβ δh αβ ,h γδ η µν ∂ γ X µ ∂ δ X ν + √ }−hη µν ∂ α X µ ∂ β X ν δh αβ{− 1 }2 h αβh γδ ∂ γ X µ ∂ δ X µ + ∂ α X µ ∂ β X µ δh αβ , (2.59)implying thatT αβ = ∂ α X · ∂ β X − 1 2 h αβh γδ ∂ γ X · ∂ δ X. (2.60)Demanding that the field equati<strong>on</strong>s for the world sheet metric,δLδh αβ= 0, are satisfied,we need to impose thatT αβ = 0. (2.61)These equati<strong>on</strong>s are called the c<strong>on</strong>straint equati<strong>on</strong>s, as they lay extra c<strong>on</strong>straints <strong>on</strong> thesolutios <str<strong>on</strong>g>of</str<strong>on</strong>g> the EOM for X µ . In the particular case <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>ic string theory, they also gounder the name <str<strong>on</strong>g>of</str<strong>on</strong>g> Virasoro c<strong>on</strong>straints, for reas<strong>on</strong>s that will become clear in a sec<strong>on</strong>d.We have seen that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the local symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> the world sheet is Weyl invariance. Thissymmetry has a side effect, namely it induces the tracelessness <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy-momentumtensor, i.e. h αβ T αβ = 0. To show this, c<strong>on</strong>sider a general acti<strong>on</strong> S (h αβ , φ i ), where φ irepresents some fields satisfying the field equati<strong>on</strong>s δL = 0. Supposing that under anδφ iinfinitesimal Weyl rescaling with parameter Λ these transform ash αβ −→ h αβ + 2Λh αβ ; φ i −→ φ i + d i Λφ i , (2.62)where d i represents the c<strong>on</strong>formal weight (see Chapter 4) <str<strong>on</strong>g>of</str<strong>on</strong>g> φ i , and assuming the acti<strong>on</strong>to be scale invariant, we find that∫ {0 = δS = d 2 σ 2 δL h αβ + ∑ }δLd i φ i Λ. (2.63)δh αβ δφi iDue to the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> φ i , <strong>on</strong>ly the first term is n<strong>on</strong>-trivial. Using Eq. 2.58, wefind that∫0 = −T d 2 σ √ )−h(T αβ h αβ , (2.64)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!