12.07.2015 Views

Travel Demand Model - OKI

Travel Demand Model - OKI

Travel Demand Model - OKI

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

APPENDIX F • TRAVEL DEMAND MODEL –MODEL DEVELOPMENT REPORTFollowing is the <strong>Model</strong>ing Technical Document prepared for the North South TransportationInitiative.Appendix F


Appendix FNorth South Transportation InitiativeFinal Report, February 2004


<strong>OKI</strong>/MVRPC<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>Version 6.0<strong>Model</strong> Development ReportFinalDecember 2002


This document was prepared as part of the North South Transportation Initiative. The Initiativeis a cooperative undertaking of the Ohio-Kentucky-Indiana Regional Council of Governments(<strong>OKI</strong>) and the Miami Valley Regional Planning Commission (MVRPC).Ohio-Kentucky-Indiana RegionalCouncil of Governments801-B West Eight Street, Suite 400Cincinnati, OH 45402Miami Valley Regional PlanningCommission40 West Fourth Street, Suite 400Dayton, OH 45203Assisting the Initiative in the preparation of this document:Parsons Brinckerhoff Ohio, Inc.312 Elm Street, Suite 2500Cincinnati, OH 45202AndParsons Brinckerhoff Quade and Douglas303 Second Street, Suite 700 NorthSan Francisco, CA 94107&5801 Osuna Road, Suite 200Albuquerque, NM 87109


Table of ContentsPart IPart IIPart IIIPart IVPart VPart VIPart VIIIntroductionConsolidation of Zones and NetworksTrip GenerationTrip DistributionMode ChoiceTrip Assignment and ValidationTruck <strong>Model</strong> Development and Validation


Part IINTRODUCTION


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0This report documents the development of a consolidated travel demand model for the Ohio-Kentucky-Indiana Regional Council of Governments and the Miami Valley Regional PlanningCommission (<strong>OKI</strong> and MVRPC respectively). Specifically, this model development effort extendsversion 5.4 of the <strong>OKI</strong> <strong>Model</strong> to the combined <strong>OKI</strong>/MVRPC super-region. The combined regionincludes Hamilton, Clermont, Warren, Butler, Montgomery, Greene and Miami counties in thestate of Ohio, as well as Boone, Kenton and Campbell in the state of Kentucky and Dearborn inthe state of Indiana.In addition to the regional consolidation, version 6.0 of the <strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>includes several model enhancements, including time-of-day trip distribution, logsum tripdistribution impedances, updated truck trip tables and regionally-estimated mode choice models.This model development work was undertaken in 2000-2002 under the aegis of the North-SouthTransportation Initiative, NSTI, a Major Investment Study of Interstate 75.This model development report documents all changes and enhancements applied to <strong>OKI</strong> model5.4. It is not intended as a stand-alone document; rather it is a companion document to theexisting model 5.4 documentation, in particular to <strong>OKI</strong> Regional <strong>Model</strong> Tier 2 Version –Methodology and Validation Report, prepared by KPMG Peat Marwick in the context of theInterstate 71 Major Investment Study. Users of version 6.0 of the <strong>OKI</strong>/MVRPC model are advisedto examine the Tier 2 Version report prior to reading the version 6.0 documentation.This report documents all updated/enhanced model structures, as well as the calibration andvalidation of the model to the entire combined region. For a description of the mechanics ofapplying the model (control files, executables, data files, etc.), please see the Version 6.0 <strong>Model</strong>User’s Guide.This report is organized into seven parts, as indicated in the table of contents. Part I is thisintroduction. Parts II to VI correspond to the development of the passenger model. Part VIIdocuments the development of the truck model. The contents of each of these Parts have beenpreviously released as Task Reports. However, this report supersedes all prior task reports andconstitutes the final model development documentation.Parsons Brinckerhoff gratefully acknowledges the <strong>OKI</strong> Regional Council, the Miami ValleyRegional Transportation Commission, the Ohio Department of Transportation and the KentuckyTransportation Cabinet for their assistance, technical advise and numerous reviews of the workcontained herein.Part I - Introduction2


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 2 – Zones & Networks


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table of Contents1. Background ..................................................................................................................32. Zone System Consolidation ..........................................................................................33. Highway Network Consolidation..................................................................................33.1 <strong>OKI</strong> Highway Network .......................................................................................................33.2 MVRPC Highway Networks ..............................................................................................34. Transit Networks ..........................................................................................................34.1 <strong>OKI</strong> Transit Routes............................................................................................................34.2 MVRPC Transit Routes.....................................................................................................34.2.1 Major Characteristics.....................................................................................................34.2.2 Speed-Delay Curves ......................................................................................................34.3 Transit Terminals and Park-and-Ride Lots .......................................................................34.4 Sidewalks and Walk Access Connectors..........................................................................34.5 Drive Access Connectors..................................................................................................34.6 Transit Access Barriers .....................................................................................................34.7 Transit Network Summary.................................................................................................35. Transit Network Skimming...........................................................................................35.1 Transit Path Building .........................................................................................................35.2 Transit Fare Calculation ....................................................................................................36. Integration within <strong>Model</strong> 6.0 Jobstream......................................................................36.1 Highway Network ..............................................................................................................36.1.1 6.1.1 Data Files .............................................................................................................36.1.2 Batch, Control and Parameter Files...............................................................................36.1.3 Executable Files.............................................................................................................36.2 Transit Network .................................................................................................................36.2.1 6.2.1 Data Files .............................................................................................................36.2.2 Batch, Control and Parameter Files...............................................................................36.2.3 Executable Files............................................................................................................37. Appendix A ...................................................................................................................38. Appendix B ...................................................................................................................39. Appendix C....................................................................................................................310. Appendix D .................................................................................................................311. Appendix E..................................................................................................................3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Index of TablesTable 2-1 Consolidated Zone System Super District Definition .................................................. 3Table 3-1 Consolidated Highway Network Link Attributes......................................................... 3Table 4-1 MVRTA Local and Express Bus Service..................................................................... 3Table 4-2 MVRTA Bus Runtime Comparison, Off Peak Local Bus............................................... 3Table 4-3 MVRTA Bus Runtime Comparison, Peak Local Bus .................................................... 3Table 4-4 MVRTA Bus Runtime Comparison, Express Bus......................................................... 3Table 4-5 MVRPC Transit Stations.......................................................................................... 3Table 4-6 Consolidated Transit Network Characteristics ........................................................... 3Table 5-1 Transit Path Building Parameters ............................................................................ 3Table 5-2 Transit Fares (in 1995 cents).................................................................................. 3Table 6-1 Build Highway Network Batch and Control Files........................................................ 3Table 6-2 Build and Skim Transit Network Batch and Control Files............................................ 3Index of FiguresFigure 2-1 <strong>OKI</strong>/MVRPC Consolidated Zone System .................................................................. 3Figure 2-2 <strong>OKI</strong>/MVRPC Consolidated Super District System ...................................................... 3Figure 3-1 <strong>OKI</strong>/MVRPC Consolidated Highway Network............................................................ 3Figure 4-1 MVRTA Bus Runtime Summary Comparison, Off-Peak Local Bus ............................... 3Figure 4-2 Speed-Delay Curves for MVRTA Bus Routes, Major and Minor Roads......................... 3Figure 5-1 Consolidated <strong>Model</strong> Mode Choice Structure............................................................. 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. BackgroundThis is Part II of the <strong>OKI</strong>/MVRPC model development report. It has been previously released asthe Task A.4.2, Zone System and Network Design and Preparation, a report that is part of aseries of working papers that document the development of a consolidated travel demand modelfor the Ohio-Kentucky-Indiana Council of Governments and the Miami Valley RegionalTransportation Commission (<strong>OKI</strong> and MVRPC respectively). This model development isundertaken under the framework of the North-South Transportation Initiative, a MajorInvestment Study focusing on the Interstate 75 corridor.The report discusses the consolidation of the two planning regions' zone systems and base yearhighway networks, as well as the development of a base year transit network for the city ofDayton and its consolidation with the <strong>OKI</strong> transit network. In addition, the report indicates howthese various data files are integrated into the existing model stream.Zones and Networks / 1 - Background1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Zone System ConsolidationThe consolidated zone system consists of 2531 traffic analysis zones (2425 internal zones and106 external stations). The <strong>OKI</strong> zones were incorporated first (numbered from 1 to 1608),followed by the MVRPC zone system (numbered from 1609 to 2425). A GIS zone layer of theconsolidated system has been developed (see Figure 2-1). Both <strong>OKI</strong> and MVRPC revised theirzone system prior to the creation of the consolidated system. These revised systems provideadequate geographic detail for the present study, and thus no further zonal subdivision wasrequired. Per <strong>OKI</strong> request, Ohio County in Indiana has been excluded from the consolidatedregion. Equivalence tables between each agency's zone systems and the system developed forNorth-South Transportation Initiative are included as Appendix A.Zones in the consolidated system were also grouped into super-districts. This higher-levelclassification is intended for reporting summary statistics as well as for comparisons between themodel's estimated trip tables and observed data. A total of 16 super districts were defined andnumbered non-consecutively from 1 to 20, as shown in Table 2-1. The superdistrict system isdepicted in Figure 2-2.A revised set of cordon zones was developed by eliminating stations that lie along the commonborder between <strong>OKI</strong> and MVRPC, and between Montgomery/Greene counties and Miami County.The remaining stations were sequentially numbered from 2426 to 2531, by first incorporating the<strong>OKI</strong> stations, then the MVRPC stations and finally the Miami county stations. Provision was madefor additional zones (whether external or internal), by starting the numbering of highway nodesat 3000. The revised set of cordon stations is documented in Appendix B. Please refer to thekey at the end of the table for a description of each column.Table 2-1 Consolidated Zone System Super District DefinitionSuper District No. Name Consolidated Traffic Analysis Zones1 Boone Co. 1466-1550, 1606,16072 Butler Co. 691-992, 1589-1596, 15993 Campbell Co. 1255-13394 Clermont Co. 1128-1254, 16005 Dearborn Co. 1551-1587, 16086 - -7 Kenton Co. 1340-1465, 1603-16058 - -9 Warren Co. 993-1127, 1597, 159810 - -11 Cincinnati Center 251-316,12 Cincinnati North 243-246, 317-324, 328-338, 340, 341, 346-350,13 Anderson 1-39,14 Hamilton Co. East 40-77, 85-109, 128-242, 247-250, 339,15 Hamilton Co. North 78-84,110-127, 342-345, 351-490, 625-641,1588,160116 Hamilton Co. West 325-327, 491-624, 642-690, 160217 -18 Montgomery Co. 1609-213619 Greene Co. 2137-231820 Miami Co. 2319-2425Zones and Networks / 2 - Zone System Consolidation2


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-1 <strong>OKI</strong>/MVRPC Consolidated Zone SystemZones and Networks / 2 - Zone System Consolidation3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-2 <strong>OKI</strong>/MVRPC Consolidated Super District SystemZones and Networks / 2 - Zone System Consolidation4


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Highway Network ConsolidationThe consolidated highway network consists of approximately 14,000 nodes and 35,000 one-waylinks (see Figure 3-1). The original 1995 <strong>OKI</strong> and MVRPC highway networks were edited toensure that important attributes such as capacity and facility type were consistent across theconsolidated region. A few additional roads were added to the three existing networks so as tomerge the gaps between them and to increase the road density near the former external cordonlines.Figure 3-1 <strong>OKI</strong>/MVRPC Consolidated Highway NetworkZones and Networks / 3 - Highway Network Consolidation5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The highway network definition is contained in five separate files (see descriptions below). Link,node and turn prohibition files were developed for the consolidated system network byreformatting and merging the respective files from the existing <strong>OKI</strong> and MVRPC networks. Thesefiles were named with extension .95C, indicating that they represent the 1995 consolidatednetwork. Specific changes made to these files are detailed in Sections 3.1 and 3.2.• N0009: link file• N0008: node file• Turnpen: turn penalties• Turnpro: turn prohibitions• Bridge: major bridges3.1 <strong>OKI</strong> Highway NetworkThe <strong>OKI</strong> 1995 base network was taken "as-is", with the following link and centroid changes:• New centroids and centroid connectors were added to represent all the zones added by <strong>OKI</strong>in excess of their original zone system (approximately 600 new centroids were required);• New centroids and centroid connectors were added to represent cordon stations surveyed bythe Ohio Department of Transportation but not originally included in the 1995 zone system(see Appendix B);• The Ohio County (IN) highway network was eliminated from the consolidated network;• All highway node numbers were renumbered, by adding 1800 to the original number, toaccommodate the additional <strong>OKI</strong> centroids and MVRPC TAZs.• Bridge and TurnPro files were updated to reflect the new node numbering system.• Two new attributes were added: REGION, to indicate whether a link falls in the <strong>OKI</strong> orMVRPC area, and TRUCKPROH, to flag links on which truck traffic is not allowed.3.2 MVRPC Highway NetworksMVRPC network attributes were edited to ensure consistency with the <strong>OKI</strong> attribute definition(see Table 3-1). The new attributes include a speed/capacity code and revised facility type andadministrative class definitions. These codes are used to calculate link capacities, using theinformation shown in Table 3-2: for each link, capacity is assigned as a function of thespeed/capacity code and the administrative class code. Note that all capacities are calculated forlevel of service E and that no adjustments are made to reflect the effect of truck volumes.Free-flow speeds were set equal to the posted speed limit. Some <strong>OKI</strong> network attributes are notavailable in the MVRPC networks, but as they are not used in the current model version it wasnot necessary to collect and/or code this information (see Table 3-2).Highway network node numbers were shifted by 12,000 in Montgomery and Greene counties andby 19,000 in Miami County. All centroids and external stations were renumbered according tothe consolidated zone system numbering.Zones and Networks / 3 - Highway Network Consolidation6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-1 Consolidated Highway Network Link AttributesNetworkPLANPAC Card Attribute Units Tranplan Field <strong>OKI</strong> MVRPCAttributes Used by <strong>OKI</strong> Version 6:A node A node ● ●B node B node ● ●Distance (mi, hundredths) Distance ● ●Field option (A-B) "S" Field option ● ●Speed (mph, tenths) Speed ● ● bHourly capacity LOS E (veh/lane/hr) Capacity ● ●Directional daily count Volume ● ●Street width (feet) ● ●Number of lanes Link group 2 a ● ●Field option (B-A) "S" Field option ● ●Speed (mph, tenths) Speed ● ● bHourly capacity LOS E (veh/lane/hr) Capacity ● ●Directional daily count Volume ● ●Street width (feet) ● ●Number of lanes Link group 2 a ● ●Administrative class1 – Freeway2 – Expressway3 – RampsLink group 3 ● ●4 – Major Road5 – Minor Road6 – Centroid ConnectorFunctional class0 – Freeway1 – Interstate2 – Major Arterial3 – Minor ArterialDirection Code ● ●4 – Major Collector5 – Minor Collector6 – Local Street7 – Centroid ConnectorSimplified area type ● ●Truck prohibitions0 – Trucks allowed● ●1 – Trucks not allowedSpeed/Capacity code (see Table 3-1) ● ●District number fMVRPC links:Montgomery County: 301● ●Greene County: 302Miami County: 303Discount factor e ● N/AArea type1 – CBD2 – UrbanLink group 1 ● ●3 – Suburban4 - RuralRegion1 – <strong>OKI</strong> Council County2 – Montgomery or Greene County● ●3 – Miami CountyTruck percentage ● N/ANumber of lanes, AM, A-B Link group 2 c ● N/AZones and Networks / 3 - Highway Network Consolidation7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0NetworkPLANPAC Card Attribute Units Tranplan Field <strong>OKI</strong> MVRPCNumber of lanes, PM, A-B Link group 2 c ● N/ANumber of lanes, MD, A-B Link group 2 c ● N/ANumber of lanes, AM, B-A Link group 2 c ● N/ANumber of lanes, PM, B-A Link group 2 c ● N/ANumber of lanes, MD, B-A Link group 2 c ● N/ANew administrative class dAssignment groupAttributes Not Used by Version 6:Jurisdiction ● N/AA node leg number ● N/AB node leg number ● N/AA node turn penalties ● N/AB node turn penalties ● N/ACapacity conversion factor (A-B) ● N/ACapacity conversion factor (B-A) ● N/AParking code (A-B) ● N/AParking code (B-A) ● N/ACross-street functional class ● N/Aa This represents the maximum number of through lanes during the 24 hour period.b Posted speed limit.c Time-dependent lane numbers are needed to reflect different conditions in the AM, PM and midday periods. Thehighway network build program, NewNet53, will use the appropriate lane field depending on the network being built.When the time-dependent fields are not coded, the value coded in field "Number of lanes" is used.d The Tranplan Assignment Group code is defined as a function of the Speed/Capacity Code and the Administrative Classcode. This takes place in Step 05 of the model stream. See Table 3-2 for definition.e These factors may be used to adjust the capacities of the MVRPC links, in case certain links are found to deviatesignificantly from the average conditions for their category. Currently this factor is set to 1.0 for all MVRPC links.f District numbers for the <strong>OKI</strong> links were taken "as-is" from their 95U network.Zones and Networks / 3 - Highway Network Consolidation8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-2 Speed/Capacity TableFacility DescriptionAdministrativeClass CodeSpeed/CapCodeNewAdministrativeClass CodeFree-FlowSpeed(mph)CapacityLOS E(veh/lane)Freeway, Short Upgrade, > 5 1 11 1 64 1400Freeway, Short Upgrade, < 5 1 12 1 67 1600Freeway, Long Upgrade, > 5% 1 13 1 62 1250Freeway, Long Upgrade, < 5% 1 14 1 64 1500Freeway, Rolling 1 21 1 68 1800Freeway, Downhill 1 22 1 69 1950Freeway, level, Close Int. 1 31 1 65 1875Freeway,Level, Long Int. Sp 1 32 1 69 1950Freeway, HOV 1 41 7 70 2050Expressways, Ramp Control 2 11 1 57 1700Expressways, Signal Control 2 12 2 47 1380Major Road, Sparse Int., Si 4 12 2 41 1160Ramp, Fway-Fway 3 11 1 48 1000Ramp, On 3 12 1 41 1000Major Road, Sparse Int., No 4 11 2 42 1350Major Road, Sparse Int., 4 4 13 3 37 880Ramp, Off 3 13 4 33 910Ramp, HOV 3 14 1 42 1250Major Road, Dense Int., Res 4 21 4 32 840Major Road, Dense Int., Acc 4 22 4 36 930Major Road, Dense Int., Blo 4 23 4 34 880Major Road, CBD 4 31 4 24 490Major Road, Dense Int., No 4 24 4 29 780Minor Road, Signals, Sparse 5 11 5 29 560Minor Road, Signals, Dense 5 12 5 26 480Minor Road, Signals, Interm 5 13 5 28 520Centroid Connector, CBD/Urb 6 11 6 15Centroid Connector, Suburba 6 12 6 20Centroid Connector, Rural 6 13 6 25Source: <strong>OKI</strong> <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> Version 5.4Zones and Networks / 3 - Highway Network Consolidation9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Transit NetworksThe transit networks consist of four major elements: the transit route or line descriptions, thewalk access connectors, the drive access connectors and the transit station or major intermodalcenter descriptions. The transit route and station files are model inputs, while the walk and driveaccess connectors are generated as part of the model run. In addition to these, various otherfiles are required to fully describe the transit network, including for example transit fares andwalk accessibility data. Changes to any transit input files or to the transit network build processare described below.4.1 <strong>OKI</strong> Transit RoutesThe <strong>OKI</strong> 1995 transit routes cards were adopted "as is" for use in the consolidated model. Minorediting was required in the few instances where transit lines used links updated to accommodatenew centroids. Of course, all route cards were updated to reflect the new zone and nodenumbering.4.2 MVRPC Transit Routes4.2.1 Major CharacteristicsTransit service in the MVRPC region is provided by the Miami Valley Regional Transit Authority(MVRTA), and covers primarily the city of Dayton. A total of 35 bus routes were coded torepresent this service in the consolidated model (see Table 4-1). This resulted in over 70 codedbus lines. Most routes were coded as one-way lines. In many instances a bus route itineraryvaries throughout the day; if so, more than one line per direction was required to fully representthe particular route.MVRTA bus routes were assigned the following characteristics:• Hours of operation:o Peak period – 6:00 A.M. to 8:30 A.M.o Off peak period – 8:30 A.M. to 3:00 P.M.• Company code: 6• Mode/Line codes:o Local Service – Mode 9, Lines 1-255,o Express Service – Mode 10, Lines 1-255• Fares 1 :o Local Service - $0.90, peak and off peak periodso Express Service - $0.90, peak and off peak periods1 From January 1995 to August 1995 the adult fare was $0.90 and the youth fare was $0.45. In September 1995 theadult fare was raised to $1.00 and the youth fare to $0.50, and the maximum age to qualify for a reduced fare wasdecreased to 13 years old. The model is unable to consider the reduced youth fare, and thus the adult fare that appliedduring most of the year is assumed for all users.Zones and Networks / 4 - Transit Networks10


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-1 MVRTA Local and Express Bus ServiceTranplanRoute No.RouteIDRoute DescriptionType ofServiceTime PeriodsOff-Peak Peak8-9 1E E.Third St., Mount Crest Local Yes Yes81 1W West Third, Westown Hub, Drexel Local Yes Yes82 3W West Third, Westown Hub, Townview Local Yes Yes2-5 2Linden Ave, Eastown Hub, Downtown Dayton, Otterbein,Lexington, TurnerLocal Yes Yes10-13 3E Wayne Ave., Fauver, Woodbine Local Yes Yes14-15 4 Hearthstone, Downtown Dayton, Hoover, Delphos Local Yes Yes16-17 5 Valley St., Downtown Dayton, Far Hills Local Yes Yes18-19 7 N.Main, Downtown Dayton, Waterliet Local Yes Yes20-23 8 Salem Ave., Downtown Dayton, Lakeview, Nicholas Local Yes Yes24-27 9 Greenwich Village, Downtown Dayton, Miami Chapel Local Yes Yes28-29 11WPAFB Visitor Center, USAF Museum, Kettering MedicalCenterLocal Yes Yes32-35 12 Five Oaks, Downtown Dayton, Forrer Blvd. Local Yes Yes36-37 13 Wright State, Downtown Dayton Local Yes Yes38-41 14 Trotwood, Downtown Dayton, Centerville Local Yes Yes42-43 15 Englewood, Northwest Hub, Downtown Dayton Local Yes Yes44-47 16 Union, Downtown Dayton, Kettering, Whipp and Bigger Local Yes Yes48-51 17 Vandalia, Downtown Dayton, Dayton Mall, South Hub Local Yes Yes54-58 18Huber Heights, Downtown Dayton, Moraine, WestCarrollton, MiamisburgLocal Yes Yes59-60 19Huber Heights, Downtown Dayton, Moraine, Dayton Mall,South HubLocal Yes Yes61-62 20Dayton View, Madden Hills, MVCTC, Northwest Hub, SalemMall, Consumer Sq.Local Yes Yes63-64 21 Shroyer Rd., Rahn Rd., Applecreek Local Yes No65-66 22 Keowee, Northridge, Poe Ave., Derby / Birdland Local Yes Yes67-68 23Air Force Museum, Visitor Center, Eastown Hub, Kettering,Centerville, Dayton Mall, South HubLocal Yes Yes69-70 24Friendship Village, Northwest Hub, Westown Hub, DaytonMall, South HubLocal Yes Yes71-72 40 Brookville, Clayton, Phillipsburg Local Yes Yes74-75 42 Farmersville, Germantown, Miamisburg, South Hub Local Yes Yes79-80 60 Villages of Miami, Dayton Mall, South Hub, Miamisburg Local Yes Yes78 63 Westown Hub, Dora Tate Center, Franciscan Hospital Local Yes Yes9-10 X1A Northwest Hub, Downtown Dayton, WPAFB Express Yes No11-12 X1B South Hub, Downtown Dayton, WPAFB Express Yes No7-8 X3 Huber Heights, WPAFB Express Yes No1-2 X4 Centerville, Downtown Dayton Express Yes No3-4 X5 Downtown Dayton, Dayton Mall, South Hub Express Yes Yes13-14 X7 Liberty, Downtown Dayton, WPAFB Express Yes No5-6 X17 Vandalia, Downtown Dayton Express Yes No15 41 New Lebanon, Downtown Dayton Express Yes YesZones and Networks / 4 - Transit Networks11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.2.2 Speed-Delay CurvesSpeed-Delay curves are used to estimate bus run times from link speeds. These estimated runtimes are validated against observed bus run times, which in turn were obtained from 1999published schedules (the earliest available). The <strong>OKI</strong> <strong>Model</strong> 5.4. speed/delay curves were usedto obtain an initial estimate of run times, and were subsequently modified to better match thepublished run times. The final bus run times are shown in Tables 4-2 to 4-4. In summary, in theoff peak period over 80% of all lines are within 20% of the published run time, while in the peakperiod 75% of all lines are within 20% of published run times. As can be seen in Figure 4-1,there is a tendency to underestimate off peak run times and to overestimate peak run times.Figure 4-1 MVRTA Bus Runtime Summary Comparison, Off-Peak Local Bus30No. of Routes2520151050Under 25%-25% to -20%-20% to -15%-15% to 0%0% to 15%Off Peak15% to 20%Peak20% to 25%Over 25%Estimated vs. Scheduled Run Time(% Error)Zones and Networks / 4 - Transit Networks12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Two speed/delay curves were updated (see Figure 4-2). Curve 11 will be used for MVRTA routes(modes 9 and 10), major and minor roads (facility types 4 and 5) in the CBD (area type 1), whilecurve 12 will be used for MVRTA routes (modes 9 and 10), major and minor roads (facility types4 and 5) in urban areas (area type 2). All other links use the speed/delay curves previouslydeveloped for the <strong>OKI</strong> routes (<strong>Model</strong> 5.4).Figure 4-2 Speed-Delay Curves for MVRTA Bus Routes, Major and Minor RoadsBus Speed (mph)20(46,16)10(20,10)(18,5)(32,7)Highway Speed (mph)10 20 30 40 50Zones and Networks / 4 - Transit Networks13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-2 MVRTA Bus Runtime Comparison, Off Peak Local BusBus Run Time (min)Bus Run Time (min)Line No. Scheduled Consolidated % Error Line No. Scheduled Consolidated % Error2 59 67 13% 44 85 73 -14%4 56 64 14% 45 85 73 -14%8 17 18 7% 47 56 41 -27%9 14 11 -24% 48 86 101 17%10 23 23 1% 49 86 101 17%11 23 23 1% 50 90 99 10%12 12 13 9% 51 90 99 10%13 12 13 9% 54 84 76 -9%14 39 38 -4% 55 84 78 -8%15 39 38 -4% 58 45 38 -16%16 40 33 -18% 59 82 90 10%17 40 33 -17% 60 82 90 10%18 46 36 -21% 61 43 43 1%19 55 43 -22% 62 43 48 12%20 41 35 -14% 65 67 73 9%21 41 36 -13% 66 67 74 11%22 42 37 -11% 67 75 74 -1%23 42 38 -10% 68 75 74 -1%24 64 59 -8% 69 67 75 12%25 45 41 -9% 70 67 75 12%26 64 59 -8% 71 70 67 -4%27 47 39 -17% 72 70 70 0%28 70 76 8% 74 61 60 -2%29 70 74 6% 75 61 61 0%32 46 46 0% 76 46 49 7%33 46 41 -10% 78 55 53 -3%34 21 21 0% 78 55 53 -3%35 21 16 -22% 79 44 38 -13%36 23 15 -35% 80 37 29 -23%37 28 21 -25% 81 25 26 3%38 72 55 -24% 81 25 26 3%39 72 54 -25% 82 28 32 13%42 51 41 -19% 82 28 32 13%43 51 40 -22%Zones and Networks / 4 - Transit Networks14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-3 MVRTA Bus Runtime Comparison, Peak Local BusBus Run Time (min)Bus Run Time (min)Line No. Scheduled Consolidated % Error Line No. Scheduled Consolidated % Error2 51 73 43% 42 51 48 -6%3 41 46 13% 43 51 48 -6%4 51 71 38% 44 85 82 -3%5 41 32 -23% 45 85 79 -7%8 17 20 20% 46 56 45 -19%9 14 12 -18% 48 86 113 31%10 23 26 11% 49 86 111 29%11 23 24 6% 50 90 111 23%12 12 15 22% 51 90 109 21%13 12 14 16% 54 84 88 4%14 39 42 9% 55 84 95 14%15 39 42 8% 56 45 44 -3%16 40 37 -8% 57 43 53 23%17 40 37 -8% 59 82 105 28%18 46 49 7% 60 82 106 29%19 55 41 -26% 61 43 49 14%20 41 41 0% 62 43 52 20%21 41 40 -4% 63 45 51 12%22 42 44 4% 64 45 48 6%23 42 42 0% 65 67 82 22%24 64 69 8% 66 67 84 26%25 45 45 1% 67 75 83 11%26 64 69 8% 68 75 83 10%27 47 43 -8% 69 67 83 23%28 70 83 18% 70 67 88 31%29 70 79 12% 71 70 73 5%32 46 54 17% 72 70 74 5%33 46 45 -2% 74 61 70 14%34 21 23 11% 75 61 71 16%35 21 18 -17% 77 46 51 10%36 23 18 -23% 78 55 58 6%37 28 23 -18% 78 55 59 6%38 72 64 -11% 79 44 43 -2%39 72 60 -17% 80 37 30 -19%40 30 37 24% 81 23 29 25%41 27 36 32% 81 23 26 13%82 34 36 5%82 28 32 15%Zones and Networks / 4 - Transit Networks15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-4 MVRTA Bus Runtime Comparison, Express BusPeak PeriodBus Run Time (min)Off Peak PeriodBus Run Time (min)Line No. Scheduled Consolidated % Error Line No. Scheduled Consolidated % Error1 44 41 -6% 3 26 22 -15%2 44 40 -9% 4 26 23 -12%3 26 28 6% 15 33 44 34%4 26 31 20% 15 33 44 34%5 25 24 -4%6 25 24 -6%7 55 50 -8%8 55 53 -4%9 56 53 -6%10 56 56 -1%11 52 58 11%12 52 57 10%13 70 63 -10%14 70 58 -17%15 33 49 50%15 33 47 41%Zones and Networks / 4 - Transit Networks16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.3 Transit Terminals and Park-and-Ride LotsAll intermodal transfer points, including park-and-ride lots, were identified and coded as transitstations. For the <strong>OKI</strong> Council region, all the transit stations specified in <strong>Model</strong> 5.4 were includedin the consolidated model. Transit stations in the MVRPC region, and their characteristics, arelisted in Table 4-5.Table 4-5 MVRPC Transit StationsLocation MaximumParking Cost Transfer TimeNo. Node TAZAutoDistanceParkingSpaces Peak Off PeakPark &RideKiss &RideName29 13735 1859 3.0 30 0 0 2 0.5 Northwest Plaza30 15589 1864 3.0 30 0 0 2 0.5 Foxridge Drive31 13711 1846 3.0 30 0 0 2 0.5 Shiloh32 14067 1817 2.0 30 0 0 2 0.5 Maplewood / N.Main St33 15729 1775 3.0 30 0 0 2 0.5 Patterson Rd / Woodman Dr34 13726 1836 3.0 30 0 0 2 0.5 Salem Ave / Fairgreen Dr35 16485 2037 3.0 30 0 0 2 0.5 Centerville Place36 13574 1869 3.0 76 0 0 2 0.5 Salem Mall / Northwest Hub37 13097 1881 3.0 30 0 0 2 0.5 Englewood Mall38 15661 1944 3.0 30 0 0 2 0.5 Bigger Rd.39 17421 2102 3.0 93 0 0 2 0.5 South Hub / Dayton Mall40 14107 1943 3.0 30 0 0 2 0.5 American Legion Post 74641 13284 2000 3.0 30 0 0 2 0.5 Marion Meadows42 15310 2054 3.0 30 0 0 2 0.5 Central / Alexbell Rd.43 15675 1790 3.0 30 0 0 2 0.5 Elder Beerman Kettering44 13905 1713 3.0 34 0 0 2 0.5 Westown Hub45 13506 1914 3.0 30 0 0 2 0.5 Brookville / Market46 13045 1907 3.0 30 0 0 2 0.5 Phillispburg / Main47 15105 1756 3.0 30 0 0 2 0.5 New Lebanon48 13609 1715 3.0 30 0 0 2 0.5 Drexel49 15632 2028 3.0 30 0 0 2 0.5 Oak Creek Plaza50 14538 2124 3.0 30 0 0 2 0.5 Kroger51 13704 1871 3.0 30 0 0 2 0.5 Westbrook Rd / Main St52 13092 1966 3.0 30 0 0 2 0.5 Northmont Plaza53 14350 2089 3.0 43 0 0 2 0.5 Eastown Hub54 13548 1863 3.0 30 0 0 2 0.5 Main St / Union St55 13100 2087 3.0 30 0 0 2 0.5 Main St / Phillipsburg56 13015 1912 3.0 30 0 0 2 0.5 Methodist Church/Phillipsburg57 16207 1742 3.0 30 0 0 2 0.5 Germantown58 15252 1994 3.0 30 0 0 2 0.5 SR 202 Chambersburg4.4 Sidewalks and Walk Access ConnectorsSidewalk links are used to allow passengers in downtown areas to walk to their final destinationand to transfer between routes. The sidewalk network for downtown Cincinnati and downtownHamilton are taken "as is" from <strong>Model</strong> 5.4. The Dayton sidewalk network includes most roadsrunning east to west from Monument Ave. to Washington St., and roads running north to southfrom Perry Ave. to Keowee St. Additional transit links were coded to represent the reversedirection of one-way links.Zones and Networks / 4 - Transit Networks17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Walk access and egress connectors are generated automatically using a utility previouslydeveloped for <strong>Model</strong> 54 (WalkCn11). This program was revised to search for additional walkconnectors even when the zone's highway centroid connectors can be used as transit accessconnectors. The revised utility is named WalkCn12.4.5 Drive Access ConnectorsTransit drive access connectors are used to allow passengers to access the transit network at thepark-and-ride stations. Drive access connectors are generated automatically using a utility calledDrvLinks. This program has been setup to build one connector per TAZ, linking each zone to itsnearest park and ride lot. An accompanying utility, AccSpeed, is used to post highway networktravel times to the links built by DrvLinks. In this way, drive access times are directly skimmedfrom the peak and off peak highway networks. A detailed description of these utilities isavailable in the User's Guide for model version 6.0.4.6 Transit Access BarriersTransit access barriers are used in the <strong>OKI</strong> model to prevent walk access links across rivers,freeways or similar geographical features. No transit barriers were required for the Daytonportion of the network. The transit barriers already developed for the <strong>OKI</strong> Council regionnetwork (<strong>Model</strong> 5.4) were included in the consolidated model.4.7 Transit Network SummaryThe major identifying characteristics of the consolidated transit network are summarized below inTable 4-6.Table 4-6 Consolidated Transit Network CharacteristicsMode Lines Company Description1 - - Walk connector2 - - Drive connector3 1-255 - Sidewalk4 1-255 1 SORTA/METRO local service5 1-100, 150-199 1 SORTA/METRO express service5 101-149, 200-255 2 TANK express service6 30-255 2 TANK local service6 1-10 3 Middletown local service6 11-29 4 Hamilton local service7 1-255 5 Light Rail (non-existent in 1995)8 1-255 5 Commuter rail (non-existent in 1995)9 1-255 6 MVRPC local service10 1-255 6 MVRPC express serviceZones and Networks / 4 - Transit Networks18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05. Transit Network SkimmingThe procedures for building transit paths and calculating walk, in-vehicle, transfer and wait timesfor all transit modes were significantly overhauled as part of the Version 6.0 model developmenteffort. The new path building procedures are consistent with the nested structure adopted forthe consolidated mode choice model (see Figure 5-1). In addition, the procedure for estimatingzonal fares was updated to reflect the zone system of the consolidated region.Figure 5-1 Consolidated <strong>Model</strong> Mode Choice StructureChoiceAutoTransitDrive Alone Shared Ride Local Express Urban CommuterBus Bus Rail Rail2-Person 3+ Person Walk Park Kiss Walk Park Kiss Walk Park Kiss Walk Park KissAuto Auto Ride Ride Ride Ride Ride Ride RideRideHOV NonHOVHOV NonHOV5.1 Transit Path BuildingThe path building routine constructs eight sets of transit paths, two per transit mode, and foreach transit mode one per access mode, resulting in the following sets: local bus (walk access,drive access), express bus (walk access, drive access), light rail (walk access, drive access), andcommuter rail (walk access, drive access). Light and commuter rail are not valid transit modes inthe base year (1995), but they are included for testing alternative transit scenarios. In the eventthat these modes were available, it is expected that the local bus system will feed trips into therail system. Thus transit paths for which express bus, light rail or commuter rail is the maintransit mode are allowed to transfer to/from the local bus system. The parameters used toweight wait, walk, run and transfer times are listed in Table 5-1. Please see Appendix D for acopy of the path building Tranplan control files.Zones and Networks / 5 - Transit Network Skimming19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-1 Transit Path Building ParametersPeak PeriodOff Peak PeriodParameterMode:Mode:Walk Drive Transit Walk Drive TransitRun Time Factor 2.0 1.0 1.0 2.0 1.0 1.0Wait Time Factor 1.0 1.0 3.0 1.0 1.0 2.0Transfer Penalty 0 0 30 0 0 30Maximum Wait Penalty 0 0 60 0 0 605.2 Transit Fare CalculationBoarding and transfer fares for each transit system are listed in Table 5-2. In addition to these,zonal fares are charged to patrons of METRO. These zonal fares are calculated in a separateapplication program, FareZn60.exe, which was updated to ensure it works properly in the version6.0 jobstream. The zonal fare calculation input files, NoFare.lnk and Points95.mid, were alsoupdated to reflect the new, consolidated zone system.Table 5-2 Transit Fares (in 1995 cents)Peak Transit FaresMETRO TANK Middletown The Bus Company MVRTABoarding 80 75 100 55 90Transfer to METRO 10 40 N/A N/A N/ATransfer to TANK 35 free N/A N/A N/AZone Charge 30 N/A N/A N/A N/AOff-Peak Transit FaresMETRO TANK Middletown The Bus Company MVRTABoarding 65 75 100 55 90Transfer to METRO 10 35 N/A N/A N/ATransfer to TANK 40 free N/A N/A N/AZone Charge 30 N/A N/A N/A N/AZones and Networks / 5 - Transit Network Skimming20


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06. Integration within <strong>Model</strong> 6.0 Jobstream6.1 Highway Network6.1.1 6.1.1 Data FilesThe consolidated base year highway network consists of five data files, listed below. The entireset was assigned extension "95C" for use within the Version 6.0 model stream. These filesshould reside in \data\hwmaster:• N0009.95c: highway links• N0008.95c: highway nodes• turnpro.95c: turn prohibitions• turnpen.95c: turn penalties• bridges.95c: bridgesThe MVRPC network does not use turn penalties or bridges, thus these files contain <strong>OKI</strong>information only.6.1.2 Batch, Control and Parameter FilesThe "build highway network" control and batch files updated as part of the Version 6.0development effort are listed below in Table 6-1. For the most part, changes were limited toupdating maximum zone and node numbers. A notable exception is the "readme.txt" file thatresides in the HwMaster directory. This file was edited for documentation purposes, as well as toensure the model reads in the consolidated data set (95C). Please see Appendix C for thecontents of the updated files.Table 6-1 Build Highway Network Batch and Control FilesFile Name Subdirectory Update Required DescriptionReadme.txt \Data\HwMaster Yes Highway network documentationNewNet.tpc \Batch\<strong>Model</strong>60\C Yes Tranplan control fileNewNetAM.tpc \Batch\<strong>Model</strong>60\C Yes Tranplan control fileNewNetMD.tpc \Batch\<strong>Model</strong>60\C Yes Tranplan control fileNewNetPM.tpc \Batch\<strong>Model</strong>60\C Yes Tranplan control fileStep05.bat \Batch\<strong>Model</strong>60 Yes Build Hwy. Network batch jobBuild5.gen \Batch\<strong>Model</strong>60\C Yes Build Hwy. Network control fileStep21.bat \Batch\<strong>Model</strong>60 No Skim Hwy. Network batch job<strong>Model</strong>.inp No a Parameter file generated by G.U.IMulti.inp No a Parameter file generated by G.U.ISt0502.1st \Batch\<strong>Model</strong>60\C No Build. Hwy. Network parameter fileSpdcap.txt \Batch\<strong>Model</strong>60\C No Speed/Capacity tableSpdcap95.tblSpdcap20.tbl\Batch\<strong>Model</strong>60\C No Peak/Off-peak speed ratiosa Automatically updated by the Graphic User Interface (G.U.I), and located in the output directory.Zones and Networks / 6 - Integration within <strong>Model</strong> 6.0 Jobstream21


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06.1.3 Executable Files6.1.3.1 Newnet60This program was updated from version 5.3 so that it is able to handle more nodes (21,000instead of only 16,000). The "build highway network" control file, build5.gen, was also updatedso that it now calls the new program version (see Table 6-1).6.1.3.2 ST050260This program builds the peak highway network by estimating peak link speeds using the BPRspeed-volume function with off-peak speed and observed volume counts as inputs. The peakspeeds were capped so that no link has a speed below 10 mph. This was necessary to avoidextraordinarily slow bus travel times on links with volume/capacity ratios over 1.0.6.2 Transit Network6.2.1 6.2.1 Data FilesThe consolidated base year transit network consists of 33 data files. The entire set was assignedextension "95C" for use within the Version 6.0 model stream. These files should reside in\data\trmaster. Some files are not used and thus contain no information; note however that thejob stream requires that they be present. In order to obtain the "95C" files, all data developedfor the MVRPC transit network were appended to the <strong>OKI</strong> base year transit network files (originalextension 95U).• RoutesAM.95c, RoutesMD.95c: peak and off-peak bus routes.• LRTAM.95c, LRTMD.95c, LRTDF.95: peak and off-peak LRT routes.• TrLinkAM.95c, TrLinkMD.95c, TrLinkDF.95c: transit links.• Sidewkpk.95c, Sidewkop.95c: peak and off-peak sidewalk routes.• StatData.95c: station data file.• PCWalk.95c: percent walk file.• XtraWkPK.95c, XtraWkOP.95c: additional walk connectors.• TFaresAM.95c, TFaresMD.95c, TFaresDF.95c: transit fares.• SysInDF.95c, SysInMD.95c, SysInAM.95c: Inet control files.• StaBusDF.95c, StaBusMD.95c, StaBusAM.95c: transit station equivalent centroid files.• DrvBusDF.95c, DrvBusMD.95c, DrvBusAM.95c: Drvlinks control files.• FarIEBAM.95c, FarIEBDF.95c: intercity bus zonal fares.• XAutoAM.95c, XAutoDF.95c, XAutoMD.95c: extra drive access connectors.• NodeTAZ.95c: TAZ location of each highway network node.• NodFZone.95c: SORTA Fare zone location of each highway network node.All TrLink files as well as the XtraWk and XAuto files contain no data.The parameters to be used by INET in building the transit network were adopted from the setupused by <strong>Model</strong> 54, and are as follows:• Default speed for walk modes (1 and 3): 2.5 mph.• Maximum length of links carrying mode 1: 1.5 miles.• Maximum length of links carrying bus modes: 30 miles.• Maximum speed for all bus modes: 75 mph.• Maximum headway for all bus modes: 240 minutes.Zones and Networks / 6 - Integration within <strong>Model</strong> 6.0 Jobstream22


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• Headway factor (bus modes): 0.1.• Default company code, modes 4 and 5: 1.• Default company code, modes 9 and 10: 6.• Vehicle capacity, bus modes: 50 persons per vehicle.• Minimum layover, bus modes: 3 minutes or 10% of running time.• Car equivalents per transit vehicle, bus modes: 2.6.2.2 Batch, Control and Parameter FilesThe "build transit network" and "skim transit network" control and batch files updated as part ofthe <strong>Model</strong> 6.0 development effort are listed below in Table 6-2. Substantial changes were madeto the INET control and speed/delay files to accommodate the new modes and routes. Otherchanges include updating the maximum zone and node numbers, as well as transit file headerrecords. New utilities are used to build drive access connectors, and transit path building andskimming control files were entirely overhauled to reflect the nested choice structure adopted forthe North-South Initiative Study as well as revised path-building parameters. Please refer toAppendix D for the contents of the updated files.Table 6-2 Build and Skim Transit Network Batch and Control FilesFile Name Subdirectory Update Required DescriptionReadme.txt \Data\TrMaster Yes Transit network documentationSDlayDF.revSDlayMD.rev \Batch\<strong>Model</strong>60\C Yes Inet speed/delay curvesSDlayAM.revBarriers.inp \Batch\<strong>Model</strong>60\C Yes Transit barriersXAutoDF.inpXAutoMD.inp\Batch\<strong>Model</strong>60\C No Additional auto connectorsStep22DF.genBuild paths and skim transit network Tranplan control\Batch\<strong>Model</strong>60\C YesStep22MD.genfilesStep06.tp1Step06.tp2\Batch\<strong>Model</strong>60\C Yes Build transit network Tranplan control filesStep06.bat \Batch\<strong>Model</strong>60 No Build transit network batch jobInet.gen \Batch\<strong>Model</strong>60\C No Run INET batch fileAMMD\Batch\<strong>Model</strong>60\C No Transit network parameter filesAMBaseStep22c.bat \Batch\<strong>Model</strong>60 Yes Skim transit network batch job, base yearStep22.bat \Batch\<strong>Model</strong>60 Skim transit network batch job, future yr.Title11 \Batch\<strong>Model</strong>60\C No Input control fileMulti.inp No a Parameter file generated by G.U.I<strong>Model</strong>.inp No a Parameter file generated by G.U.INoFare.lnk \Batch\<strong>Model</strong>60\C Yes Zonal fare calculation input filePoints95.mid \Batch\<strong>Model</strong>60\C Yes TAZ-Fare zone equivalence table (1995)HAMFZ.txt \Batch\<strong>Model</strong>60\C No TAZ-Fare zone equivalence table (2020) bTAZ.prn \Batch\<strong>Model</strong>60\C Yes TAZ centroid coordinate file (drvlinks.exe)aAutomatically updated and located in the output directory by the Graphic User Interface (G.U.I).b Required to implement the 2020 fixed-guideway fare system devised by Padron and Associates for the I-71 MIS.Zones and Networks / 6 - Integration within <strong>Model</strong> 6.0 Jobstream23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06.2.3 Executable Files6.2.3.1 WalkCn12.exeThis program automatically calculates walk access connectors for the transit network. It wasupdated from its previous version, WalkCn11, so that it performs a less restrictive search foracceptable walk access links.6.2.3.2 FareZn60.exeThis program is used to calculate SORTA zonal fares. All zonal arrays were resized to ensure theroutine works for the consolidated network.6.2.3.3 DrvLinks.exeThis program automatically calculates drive access connectors for the transit network. It replacesAutoCn11, the auto connector utility of <strong>Model</strong> 5.4. A detailed description of the program logic,options and input/output file formats is available in Appendix E.6.2.3.4 AccSpeed.exeThis program updates the drive access travel times calculated by DrvLinks to travel timesskimmed from the highway network.Zones and Networks / 6 - Integration within <strong>Model</strong> 6.0 Jobstream24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07. Appendix AZone System Equivalence TablesZones and Networks / 7 - Appendix A25


Table A.1Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs90/95TAZ1 53 12562 54 12693 55 12844 56 12855 57 14306 1583 1584 1585 58 1388 13897 1608 1586 1587 59 13978 1551 1552 60 1502 15039 1558 1559 1560 1561 61 699 70010 1564 1565 6211 1562 1563 63 122212 1554 1555 64 1302 130313 1580 65 28814 1578 1579 66 28915 1581 1582 67 29016 1576 1577 68 29117 1568 1569 1570 69 29218 1572 1573 1574 1575 70 28719 1571 71 28620 202 72 28521 197 73 28422 175 74 28323 339 189 75 28224 187 76 28125 27 25 77 27226 39 78 27327 209 79 27428 208 80 27529 362 81 27630 383 82 27731 127 83 27832 126 84 27133 106 85 27034 103 86 26935 80 87 26836 483 484 88 26737 375 89 26638 374 90 26539 436 91 25740 439 440 92 25841 418 93 25942 415 416 94 26043 660 95 26144 578 579 96 26245 616 617 97 26346 615 98 25647 674 99 25548 688 689 100 25449 685 101 25350 919 102 25251 1181 1182 103 26452 1200 104 294Consolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.26


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs105 293 157 162106 280 158 155 156 157107 279 159 154108 250 160 179 180109 249 161 182110 247 248 162 183 181111 242 163 188112 240 241 164 185113 238 239 165 186114 236 166 35115 211 167 19 20116 237 168 26 21 22 23117 213 169 28 29 30 31 32118 212 170 33 34119 219 171 36 37120 235 172 38121 204 173 140 141122 214 215 174 142 143123 216 175 148124 218 176 149 150 151 152125 203 177 153126 198 178 42 43127 217 179 41128 222 223 180 40129 220 221 181 145 146130 229 230 182 47131 234 183 44132 233 184 45133 199 185 48134 195 196 186 49 50135 190 191 192 187 71 72136 224 225 188 69 70 64137 228 226 189 65 66 67 68138 227 190 56 57139 231 232 191 58 59 51 52 53 54 55140 17 18 192 295141 11 193 296142 10 194 298143 12 13 195 299144 16 196 302145 9 197 301146 14 15 198 300147 8 1 199 297148 2 3 4 5 6 7 200 305149 173 170 201 304150 168 164 202 303151 169 203 313152 163 204 314153 193 194 205 315154 176 206 251155 177 207 310156 161 208 32490/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.27


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs209 328 329 330 261 165210 349 350 262 165211 311 263 207212 312 264 384213 322 265 385214 332 333 266 387215 331 267 124216 321 268 122 123217 334 269 132218 336 337 270 133 134219 316 271 138220 317 272 131221 320 273 135222 335 274 158 159223 338 275 139 136224 243 244 276 117 118225 245 246 277 110 111 112226 319 278 114227 318 279 107 108 109228 351 280 105229 348 281 104 102230 347 282 144231 352 283 100 101232 344 345 284 99233 346 285 115 116234 340 341 286 407235 343 287 409 410236 342 288 408237 210 289 78238 356 357 290 113 83 84239 361 291 82240 358 292 81241 360 293 77242 359 294 87 88243 206 295 94 95 89 90 91244 205 296 75245 363 297 96 97 98246 372 373 298 504247 364 365 299 306248 370 300 503249 367 301 307250 368 369 302 308251 366 303 508252 172 304 309253 171 305 501254 167 306 502255 128 307 325256 166 308 499257 371 309 326258 382 310 327259 130 311 497260 129 312 49290/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.28


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs313 490 365 434 435314 489 366 437 438315 485 367 1080 425 426316 482 368 424317 353 354 355 369 639 640 641318 488 370 442319 487 371 420320 486 372 421 422 423321 471 373 441322 472 374 401323 476 375 402324 475 376 1601 403 404325 477 377 414326 481 378 412 413327 354 379 417328 374 376 380 531329 374 376 381 528 529 530330 463 382 1602 522 523 524331 474 383 521332 478 384 520 516333 479 385 513 514334 480 386 525335 378 379 387 526 527336 376 377 388 512337 381 389 510 511338 462 390 506 507339 456 391 505340 457 458 392 661341 628 629 393 659342 454 455 449 394 655 656343 453 395 580 581344 448 396 578 579345 447 397 546 547 548346 450 398 658347 451 452 399 657348 394 400 537 538 539349 395 396 401 541 542 543 544 545350 393 402 540 536351 380 403 533 534 535352 392 404 532353 388 386 405 665354 391 406 664355 389 390 407 666356 445 408 662 663357 446 409 652 653 654358 443 444 410 582 583359 1588 397 411 584 585 586360 398 399 412 588 589361 400 413 577362 433 414 575363 637 415 573 574364 429 430 416 55290/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.29


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs90/95TAZConsolidated TAZs417 553 554 469 627418 555 470 459419 566 471 460420 560 557 558 472 461421 556 473 682 683 684422 549 550 551 474 670 671423 518 519 475 680 681424 517 476 677 675425 561 477 672426 515 478 646 647 648 649427 509 479 644 645 642428 576 572 480 686 687429 567 481 690 679430 568 482 678431 571 483 676432 564 565 484 673433 569 485 323434 570 486 184435 495 487 46436 497 494 488 178 174437 496 489 160438 562 563 490 137439 500 491 125440 498 492 121441 491 493 119 120442 667 494 419443 668 495 469 470444 669 496 596 597445 650 651 497 603446 609 610 498 730 731447 611 604 605 499 732448 606 607 608 500 740449 598 501 746 747 741450 594 595 502 748 749 750451 592 593 503 739452 590 591 504 737453 493 505 735 736454 469 506 823455 467 468 507 738456 599 600 601 508 820457 464 465 509 819458 466 510 822459 473 511 821460 612 613 512 824461 614 513 827462 621 622 623 514 828463 632 633 634 515 818464 635 631 516 815465 624 619 620 517 817466 625 626 518 816467 630 519 834468 602 520 82990/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.30


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs521 832 833 573 744 745522 831 574 757 758 759523 575 756 754524 826 576 776 777 778525 825 577 785 786526 722 578 948 941 942527 723 724 579 956 957 958 950 951528 725 580 978529 726 581 988 989530 718 582 990 991 992531 719 716 717 583 979 980 977532 830 715 720 721 584 970 971 972533 848 585 955 952534 847 586 1595 1596 921 922 923 924 925 926535 849 587 927 928 929 930 931 932536 846 588 933 934 935537 842 843 589 907 908538 844 590 909539 845 591 910 911540 835 592 912 913 914 915541 841 836 837 593 917 918542 814 594 900543 813 595 901544 812 596 903545 807 597 904546 808 598 905 906547 806 599 856 857548 805 600 858549 810 601 867550 809 602 868551 811 603 866552 1594 838 839 840 604 859553 790 783 605 860554 791 606 861555 792 607 862556 795 608 902557 793 794 609 863 864558 804 610 865559 803 611 892 893560 802 612 891561 801 613 885 886562 798 614 896 894563 797 615 895564 796 616 897565 782 617 898 899566 779 618 882567 781 619 883568 780 620 880 881569 799 621 884570 800 622 887 888571 751 752 753 623 889572 755 624 87490/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.31


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs90/95TAZConsolidated TAZs625 890 677 1119626 869 870 678 1122 1123627 873 679 1124628 875 876 680 1125 1126 1127629 877 681 1120 1121630 878 879 682 1014 1015631 872 683 1016 1017632 871 684 1020 1021633 855 685 1022 1023 1024634 852 686 1004635 853 854 687 1013 1005 1006636 1077 1078 688 1135 1136637 1079 689 1132 1133 1134638 1081 690 1130 1131639 1087 1088 1089 691 1129640 1086 692 1128641 1083 1084 1085 693 1163 1164 1165642 1082 694 1160 1161 1162643 1075 1076 695 1156 1157 1158 1159644 1070 696 1137 1138 1139 1140645 1074 697 1143 1144646 1073 698 1145647 1090 1091 699 1146648 1096 1097 1098 700 1147649 1092 1093 701 1148650 1104 1105 702 1600 1149651 1099 1100 1101 703 1186 1150652 1102 1103 704 1155653 1067 705 1176 1177 1154 1155654 1598 1065 1066 706 1217655 1058 1059 707 1216656 1056 1057 708 1178 1179657 1055 709 1184 1185658 1049 1050 710 1183659 1047 1048 711 1187660 1045 1046 712 1189 1190661 1043 1044 713 1191 1192662 1042 714 1196663 1597 1062 1063 1064 715 1206 1207 1208664 1061 716 1214 1215665 1060 717 1199666 1039 1040 718 1204 1205667 1041 719 1201 1202 1203668 1051 1052 720 1253 1254669 1035 721 1206 1250 1251670 1036 1037 1038 722 1212 1213671 1030 723 1249 1250 1251 1252672 1025 1026 1027 1028 1029 724 1248673 1018 1019 725 1247674 1031 1032 726 1244 1245 1246675 1033 727 1255676 1034 728 125790/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.32


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs729 1259 781 1415730 1260 782 1454 1455731 1258 783 1604 1416 1415 1417 1418732 1265 1266 784 1413 1414733 1264 785 1603 1399734 1261 1262 786 1361735 1267 1268 787 1360736 1263 788 1365737 1273 789 1364738 1272 790 1362 1363739 1270 1271 791 1370 1371740 1274 792 1398741 1275 793 1394742 1276 794 1426 1427743 1277 795 1440 1441 1442744 1278 1279 796 1439 1437745 1282 1283 797 1433 1434 1435746 1286 1287 798 1431 1432747 1288 1289 1290 799 1384 1385748 1291 800 1386 1387749 1292 1293 801 1390750 1294 1295 802 1392 1393751 1296 803 1395 1396752 1280 1281 804 1372 1373 1374753 1297 1298 805 1369754 1299 1300 1301 806 1366755 1304 1305 1306 807 1367756 1312 1313 1314 808 1368757 1340 1341 809 1375 1376758 1342 810 1377 1378 1379759 1343 811 1466 1467760 1344 812 1468761 1347 813 1478 1479762 1346 814 1606 1480 1481 1482763 1345 815 1485764 1348 1349 816 1486 1487765 1350 817 1494 1495766 1351 818 1496 1497 1498 1499767 1352 819 1491 1492 1493768 1358 1359 820 1504769 1353 821 1505 1506770 1354 822 1512 1513 1514 1515771 1357 823 1516 1517 1518772 1355 824 1519 1520 1476773 1356 825 1469 1470 1471774 1400 1401 1402 826 1475775 1403 1404 827 1477776 1405 828 1590 1591 1592 696 707 708777 1406 829 704 705 701778 1407 830 1589 709 710 711779 1408 831 712 713 714780 1409 1410 1411 832 694 69590/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.33


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs833 691 692 693 885 1549 1550834 850 851 886 1547 1548835 1106 1107 887 1539 1540 1541 1542 1543836 1108 888 1533 1534837 1109 1110 889 1508 1509838 1111 890 1607 1532839 1053 1054 891 1531840 1112 1113 892 1530841 1116 1117 893 1529842 1118 894 1527 1528843 1114 1115 895 1522 1523844 1169 896 1524 1525845 1170 1171 897 1526846 1174 1175 898 1391847 1220 1221 899 1510 1511 1380 1381848 1172 1173 900 1382 1383849 1223 1224 1225 901 1438 1436850 1226 902 1428 1429851 1227 1228 903 1422 1423 1424 1425852 1232 1229 1230 904 1188853 1231 905 618854 1240 1241 906 1474855 1233 1234 907 147856 1238 1239 908 180857 1235 1236 1237 909 200 201858 1307 1308 910 706 697 702 703859 1315 1316 1317 911 698860 1332 1333 912 729861 1334 913 727 728862 1328 1329 1330 1331 914 733 734863 1318 1319 915 742 743864 1320 916 760865 1322 1323 917 761 762866 1324 1325 1326 918 772 773 774 775867 1335 919 763 764868 1336 920 767 768 769869 1337 921 770 771870 1338 922 765 766871 1339 923 943 944872 1462 924 945 946 947873 1465 925 939 940874 1463 1464 926 949875 1461 927 959 960 961876 1460 928 969 962877 1458 1459 929 986 987878 1456 1457 930 984 985879 1605 1452 1453 931 982 983880 1451 932 981881 1449 1450 933 974 975882 1445 1446 934 976883 1593 1535 1536 935 973884 1545 1546 936 968 96390/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.34


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs90/95TAZ937 964 965 966 967 989 1419938 953 954 990 1443 1444939 936 937 991 1447 1448940 938 992 1472941 787 788 789 784 993 1473942 1599 916 920 994 1521943 995 995 1483 1484944 996 997 996 1488 1489945 1003 997 1490946 998 999 998 1500 1501947 994 999 1507948 993 1000 1537949 1000 1001 1001 1544 1538950 1002 1002 1566 1567951 1007 1008 1009 1010 1003 1556 1557 1553952 1011 1012 1004 2426953 1068 1069 1005 2427 2428954 1071 1072 1006 2429 2430955 1094 1095 1007 2431956 643 1008 2432957 638 636 1009 2433 2434 2435958 427 428 1010 2436959 433 431 1011 2437960 432 1012 2438 2439961 411 1013 2440962 405 406 1014 2441963 79 1015 2442 2443964 86 1016 2444 2445965 92 93 85 1017 2446966 76 73 74 1018 2447967 60 61 62 63 1019968 24 1020969 559 1021970 587 1022971 1142 1023972 1151 1141 1024973 1152 1025974 1153 1026975 1166 1027976 1167 1168 1028977 1193 1029978 1180 1030979 1194 1195 1031980 1197 1198 1032 2448981 1209 1210 1211 1033 2449982 1218 1219 1034 2450983 1242 1243 1035 2451984 1310 1311 1036 2452985 1309 1037 2453 2454986 1327 1321 1038 2455987 1420 1421 1039 2456 2457988 1412 1040 2458Consolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.35


Table A.1 (cont.)Zone System Equivalence Table – <strong>OKI</strong> Zones90/95TAZConsolidated TAZs1041 24591042 2460 24611043 2462 24631044 24641045 24651046 24661047 24671048 24681049 24691050 24701051 24711052 24721053 24731054105510561057 24761058 24771059 2478 24791060 24801061 24811062 24821063 24831064 24841065 24851066 24881067 248790/95TAZConsolidated TAZs90/95 TAZ: Zone number in the 1003 zone system; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.36


Table A.2Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs1 1609 53 1661 105 17132 1609 54 1662 106 17143 1611 55 1663 107 17154 1612 56 1664 108 17165 1613 57 1665 109 17176 1614 58 1666 110 17127 1615 59 1667 111 17178 1616 60 1668 112 17209 1617 61 1669 113 1707 172110 1618 62 1669 114 172211 1619 63 1671 115 172312 1620 64 1672 116 172313 1621 65 1673 117 172514 1622 66 1674 118 172615 1623 67 1675 119 172716 1624 68 1675 120 172817 1625 69 1677 121 1729 173218 1626 70 1674 122 173019 1627 71 1679 123 173020 1628 72 1680 124 173221 1629 73 1681 125 1726 173322 1630 74 1682 126 173423 1631 75 1683 127 173524 1632 76 1684 128 173625 1633 77 1684 129 173726 1634 78 1683 1686 130 173827 1635 79 1687 131 1741 174828 1636 80 1686 132 174029 1637 81 1689 133 174130 1638 82 1690 134 1742 174831 1639 83 1691 2104 135 174332 1640 84 1692 136 174433 1641 85 1693 137 174534 1642 86 1693 138 174635 1643 87 1695 139 174736 1644 88 1691 140 1742 174837 1645 89 1691 141 174938 1646 90 1695 142 1735 175839 1647 91 1700 143 175140 1648 92 1700 144 175141 1649 93 1701 145 175342 1650 94 1701 146 175443 1651 95 1750 147 175544 1652 96 1704 148 175645 1653 97 1705 149 175646 1654 98 1706 150 175847 1655 99 1707 151 175948 1656 100 1708 152 176049 1657 101 1709 153 176150 1658 102 1704 154 176151 1659 103 1711 155 176952 1660 104 1699 156 1761 176490/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.37


Table A.2 (cont.)Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs157 1765 209 1817 261 1869158 1765 210 1774 262 1870159 1764 211 1819 263 1871160 1768 212 1819 264 1872161 1769 213 1821 265 1873162 1769 1770 1835 214 1821 266 1874163 1761 1769 1770 215 1823 267 1867 1875 1946164 1762 1773 216 1824 268 1876165 1773 217 1825 269 1877166 1752 218 1826 270 1878167 1684 219 1827 271 1879168 1774 220 1828 272 1880 1966 1977169 1777 221 1828 273 1881170 1777 222 1830 274 1882171 1779 223 1830 275 1883 2079 2087172 1780 224 1832 276 1884173 1781 225 1833 277 1885174 1781 226 1866 278 1886175 1783 227 1833 279 1881176 1783 228 1836 280 1888177 1752 229 1837 281 1889178 1752 230 1837 282 1890 1892179 1787 231 1832 283 1892 1893180 1788 232 1840 284 1892181 1788 233 1857 285 1893182 1788 234 1842 286 1893183 1791 235 1842 1843 287 1893 1895184 1797 236 1844 288 1893 1895185 1793 237 1845 289 1897186 1793 238 1846 290 1754187 1762 1772 239 1846 291 1755188 1762 1772 240 1848 292 1900189 1797 241 1849 293 1901190 1798 242 1850 294 1902191 1798 243 1851 295 1902 1903 1913192 1800 244 1852 296 1904193 1801 245 1852 297 1905194 1801 246 1854 298 1906195 1800 247 1817 299 1907196 1798 248 1856 300 1908197 1865 1891 249 1857 301 1909198 1857 250 1843 302 1910199 1805 1865 251 1859 303 1911 1912200 1808 252 1843 304 1912201 1809 253 1861 305 1913202 254 1828 1862 306 1914203 1835 255 1863 307 1914 1915204 1835 256 1866 308 1916205 1841 257 1892 309 1917206 1808 258 1866 310 1917207 1813 259 1867 1890 311 1919208 1816 260 1868 312 191990/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.38


Table A.2 (cont.)Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs313 1921 365 1973 417 2148314 1921 366 1973 418 2149315 1923 367 1975 419 2139316 1924 368 1976 420 2151317 1925 369 1976 421 2150318 1923 370 1976 422 2150 2162319 1927 371 1975 423 2153320 1928 372 1980 424 2153321 1924 373 1980 425 2153322 1930 374 1976 1982 1991 426 2139323 1931 375 1983 427 2156324 1932 376 1984 428 2154325 1933 377 1975 1985 429 2155326 1934 378 1986 430 2152327 1932 1935 379 1987 431 2157328 1936 380 1988 2110 432 2140329 1938 381 1989 433 2139330 1938 382 1990 434 2161331 1939 383 1991 435 2160332 1940 384 1992 436 2158 2160333 1941 385 1993 2127 2128 437 2158334 1952 386 1994 438 2156335 1943 387 1995 439 2163336 1941 388 1996 440 2163337 1934 389 1997 441 2163 2164338 1925 390 1998 442 2164339 1925 391 1999 443 2165340 1943 392 2000 2126 444 2166341 1949 393 2001 445 2167342 1950 394 2002 446 2168343 1951 395 2003 447 2169344 1952 396 2004 2125 448 2170345 1953 397 2005 449 2161346 1954 398 2006 450 2171347 1955 399 2007 451 2174348 1956 400 2008 452 2173349 1957 401 2009 453 2172350 1959 1969 402 2010 454 2281351 1959 1969 403 1991 455 2282352 1960 404 2010 456 2283353 1961 405 2013 2112 457 2300354 2124 406 2014 2085 458 2274 2299355 1963 407 2017 2141 459 2276356 1964 408 2016 460 2277357 1965 409 2015 461 2277358 1965 410 2141 462 2278359 1964 1967 411 2137 463 2280360 1968 412 2137 464 2279361 1969 2124 413 2139 465 2073362 1970 414 2143 466 2074363 1971 415 2146 467 2075364 1971 416 2147 2148 468 207690/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.39


Table A.2 (cont.)Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs469 2077 521 2266 573 2289 2291 2312470 2078 522 2272 574 2289 2292471 1698 523 2270 575472 2080 524 2271 576 2293473 2081 2083 525 2174 577 2294474 2082 526 2174 578 2295475 2083 527 2269 579 2274 2296 2299476 2084 528 2259 580 2297 2298477 2085 529 2229 2253 2260 581 2297 2301478 2086 530 2232 582 2300479 2086 531 2233 583 2301 2302480 2088 2130 532 2236 584 2302481 2089 533 2242 585 2304482 2089 534 2245 586 2294 2304483 2088 535 2241 587484 2092 536 2236 588 2309485 2129 537 2233 589 2292 2310486 2094 538 2232 590 2311487 2095 539 2232 591 2312488 2131 540 2234 592 2316489 2097 541 2235 593 2315490 2098 542 2238 594 2275491 2129 543 2240 595 2314492 2193 544 2239 596 2313 2314493 2192 545 2246 597 2306494 2190 546 2247 2262 598 2307495 2191 547 2261 599 2305496 2186 548 2263 600 2305 2313497 2138 549 2264 601 2305498 2187 550 2250 602 2303499 2188 551 2249 603 2308500 2145 552 2248 604 1610501 2179 553 2237 605 1670502 2180 554 2252 606 1676503 2181 2183 555 2251 607 1678504 2183 556 2257 608 1685505 2185 557 2256 609 1694 1697506 2318 558 2255 610 1696 1697507 2184 559 2255 611 1697508 2182 560 2254 612 1697509 2177 561 2260 613 1698510 2175 562 2258 614 1696 1703511 2176 563 2269 615 1710512 2178 564 2268 616 1718513 2231 2317 565 2257 2267 617 1719514 2243 566 2267 618 1719 1757515 2244 567 2267 619 1731516 2289 2292 568 2253 620 1739 2132517 2265 569 2287 621 1757518 2293 570 2286 622 1763519 571 2316 623 1766520 2273 572 2290 624 176690/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.40


Table A.2 (cont.)Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs625 1767 677 1792 729 1972626 1771 678 1794 1818 730 1974627 2132 679 1795 731 1974628 2133 680 1796 732 1972 1978629 1776 681 1799 733 2116630 1778 682 1802 734 2116 2117631 1778 683 1803 735 2117632 1775 684 1804 736 2118633 2089 685 1657 1806 737 1948634 1782 686 1807 738 1688635 1784 687 1810 739 1948636 1785 688 1811 740 1979637 1786 689 1811 741 1981638 1789 690 1812 742 2011 2134639 1790 691 1811 743 2012 2019640 1790 692 1814 744 2018 2019 2135 2136641 2218 693 1815 2041 745 2019642 2217 694 1818 746 2020643 2220 2223 2225 695 1820 747 1896 2021 2136644 2220 2223 2225 696 1822 748 2022645 2215 2216 2220 697 1815 1829 749 2022 2025646 2214 698 1829 750 2023647 2211 2212 699 1831 751 2024648 2210 700 1834 752 2025649 2209 701 1834 2023 753 2026650 2207 2208 2213 702 1839 754 2026651 2207 2216 2225 703 1847 755 2115652 2225 704 1853 756 2028653 2226 705 1855 757 2029654 2206 706 1858 758 2029 2030655 2205 707 1860 759 2031656 2204 708 1864 760 2027657 2203 2204 709 1887 761 2032 2033658 2198 710 1894 762 2033659 2200 711 1898 763 2034660 2199 712 1899 764 2035661 2227 713 1918 765 2036 2121 2122 2123662 2195 714 1920 766 2036 2120 2122 2123663 2194 2195 715 1922 767 1896 2037664 2195 2196 716 1926 768 2038665 2202 717 1929 769 2039666 2201 2202 718 1937 770 2043667 2197 719 1942 771 1750 2040668 2197 720 1944 772 2041669 2219 721 1945 773 2042670 2285 722 1688 774 1829 2042671 2286 723 1947 775 2043672 2288 724 1948 776 2044673 2284 725 1958 777 2045674 2221 726 1962 778 2042675 2220 2223 727 1958 779 2041676 2224 2225 728 2116 780 205090/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.41


Table A.2 (cont.)Zone System Equivalences – Montgomery and Green County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs781 2047 833 885782 2046 834 886783 2040 2046 835 887 1702 2107784 2047 836 888 2228785 2048 837 2490 889 1785786 2049 838 890 2139787 2047 2050 839 891 2139788 2050 840 2491 892 2139789 2051 841 2492 893 2139790 2052 842 2494 894 2179791 2053 843 2495 895 2188792 2054 2068 844 2496 896 2005793 2055 845 2497 897 2108794 2056 846 2498 898 2109795 2057 847 2499 899 1828796 2058 848 2500 900 1833797 2056 849 901 1836798 2059 850 2501 902 1848799 2060 851 2502 903 2111800 2061 852 2504 904 2111801 2062 853 2505 905 1957802 2063 854 2506 906 1957 1960803 2064 855 2507 907 2125804 2065 856 2508 908 2119805 2066 2100 857 2509 909 2142 2143806 2067 2099 858 2510 910 2163807 2068 859 911 2159808 2053 860 912 2160809 2069 861 913 2144810 2070 862 914 2189811 2071 863 915 2230812 2072 864 916 2222813 2072 865 917 2224814 2072 2090 866 918 2113815 2071 2091 867 919 2114816 1724 2093 868 920 1815817 2096 869 921 2113818 2099 870819 2100 871820 2101 872 2511821 2102 2135 2136 873 2512822 2103 874 2513823 1702 1838 2104 875 2514824 2063 2105 876 2515825 2106 877 2516826 878 2503827 2489 879828 880 2493829 881830 882831 883832 88490/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.42


Table A.3Zone System Equivalences – Miami County Zones90/9590/9590/95Consolidated TAZs Consolidated TAZsTAZTAZTAZConsolidated TAZs1 2319 53 2371 105 25212 2320 54 2372 1063 2321 55 2373 1074 2322 2414 56 2374 1085 2323 57 2375 109 25226 2324 58 2375 2376 110 25237 2325 59 2377 111 25248 2326 60 2378 112 25259 2327 61 2379 113 252610 2328 62 2380 114 252711 2329 63 2381 115 252812 2330 2419 64 2382 116 252913 2331 65 2383 117 253014 2332 66 2384 11815 2399 67 2385 11916 2334 68 2386 120 253117 2335 69 2387 12118 2336 70 2388 12219 2337 71 2389 12320 2338 72 2390 12421 2339 73 2391 12522 2340 2424 74 2392 12623 2341 75 2393 12724 2342 76 2394 12825 2343 77 2395 12926 2344 78 2396 2422 2423 13027 2345 79 2397 13128 2346 80 2398 13229 2347 81 236330 2348 2349 2420 82 240031 2350 83 240132 2350 84 240233 2351 2418 85 240334 2352 86 2354 240435 2353 87 2405 242536 2353 88 240637 2355 89 240738 2356 90 240839 2357 91 240940 2358 92 241041 2359 93 241142 2360 94 241243 2361 95 241344 2362 96 233345 2364 2421 97 241546 2365 98 2370 241647 2365 99 241748 2366 10049 2367 101 251750 2368 102 251851 2369 103 251952 2369 104 252090/95 TAZ: Zone number in the 1994 <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>; Consolidated TAZ: Zone number in the joint <strong>OKI</strong>/MVRPC region.43


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.08. Appendix BConsolidated System External StationsZones and Networks / 8 - Appendix B44


Table B.1External Stations in the Consolidated SystemConsolidatedSystemZone No.ODOTCordonSurvey<strong>OKI</strong> / MVRPC SystemZone No.Station No. 1990 / 1995 2000 Facility Description<strong>OKI</strong> Counties2426 4 1004 1004 US 522427, 2428 5,6 1005 1005 SR 756 & SR 7742429, 2430 7,8 1006 1006 SR 125 & Spring Grove2431 9 1007 1007 Starling Rd.2432 10 1008 1008 Old SR 322433,2434,2435 11,12,13 1009 1009 SR 322436 14 1010 1010 US 50, SR 2862437 15 1011 1011 SR 1312438,2439 16,17 1012 1012 SR 1332440 18 1013 1013 SR 282441 19 1014 1014 SR 132, SR 1332442,2443 20,21 1015 1015 US 22, SR 3502444,2445 22,23 1016 1016 Wilmington Rd.2446 24 1017 1017 I-712447 25 1018 1018 SR 7326,27 1019 1019 US 4228,29 1020 1020 Ferry-Lytle Rd.30 1021 1021 SR 4831,32 1022 1022 SR 74133 1023 1023 I-7534 1024 1024 Clearcreek, Franklin (Wood Rd.)35 1025 1025 Dixie Hwy. (Dayton-Cinc. Pike)36 1026 1026 Dayton-Oxford Rd.37 1027 1027 Northern Rd.38 1028 1028 SR 12339 1029 1029 SR 440 1030 1030 Middletown-Germantown Rd.41,42 1031 1031 W. Alexandria, Elkcreek2448 43 1032 1032 SR 122, Jacksonburg2449 44 1033 1033 SR 5032450 45 1034 1034 Wayne Trace Rd.2451 46 1035 1035 SR 7442452 47 1036 1036 US 1272453,2454 48,49 1037 1037 SR 1772455 50 1038 1038 US 272456,2457 51,52 1039 1039 Fairfield, Contreras2458 53 1040 1040 Brookvilee Rd.2459 54 1041 1041 Peoria Reilley, Springfield2460,2461 55,56 1042 1042 SR 1262462,2463 57,58 1043 1043 US 522464 59 1044 1044 SR 12465 60 1045 1045 Peters Rd.2466 61 1046 1046 I-742467 62 1047 1047 SR 462468 63 1048 1048 N. Dearborn Rd.2469 64 1049 1049 SR 4845


Table B.1 (cont.)External Stations in the Consolidated SystemConsolidatedSystemZone No.ODOTCordonSurvey<strong>OKI</strong> / MVRPC SystemZone No.Station No. 1990 / 1995 2000 Facility Description2470 65 1050 1050 SR 3502471 66 1051 1051 Old SR 3502472 67 1052 1052 US 502473 68 1053 1053 SR 622474 69 x x SR 2622475 70 x x SR 56x 1054 1054 Milton Bear Bridge Rd.x 1055 1055 SR 56x 1056 1056 SR 1562476 71 1057 1057 US 422477 72 1058 1058 I-712478,2479 73,74 1059 1059 SR 16, SR 4912480 75 1060 1060 I-752481 76 1061 1061 US 252482 77 1062 1062 SR 172483 78 1063 1063 SR 1772484 79 1064 1064 US 272485 80 1065 1065 SR 1542486,2488 81,83 1066 1066 AA Hwy SR 102487 82 1067 1067 SR 8Montgomery and Greene Counties2489 827 827 963 SR 49 N828 828 910 Diamond Mill Rd.829 829 911 SR 48 N830 830 912 Frederick Pike831 831 913 Peters Pike832 832 914 North Dixie Dr.833 833 915 I-75 N834 834 916 Frost Rd.835 835 917 Old Canal Rd.836 836 918 Ross Rd.2490 837 837 919 US 40 E838 838 920 SR 202 (Old Troy)839 839 921 SR 201 (Brandt)2491 840 840 922 Bellefontaine Rd.2492 841 841 923 SR 2352494 842 842 929 I-70 E2495 843 843 924 Lower Valley Pike2496 844 844 925 Medway Rd.2497 845 845 926 Haddia Rd.2498 846 846 927 Spangler Rd.2493 880 880 928 Spangler Rd. / I-675 N2499 847 847 930 Dayton-Springfield Rd.2500 848 848 931 W. Enon Rd.2501 850 850 932 Polecat Rd.2502 851 851 933 US 68 N46


Table B.1External Stations in the Consolidated SystemConsolidatedSystemZone No.ODOTCordonSurvey<strong>OKI</strong> / MVRPC SystemZone No.Station No. 1990 / 1995 2000 Facility Description2503 878 878 934 SR 72 N2504 852 852 935 US 42 N2505 853 853 936 Selma-Jamestown Rd.2506 854 854 937 SR 7342507 855 855 938 US 35 E2507 856 856 939 SR 72 S2509 857 857 940 US 68 S2510 858 858 941 SR 380859 859 942 US 42 S860 860 943 Waynesville Rd.861 861 944 Ferry-Lytle Rd.862 862 945 SR 48 S863 863 946 Yankee Rd.864 864 947 SR 741865 865 948 I-75 S881 881 949 Wood Rd.866 866 950 Dayton-Cincinnati Pike867 867 951 Chautaqua Rd.882 x x Jamaica Rd.868 868 952 SR 123869 869 953 Eby Rd.870 870 954 SR 4 S871 871 955 Germantown-Middletown Pike883 x x Astoria Rd.884 x x Browns Run Rd.2511 872 872 956 SR 725 W2512 873 873 957 US 35 W2513 874 874 958 Lexington-Salem Rd.2514 875 875 959 I-70 W2515 876 876 960 US 40 W2516 877 877 961 Baltimore-Phillipsburg Pikex x 962x x 963Miami County2530 120 117 976 Scarff Rd.2522 121 109 968 I-75 N2527 122 114 973 SR 552528 123 115 974 SR 412526 124 113 972 Old Troy Pike2525 125 112 971 US 36 E2517 126 101 994 SR 571 W2529 127 116 975 SR 571 E2524 128 111 970 SR 5892521 129 105 965 SR 662520 130 104 964 SR 48 N2517 131 102 995 US 36 W2523 132 110 969 County Rd. 25A47


Table B.1External Stations in the Consolidated SystemConsolidatedSystemZone No.ODOTCordonSurvey<strong>OKI</strong> / MVRPC SystemZone No.Station No. 1990 / 1995 2000 Facility Description133 x SR 49 a134 131 991 Diamond Mill Rd.135 130 990 SR 48 S136 129 989 Frederick Pike137 128 988 Peters Pike138 127 987 North Dixie Dr.139 108 986 I-75 S140 126 985 Frost Rd.141 125 984 Old Canal Rd.x 124 983 Ross Rd.x 123 982 US 40 S142 120 979 Palmer Rd.143 122 981 SR 202144 121 980 SR 2012519 145 103 996 SR 185x 119 978 CR 241 Ex 118 977 US 40 Ex 100 992 SR 721x 132 993 CR 48x 106 966 CR 110 Nx 107 967 CR 199 NTable B.1 Column Descriptions:Consolidated system zone number:Number assigned to the external station in the zone system to be used for the North-SouthTransportation Initiative study. Rows shaded in gray highlight the stations included in this zone system.ODOT Cordon survey station number:Number assigned to the external station by the Ohio DOT for their 1995 Cordon Line OD Survey.<strong>OKI</strong>/MVRPC zone number:1990/1995: external station number used by <strong>OKI</strong> in their travel demand model version 54 (1003zone system), or by MVRPC in their 1994 travel demand model.2000: external station number used by MVRPC in the zone system developed in 2000.48


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09. Appendix CBuild Highway Network – Updated Files49


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.1.1.1 NEWNET.TPC$BUILD HIGHWAY NETWORK$FILESINPUT FILE = NETDATA, USER ID = $N0510.TXT$OUTPUT FILE = HWYNET, USER ID = $TEMPNET1$$HEADERS<strong>OKI</strong>/MVRPC TRAVEL DEMAND FORECASTING MODEL1995 Base Line Network$OPTIONSNETDATALARGE COORDINATES$PARAMETERSNUMBER OF ZONES = 2531SPEED SCALE FACTOR = 0.01MAXIMUM NODE=21000$DATA~$INCLUDE DELETE.TXT~$INCLUDE CHANGE.TXT~$INCLUDE ADD.TXT$END TP FUNCTION$BUILD HIGHWAY NETWORK$FILESINPUT FILE = NETDATA, USER ID = $N0511.TXT$OUTPUT FILE = HWYNET, USER ID = $TEMPNET2$$HEADERS<strong>OKI</strong>/MVRPC TRAVEL DEMAND FORECASTING MODEL1995 Base Line Network$OPTIONSNETDATALARGE COORDINATES$PARAMETERSNUMBER OF ZONES = 2531SPEED SCALE FACTOR = 0.01MAXIMUM NODE=21000$DATA~$INCLUDE DELETE.TXT~$INCLUDE CHANGE.TXT~$INCLUDE ADD.TXT$END TP FUNCTIONZones and Networks / 9 - Appendix C50


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.1.1.2 NEWNETAM.TPC$BUILD HIGHWAY NETWORK$FILESINPUT FILE = NETDATA, USER ID = $N0510.AMT$OUTPUT FILE = HWYNET, USER ID = $TEMPNET1$$HEADERS<strong>OKI</strong>/MVRPC TRAVEL DEMAND FORECASTING MODEL1995 Base Line Network - AM Configuration$OPTIONSNETDATALARGE COORDINATES$PARAMETERSNUMBER OF ZONES = 2531SPEED SCALE FACTOR = 0.01MAXIMUM NODE=21000$DATA~$INCLUDE DELETE.TXT~$INCLUDE CHANGE.TXT~$INCLUDE ADD.TXT$END TP FUNCTION9.1.1.3 NEWNETPM.TPC$BUILD HIGHWAY NETWORK$FILESINPUT FILE = NETDATA, USER ID = $N0510.PMT$OUTPUT FILE = HWYNET, USER ID = $TEMPNET1$$HEADERS<strong>OKI</strong>/MVRPC TRAVEL DEMAND FORECASTING MODEL1995 Base Line Network - PM Configuration$OPTIONSNETDATALARGE COORDINATES$PARAMETERSNUMBER OF ZONES = 2531SPEED SCALE FACTOR = 0.01MAXIMUM NODE=21000$DATA~$INCLUDE DELETE.TXT~$INCLUDE CHANGE.TXT~$INCLUDE ADD.TXT$END TP FUNCTIONZones and Networks / 9 - Appendix C51


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.1.1.4 NEWNETMD.TPC$BUILD HIGHWAY NETWORK$FILESINPUT FILE = NETDATA, USER ID = $N0510.MDT$OUTPUT FILE = HWYNET, USER ID = $TEMPNET1$$HEADERS<strong>OKI</strong>/MVRPC TRAVEL DEMAND FORECASTING MODEL1995 Base Line Network - MD Configuration$OPTIONSNETDATALARGE COORDINATES$PARAMETERSNUMBER OF ZONES = 2531SPEED SCALE FACTOR = 0.01MAXIMUM NODE=21000$DATA~$INCLUDE DELETE.TXT~$INCLUDE CHANGE.TXT~$INCLUDE ADD.TXT$END TP FUNCTIONZones and Networks / 9 - Appendix C52


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.1.1.5 BUILD5.GENCOPY n0008.yya n0008.tmpCOPY n0009.yya n0009.tmpCOPY turnpro.yya turnpro.tmpnewnet60.exe Y YCOPY n0510.tmp n0510.txtst050254.exeCALL tranplan newnet.tpc newnet.outIF EXIST fullnet.yya DEL fullnet.yyaIF EXIST n0510 DEL n0510IF EXIST n0511 DEL n0511COPY tempnet1 fullnet.yyaRENAME tempnet1 n0510RENAME tempnet2 n0511CALL tranplan newnetam.tpc newnetam.outIF EXIST fullam.yya DEL fullam.yyaRENAME tempnet1 fullam.yyaCALL tranplan newnetpm.tpc newnetpm.outIF EXIST fullpm.yya DEL fullpm.yyaRENAME tempnet1 fullpm.yyaCALL tranplan newnetmd.tpc newnetmd.outIF EXIST fullmd.yya DEL fullmd.yyaRENAME tempnet1 fullmd.yyaZones and Networks / 9 - Appendix C53


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010. Appendix DBuild Transit Network Updated Control FilesZones and Networks / 10 - Appendix D54


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.1 SDLAYAM.REV211 15 16 1 22 15 16 2 33 15 16 1 49 14 66 2246 34 45 9 46 22 45 7 46 11 45 6 46 11 12 3246 22 13 10 46 34 12 5 46 11 33 8 46 34 33 10299 34 45 9 99 22 45 12 99 11 45 11 99 11 12 3299 22 13 10 99 34 12 5 99 11 33 8 99 34 33 1099993 1 30 2.5 70 2.53 2 30 30 70 703 3 26 26 43 353 4 18 8 32 123 5 39 36 60 553 6 20 8 35 123 7 23 12 47 183 8 18 10 37 153 9 23 13 49 183 10 35 30 60 503 11 18 5 32 73 12 20 10 46 163 13 10 6 26 113 14 7 7 40 20999910.1.1.2 SDLAYMD.REV211 15 16 1 22 15 16 2 33 15 16 1 49 14 66 2246 34 45 9 46 22 45 7 46 11 45 6 46 11 12 3246 22 13 10 46 34 12 5 46 11 33 8 46 34 33 10299 34 45 9 99 22 45 12 99 11 45 11 99 11 12 3299 22 13 10 99 34 12 5 99 11 33 8 99 34 33 1099993 1 30 2.5 70 2.53 2 30 30 70 703 3 26 26 43 353 4 18 8 32 123 5 42 42 55 503 6 18 8 32 123 7 20 12 46 183 8 18 10 37 153 9 24 13 48 183 10 35 33 50 453 11 18 5 32 73 12 20 10 46 163 13 10 6 26 113 14 7 7 40 209999Zones and Networks / 10 - Appendix D55


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.3 SDLAYDF.REV211 15 16 1 22 15 16 2 33 15 16 1 49 14 66 2246 34 45 9 46 22 45 7 46 11 45 6 46 11 12 3246 22 13 10 46 34 12 5 46 11 33 8 46 34 33 10299 34 45 9 99 22 45 12 99 11 45 11 99 11 12 3299 22 13 10 99 34 12 5 99 11 33 8 99 34 33 1099993 1 30 2.5 70 2.53 2 30 30 70 703 3 26 26 43 353 4 18 8 32 123 5 39 36 60 553 6 20 8 35 123 7 23 12 47 183 8 18 10 37 153 9 23 13 49 183 10 35 30 60 503 11 18 5 32 73 12 20 10 46 163 13 10 6 26 113 14 7 7 40 209999Zones and Networks / 10 - Appendix D56


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.4 BARRIERS.INP&bar idb='i-71',nb=10936,10937, 9043,11156, 9042, 9289, 9291, 9293,10940, 9295, 9305, 8898,11172, 9306, 9307,10944, 9348, 9309,10945,10946, 9329, 9331,11316, 9177,9179, 8673, 8717,11265, 9187, 9189, 9191, 9862,11126, 9197, 9403, 9405,11000,&END&bar idb='i-75',nb=11028,11029,11030, 9201, 9203,10898,10899,10900, 9205,10904, 9207, 9392,9390,10994, 9396, 9218, 5791, 8890, 9224,11190, 9350, 9351,10973,10974,8743,10796, 8737, 8731, 8721, 9229, 9231,10913, 9233, 9812,&END&bar idb='i-71/75',nb= 9767, 9769,&END&bar idb='i-275 by i-71/75',nb= 9790, 9893, 9772, 9738, 9900,&END&bar idb='i-71/75 south of 275',nb= 9745, 9665,11320,11319, 9663, 9661, 9639, 9637, 9659, 9621,11045,&END&bar idb='cc hwy',nb=11222, 5796, 5832, 5831, 9026, 9028, 9030,10879,&END&bar idb='ky coast',nb=10108, 3326,10056,&END&bar idb='i-275 by i-471',nb= 9789,11121, 9691,11063,&END&bar idb='i-275 b/w 71 and 75',nb= 9266,10929, 9174,&END&bar idb='i-275 west of 75',nb= 9256, 9254, 9827, 9252,10918,10919, 9250, 9835, 9836, 9248,10915,&END&bar idb='i-74 NE Hamilton Cty',nb= 8988, 8986,10862, 8936,&END&bar idb='i-275 by 28 bypass',nb= 8958, 9872, 8956,10836,&END&bar idb='32 near Batavia',nb= 6500,11521, 6502, 4113, 6505, 6509, 5847, 6380, 4118, 4120, 4123,&END&bar idb='Ohio River-New Rich',nb= 3122, 3933,10255, 3934,10256, 3935, 3952, 3951, 3945,&ENDZones and Networks / 10 - Appendix D57


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.5 STEP06.TP1$BUILD TRANSIT NETWORK$FILEINPUT FILE = NETDATA, USER ID = $HUDNET.TEM$OUTPUT FILE = TRNET, USER ID = $N0010.DF$$HEADERS$INCLUDE TITLE11BUILD AM TRANSIT NETWORK$OPTIONSBUILD NETWORKNETDATAIGNORE MISSING COORDINATESIGNORE EXCESS COORDINATESSUPPRESS NETWORK DESCRIPTIONINET$PARAMETERSNUMBER OF ZONES = 2531MAXIMUM NODE = 21000NETWORK = AM ~ Times are always in the AM field from INETMAXIMUM STOPS PER LINE = 150MAXIMUM MODE = 10$END TP FUNCTION$DOS copy TRNPLN??.OUT TNETDF.OUT10.1.1.6 STEP06.TP2$BUILD TRANSIT NETWORK$FILEINPUT FILE = NETDATA, USER ID = $HUDNET.TEM$OUTPUT FILE = TRNET, USER ID = $N0010.MD$$HEADERS$INCLUDE TITLE11BUILD MIDDAY TRANSIT NETWORK$OPTIONSBUILD NETWORKNETDATAIGNORE MISSING COORDINATESIGNORE EXCESS COORDINATESSUPPRESS NETWORK DESCRIPTIONINET$PARAMETERSNUMBER OF ZONES = 2531MAXIMUM NODE = 21000NETWORK = AM ~ Times are always in the AM field from INETMAXIMUM STOPS PER LINE = 150MAXIMUM MODE = 10$END TP FUNCTION$DOS copy TRNPLN??.OUT TNETMD.OUTZones and Networks / 10 - Appendix D58


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.7 STEP22DF.GEN$DOS echo PATH 1 - DF - LOCAL BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,5,7,8,10$END TP FUNCTION$DOS echo SKIM 1 - DF - LOCAL SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF1$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF1$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS WALK ACCESS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 1 - DF - LOCAL SERVICE$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF1$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- DF$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D59


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 2 - DF - LOCAL BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 5,7,8,10$END TP FUNCTION$DOS echo SKIM 2 - DF - LOCAL BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF2$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF2$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS DRIVE ACCESS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 2 - DF - LOCAL BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF2$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- DF$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D60


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 3 - DF - EXPRESS BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,7,8$END TP FUNCTION$DOS echo SKIM 3 - DF - EXPRESS BUS SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF3$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF3$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS WALK ACCESS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 3 - DF - EXPRESS BUS SERVICE WALK ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF3$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- DF$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D61


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 4 - DF - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 7,8$END TP FUNCTION$DOS echo SKIM 4 - DF - EXPRESS BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF4$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF4$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS DRIVE ACCESS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 4 - DF - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF4$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- DF$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D62


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 5 - DF - LIGHT RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,8$END TP FUNCTION$DOS echo SKIM 5 - DF - LIGHT RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF5$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF5$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 5 - DF - LIGHT RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF5$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D63


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 6 - DF - LIGHT RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 8$END TP FUNCTION$DOS echo SKIM 6 - DF - LIGHT RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF6$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF6$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- DRIVE ACCESS PATHS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 6 - DF - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF6$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- DF$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D64


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 7 - DF - COMMUTER RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,7$END TP FUNCTION$DOS echo SKIM 7 - DF - COMMUTER RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF7$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF7$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 7 - DF - COMMUTER RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF7$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- DF$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D65


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 8 - DF - COMMUTER RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.DF$OUTPUT FILE = TRPATH, USER ID = $TPATH.DF8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- DF$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 7$END TP FUNCTION$DOS echo SKIM 8 - DF - COMMUTER RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF8$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.DF8$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- DRIVE ACCESS PATHS -- DF$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 8 - DF - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.DF$INPUT FILE = TRPATH, USER ID = $TPATH.DF8$OUTPUT FILE = TRFARE, USER ID = $TFARE.DF8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- DF$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresDF.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D66


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo COMBINE SKIMS - DF - ALT tin$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $TSKIM.DF1$INPUT FILE = TMAN2, USER ID = $TSKIM.DF2$INPUT FILE = TMAN3, USER ID = $TSKIM.DF3$INPUT FILE = TMAN4, USER ID = $TSKIM.DF4$INPUT FILE = TMAN5, USER ID = $TSKIM.DF5$INPUT FILE = TMAN6, USER ID = $TSKIM.DF6$INPUT FILE = TMAN7, USER ID = $TSKIM.DF7$INPUT FILE = TMAN8, USER ID = $TSKIM.DF8$OUTPUT FILE = TMAN9, USER ID = $TSKIMDFT.tot$$HEADERS$INCLUDE TITLE11TOTAL TRANSIT SKIMS - DFWLCL(1) DLCL(2) WEXP(3) DEXP(4) WLRT(5) DLRT(6) WCRL(7) DCRL(8)$DATATMAN9,T1 = TMAN1,T1 + TMAN1,T2 + TMAN1,T4 + TMAN1,T5+ TMAN1,T6 + TMAN1,T7 + TMAN1,T8 + TMAN1,T9 + TMAN1,T10TMAN9,T2 = TMAN2,T1 + TMAN2,T2 + TMAN2,T4 + TMAN2,T5+ TMAN2,T6 + TMAN2,T7 + TMAN2,T8 + TMAN2,T9 + TMAN2,T10TMAN9,T3 = TMAN3,T1 + TMAN3,T2 + TMAN3,T4 + TMAN3,T5+ TMAN3,T6 + TMAN3,T7 + TMAN3,T8 + TMAN3,T9 + TMAN3,T10TMAN9,T4 = TMAN4,T1 + TMAN4,T2 + TMAN4,T4 + TMAN4,T5+ TMAN4,T6 + TMAN4,T7 + TMAN4,T8 + TMAN4,T9 + TMAN4,T10TMAN9,T5 = TMAN5,T1 + TMAN5,T2 + TMAN5,T4 + TMAN5,T5+ TMAN5,T6 + TMAN5,T7 + TMAN5,T8 + TMAN5,T9 + TMAN5,T10TMAN9,T6 = TMAN6,T1 + TMAN6,T2 + TMAN6,T4 + TMAN6,T5+ TMAN6,T6 + TMAN6,T7 + TMAN6,T8 + TMAN6,T9 + TMAN6,T10TMAN9,T7 = TMAN7,T1 + TMAN7,T2 + TMAN7,T4 + TMAN7,T5+ TMAN7,T6 + TMAN7,T7 + TMAN7,T8 + TMAN7,T9 + TMAN7,T10TMAN9,T8 = TMAN8,T1 + TMAN8,T2 + TMAN8,T4 + TMAN8,T5+ TMAN8,T6 + TMAN8,T7 + TMAN8,T8 + TMAN8,T9 + TMAN8,T10$END TP FUNCTION$DOS echo STATION IDENTIFICATION - DF - ALT tin$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF5$OUTPUT FILE = ACEGRES, USER ID = $STATDF5.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - LIGHT RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,7,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statDF.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF6$OUTPUT FILE = ACEGRES, USER ID = $STATDF6.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - LIGHT RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,7,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statDF.txt$END TP FUNCTIONZones and Networks / 10 - Appendix D67


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF7$OUTPUT FILE = ACEGRES, USER ID = $STATDF7.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - COMMUTER RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statDF.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.DF8$OUTPUT FILE = ACEGRES, USER ID = $STATDF8.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - COMMUTER RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statDF.txt$END TP FUNCTION$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $STATDF5.TEM$INPUT FILE = TMAN2, USER ID = $STATDF6.TEM$INPUT FILE = TMAN3, USER ID = $STATDF7.TEM$INPUT FILE = TMAN4, USER ID = $STATDF8.TEM$OUTPUT FILE = TMAN5, USER ID = $STAT.DF$$HEADERS$INCLUDE TITLE11TRANSIT STATIONS - DF1:LRT WALK 2:LRT DRIVE 3:CRL WALK 4:CRL DRIVE$DATATMAN5,T1 = TMAN1,T1TMAN5,T2 = TMAN2,T1TMAN5,T3 = TMAN3,T1TMAN5,T4 = TMAN4,T1$END TP FUNCTION$DOS copy TRNPLN.OUT IMPDFtin.OUT$DOS copy IMPDFtin.OUT+TRNPLN??.OUT IMPDFtin.OUT$DOS echo TRANSIT IMPEDANCE ENDZones and Networks / 10 - Appendix D68


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.8 STEP22MD.GEN$DOS echo PATH 1 - MD - LOCAL BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,5,7,8,10$END TP FUNCTION$DOS echo SKIM 1 - MD - LOCAL SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD1$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD1$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS WALK ACCESS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 1 - MD - LOCAL SERVICE$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD1$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- MD$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D69


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 2 - MD - LOCAL BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 5,7,8,10$END TP FUNCTION$DOS echo SKIM 2 - MD - LOCAL BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD2$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD2$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS DRIVE ACCESS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 2 - MD - LOCAL BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD2$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- MD$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D70


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 3 - MD - EXPRESS BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,7,8$END TP FUNCTION$DOS echo SKIM 3 - MD - EXPRESS BUS SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD3$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD3$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS WALK ACCESS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 3 - MD - EXPRESS BUS SERVICE WALK ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD3$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- MD$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D71


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 4 - MD - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 7,8$END TP FUNCTION$DOS echo SKIM 4 - MD - EXPRESS BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD4$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD4$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS DRIVE ACCESS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 4 - MD - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD4$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- MD$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D72


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 5 - MD - LIGHT RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,8$END TP FUNCTION$DOS echo SKIM 5 - MD - LIGHT RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD5$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD5$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 5 - MD - LIGHT RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD5$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D73


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 6 - MD - LIGHT RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 8$END TP FUNCTION$DOS echo SKIM 6 - MD - LIGHT RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD6$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD6$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- DRIVE ACCESS PATHS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 6 - MD - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD6$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- MD$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D74


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 7 - MD - COMMUTER RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,7$END TP FUNCTION$DOS echo SKIM 7 - MD - COMMUTER RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD7$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD7$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 7 - MD - COMMUTER RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD7$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- MD$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D75


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 8 - MD - COMMUTER RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.MD$OUTPUT FILE = TRPATH, USER ID = $TPATH.MD8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- MD$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,2.0) (5,2.0) (6,2.0) (7,2.0) (8,2.0)(9,2.0) (10,2.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 7$END TP FUNCTION$DOS echo SKIM 8 - MD - COMMUTER RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD8$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.MD8$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- DRIVE ACCESS PATHS -- MD$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 8 - MD - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.MD$INPUT FILE = TRPATH, USER ID = $TPATH.MD8$OUTPUT FILE = TRFARE, USER ID = $TFARE.MD8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- MD$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresMD.oki$INCLUDE linkfare.df$END TP FUNCTIONZones and Networks / 10 - Appendix D76


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo COMBINE SKIMS - MD - ALT tin$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $TSKIM.MD1$INPUT FILE = TMAN2, USER ID = $TSKIM.MD2$INPUT FILE = TMAN3, USER ID = $TSKIM.MD3$INPUT FILE = TMAN4, USER ID = $TSKIM.MD4$INPUT FILE = TMAN5, USER ID = $TSKIM.MD5$INPUT FILE = TMAN6, USER ID = $TSKIM.MD6$INPUT FILE = TMAN7, USER ID = $TSKIM.MD7$INPUT FILE = TMAN8, USER ID = $TSKIM.MD8$OUTPUT FILE = TMAN9, USER ID = $TSKIMMDT.tot$$HEADERS$INCLUDE TITLE11TOTAL TRANSIT SKIMS - MDWLCL(1) DLCL(2) WEXP(3) DEXP(4) WLRT(5) DLRT(6) WCRL(7) DCRL(8)$DATATMAN9,T1 = TMAN1,T1 + TMAN1,T2 + TMAN1,T4 + TMAN1,T5+ TMAN1,T6 + TMAN1,T7 + TMAN1,T8 + TMAN1,T9 + TMAN1,T10TMAN9,T2 = TMAN2,T1 + TMAN2,T2 + TMAN2,T4 + TMAN2,T5+ TMAN2,T6 + TMAN2,T7 + TMAN2,T8 + TMAN2,T9 + TMAN2,T10TMAN9,T3 = TMAN3,T1 + TMAN3,T2 + TMAN3,T4 + TMAN3,T5+ TMAN3,T6 + TMAN3,T7 + TMAN3,T8 + TMAN3,T9 + TMAN3,T10TMAN9,T4 = TMAN4,T1 + TMAN4,T2 + TMAN4,T4 + TMAN4,T5+ TMAN4,T6 + TMAN4,T7 + TMAN4,T8 + TMAN4,T9 + TMAN4,T10TMAN9,T5 = TMAN5,T1 + TMAN5,T2 + TMAN5,T4 + TMAN5,T5+ TMAN5,T6 + TMAN5,T7 + TMAN5,T8 + TMAN5,T9 + TMAN5,T10TMAN9,T6 = TMAN6,T1 + TMAN6,T2 + TMAN6,T4 + TMAN6,T5+ TMAN6,T6 + TMAN6,T7 + TMAN6,T8 + TMAN6,T9 + TMAN6,T10TMAN9,T7 = TMAN7,T1 + TMAN7,T2 + TMAN7,T4 + TMAN7,T5+ TMAN7,T6 + TMAN7,T7 + TMAN7,T8 + TMAN7,T9 + TMAN7,T10TMAN9,T8 = TMAN8,T1 + TMAN8,T2 + TMAN8,T4 + TMAN8,T5+ TMAN8,T6 + TMAN8,T7 + TMAN8,T8 + TMAN8,T9 + TMAN8,T10$END TP FUNCTION$DOS echo STATION IDENTIFICATION - MD - ALT tin$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD5$OUTPUT FILE = ACEGRES, USER ID = $STATMD5.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - LIGHT RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,7,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statMD.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD6$OUTPUT FILE = ACEGRES, USER ID = $STATMD6.TEM$$HEADERS$INCLUDE TITLE11TRANSIT OFF PEAK ACCESS STOPS - LIGHT RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,7,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statMD.txt$END TP FUNCTIONZones and Networks / 10 - Appendix D77


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD7$OUTPUT FILE = ACEGRES, USER ID = $STATMD7.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - COMMUTER RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statMD.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.MD8$OUTPUT FILE = ACEGRES, USER ID = $STATMD8.TEM$$HEADERS$INCLUDE TITLE11TRANSIT OFF PEAK ACCESS STOPS - COMMUTER RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statMD.txt$END TP FUNCTION$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $STATMD5.TEM$INPUT FILE = TMAN2, USER ID = $STATMD6.TEM$INPUT FILE = TMAN3, USER ID = $STATMD7.TEM$INPUT FILE = TMAN4, USER ID = $STATMD8.TEM$OUTPUT FILE = TMAN5, USER ID = $STAT.MD$$HEADERS$INCLUDE TITLE11TRANSIT STATIONS - MD1:LRT WALK 2:LRT DRIVE 3:CRL WALK 4:CRL DRIVE$DATATMAN5,T1 = TMAN1,T1TMAN5,T2 = TMAN2,T1TMAN5,T3 = TMAN3,T1TMAN5,T4 = TMAN4,T1$END TP FUNCTION$DOS copy TRNPLN.OUT IMPMDtin.OUT$DOS copy IMPMDtin.OUT+TRNPLN??.OUT IMPMDtin.OUT$DOS echo TRANSIT IMPEDANCE ENDZones and Networks / 10 - Appendix D78


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.9 STEP22AM.GEN$DOS echo PATH 1 - AM - LOCAL BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,5,7,8,10$END TP FUNCTION$DOS echo SKIM 1 - AM - LOCAL SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM1$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM1$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS WALK ACCESS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 1 - AM - LOCAL SERVICE$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM1$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM1$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS WALK ACCESS-- AM$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D79


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 2 - AM - LOCAL BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 5,7,8,10$END TP FUNCTION$DOS echo SKIM 2 - AM - LOCAL BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM2$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM2$$HEADERS$INCLUDE TITLE11LOCAL BUS PATHS DRIVE ACCESS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 2 - AM - LOCAL BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM2$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM2$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELOCAL BUS PATHS DRIVE ACCESS-- AM$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D80


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 3 - AM - EXPRESS BUS SERVICE WALK ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODES = 2,7,8$END TP FUNCTION$DOS echo SKIM 3 - AM - EXPRESS BUS SERVICE WALK ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM3$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM3$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS WALK ACCESS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 3 - AM - EXPRESS BUS SERVICE WALK ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM3$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM3$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS WALK ACCESS-- AM$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D81


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 4 - AM - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODES = 7,8$END TP FUNCTION$DOS echo SKIM 4 - AM - EXPRESS BUS SERVICE DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM4$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM4$$HEADERS$INCLUDE TITLE11EXPRESS BUS PATHS DRIVE ACCESS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 4 - AM - EXPRESS BUS SERVICE DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM4$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM4$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICEEXPRESS BUS PATHS DRIVE ACCESS-- AM$PARAMETERSNUMBER OF COMPANIES = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D82


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 5 - AM - LIGHT RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,8$END TP FUNCTION$DOS echo SKIM 5 - AM - LIGHT RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM5$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM5$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 5 - AM - LIGHT RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM5$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM5$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D83


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 6 - AM - LIGHT RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 8$END TP FUNCTION$DOS echo SKIM 6 - AM - LIGHT RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM6$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM6$$HEADERS$INCLUDE TITLE11LIGHT RAIL -- DRIVE ACCESS PATHS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 6 - AM - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM6$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM6$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICELIGHT RAIL -- DRIVE ACCESS PATHS -- AM$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D84


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 7 - AM - COMMUTER RAIL WITH WALK ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE MODE = 2,7$END TP FUNCTION$DOS echo SKIM 7 - AM - COMMUTER RAIL WITH WALK AND BUS ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM7$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM7$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 7 - AM - COMMUTER RAIL WITH WALK AND BUS ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM7$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM7$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- LOCAL BUS OR WALK ACCESS PATHS -- AM$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D85


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo PATH 8 - AM - COMMUTER RAIL WITH DRIVE ACCESS - ALT tin$BUILD TRANSIT PATHS$FILEINPUT FILE = TRNET, USER ID = $n0010.AM$OUTPUT FILE = TRPATH, USER ID = $TPATH.AM8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT PATHS -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- AM$OPTIONSBUILD PATHS$PARAMETERSNETWORK = AMMAXIMUM WAIT PENALTIES = (4,60.0) (5,60.0) (6,60.0) (7,60.0) (8,60.0)(9,60.0) (10,60.0)RUN TIME FACTORS = (1,2.0) (3,2.0)(4,1.0) (5,1.0) (6,1.0)(7,1.0) (8,1.0) (9,1.0) (10,1.0)WAIT TIME FACTORS = (4,3.0) (5,3.0) (6,3.0) (7,3.0) (8,3.0)(9,3.0) (10,3.0)TRANSFER PENALTIES =(4-4,30) (4-5,30) (4-6,30) (4-7,30) (4-8,30) (4-9,30) (4-10,30)(5-4,30) (5-5,30) (5-6,30) (5-7,30) (5-8,30) (5-9,30) (5-10,30)(6-4,30) (6-5,30) (6-6,30) (6-7,30) (6-8,30) (6-9,30) (6-10,30)(7-4,30) (7-5,30) (7-6,30) (7-7,30) (7-8,30) (7-9,30) (7-10,30)(8-4,30) (8-5,30) (8-6,30) (8-7,30) (8-8,30) (8-9,30) (8-10,30)(9-4,30) (9-5,30) (9-6,30) (9-7,30) (9-8,30) (9-9,30) (9-10,30)(10-4,30) (10-5,30) (10-6,30) (10-7,30) (10-8,30) (10-9,30) (10-10,30)DELETE ACCESS MODE = 1DELETE MODE = 7$END TP FUNCTION$DOS echo SKIM 8 - AM - COMMUTER RAIL WITH DRIVE ACCESS$TRANSIT SELECTED SUMMATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM8$OUTPUT FILE = TRSKIM, USER ID = $TSKIM.AM8$$HEADERS$INCLUDE TITLE11COMMUTER RAIL -- DRIVE ACCESS PATHS -- AM$DATATABLE 1 = FIRST WAITTABLE 2 = SECOND WAITTABLE 3 = TRANSFERSTABLE 4 = MODE1TIMETABLE 5 = MODE3TIMETABLE 6 = MODE2TIMETABLE 7 = MODE4TIME + MODE6TIME + MODE9TIMETABLE 8 = MODE5TIME + MODE10TIMETABLE 9 = MODE7TIMETABLE 10 = MODE8TIME$END TP FUNCTION$DOS echo FARE 8 - AM - LIGHT RAIL WITH DRIVE ACCESS$BUILD FARE MATRIX$FILESINPUT FILE = TRNET, USER ID = $n0010.AM$INPUT FILE = TRPATH, USER ID = $TPATH.AM8$OUTPUT FILE = TRFARE, USER ID = $TFARE.AM8$$HEADERS$INCLUDE TITLE11BUILD TRANSIT FARES -- MULTI-PATH MODE CHOICECOMMUTER RAIL -- DRIVE ACCESS PATHS -- AM$PARAMETERSNUMBER OF companies = 6NO SERVICE FARE = 0$DATA~$INCLUDE tfaresAM.oki$INCLUDE linkfare.am$END TP FUNCTIONZones and Networks / 10 - Appendix D86


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$DOS echo COMBINE SKIMS - AM - ALT tin$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $TSKIM.AM1$INPUT FILE = TMAN2, USER ID = $TSKIM.AM2$INPUT FILE = TMAN3, USER ID = $TSKIM.AM3$INPUT FILE = TMAN4, USER ID = $TSKIM.AM4$INPUT FILE = TMAN5, USER ID = $TSKIM.AM5$INPUT FILE = TMAN6, USER ID = $TSKIM.AM6$INPUT FILE = TMAN7, USER ID = $TSKIM.AM7$INPUT FILE = TMAN8, USER ID = $TSKIM.AM8$OUTPUT FILE = TMAN9, USER ID = $TSKIMAMT.tot$$HEADERS$INCLUDE TITLE11TOTAL TRANSIT SKIMS - AMWLCL(1) DLCL(2) WEXP(3) DEXP(4) WLRT(5) DLRT(6) WCRL(7) DCRL(8)$DATATMAN9,T1 = TMAN1,T1 + TMAN1,T2 + TMAN1,T4 + TMAN1,T5+ TMAN1,T6 + TMAN1,T7 + TMAN1,T8 + TMAN1,T9 + TMAN1,T10TMAN9,T2 = TMAN2,T1 + TMAN2,T2 + TMAN2,T4 + TMAN2,T5+ TMAN2,T6 + TMAN2,T7 + TMAN2,T8 + TMAN2,T9 + TMAN2,T10TMAN9,T3 = TMAN3,T1 + TMAN3,T2 + TMAN3,T4 + TMAN3,T5+ TMAN3,T6 + TMAN3,T7 + TMAN3,T8 + TMAN3,T9 + TMAN3,T10TMAN9,T4 = TMAN4,T1 + TMAN4,T2 + TMAN4,T4 + TMAN4,T5+ TMAN4,T6 + TMAN4,T7 + TMAN4,T8 + TMAN4,T9 + TMAN4,T10TMAN9,T5 = TMAN5,T1 + TMAN5,T2 + TMAN5,T4 + TMAN5,T5+ TMAN5,T6 + TMAN5,T7 + TMAN5,T8 + TMAN5,T9 + TMAN5,T10TMAN9,T6 = TMAN6,T1 + TMAN6,T2 + TMAN6,T4 + TMAN6,T5+ TMAN6,T6 + TMAN6,T7 + TMAN6,T8 + TMAN6,T9 + TMAN6,T10TMAN9,T7 = TMAN7,T1 + TMAN7,T2 + TMAN7,T4 + TMAN7,T5+ TMAN7,T6 + TMAN7,T7 + TMAN7,T8 + TMAN7,T9 + TMAN7,T10TMAN9,T8 = TMAN8,T1 + TMAN8,T2 + TMAN8,T4 + TMAN8,T5+ TMAN8,T6 + TMAN8,T7 + TMAN8,T8 + TMAN8,T9 + TMAN8,T10$END TP FUNCTION$DOS echo STATION IDENTIFICATION - AM - ALT tin$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM5$OUTPUT FILE = ACEGRES, USER ID = $STATAM5.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - LIGHT RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,7,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statAM.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM6$OUTPUT FILE = ACEGRES, USER ID = $STATAM6.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - LIGHT RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,7,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statAM.txt$END TP FUNCTIONZones and Networks / 10 - Appendix D87


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM7$OUTPUT FILE = ACEGRES, USER ID = $STATAM7.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - COMMUTER RAIL WITH WALK AND LOCAL BUS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 1,3,4,5,6,9,10RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statAM.txt$END TP FUNCTION$LOAD TRANSIT STATION TO STATION$FILESINPUT FILE = TRPATH, USER ID = $TPATH.AM8$OUTPUT FILE = ACEGRES, USER ID = $STATAM8.TEM$$HEADERS$INCLUDE TITLE11TRANSIT PEAK ACCESS STOPS - COMMUTER RAIL WITH AUTO ACCESS$OPTIONSACCESS EGRESS FILENO TRANSIT VOLUME FILE$PARAMETERSARRIVAL MODES = 2RIDE MODES = 4,5,6,8,9,10DEPARTURE MODES = 1,3,4,5,6,9,10+INCLUDE statAM.txt$END TP FUNCTION$MATRIX MANIPULATE$FILESINPUT FILE = TMAN1, USER ID = $STATAM5.TEM$INPUT FILE = TMAN2, USER ID = $STATAM6.TEM$INPUT FILE = TMAN3, USER ID = $STATAM7.TEM$INPUT FILE = TMAN4, USER ID = $STATAM8.TEM$OUTPUT FILE = TMAN5, USER ID = $STAT.AM$$HEADERS$INCLUDE TITLE11TRANSIT STATIONS - AM1:LRT WALK 2:LRT DRIVE 3:CRL WALK 4:CRL DRIVE$DATATMAN5,T1 = TMAN1,T1TMAN5,T2 = TMAN2,T1TMAN5,T3 = TMAN3,T1TMAN5,T4 = TMAN4,T1$END TP FUNCTION$DOS copy TRNPLN.OUT IMPAMtin.OUT$DOS copy IMPAMtin.OUT+TRNPLN??.OUT IMPAMtin.OUT$DOS echo TRANSIT IMPEDANCE ENDZones and Networks / 10 - Appendix D88


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.10 DRVLINKS.DF** Control File for the DRVLINKS program.*[Files]CentroidFile = cents.inNodeFile = stations.inReportFile = drvlinks.rptLinkFile = drvlinks.out[Parameters]NumCentroids = 2425NumNodes = 58Distance = cartesianMinDistance = 0.0MaxDistance = 1000000NetworkScale = 5.5MultipleLinks = noIndividualSearch = no[Reports]PrintUnconnected = yesPrintConnections = yes[Centroid Format]CentroidFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21FirstCentroid = 1[Node Format]NodeFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21User1 = 26-32User2 = 34-40FirstNode = 1[New Link Attributes]DeleteLinks = noModes = 2LinkType = 99VolumeDelay = 99Lanes = 1.0LinkFormat = tranplanZones and Networks / 10 - Appendix D89


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.11 DRVLINKS.MD** Control File for the DRVLINKS program.*[Files]CentroidFile = cents.inNodeFile = stations.inReportFile = drvlinks.rptLinkFile = drvlinks.out[Parameters]NumCentroids = 2425NumNodes = 54Distance = cartesianMinDistance = 0.0MaxDistance = 1000000NetworkScale = 5.5MultipleLinks = noIndividualSearch = no[Reports]PrintUnconnected = yesPrintConnections = yes[Centroid Format]CentroidFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21FirstCentroid = 1[Node Format]NodeFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21User1 = 26-32User2 = 34-40FirstNode = 1[New Link Attributes]DeleteLinks = noModes = 2LinkType = 99VolumeDelay = 99Lanes = 1.0LinkFormat = tranplanZones and Networks / 10 - Appendix D90


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010.1.1.12 DRVLINKS.AM** Control File for the DRVLINKS program.*[Files]CentroidFile = cents.inNodeFile = stations.inReportFile = drvlinks.rptLinkFile = drvlinks.out[Parameters]NumCentroids = 2425NumNodes = 58Distance = cartesianMinDistance = 0.0MaxDistance = 1000000NetworkScale = 5.5MultipleLinks = noIndividualSearch = no[Reports]PrintUnconnected = yesPrintConnections = yes[Centroid Format]CentroidFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21FirstCentroid = 1[Node Format]NodeFormat = UserNumber = 1-6XCoord = 7-14YCoord = 15-21User1 = 26-32User2 = 34-40FirstNode = 1[New Link Attributes]DeleteLinks = noModes = 2LinkType = 99VolumeDelay = 99Lanes = 1.0LinkFormat = tranplanZones and Networks / 10 - Appendix D91


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.011. Appendix EDrvLinks User GuideZones and Networks / 11 - Appendix E92


User Documentation forAutomated Access Coding ProgramsWLKLINKS version 2.0DRVLINKS version 2.0This program and the supporting documentation has been prepared under the auspices of the<strong>Travel</strong> Forecasting Service Center of Parsons BrinckerhoffQuade & Douglas, Inc.Prepared by Tim Heier and Cathy ChangSan Francisco, CaliforniaApril 1996


A suite of four programs has been developed to aid in the coding of access links in transportationnetworks. These programs were developed in response to a growing need to maintain consistency and tostandardize the methodology for coding access link connections. This documentation describes the firsttwo programs: WLKLINKS and DRVLINKS. These programs were developed to automate theconstruction of walk access and drive access links to transit services. The remaining programs, DRVTIME(used to place the highway travel time on auxiliary drive access transit links) and DRVTRIPS (used tocreate a trip table from the pnr and knr link volumes) are described elsewhere.OVERVIEWThe WLKLINKS and DRVLINKS programs were designed to automate the coding of transit access links.Transit access links connect centroids with specific locations such as bus stops, train stations, or pnr/knrfacilities. User defined options are available that allow coding to specific nodes rather than centroids. Inaddition, options are available to indicate minimum and maximum search distances, mode-specific transitstops, non-duplication of transit lines, etc. Each of these options is described in the sections below.Both programs read a transportation network file separated into a centroid listing and a node listing. Thehighway network links are not required for these programs. The network is processed according to theoptions specified in the control file and a link batchin file is produced. The centroid and node batchout,and link batchin files are read directly in the format specified (i.e., EMME/2, TRANPLAN, or some otheruser defined format). For the WLKLINKS program, a transit line itinerary file is also read.The programs are run with a single command line indicating the program name and control file. Thiscommand should be issued at the standard command prompt. For instance, the following line,WLKLINKS wlklinks.ctiwill run the WLKLINKS program using the parameters found in the wlklinks.cti control file. The control filecontains various parameter settings that specify the settings to be used in building access linkconnections. A control file needs to be developed for each run of the program.Both programs are organized in a similar manner. Version I .X of each program provides compatibilitywith EMME/2 input and output routines; while version 2.X provides compatibility with both EMME/2 andTRANPLAN.The programs are available for several different platforms, including: DOS 32-bit, UNIX, Windows95,Windows-NT, and Windows3.X. The program can be run from within Windows at a DOS prompt. In theDOS environment, these programs have been implemented in 32-bit protected mode. As such, twoprograms need to be in the path. These programs are: 32RTM.EXE and DPM132VM.OVL.CONTROL FILE STRUCTUREA control file is used to specify the options to be used in building access links. The control files for theWLKLINKS and DRVLINKS programs are very similar, except for the options that are described below.An example control file for the WLKLINKS program is shown in Figure I. For simplicity, the examplecontrol files have been named with the "ctl" extension. However, that is not necessary nor required.The control file is organized into several sections with each section header indicated by brackets [...]. Thespecific options are described beneath. The various section headers include:[Files][Parameters][Reports][Centroid Format][Node Format]describing the input and output filenamesdescribing the specific options to be used in access link buildingdescribing the specific reports being provideddescribing the format of the centroid input filedescribing the format of the node input fileUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 1


[Transit Format][New Link Attributes]describing the format of the transit line itinerary input filedescribing the attributes to be used in the new access link fileUnder the section header are a series of options that specify the particular parameters for that section.These options are listed using free format and spaces are allowed on both sides of the equal sign. Anyyes/no parameters can be answered with other key words such as: y/n, true/false, t/f, or 0/1. Not allkeywords are necessary; however, if they are missing, the default values will be used. The defaultparameters for each section are given in the detailed listing below, followed by other allowable options. Allreports that can be produced under each program are written to the report file. This is the default settingand can be changed within the control file.Comments can be used anywhere within the control file. However, they must start with the specialcharacters: asterisk (*) or semi-colon (;).WLKLINKS PROGRAMThe WLKLINKS program builds walk access links to transit stop nodes. The access links can be built fromany centroid or node location. Although a geographic centroid is typically used for this purpose, theprogram allows the flexibility of building access links from any location - such as population centroids oremployment centroids. The program can read an unlimited number of centroids, nodes, and transit linesegments. The following options are also available:• Access links can be built to a particular mode or subset of modes. This may be required whenbuilding access to certain premium modes, such as express bus or rail service.• Access links can be built to a single stop on a transit line or to multiple stops per transit line. In mostcases, the access links should be built to a single stop only. For instance, one would probably notwant multiple access links to the same transit line only one block apart.• Transit lines can be split into two parts by direction (i.e., line 32X would become 32XA and 32XB).This is particularly useful for areas with one-way street systems.• Either individual or global settings can be used to set the minimum and maximum search distance.For instance, centroids in the CBD may have a smaller minimum (i.e., shorter walk distance) thansuburban areas. Also, search distances can be larger at the edges of the transit network than indense urban areas.• The number of access links to be built can be specified either individually or globally.• If multiple links are specified, the distance posted on each link can be an average of the multiple links;otherwise, the individual distances are used.• The access link distance calculation can be specified as one of two ways: either Cartesian (calculatedusing the quadratic formula) or Manhattan (X+Y).• A network scale is provided to convert coordinate units to actual distances.The input and output file formats can be either standard EMME/2, or TRANPLAN formats, or some otheruser defined format. The user defined format allows users who are coming from a GIS system or otherenvironments to use the program without having to reformat their files. In this case, the actual columnsthat contain the centroid, node, and link data are specified in the control file. When reading TRANPLANformatted files, the large coordinate option should be used.A transit line itinerary file is read to determine the transit stop locations. In EMME/2, transit stops arealways indicated by "dwt" or "tdwt" records with non-zero entries. The program reads most of the specialUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 2


characters (#, *, +, ) that can accompany the dwell time option. In addition, the program reads overthe "path," "ttf," "lay," "us," and other temporary specifications. In TRANPLAN, transit stops are indicatedwith a '-' (minus sign) preceding the node number.Transit line itineraries should be supplied in EMME/2 batchout or TRANPLAN INET format. To ensure thisis the case the transit lines should be read into EMME/2 and then batched out. This will ensure that thestandard formats are abided by. An example of the transit line format is included in Appendix A forEMME/2 and in Appendix B for TRANPLAN (INET).Parameter Controls for WLKLINKS ProgramThis section describes the various parameter controls for the WLKLINKS program. It is organized by[Section Header] with the individual options listed below. The default values are given next to the equalsign.[Files]* These are the default file names.CentroidFile = cents.in Listing of centroids from which to build wlk access links.NodeFile = nodes.in Listing of node coordinates to be used in distance calculations.TransitFile = lines.in Transit line itineraries to be used to determine stop locations.ReportFile = wlklinks.rpt Report file.LinkFile = wlklinks.out Listing of walk access links.[Parameters]* These are the default parameters.NurnCentroids =2000 Number of centroids.HiNodeNumber = 10000 Highest node number.IndividualMax = no If selected, the maximum number of access links can be specifiedon an individual centroid (or node) basis. The maximum number ofaccess links should be placed in node user item 3.MaxLinks = 4 Maximum number of access links for global specification.MultipleStops = no If selected, access links will be built to multiple transit stops on thesame line itinerary. For example, two transit stops on the sametransit line one block apart could both be coded with access linksunder this scenario.SplitUnes = no If selected, the transit line itineraries will be split at the layoverpoint into two separate transit lines for purposes of creating accesslinks. This option can only be used when MultipleStops=no;otherwise it is ignored.SelectModes = no If selected, access links will be built to a subset of transit modes.These modes are listed below.Search Modes = b Subset of alphanumeric transit modes to be used. Modes can bedelimited with either spaces or commas (i.e., b xc or b,c,x).. InEMME/2, modes are defined as single alphabetic characters. InTRANPLAN the modes are defined numerically.Distance = Cartesian Calculates the link distance using the quadratic formula. If"Manhattan" is specified, the link distance is calculated as (X+Y).IndividualSearch = no If selected, the user can specify a minimum and maximum searchUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 3


distance for each centroid or node. In addition, the maximumnumber of access links can be specified under the IndividualMaxoption. For EMME/2, the minimum should be in node user dataitem 1, the maximum in node user data item2. For TRANPLAN auser defined centroid format must be used. The minimum andmaximum values would then be placed into column format, withthe appropriate column definitions given in the control file.AverageDistance = yes If selected, the posted link distance will be the average of allaccess links (up to the maximum) for that centroid.MinDistance = 0.0 Minimum search distance for global specification.MaxDistance = 0.33 Maximum search distance for global specification.NetworkScale = 1.0 Scale factor to convert coordinate units to search distance units.WalkSpeed = 3.0 Walk speed for TRANPLAN links.[Reports]EchoTransitUnes =yes If selected, this option will echo the transit lines read in.PrintUnconnected =yes If selected, a list of unconnected centroids will be produced.PrintConnections =yes If selected, a summary of access links will be produced.PrintStats =yes If selected, summary statistics on the number of access links,minimum, maximum, and average link distances will be produced.[Centroid Format]CentroidIFormat = user Indicates format ofcentroid file. Allowable options are 'EMME/2' or'user.' Under TRANPLAN, the format must be specified as 'user"and the next three items must be completed.Number =3-8 These must be specified if CentroidFormat = userXCoord =9-16 These must be specified if CentroidFormat = userYcoord = 17-24 These must be specified if CentroidFormat = userUser1 = 26-32 Contains minimum distance if IndividualSearch = yesUser2 = 34-40 Contains maximum distance if IndividualSearch = yesUser3 = 42-48 Contains maximum links if IndividualSearch = yesFirstCentroid =1 Indicates line number where centroid listing starts.[Node Format]NodeFormat = user Indicates format of node file. Allowable options are 'EMME/2' or'user.' Under TRANPLAN, the format must be specified as 'user'and the next three items must be completed.Number =2-8 These must be specified if NodeFormat = userXCoord =9-16 These must be specified if NodeFormat = userYcoord = 17-24 These must be specified if NodeFormat = userFirstNode =1 Indicates line number where node listing starts.[Transit Format]TransitFormat = EMME/2 Format of transit line itineraries. Only 'EMME/2' and TRANPLAN'are allowed in version 2.X.[New Link Attributes]* These items specify the attributes of the new access linkDeleteLinks =no If selected, add link card will be preceded by delete link card.Direction = twoway Determines the links that are written to the new link file. If "twoway"is specified, both inbound and outbound links will be written to thenew link file. Alternatively, either "inbound" or "outbound" can bespecified for the desired link.Modesin = i Single mode on inbound link to centroid.User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 4


ModesOut = o Single mode on outbound link from centroid.LinkType =99 Link type code for EMME/2 only.VolumeDelay =99 Volume delay code for EMME/2 only.Lanes =1.0 Number of lanes on link for EMME/2 only.LinkFormat = user Format of new link cards. Only 'EMME/2,' TRANPLAN' or –INETare allowed in version 2.XSome of the parameters listed above are applicable to specific software packages only. Table Isummarizes the settings that should be used in each case.Table 1Summary of Software Specific Parameter ControlsParameter EMME/2 TRANPLAN User Format[Parameters]NumCentroids • • •HiNodeNumber • • •IndividualMax Place in ui3 CentroidFormat = user Place in user3MaxLinks • • •MultipleStops • • •SplitLines Split at layover point Not used Not usedSelectModes • • •SearchModes Character fields Numeric valuesDistance • • •IndividualSearch Min ui1. Max in ui2 CentroidFormat = user Min in user1, Max in user2AverageDistance • • •MinDistance • • •MaxDistance • • •NetworkScale • • •WalkSpeed Not used Default walk speed Not used[New Link Attributes]DeleteLinks Add "d" card first Not used Not usedDirection • • •Modesin • • •ModesOut • • •LinkType Link type Not used Not usedVolumeDelay Volume delay code Not used Not usedLanes Number of lanes Not used Not usedLinkFormat • • •Notes:• These parameters are not software specific. Fill in with appropriate values.Not used •= These parameters are ignored under these specific software applications.WLKLINKS ExampleFigure I shows an example of the WLKLINKS control file for an EMME/2 network. In this case, all defaultfile names are used, there are 395 centroids in the network, and the highest node number is 7500. Allpossible reports were requested. The remaining option settings are described in the control file listing. Apartial output of the report file from the example WLKLINKS run is shown in Figure 2.User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 5


Figure 1Example Control File for the WLKUNKS Program[Files]CentroidFile = cents.inNodeFile = nodes.inTransitFile = lines.inReport File = wlklinks.rptLinkFile = wlklinks.out[Parameters]NurnCentroids = 395HiNodeNumber = 7500IndividualMax = noMaxLinks = 4MultipleStops = noSplitLines = yesSelectModes = noSearchModes = b xDistance = cartesianIndividualSearch = noAverageDistance = yesMinDistance = 0.0MaxDistance = 0.33NetworkScale = 1.0[Reports]EchoTransitLines = yesPrintUnconnected = yesPrintConnections = yesPrintStats = yes[Centroid Format]CentroldFormat = emme/2[Node Format]NodeFormat = emme/2[Transit Format]TransitFormat = emme/2[New Link Attributes]LinkFormat = emme/2DeleteLinks = noDirection = twowayModesIn = iModesOut = oLinkType = 99VolumeDelay = 99Lanes = 1.0User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 6


Figure 2Example Report from WLKLINKS Program (partial listing)WLKLINKS (TM) TRANSIT WALK LINK GENERATION PROGRAMVer 1.00 Rel 3/28/96 (32-Bit Version)CONTROL FILE[Files]CentroidFile = cents.inNodeFile = nodes.inTransitFile = lines.inReportFile = wlklinks.rptLinkFile = wlklinks.out[Parameters]NurnCentroids = 395HiNodeNumber = 7500IndividualMax = noMaxLinks = 4MultipleStops = noSplitLines = yesSelectModes = noSearchModes = b xDistance = cartesianIndividualSearch = noAverageDistance = yesMinDistance = 0.0MaxDistance = 0.33NetworkScale = 1.0[Reports]EchoTransitLines = yesPrintUnconnected = yesPrintConnections = yesPrintStats = yes[Centroid Format]CentroidFormat = emme/2[Node Format]NodeFormat = emme/2[Transit Format]TransitFormat =emme/2[New Link Attributes]LinkFormat = emme/2DeleteLinks = noDirection = twowayModesIn = iModesOut = oUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 7


LinkType = 99VolumeDelay = 99Lanes = 1.0TRANSIT LANES READ = 501 11 12 13 14 17 18 2023 24 25 26C 27 28 29 3031 33 34 35 3x 40 41 44etc. . .RUN RESULTSCENTROIDS READ = 295NODES READ = 1116LINKS WRITTEN = 932UNCONNECTED CENTROIDS2 3 5 7 8 9 10 11 12 1314 15 16 18 19 20 21 23 24 2526 27 28 29 31 34 36 37 39 4142 43 61 65 66 78 79 81 82 116etc. . .NUMBER OT TWO-WAY/CENTROID1 = 1 | 4 = 1 | 6 = 1 | 17 = 1 |22 = 1 | 30 = 1 | 32 = 1 | 33 = 1 |35 = 1 | 38 = 2 | 40 = 1 | 44 = 2 |45 = 3 | 46 = 3 | 47 = 3 | 48 = 4 |etc. . .CENTROID CONNECTION STATISTICSCentroidCanidateLinksFinallinksmindistmaxdistavgdistetc. . .1 = 1 1 0.271 0.271 0.2712 = 0 0 0.000 0.000 0.0003 = 0 0 0.000 0.000 0.0004 = 1 1 0.254 0.254 0.2545 = 0 0 0.000 0.000 0.0006 = 1 1 0.299 0.299 0.2997 = 0 0 0.000 0.000 0.0008 = 0 0 0.000 0.000 0.0009 = 0 0 0.000 0.000 0.00010 = 0 0 0.000 0.000 0.000User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 8


DRVLINKS PROGRAMThe DRVLINKS program builds drive access links from centroids to park-n-ride or kiss-n-ride (pnr/knr)locations. These pnr/knr locations are represented by a set of nodes in the nodes.in file. This is a differentuse of the nodes.in file as compared to the WLKLINKS program. The access links can be built from anycentroid or node location. Although a geographic centroid is typically used for this purpose, the programallows the flexibility of building access links from any location - such as population centroids oremployment centroids. The program can read an unlimited number of centroids and pnr/knr locations.The following options are also available:• Either individual or global settings can be used to set the minimum and maximum search distancefrom a pnr/knr location. For instance, fringe area pnr/knr facilities may have a larger catchment areathan central area facilities.• Either the closest centroid or all centroids within the maximum search distance can be connected to apnr/knr location.• The access link distance calculation can be specified as one of two ways: either Cartesian (calculatedusing the quadratic formula) or Manhattan (X+Y).• A network scale is provided to convert coordinate units to actual distances.The input and output file formats can be either standard EMME/2 or TRANPLAN formats, or some otheruser defined format. The user defined format allows users who are coming from a GIS system or otherenvironments to use the program without having to reformat their files. In this case, the actual columnsthat contain the centroid, node, and link data are specified in the control file.Parameter Controls for DRVLINKS ProgramThis section describes the various parameter controls for the DRVLINKS program. It is organized by[Section Header] with the individual options listed below. The default values are given next to the equalsign. The software specific parameters are described in Table I.[Files]* These are the default file names.CentroidFile = cents.in Listing of centroids from which to build drive links.NodeFile = nodes.in Listing of pnr/knr locations to build drive links to.ReportFile = drvlinks.rpt Report file.LinkFile = drvlinks.out Listing of drive access links.[Parameters]* These are the default parameters.NurnCentroids = 2000 Number of centroids.NumNodes = 500 Number of pnr/knr locations.Distance = Cartesian Calculates the link distance using the quadratic formula. If"Manhattan" is specified, the link distance is calculated as (X+Y).IndividualSearch = no If selected, the user can specify a minimum (in node user data item1) and maximum (in node user data item 2) search distance for eachcentroid or node.MinDistance = 0.0 Minimum search distance (in miles).MaxDistance = 3.0 Maximum search distance (in miles).User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 9


NetworkScale = 1.0 Scale factor to convert coordinate units.MultipleLinks = yes If selected, then all access links will be used.[Reports]PrintUnconnected = yes If selected, a list of unconnected centroids will be produced.PrintConnections = yes If selected, a summary of access links will be produced.[Centroid Format]CentroidFormat = user Indicates format of centroid file. Allowable options are 'EMME/2' or'user.' Under TRANPLAN, the format must be specified as 'user' andthe next three items must be completed.Number = 3-8 These must be specified if CentroidFormat = userXCoord = 9-16 These must be specified if CentroidFormat = userYcoord = 17-24 These must be specified if CentroidFormat = userFirstCentroid = 1 Indicates line number where centroid listing starts.[Node Format]NodeFormat = user Indicates format of node file. Allowable options are 'EMME/2' or'user.' Under TRANPLAN, the format must be specified as 'user' andthe next three items must be completed.Number = 2-8 These must be specified if NodeFormat = userXCoord = 9-16 These must be specified if NodeFormat = userYcoord = 17-24 These must be specified if NodeFormat = userUser1 = 26-32 Contains minimum distance if IndividualSearch = yesUser2 = 34-40 Contains maximum distance if IndividualSearch = yesFirstNode = 1 Indicates line number where node listing starts.[New Link Attributes]* These items specify the attributes of the new access link.DeleteLinks = no If selected, add link card will be preceded by delete link card.Modes = p Drive access connector link mode.LinkType = 99 Link type code.VolumeDelay = 99 Volume delay code.Lanes =1.0 Number of lanes on link.LinkFormat = user Format of new link cards. Only 'EMME/2' and TRANPLAN' areallowed in version 2.XUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 10


DRVLINKS ExampleFigure 3 shows an example of the DRVLINKS control file for an EMME/2 network. In this case, all thedefault file names are used, and both reports are requested. A partial output of the report file from theexample DRVLINKS run is shown in Figure 4.Figure 3Example Control File for the DRVLINKS Program[Files]CentroidFile = cents.inNodeFile = nodes.inReportFile = drvlinks.rptLinkFile = drvlinks.out[Parameters]NumCentroids = 300NumNodes = 2000Distance = CartesianIndividualSearch = noMinDistance = 0.0MaxDistance = 0.5NetworkScale = 1.0MultipleLinks = yes[Reports]PrintUnconnected = yesPrintConnections = yes[Centroid Format]CentroidFormat = User[Node Format]NodeFormat = User[New Link Attributes]LinkFormat = emme/2DeleteLinks = yesModes = pkLinkType = 99VolumeDelay = 99Lanes = 1.0User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 11


Figure 4Example Output from DRVLINKS ProgramDRVLINKS (TM) TRANSIT DRIVE LINK GENERATION PROGRAMVer 1.00 Rel 3/28/96 (32-Bit Version)CONTROL FILE[Files]CentroidFile = cents.inNodeFile = nodes.inReportFile = drvlinks.rptLinkFile = drvlinks.out[Parameters]NumCentroids = 300NumNodes = 2000Distance = CartesianIndividualSearch = noMinDistance = 0.0MaxDistance = 0.5NetworkScale = 1.0MultipleLinks = yes.[Reports]PrintUnconnected = yesPrintConnections = yes[Centroid Format]CentroidFormat = User[Node Format]NodeFormat = User[New Link Attributes]LinkFormat = emme/2DeleteLinks = yesMode = pkLinkType = 99VolumeDelay = 99Lanes = 1.0RUN RESULTSCENTROIDS READ = 196NODES READ = 14LINKS WRITTEN = 68User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 12


Figure 4 (continued)Example Output from DRVLINKS ProgramUNCONNECTED CENTROIDS10 11 12 17 0 25 26 27 28 2930 31 32 36 40 41 42 44 45 4651 52 53 54 55 60 61 62 63 6465 66 67 68 69 71 72 73 74 7576 77 78 83 84 85 86 90 91 9296 97 98 99 101 102 103 104 105 106107 108 109 110 111 112 113 114 115 116117 118 119 120 121 122 123 124 125 126127 128 129 130 131 132 133 134 135 136137 138 139 140 141 142 143 144 145 146147 148 149 150 151 152 153 154 155 156157 158 159 160 161 162 163 164 165 166167 168 169 170 171 172 173 174 175 176177 178 179 180 181 182 183 184 185 186187 188 189 190 191 192 193 194 195 196UNCONNECTED NODESNUMBER OF LINKS/CENTROID1 = 2 | 2 = 1 | 3 = 2 | 4 = 1 |5 = 1 | 6 = 1 | 7 = 2 | 8 = 3 |9 = 2 | 13 = 1 | 14 = 2 | 15 = 3 |16 = 2 | 18 = 1 | 19 = 3 | 21 = 2 |22 = 3 | 23 = 2 | 24 = 1 | 33 = 2 |34 = 1 | 35 = 2 | 37 = 2 | 38 = 1 |39 = 1 | 43 = 1 | 47 = 2 | 48 = 1 |49 = 1 | 50 = 1 | 56 = 1 | 57 = 1 |58 = 1 | 59 = 1 | 70 = 1 | 79 = 1 |80 = 1 | 81 = 1 | 82 = 1 | 87 = 2 |88 = 2 | 89 = 1 | 93 = 1 | 94 = 1 |95 = 1 | 100 = 1 |NUMBER OF LINKS/NODE7001 = 3 | 7003 = 1 | 7008 = 2 | 7012 = 3 |7015 = 5 | 7017 = 5 | 7018 = 6 | 7020 = 6 |7022 = 6 | 7024 = 10 | 7025 = 7 | 7026 = 5 |7028 = 6 | 7029 = 3 |User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 13


Appendix ASample EMME/2 Transit Line Batchout Formatc EMME/2 Module: 2.24(v7.04) Date: 96-04-04 15:34 User:c Project: Metra <strong>Model</strong> Developmentc Scenario 101: 1990 Base Hwy-Transit AM Peak Walk Accesst lines inita'cta006' B 14.00 12.00 '3 KING DRIVE 25 0 0path=no 20123 dwt=.01 ttf=1 us1=5 10119 us1=2.8 20117us1=2.4 10118 us1=1.8 10040 us1=.6 20111 us1=2.4 100379977 us1=2.9 9976 us1=2.2 9934 us1=.6 20099us1=2.8 9931 us1=1.8 20094 us1=1.9 9882 us1=1.8 200899853 20085 us1=4.2 9816 us1=2.2 2008 us1=1.8 9714us1=1.2 3790 us1=.3 3791 us1=1.3 9713 us1=.5 9712us1=.7 3788 us1=.6 11885 us1=1.2 5709 us1=.5 5908us1=.3 3743 us1=.2 3724 12108 20073 5889 58875881 5819 4040 4021 5782 5718 us1=.3 402020065 us1=.9 13534 5585 us1=4.3 5388 us1=.6 5641us1=.4 5370 us1=1.4 5367 us1=2.6 3685 us1=3 3686lay=3 3685 us1=2.6 5367 us1=1.4 5370 us1=.4 5641us1=.6 5388 us1=4.3 5585 us1=.9 13534 20065us1=.3 4020 5718 us1=.2 5782 4021 4040 58195881 5887 5889 20073 12108 3724 3743us1=.3 5908 us1=.5 5709 us1=1.2 11885 us1=.6 3788us1=.7 9712 us1=.8 3790 us1=1.2 9714 us1=1.8 20081us1=2.2 9816 us1=4.2 20085 us1=1.8 9853 20089 9882us1=1.9 20094 us1=1.8 9931 us1=2.8 20099 us1=.6 9934us1=2.2 9976 us1=2.9 9977 us1=2.4 10037 20111us1=.6 10040 us1=1.8 10118 us1=2.4 201-17 us1=2.8 10119us1=5 20123 lay=3a'cta0.09'B 1 4 ..00 12.00 '.4 COTTAGE GROVE 25 0 0path=no 20123 dwt=.01 ttf=1 us1=1.8 2733 us1=1.2 3818us1=2.8 20118 us1=1.9 10121 us1=2 10120 10043us1=.6 8505 us1=2 10485 us1=.8 10041 us1=2.8 9980us1=.6 9979 us1=2.1 9978 us1=3.3 9938 us1=2 8510us1=.3 9937 us1=2 4160 us1=.2 9885 us1=2.3 9884us1=2.8 9858 us1=2.7 4159 us1=3 9823 us1=2.2 20085us1=4.2 9816 us1=2.2 20081 us1=.5 5700 us1=.1 5701us1=1.1 9735 us1=1.6 14515 us1=.1 9713 us1=1.7 3789us1=.6 3788 11885 us1=1.2 5709 us1=.5 5908us1=.3 3743 us1=.2 3724 12108 20073 5889 58875881 5819 4.0-40 4021 5782 5718 us1=.3 402020065 us1=.9 13534 5585 13533 13535 lay=3 1353420065 us1=.3 4020 5718 us1=.2 5782 4021 40405819 5881 5887 5889 20073 12108 3724 3743us1=.3 5908 us1=.5 5907 us1=1.1 11887 us1=1.2 11884us1=.6 3787 us1=.5 3788 us1=.6 3789 us1=1.7 9713us1=.1 14515 us1=1.6 9735 us1=1.1 5701 us1=.1 5700us1=.5 20081 us1=2.2 9816 us1=4.2 20085 us1=2.2 9823us1=3 4159 us1=2.7 9858 us1=2.8 9884 us1=2.3 9885us1=.2 4160 us1=2 9937 us1=.3 8510 us1=2 9938us1=3.3 9978 us1=2.1 9979 us1=.6 9980 us1=2.8 10041us1=.8 10485 us1=2 8505 us1=.6 10043 us1=2 1012010121 us1=1.9 20118 us1=2.8 3818 us1=1.2 2733us1=1.8 20123 lay=3User Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 14


Appendix BSample TRANPLAN INET Transit Line Format&ROUTE M= 15,L= 1,C= 24,RG=907,H= 25,ID='ISB,LONG BEACH-CAPISTRANO', ONEWAY=T,N= -4077, -11472, -10260, -10261, 10262, -10263, -11162, -11161, -11160,-11159, -13473, -10245, -10246, -10247, -10248, -10249, -12799, -11175,-10232, -10178, -10205, -10206, -1017 9, -10180, -10181, -11192, 10182,-11193, -10183, -10273, -10272, -10284, -16457, 18533, -15505, 18529,-15504, 18534, 15438, 15437, -15990, 18538, -15326, 8537, 16852,15992, 15988, 15223, 17135, 15224, -16324, 15225, -16289, -15226,-16336, 18918, -15227, -15228, 18919, -15229, -15245, 16820, -15246,18696, -15242, -15230, 18700, -16361, 18707, -15175, 18708, -15176,17237, 15177, 18710, -15178, 17243, -15179, 19198, -15180, 17244,-16419, 17245, -16393, 18735, -17246, 18732, -17460, -15181, -17247,18296, -15182, 18297, 18299, 15183, -15184, 17253, 18300, 15019,17160, 15018, 15017, -15016, 17612, 15001, 17613, 17614, 14985,17607, -14955, -14949, 17600, -14946, 17598, -16037, -16035, 17593,-16034, 17595, -16033, -14944, 14937, -14936, 14935, -14925, -14926,17569, -14 927, -14 929, 17570, -14 930, -17312, -17311,&END&ROUTE M= 15,L= 2,C= 24,RG=907,H= 60,ID='22,BREA-TUSTIN,N=-15496, -15525, -15528, 18970, -16281, 18954, -15584, 16952, -16196,-16198, 18945, -16197, 18944, -16158, 16684, -16159, -16096, 16676,-16098, 18244, -16097, 18246, -16100, 18242, -16674, 18247, -15710,18240, -15752, 18235, -15772, -15771, 18232, -14463, -16653, -15813,15818, -14635, -14636, -15838, 17913, -16102, -16089, 17911, -15850,17910, -15867, 17909, -16105, -15899, 17898, -16234, -16238, 17900,-15909, -16241, 17887, -16242, -17886, -16243, 17881, -16244, 17872,-16245, 17870, -16246, 17874, -16247, 17863, -16027, -16257, 17868,-16260, 16259, -16258,&END&ROUTE M= 15,L= 3,C= 24,RG=907,H= 22,ID=' 57,SANTA ANA-LAGUNA HILLS',N--15106, 15079, -15118, 17208, -15117, 17207, -15116, -15115, 17198,14727, 14728, -17159, -15050, 17504, -17432, 17503, -15016, 15017,-15018, 17160, -15019, 18300, -17253, 15184, 15183, -18299, 18297,-15182, -18296, 17247, -15181, -17460, 18732, -17246, 18735,-16393, 17245,-16419, 17244, -15180, 19198,-15179, 17243, -15178, -16421, -15241, -15240, 18726, -15239, 18725,-15238, -15237, -15243, -15244, -15251, -15250, 16837, -15261, 16838,-15276, -15290, -16840, -15291, 18762, -16380, -16381, -16845, -15304,18763, -15314, 16851, -16850, -15315, 18785, -15316, -16383, 18786,-14197, -14196, -16385, 18791, -15359, -16878, -15374, -19332, -15402,16883, -15429, 16885, -15453, 16886, -15478, 18831, -18843, 16900,-15518, 19108, -15539, 16904, -15540, 19111, -16279, -16276, -16275,-16277,&ENDUser Documentation for WLKLINKS & DR VLINKS (version 2.0) Page 15


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 3 – Trip Generation


Table of Contents1. Background ..................................................................................................................... 12. Build Socio-Economic Database ......................................................................................... 22.1 Data Files ............................................................................................................ 22.1.1 Parking Costs: Costs.txt ................................................................................... 32.1.2 Transit Availability: HbscTUse.txt ...................................................................... 32.1.3 External Station Data: A1001.ext ...................................................................... 62.2 Executable Programs: ST120160.exe .................................................................... 62.3 Step12 Batch, Control and Parameter Files ............................................................. 63. Build Household Classification Table................................................................................... 73.1 MVRPC Household Classification Table Adjustment .................................................. 73.2 Executable Programs: ST140160......................................................................... 103.3 Step14 Batch, Control and Parameter Files ........................................................... 104. Trip Productions............................................................................................................. 124.1 <strong>Model</strong> Adjustments............................................................................................. 124.2 Batch, Control and Parameter Files ...................................................................... 135. Trip Generation.............................................................................................................. 145.1 Taxi and Home-Based School Trip Tables ............................................................. 145.2 School-Age Population Data ................................................................................ 145.3 Special Generator Databases ............................................................................... 155.4 Zone to County to State Equivalency Table ........................................................... 175.5 External Trip Databases and <strong>Model</strong>s..................................................................... 175.6 Trip Balancing .................................................................................................... 205.7 Step16 Batch, Control and Parameter Files ........................................................... 205.8 Executable Programs: ST160160......................................................................... 216. Trip Generation Analysis ................................................................................................. 226.1 Trip Generation Estimates, before Scale Factors.................................................... 226.2 Trip Generation Estimates, with Scale Factors ....................................................... 377. Non-Home Based Trip Generation.................................................................................... 388. External Cordon Survey Analysis...................................................................................... 398.1 Geocoding Procedures and Results....................................................................... 398.1.1 8.1.1 Stations in the Consolidated Region ......................................................... 398.1.2 Stations not in the Consolidated Region............................................................ 428.2 Survey Expansion ............................................................................................... 438.2.1 Expansion of "In-Consolidated" Trip Surveys..................................................... 438.2.2 Expansion of Border Station Trip Surveys ......................................................... 478.3 External-Internal Trip End Estimation ................................................................... 488.4 External-External Trip Table ................................................................................ 529. Appendix A .................................................................................................................... 539.1 Step12.bat......................................................................................................... 549.2 STEP14.BAT....................................................................................................... 549.3 ST1401.oki ........................................................................................................ 549.4 ST1401.mv ........................................................................................................ 549.5 ST1501.INP ....................................................................................................... 549.6 ST1601.INP ....................................................................................................... 549.7 STEP16.BAT....................................................................................................... 5410. Appendix B .................................................................................................................. 54ii


Index of TablesTable 2-1 Socio-Economic Database Variables ........................................................................ 2Table 2-2 Home-based School Transit Availability Codes.......................................................... 4Table 2-3 Build Socio-Economic Database Batch, Control and Parameter Files ........................... 6Table 3-1 Percent Difference in Joint Household Distribution, One-Auto Suburban Households.... 7Table 3-2 MVRPC Base Household Classification Table, CBD Areas............................................ 8Table 3-3 MVRPC Base Household Classification Table, Urban Areas ......................................... 9Table 3-4 MVRPC Base Household Classification Table, Suburban Areas.................................... 9Table 3-5 MVRPC Base Household Classification Table, Rural Areas ........................................ 10Table 3-6 Step14 Batch, Control and Parameter Files ............................................................ 11Table 4-1 Step15 Batch, Control and Parameter Files ............................................................ 13Table 5-1 School-Age Population ......................................................................................... 14Table 5-2 University Trip Attraction Database, MVRPC Region................................................ 15Table 5-3 Shopping Center Trip Attraction Database, MVRPC Region ...................................... 15Table 5-4 High School Transit Trip Attraction Database, MVRPC Region .................................. 16Table 5-5 Recreational Sites Trip Attraction Database, MVRPC Region .................................... 17Table 5-6 Zone to County to State Equivalency Table ............................................................ 17Table 5-7 External-Internal Trip Ends at External Stations ..................................................... 18Table 5-8 HBW and HBO Attraction Scale Factors ................................................................. 20Table 5-9 Step 16 Batch, Control and Parameter Files ........................................................... 21Table 6-1 1995 Home-Based Trip Generation, Before Subtracting IE Trips............................... 23Table 6-2 Internal-External Trip Reconciliation, Home Based Work Trips ................................. 24Table 6-3 Internal-External Trip Reconciliation, Home-Based Other Trips ................................ 25Table 6-4 Consolidated <strong>Model</strong> Trip Generation Estimates, Before Updated Production/AttractionScale Factors ............................................................................................................. 25Table 6-5 Final Consolidated Trip Generation Estimates, with Updated Scale Factors................ 37Table 7-1 NHB Trip Generation Rates................................................................................... 38Table 7-2 Non Home Based Trip Generation Estimates .......................................................... 38Table 8-1 External Stations to Geocode................................................................................ 39Table 8-2 Number of Records from Stations in the Consolidated <strong>Model</strong>, <strong>OKI</strong> Region................. 40Table 8-3 Number of Records from Stations in the Consolidated <strong>Model</strong>, Mon/Gre Counties ....... 40Table 8-4 Number of Records from Stations in the Consolidated Region, Miami County ............ 42Table 8-5 Border Station Geocoding Summary Statistics ........................................................ 43Table 8-6 External Station Vehicle Counts (Expanded)........................................................... 44Table 8-7 Border Station Trip Volumes................................................................................. 47Table 8-8 Border Station OD Work Trip Table, Car Trips Only................................................. 48Table 8-9 Border Station Non-Work OD Trip Table, Car Trips Only.......................................... 48Table 8-10 External-Internal Trip Special Generator Zones..................................................... 50Table 8-11 External Station Volume Discount Factors ............................................................ 50Table 8-12 Internal-External Trip Production <strong>Model</strong>s ............................................................. 52iii


Index of FiguresFigure 2-1 Daily Parking Rates in Downtown Dayton ($1978)................................................... 4Figure 2-2 Availability of "Yellow Bus" Service in the Consolidated <strong>OKI</strong>/MVRPC Region ............... 5Figure 6-1 Comparison of HBW Trip Production Estimates, Consolidated <strong>Model</strong> vs. <strong>OKI</strong> v.54 andMVRPC Base 94.......................................................................................................... 26Figure 6-2 Comparison of HBO Trip Production Estimates, Consolidated <strong>Model</strong> vs. <strong>OKI</strong> v.54 andMVRPC Base 94.......................................................................................................... 27Figure 6-3 HBW Trip Productions – Consolidated <strong>Model</strong>......................................................... 28Figure 6-4 Home-Based Work Trip Attractions – Consolidated <strong>Model</strong>....................................... 29Figure 6-5 Home-Based Other Trip Productions – Consolidated <strong>Model</strong>..................................... 30Figure 6-6 Home-Based Other Trip Attractions – Consolidated <strong>Model</strong> ...................................... 31Figure 6-7 Home-Based University Trip Productions – Consolidated <strong>Model</strong>............................... 32Figure 6-8 Home-Based University Trip Attractions – Consolidated <strong>Model</strong>................................ 33Figure 6-9 Home-Based School Trip Productions – Consolidated <strong>Model</strong>, Transit Trips Only........ 34Figure 6-10 Home-Based School Trip Attractions – Consolidated <strong>Model</strong>, Transit Trips Only ....... 35Figure 6-11 Internal to External Trip Ends – Consolidated <strong>Model</strong> ............................................ 36Figure 8-1 Cordon Survey Geocoding Process and Results, In-Consolidated Region Records ..... 41Figure 8-2 Proximity to the External Cordon ......................................................................... 49iv


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. BackgroundThis is Part III of the <strong>OKI</strong>/MVRPC model development report. It has been previously released asthe Task A.4.3, Trip Generation, a report that is part of a series of working papers that documentthe development of a consolidated travel demand model for the Ohio-Kentucky-Indiana Councilof Governments and the Miami Valley Regional Transportation Commission (<strong>OKI</strong> and MVRPCrespectively). This model development is undertaken under the framework of the North-SouthTransportation Initiative, a Major Investment Study focusing on the Interstate 75 corridor.This report documents changes made to the trip generation model components in order to adaptit to the consolidated <strong>OKI</strong>/MVRPC region. As in version 5.4 1 of the travel demand model, crossclassificationmodels are used to forecast trip productions for four trip purposes: home-basedwork, home-based university, home-based school and home-based other. Non home-based tripsare estimated after the mode choice step, and for this reason non-home based trip generation isaddressed separately. Regression models are used to forecast trip attractions for the same fourtrip purposes, as well as trip ends for internal-external trips at the internal zones. Trip factoringmethods (fratar) are utilized to forecast trip ends for taxi trips, external-external trips andinternal-external trips at the external stations. A parallel effort is underway to develop acommodity flow model, and consequently truck trip generation is not included in this report.This report discusses work performed to merge the MVRPC region into the <strong>OKI</strong> travel demandmodel, so as to forecast trip productions and attractions for the entire consolidated region. Italso discusses the re-estimation of the external trip table, including external-external andexternal-internal trip ends. The report covers the four jobstream steps that comprise tripgeneration: Build Socioeconomic Database (Step 12), Build Household Classifications (Step 14),Estimate Trip Productions by Market Segment (Step 15), and Trip Generation for home-basedpurposes (Step 16). A separate section discusses the geocoding of the cordon line survey as wellas the external trip estimation work.1 For a detailed description of the model version 5.4 please refer to Ohio-Kentucky-Indiana Regional <strong>Model</strong>.Tier 2 Version. Methodology and Validation Report. I-71 Corridor Transportation Study. Prepared for the<strong>OKI</strong> Regional Council of Governments by KPMG Peat Marwick LLP. October 1998.Trip Generation - Background 1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Build Socio-Economic DatabaseThe first step in the estimation of trip productions and attractions is Step 12, where the socioeconomicdatabase (primarily zonal demographic data) is put together from various input files.As detailed below, in order to implement this step for the consolidated system it was necessaryto append MVRPC zonal data to the existing <strong>OKI</strong> database. In addition the main Step 12program was updated so that it reads in the appropriate number of internal zones.2.1 Data FilesThe socioeconomic database for the consolidated region includes the variables listed in Table 2.1for all internal and external zones (2531 TAZs). These data reside in four separate files, asindicated in the table. The data included in A1002.95e were prepared by both planning agencies(<strong>OKI</strong> and MVRPC), and input into a single database "as provided". The generation of theadditional data is described below.Table 2-1 Socio-Economic Database VariablesData Item Description Input FileZone numberArea type0 – CBD1 – Urban2 – SuburbanA1002.95e/A1001.ext3 – RuralNumber of householdsA1002.95e/A1001.extAverage workers per householdA1002.95e/A1001.extAverage persons per householdA1002.95e/A1001.extAverage autos per householdA1002.95e/A1001.extTotal employment Zone indicates place of work A1002.95e/A1001.extLand area In acres. A1002.95e/A1001.extPopulation density Persons per acre A1002.95e/A1001.extEmployment density Jobs per acre A1002.95e/A1001.extWork trip auto parking cost In cents per day costs.txtWork trip parking seek time In minutes costs.txtWork trip walk time at attraction end In minutes costs.txtNon-work trip auto parking cost In cents per day costs.txtNon-work trip parking seek time In minutes costs.txtNon-work trip walk time at attraction end In minutes A1002.95e/A1001.extCBD area type indicator1 – CBD0 – Non CBDA1002.95e/A1001.extUrban area type indicator1 – Urban0 – Non urbanA1002.95e/A1001.extTotal autosA1002.95e/A1001.extTransit availability0 –Strong yellow bus service1 –Negligible yellow bus service2 –Moderate service, Hamilton Co.hbsctuse.txt3 –Moderate service, Kentucky.Zone location with respect to cordon line1 – Central2 – Intermediate3 – Close to cordon5 – Zone with regional commercial orA1002.95e/A1001.extTrip Generation - Build Socio-Economic Database 2


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Data Item Description Input FileDistrict numberLow trip attraction employmentpercentageMedium trip attraction employmentpercentageHigh trip attraction employmentpercentagerecreational activityProportion of total employment occupied inagriculture, mining, construction,manufacturing and the armed forcesProportion of total employment occupied intransportation, communications and publicutilities, wholesale trade, finance, insuranceand real estate, health services, educationalservices, public administration and otherprofessional services.Proportion of total employment occupied inretail trade, business and repair services,personal services, entertainment andrecreation services.A1002.95e/A1001.extA1002.95e/A1001.extA1002.95e/A1001.extA1002.95e/A1001.ext2.1.1 Parking Costs: Costs.txtParking cost data include the daily parking rate, parking seek time and parking walk time,calculated separately for work and non-work trip purposes. For the <strong>OKI</strong> zones (1-1608), thesedata were taken from the 1995 database. In instances where the 1995 zones were split, theparking cost attributes for the new, consolidated system zones were assumed equal to theattributes of the "parent" zone.As shown in Figure 2.1, for the MVRPC zones, the daily parking rate was assumed to be as highas $1.90 2 (approximately equal to $5.00 in 2000 US$) in the center of the downtown area (lotsand garages between Ludlow and Jefferson), and to drop to $0.40 (approximately equal to $1.00in 2000 US$) near the limits of the downtown area (Patterson Blvd. and Sinclair College).Parking costs were assumed to be zero for all other MVRPC zones. Parking seek time wasassumed to be 1.0 minute for all CBD zones and zero for all other zones, while parking walk timewas assumed to be 1.0 minute in all zones. Similar data were used for work trip and non-worktrip purposes.2.1.2 Transit Availability: HbscTUse.txtTrip production rates for Home-based School trips include trips by regular public transit and byspecial school or "yellow bus" service. These trip productions are later discounted so that onlytrips by public transit are included in subsequent steps of the model. To discount the trip rates,each TAZ is assigned a discount factor corresponding to a transit use or availability code, asdetailed in Table 2.2 and shown in Figure 2.2. In Montgomery, Greene and Miami countiesyellow bus service is ubiquitous, except in parts of the city of Dayton and the Oakwoodneighborhood.2 Parking costs in the model are entered in $1978.Trip Generation - Build Socio-Economic Database 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-1 Daily Parking Rates in Downtown Dayton ($1978)Table 2-2 Home-based School Transit Availability CodesTraffic Analysis Zones Yellow Bus Service HBSCTUSE Code Discount FactorZones in <strong>OKI</strong> region:Outside Hamilton Co. Pervasive 0 0Within CincinnatiPublic School DistrictNegligible 1 0.1275Outside CincinnatiPublic School District,Moderate 2 0.0506but inside Hamilton Co.In Kentucky Moderate 3 0.0506Zones in MVRPC region:Oakwood (1829,1887,1972,1974,1978)Negligible 1 0.1275Dayton Moderate 2 0.0506Rest of Montgomery Co. Pervasive 0 0Greene Co., Miami Co. Pervasive 0 0Trip Generation - Build Socio-Economic Database 4


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-2 Availability of "Yellow Bus" Service in the Consolidated <strong>OKI</strong>/MVRPCRegionYellow Bus Service AvailabilityPervasive (0)Negligible (1)Moderate (2)Moderate (3)Trip Generation - Build Socio-Economic Database 5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.1.3 External Station Data: A1001.extAll external stations or zones were assigned values for each variable listed in Table 2.1. Themodel does not actually require most of these data; in particular, the data are not used toestimate external-internal or external-external trip ends. Nevertheless they are expected as aninput, and so they have been defined following the <strong>Model</strong> 54 convention. All variables except thefollowing were assigned a value of zero:• Area type: 3 (suburban).• Workers per household: 1 worker per household.• Persons per household: 2 persons per household.• Autos per household: 1 auto per household.• Land area: 100 acres.• Non-work trip walk time at attraction end: 1.0 min.• Zone location code: 3 (close to the cordon line)• District number: varies depending on external zone location2.2 Executable Programs: ST120160.exeIn version 54 of the <strong>OKI</strong> travel demand model, Step 12 is performed by a stand-aloneexecutable, ST120153. One of the parameters of this program, NIZ, is the number of internalzones present in the demographic input file (A1002.95e). The source code was updated, renamedST120160 and recompiled with NIZ=2425, the appropriate number of internal zones inthe consolidated system.2.3 Step12 Batch, Control and Parameter FilesThe batch file that calls the Step12 subroutines was edited so that it uses the updated BuildSocio-Economic Database program, ST120160. No other changes were required to the controlor parameter files used in this step (see Table 2.3). A copy of the changed file is provided inAppendix A.Table 2-3 Build Socio-Economic Database Batch, Control and Parameter FilesFile NameSubdirectoryUpdateRequiredDescriptionStep12.bat \Batch\<strong>Model</strong>60 Yes Step 12 batch fileSt1201.inp Output directory No Parameter file, created by G.U.I<strong>Model</strong>.inp Output directory No Parameter file, created by G.U.ITrip Generation - Build Socio-Economic Database 6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Build Household Classification TableThe second trip generation step is to build a household classification table for the entireconsolidated region (Step14). As developed for version 5.4 of the <strong>OKI</strong> travel demand model, inthis step a base classification table is read and adjusted to ensure that for each zone, theestimated zonal averages for each classification variable match the input averages found in thesocio-economic database (A1002.95e). A similar technique was used in the previous version ofthe MVRPC model, given that this model's trip generation routine was adapted from <strong>OKI</strong>'s.Version 6.0 of the travel demand model uses this same matrix balancing technique.While their matrix balancing techniques may be similar, the household distributions representedin the base classification tables used by <strong>OKI</strong> and MVRPC are in fact quite different. See forexample Table 3.1, which shows the percent difference between <strong>OKI</strong> and MVRPC in the jointdistribution of suburban households that own one car per household.Table 3-1 Percent Difference in Joint Household Distribution, One-Auto SuburbanHouseholdsHouseholdWorkers per HouseholdSize0 1 2 3 4+1 41% -20% 0% 0% 0%2 59% 74% 20% 0% 0%3 46% 80% -19% 72% 0%4 472% 8% -12% -100% 0%5 0% -4% 235% -100% 0%6+ 0% -100% -100% -100% 0%Given that the distribution of households by size, auto ownership and household workers inMontgomery and Greene counties does not match well with the <strong>OKI</strong> household classificationtable, it would be incorrect to apply the <strong>OKI</strong> table to distribute the households in the MVRPCregion. Step14 was thus modified so that separate classification tables are used for the <strong>OKI</strong> andthe MVRPC zones. The following sections describe in detail changes made to the MVRPCclassification tables and to all Step 14 program files.3.1 MVRPC Household Classification Table AdjustmentThe consolidated model uses the following household classification variables:• Workers per household: 0, 1, 2, 3, 4 or more.• Household size: 1, 2, 3, 4, 5, 6 or more persons per household.• Household auto ownership: 0, 1, 2, 3 or more autos per household.• Area type: CBD, Urban, Suburban and Rural.The base MVRPC tables were developed instead for three area types only: CBD/Urban, Suburbanand Rural. Given that there are no data available to re-estimate separate CBD and Urban tables,as required by Version 6.0, the assumption that the same distribution applies to both area typeswas maintained. Separate tables were then calculated simply by multiplying the CBD/Urban tableby the probability of observing a CBD household, to obtain the CBD table, and the probability ofTrip Generation - Build Household Classification Table 7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0observing an urban household, for the Urban table. These probabilities were calculated using thezonal socioeconomic data (A1002.95e), and are equal to 0.86% for a CBD household and99.14% for an urban household.Further examination of the MVRPC table resulted in additional minor adjustments. For example,it was found that there was a non-zero probability of observing a 2-person household with 3workers in the house. The final classification table for the MVRPC zones is shown in Tables 3.2to 3.5, and is input into the model stream as T0007 (see Section 3.3).Table 3-2 MVRPC Base Household Classification Table, CBD AreasAutoOwnership0123+HouseholdWorkers per HouseholdSize 0 1 2 3 4+1 75 20 0 0 02 9 11 0 0 03 3 0 0 0 04 0 0 4 0 05 0 0 0 0 06+ 0 0 0 0 01 69 83 0 0 02 30 61 21 0 03 5 19 15 0 04 0 7 10 4 05 4 7 0 7 06+ 0 11 0 0 01 2 10 0 0 02 20 30 48 0 03 3 20 42 3 04 0 9 36 2 25 0 5 5 0 06+ 0 14 5 0 01 0 3 0 0 02 3 10 16 0 03 0 10 10 12 04 0 3 14 9 25 0 0 4 3 156+ 0 10 0 0 0Trip Generation - Build Household Classification Table 8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-3 MVRPC Base Household Classification Table, Urban AreasAutoOwnership0123+HouseholdWorkers per HouseholdSize 0 1 2 3 4+1 8621 2288 0 0 02 1094 1252 0 0 03 320 0 0 0 04 0 0 438 0 05 0 0 0 0 06+ 0 0 0 0 01 7897 9582 0 0 02 3434 6993 2407 0 03 537 2138 1736 0 04 0 865 1101 450 05 457 836 0 800 06+ 0 1263 0 0 01 283 1199 0 0 02 2290 3499 5591 0 03 335 2341 4885 396 04 0 1081 4130 282 2845 0 522 621 0 06+ 0 1579 624 0 01 0 344 0 0 02 308 1097 1852 0 03 0 1200 1168 1419 04 0 388 1647 1009 2045 0 0 445 360 17046+ 0 1133 0 0 0Table 3-4 MVRPC Base Household Classification Table, Suburban AreasAutoOwnership0123+HouseholdWorkers per HouseholdSize 0 1 2 3 4+1 4134 196 0 0 02 329 0 223 0 03 0 0 0 0 04 0 0 0 0 05 0 0 0 0 06+ 0 0 0 0 01 8768 15762 0 0 02 5159 5756 1523 0 03 325 3707 846 463 04 195 1279 521 0 05 228 301 305 0 06+ 0 0 0 0 01 388 1374 0 0 02 4916 8820 19375 0 03 445 5278 7349 1482 04 0 5619 11440 799 8315 0 3854 2793 153 4946+ 0 1992 794 431 01 0 643 0 0 02 676 2512 3846 0 03 695 3174 4886 3763 04 167 1095 4461 3239 7785 195 773 2091 143 18496+ 0 1119 371 403 1332Trip Generation - Build Household Classification Table 9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-5 MVRPC Base Household Classification Table, Rural AreasAutoOwnership0123+HouseholdWorkers per HouseholdSize 0 1 2 3 4+1 338 0 0 0 02 0 0 0 0 03 0 0 0 0 04 0 0 0 0 05 0 0 0 0 146+ 2 8 9 1 11 1148 638 0 0 02 0 729 348 0 03 0 325 0 0 04 138 0 0 0 05 0 0 0 1 1256+ 20 69 75 11 71 0 0 0 0 02 330 1405 1342 0 03 82 156 1119 0 04 0 416 763 0 05 86 260 0 0 2006+ 31 111 120 18 101 0 0 0 0 02 65 237 494 0 03 80 0 659 525 04 0 817 375 448 05 0 255 238 0 1326+ 21 72 80 12 73.2 Executable Programs: ST140160In the <strong>OKI</strong> model version 5.4, ST140153 is the program that classifies zonal householdsaccording to the distribution given in the base household classification table. This program wasmodified and renamed ST14060 so that in version 6.0 it runs twice in the model stream: the firsttime it classifies the <strong>OKI</strong> zones (1-1608) according to the <strong>OKI</strong> version 5.4 classification table, andthe second time it classifies the MVRPC zones (1609-2425) according to the table described inSection 3.1. In this new version, ST14060 reads in a parameter (REGION) from the control inputfile (ST1401.inp), which indicates whether <strong>OKI</strong> or MVRPC zones are to be processed. Minorchanges to the code were required to ensure that given the value of this parameter, theappropriate zones are processed and that the corresponding classification table is used. A singlemodified household classification (C1401) is output by appending the MVRPC zones immediatelyfollowing the <strong>OKI</strong> zones.3.3 Step14 Batch, Control and Parameter FilesIn order to process separately the <strong>OKI</strong> and MVRPC zones, two control input files were developed(see Table 3.6). These files are copied with the generic control file name, ST1401.inp, prior toeach execution of ST140160. The contents of the modified batch and control files are listed anddescribed in Appendix A.Trip Generation - Build Household Classification Table 10


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-6 Step14 Batch, Control and Parameter FilesFile Name Subdirectory Update Required DescriptionStep14.bat \Batch\<strong>Model</strong>60\ Yes Step 14 batch fileSt1401.oki \Batch\<strong>Model</strong>60\C Yes Step14 control input file (new)St1401.mv \Batch\<strong>Model</strong>60\C Yes Step14 control input file (new)T0006 \Batch\<strong>Model</strong>60\C No <strong>OKI</strong> base household classification tableT0007 \Batch\<strong>Model</strong>60\C Yes MVRPC base household classification tableTrip Generation - Build Household Classification Table 11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Trip ProductionsTrip productions for four trip purposes are estimated in Step15, the third step in the TripGeneration program: home-based work, home-based university, home-based school and homebasedother. Trip productions were initially estimated by applying the <strong>OKI</strong> trip production rates,and were later adjusted in the process of validating to the MVRPC original estimates and to thehighway observed VMT.4.1 <strong>Model</strong> AdjustmentsWhen applying the <strong>OKI</strong> trip production rates to the entire region, it was observed that thisunderestimates work trips in Montgomery, Greene and Miami counties by approximately 25%,when compared with MVRPC's Base 94 model estimates. On average, the <strong>OKI</strong> model estimates1.2 HBW trip productions per worker, while the MVRPC model estimates 1.6 HBW tripproductions per worker. The difference may be due to higher trip linking rates in the Cincinnatiregion, due to their higher trip lengths and possibly to increased trip linking opportunities. At thesame time, the <strong>OKI</strong> model underestimates HBO trip productions in the MVRPC region.Given that both <strong>OKI</strong> and MVRPC trip rates are reasonable and were originally estimated fromlocal survey data, the consolidated model applies <strong>OKI</strong> home-based work and home-based othertrip rates to the <strong>OKI</strong> zones (1-1608) and MVRPC home-based work and home-based other ratesto the MVRPC zones (1609-2425). The scale factors were initially set to the values in theiroriginal models, and were later adjusted in the process of validating the highway network VMTestimates. Please see Section 6.0 for a more detailed analysis of the trip production estimates.The trip production rates and scale factors used in version 6.0 are shown in Appendix B.The consolidated model uses the same trip production rates as model version 5.4 for the othertwo home-based purposes: university and school. Please refer to the Methodology andValidation Report cited above for a full description of these models. The trip production rates areshown in Appendix 2.In Step 15 trip productions are grouped by market segment, for use later in mode choice. Themarket segmentation used in model version 5.4 was changed so that the new marketsegmentation is consistent with the updated mode choice model. So, in version 6.0 of the<strong>OKI</strong>/MVRPC model, the following market segments apply:• For HBW, the trip markets are defined by auto ownership and number of workers perhousehold, as follows:o Zero auto householdso Households with less cars than workerso Households with equal numbers of cars and workerso Households with more cars than workers• For HBO, the trip markets are defined by auto ownership, as follows:o Zero auto householdso One auto householdso Two auto householdso Households with three or more autos• For HBU and NHB, no market segmentation is applied.Trip Generation - Trip Productions 12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.2 Batch, Control and Parameter FilesThe executable program, ST150160, was updated from its previous version, ST150153, so that itnow applies trip production rates by region (for HBW and HBO), and produces trip productionand household summaries by region, in additional to the grand regional total.Step15 reads in trip production rates and other parameters from an input parameter file,(St1501.inp), as shown in Table 4.1. This file was edited to update the total zones value from1067 to 2531, to add an additional parameter, LAST<strong>OKI</strong>, the highest internal zone number in the<strong>OKI</strong> region, and to add the MVRPC home-based work trip production rates. A copy of the editedfile is found in Appendix A.Table 4-1 Step15 Batch, Control and Parameter FilesFile Name Subdirectory Update Required DescriptionStep15.bat \Batch\<strong>Model</strong>60\ No Step 15 batch fileSt1501.inp \Batch\<strong>Model</strong>60\C Yes Step15 parameter and trip rate fileTrip Generation - Trip Productions 13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05. Trip GenerationThe final trip generation estimates are produced in Step16. This step calculates trip attractionsfor all trip purposes, as well as trip productions for the purposes not estimated in Step15. Theexception is non-home based trips, which are estimated after mode choice.Several changes were made to the Step16 input, control, and executable files. Many of the tripattraction databases were updated with information from Montgomery, Greene and Miamicounties. All zone-based information was expressed in terms of the new consolidated system.Some changes were introduced to the process of balancing attractions to productions, in order tohave more control over the allocation of attractions between the two regions. The mostsignificant update however was related to the external cordon trips. The 1995 ODOT cordonsurvey was used to re-estimate the external-to-external trip table, as well as the internal-toexternaltrip end equations. A detailed explanation of the survey processing and re-estimationprocess is given in Section 7 of this report. All other updates to the trip generation data and filesare documented in the following subsections.5.1 Taxi and Home-Based School Trip TablesThe taxi and home-based school transit trip tables were renumbered so that they conform to theconsolidated zone system. In the case of split zones, trips were distributed according to theproportion of households in the target (i.e. consolidated) zones.5.2 School-Age Population DataThe database of school-age population (ages 11 to 17) by county was updated to include theMVRPC counties. See Table 5.1Table 5-1 School-Age PopulationCountyPopulation Between 11 and 17 Years Old1990 1995 2010 2020 2030Butler 62,090 66,762 76,938 87,302 89,480Clermont 33,960 36,529 35,140 34,786 33,400Hamilton 171,160 177,770 186,140 189,696 197,758Warren 23,326 26,801 31,776 36,890 45,110Boone 12,995 14,640 20,922 22,824 26,526Campbell 17,243 17,151 16,734 15,554 15,146Kenton 29,654 29,380 28,552 27,024 26,116Dearborn 8,748 9,945 10,238 11,044 10,974Ohio a 0 0 0 0 0Montgomery 44,093 44,220 45,251 45,830 46,409Greene 11,620 12,166 13,145 13,908 14,670Miami 8,388 8,698 9,334 9,807 10,280Total 423,277 444,062 474,170 494,665 515,869aOhio County is not included in the Consolidated <strong>Model</strong>.Trip Generation - Trip Generation 14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05.3 Special Generator DatabasesSome of the special generator databases used by the <strong>OKI</strong> model to calculate zonal attractionswere updated to include special generators in the MVRPC region. The databases are listed inTables 5.2 to 5.5.Table 5-2 University Trip Attraction Database, MVRPC RegionTAZ College Name EnrollmentTrip AttractionRate2273 Wilberforce University 922 0.402143 Wright State University 15,636 0.402298 Cedarville College 2,640 0.352272 Central State University Campus 1,051 0.351643 Sinclair Community College 19,999 0.702017 Central Michigan University 600 0.702045 Kettering College of Medical Arts 538 0.702017 Park College 500 0.701633 Miami-Jacobs College 465 0.702033 RETS Tech Center 453 0.701798 United Theological Seminary 401 0.701623 Capitol University - Adult Degree Program 280 0.701892 University of Dayton 10,172 0.252277 Antioch College 1,200 0.252357 Edison Community College 5,500 0.702017 Air Force Institute of Technology 400 0.70Table 5-3 Shopping Center Trip Attraction Database, MVRPC RegionTAZConsNameRetail Trip AttractionEmployment Rate1860 Town and Country 700 5.901869 Salem Mall 1,000 5.901879 Northmont Plaza 115 4.501998 Waynetowne Plaza 655 5.752005 Northpark Shopping Center 955 5.902012 Township Square 195 4.502030 Cross Pointe Centre 170 4.502037 Centerville Place 500 5.752055 Carrollton Plaza 1,030 5.902064 Corners at the Mall 1,155 5.902065 Dayton Mall 2,160 6.102113 Lyons Crossing 580 5.752179 Beavercreek Towne 650 5.752188 Mall at Fairfield Commons 1,675 6.102189 Fairfield Crossing 570 5.752211 Sugarcreek Plaza I & II 700 5.902337 Miami Valley Centre Mall 755 5.752357 Piqua Mall 680 5.75Trip Generation - Trip Generation 15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-4 High School Transit Trip Attraction Database, MVRPC RegionTAZ High School Name EnrollmentTrip AttractionRate1628 Patterson Co-op High School 1,276 0.501681 Dunbar High School 806 0.501729 Jefferson High School 255 0.001752 Dixie High School 429 0.001752 Longfellow School/Stocklein Center 140 0.001752 Wayne High School 2,124 0.501752 Belmont High School 1,162 0.501774 Chaminade-Julienne High School 956 0.501774 Valleyview High School 620 0.001833 Colonel White High School 1,133 0.501842 Meadowdale High School 1,240 0.501845 Hillel Academy of Dayton High School 160 0.001817 Alter High School 731 0.001863 Trotwood-Madison High School 1,163 0.001888 Northmont High School 1,885 0.001755 Fairmont High School 2,378 0.001913 Brookville High School 495 0.001932 Northridge High School 596 0.001961 Vandalia Butler High School 1,163 0.001973 Oakwood High School 537 0.201975 Miami Valley High School 450 0.001982 Stebbins High School 1,089 0.002013 Centerville High School 2,358 0.002013 West Carrollton Sr. High 1,203 0.002015 Carroll High School 1,121 0.502015 Miamisburg High School 1,354 0.002164 Fairborn High School 1,755 0.002172 Yellow Springs High School (9-12) 236 0.002172 Beavercreek High School 1,587 0.002172 Ferguson Jr. High School 242 0.002172 Ankeney Jr. High School 270 0.002172 Bellbrook High School 800 0.002172 Warner Junior High School 450 0.002172 Xenia Christian High School 262 0.002172 Xenia Central Jr. High (9th) 350 0.002172 Xenia High School 1,224 0.002106 Cedarville High School 250 0.002106 Greenview High School 425 0.002321 Bradford High School 272 0.002326 Newton High School 303 0.002330 Milton-Union High School 583 0.002357 Piqua High School 1,275 0.002362 Troy High School 1,491 0.002369 Miami East High School 418 0.002379 Bethel High School 297 0.002391 Tippecanoe High School 801 0.002396 Troy Christian High School 272 0.002414 Covington High School 318 0.00Trip Generation - Trip Generation 16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-5 Recreational Sites Trip Attraction Database, MVRPC RegionTAZRecreation Center NameTrip AttractionPatronageRateAnnual Daily1924 Boonshoft Museum of Discovery 1.23 196,200 4181761 Dayton Art Institute 1.23 459,432 9801844 Hara Arena 1.23 1,500,000 3,1981638 Courthouse Square 1.23 1,470,000 3,1342143 Nutter Center 1.23 550,000 1,1731627 Victoria Theatre 1.23 280,900 5991617 Memorial Hall 1.23 200,000 4261922 Fraze Pavilion 1.23 70,500 1502017 USAF Museum 1.23 1,200,000 2,5595.4 Zone to County to State Equivalency TableAn equivalence table between zone numbers, counties and states is kept in ZtoCtoS.prn, andused throughout this step for summary trip reporting. It is also used to calculate future yearschool enrollment. The table was updated to include Montgomery, Greene and Miami counties(see Table 5.6)Table 5-6 Zone to County to State Equivalency TableStateCountyNo. Name No. NameTraffic Analysis Zones1 Butler 691 -992 1589 -1596 15992 Clermont 1128 -1254 16003 Hamilton 1 -690 1588 1601 16021 Ohio 4 Warren 993 -1127 1597 15985 Montgom. 1609 -21366 Greene 2137 -23187 Miami 2319 -24251 Boone 1466 -1550 1606 16072 Kentucky 2 Campbell 1255 -13393 Kenton 1340 -1465 1603 -16053 Indiana 1 Dearborn 1551 -1587 16085.5 External Trip Databases and <strong>Model</strong>s<strong>OKI</strong> <strong>Model</strong> v5.4 uses ADT vehicle (car and truck) counts at the external stations to balance theexternal-external and external-internal trip estimates. In the consolidated model, the externaltruck trips are obtained from the truck model; for this reason the counts at the external stationsneed to be discounted, so as to yield passenger car counts only.To estimate External-External (EE) and External-Internal (EI) trip ends, two input files arerequired. The EE trip table (M0007) was calculated directly from the 1995 ODOT Cordon Survey.EI passenger vehicle trip ends for 1995 and growth rates for future year forecasts are inExtinfo.prn (see Table 5.7. An additional column was included in this file to store the proportionof trucks observed at each station. Please refer to Section 8 for a detailed description of thedevelopment of external trip estimates for the consolidated model.<strong>Model</strong> v5.4 internal-external trip end regression models were re-estimated using 1995 cordonsurvey data geocoded to the consolidated system. Please refer to Section 8.3 for modelestimates and estimation statistics.Trip Generation - Trip Generation 17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-7 External-Internal Trip Ends at External StationsZone No. Station NameGrowth Fraction of % Trip EndsRate EE Trips Adjustment (1995)2426 US 52 1.37 0.090 0 1,9922427 SR 756 1.37 0.004 0 9122428 sr 774 1.37 0.063 0 7182429 SR 125 1.37 0.011 0 5,5412430 Spring Grove Rd 1.37 0.067 0 8872431 Starling Rd 1.37 0.032 0 1,4272432 Old SR 32 1.37 0.007 0 2,9152433 SR 32 1.37 0.046 0 17,9342434 Dela Palma Rd 1.37 0.026 0 3,2402435 Jackson Pk 1.37 0.015 0 1,1022436 US 50 1.37 0.024 0 3,2902437 SR 131 1.37 0.007 0 2,4252438 Lucas Rd 1.48 0.280 0 5862439 SR 133 1.48 0.034 0 2,3122440 SR 28 1.48 0.030 0 6,4682441 SR 132 1.48 0.007 0 5892442 SR 350 1.48 0.031 0 9362443 US 22 1.48 0.041 0 1,7522444 Harveysburg Rd 1.48 0.256 0 5242445 Wilmington Rd 1.48 0.035 0 6302446 IR 71 1.54 0.136 0 22,5192447 SR 73 1.48 0.408 0 4,6532448 SR 122 1.41 0.020 0 3,1482449 SR 503 1.41 0.019 0 1,3362450 Wayne Trace Rd 1.41 0.000 0 3772451 SR 744 1.41 0.030 0 1,3562452 US 127 1.41 0.024 0 2,9722453 SR 177 1.41 0.018 0 1,1452454 SR 732 1.41 0.022 0 2,2322455 US 27 1.41 0.022 0 4,8832456 Contreras Rd 1.41 0.006 0 4962457 Fairfield Rd 1.41 0.010 0 1,2922458 Brookville Rd 1.41 0.000 0 7202459 Peoria-Reily Rd 1.41 0.011 0 3522460 SR 126 1.41 0.008 0 1,4452461 Okeana Drewsburg Rd 1.41 0.007 0 5362462 Carolina Trace Rd 1.44 0.057 0 5992463 US 52 1.44 0.076 0 4,8832464 SR 1 1.44 0.130 0 1,7722465 Peters Rd 1.44 0.600 0 8932466 IR 74 1.44 0.049 0 13,4702467 SR 46 1.44 0.204 0 2,5812468 N Dearborn Rd 1.44 0.021 0 1,2442469 SR 48 1.44 0.021 0 1,6952470 SR 350 1.44 0.115 0 4,0562471 Old SR 350 1.44 0.052 0 7112472 US 50 1.44 0.169 0 4,8232473 SR 62 1.44 0.258 0 4882474 SR 262 1.44 0.377 0 1,0472475 SR 56 1.44 0.134 0 12,2662476 US 42 1.54 0.032 0 2,8442477 IR 71 1.54 0.322 0 14,0272478 SR 16 1.54 0.063 0 1,6422479 SR 491 1.54 0.077 0 9342480 IR 75 1.54 0.223 0 23,820Trip Generation - Trip Generation 18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-7 External-Internal Trip Ends at External Stations (cont.)Zone No. Station NameGrowth Fraction of % Trip EndsRate EE Trips Adjustment (1995)2481 US 25 1.54 0.028 0.0 2,9712482 SR 17 1.54 0.049 0.0 1,4312483 SR 177 1.54 0.000 0.0 5702484 US 27 1.54 0.041 0.0 5,9772485 SR 154 1.54 0.033 0.0 9922486 SR 10 1.54 0.000 0.0 7482487 AA Highway 1.54 0.000 0.0 4732488 SR 8 1.54 0.040 0.0 5,4752489 SR 49 1.60 0.104 0.0 7,0682490 US 40 E 1.27 0.088 0.0 3,5392491 Bellefontaine Rd 1.48 0.000 0.0 6742492 SR 235 1.30 0.084 0.0 11,7842493 I 675 N 1.30 0.139 0.0 6,8482494 I 70 E 1.21 0.475 0.0 44,3612495 Lower Valley Pk 1.23 0.025 0.0 4,2072496 Medway Rd 1.49 0.005 0.0 1,7912497 Haddia Rd 1.49 0.013 0.0 1,4962498 Spangler Rd 1.78 0.083 0.0 3632499 Dayton-Springfield Rd 1.10 0.024 0.0 11,1862500 W Enon Rd 1.34 0.055 0.0 9862501 Polecat Rd 1.16 0.033 0.0 1,0482502 US 68 N 1.20 0.077 0.0 6,9562503 SR 72 N 1.35 0.111 0.0 3,5582504 US 42 N 1.68 0.110 0.0 9962505 Selma-Jamestown Rd 1.00 0.313 0.0 4322506 SR 734 1.55 0.055 0.0 7482507 US 35 E 0.37 0.154 0.0 3,5152508 SR 72 S 1.47 0.214 0.0 1,3622509 US 68 S 1.60 0.136 0.0 4,7012510 SR 380 1.43 0.064 0.0 1,8092511 SR 725 W 1.19 0.235 0.0 3,0972512 US 35 W 1.29 0.042 0.0 6,1092513 Lexington-Salem Rd 1.11 0.022 0.0 1,0732514 I 70 W 1.20 0.584 0.0 21,1302515 US 40 W 1.29 0.108 0.0 2,4522516 Baltimore-Phillispburg Pk 1.08 0.046 0.0 7652517 SR 571 W 1.62 0.576 0.0 1,7962518 US 36 W 1.45 0.172 0.0 4,5702519 SR 185 1.42 0.242 0.0 1,9162520 SR 48 N 1.38 0.342 0.0 1,4532521 SR 66 1.46 0.113 0.0 3,5832522 I 75 N 1.42 0.537 0.0 31,8182523 County Rd 25 A 1.26 0.136 0.0 1,9412524 SR 589 1.89 0.310 0.0 3972525 Old US 36 E 1.50 0.207 0.0 4,4062526 Old Troy Pike 1.70 0.085 0.0 3052527 SR 55 1.46 0.134 0.0 1,6392528 SR 41 1.57 0.103 0.0 2,0262529 SR 571 E 1.09 0.412 0.0 3,7562530 Scarff Rd 1.23 0.068 0.0 6582531 New US 35 East 7.98 0.207 0.0 400Trip Generation - Trip Generation 19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05.6 Trip BalancingStep 16 applies the <strong>OKI</strong> trip attraction models to the entire consolidated region, and balancestotal attractions to productions. In the course of calibrating and validating the trip distributionand highway assignment models, it was determined that this method tended to overestimate thetrip interchanges between the <strong>OKI</strong> and MVRPC regions. The most likely reason is that the <strong>OKI</strong>trip attraction models do not fully apply to the MVRPC region. Original trip attraction models forMVRPC could not be estimated, due to lack of data. Instead, attraction scale factors wereintroduced to allow control over the allocation of attractions between the two regions. Thesescale factors were estimated jointly with the production scale factors by adjusting the modelregional volume and VMT estimates to the observed volume and VMT. Special attention was paidto the screenlines, in particular those at or near the border between the two regions. The finalattraction factors are shown in Table 5.8. Note that the overall effect of these factors is todecrease the attractiveness of the <strong>OKI</strong> region for work trips, and to decrease attractiveness ofthe MVRPC region for HBO trips.Table 5-8 HBW and HBO Attraction Scale FactorsRegionScale FactorHBW HBO<strong>OKI</strong> 0.85 0.90MVRPC 1.12 0.755.7 Step16 Batch, Control and Parameter FilesThe Step16 parameter file, ST1601.inp, was modified to add a new parameter to the tripgeneration program: the highest internal zone number (NIZ). Previously this parameter wasinternally calculated by assuming that all zones with no households and no employment wereexternal zones. This is no longer the case, and thus it was necessary to read this parameter oninput. ST1601.inp also specifies an additional output file (see Section 5.8). The Step16 batchfile, Step16.bat, was modified so that it now uses the new version of the executable program,ST160160.exe. The modified control and batch files are listed in Appendix A. Additional inputfiles to the Step16 program are listed in Table 5.9 below.Additional parameters were added to control the balancing of trip attractions to productions,identified in the control file as SCALHBW and SCALHBO. See Appendix B for a listing of thesefactors.Trip Generation - Trip Generation 20


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-9 Step 16 Batch, Control and Parameter FilesFile Name Subdirectory Update Required DescriptionStep16.bat \Batch\<strong>Model</strong>60\ Yes Step 16 batch fileSt1601.inp \Batch\<strong>Model</strong>60\C Yes Step 16 parameter fileM0007 \Batch\<strong>Model</strong>60\C Yes Tranplan Taxi, EE, HBSC Trip TablesSchlpop.prn \Batch\<strong>Model</strong>60\C Yes School-age population by countyElem.prn \Batch\<strong>Model</strong>60\C No Elementary school enrollment databaseUniv.prn \Batch\<strong>Model</strong>60\C Yes University enrollment databaseMisc.prn \Batch\<strong>Model</strong>60\C No Miscellaneous trip purposes databaseRecr.prn \Batch\<strong>Model</strong>60\C Yes Recreational trip databaseHisch.prn \Batch\<strong>Model</strong>60\C Yes High school enrollment databaseShop.prn \Batch\<strong>Model</strong>60\C Yes Shopping trip databaseExtinfo.prn \Batch\<strong>Model</strong>60\C Yes External zones databaseZtoctos.prn \Batch\<strong>Model</strong>60\C Yes Zone-County-State equivalence table5.8 Executable Programs: ST160160The following modifications were made to the Step16 executable program:• Read parameter NIZ (highest internal zone number) from control file, instead of calculating itinternally.• Update parameter NZ (highest zone number) to 2531.• Modified calculation of school-age population so that it now includes the three MVRPCcounties (subroutine READ11).• Calculate the external-external trip ends directly from the EE trip table (M0007), thuseliminating the need for EETEND.EXE.• Ensure that internal zones that have no households and no employment produce zerointernal-external trips.• Write an additional output file, A1608, after "negative" trips have been set to zero."Negative" trips occur when total internal-internal trips in a zone are less than estimatedinternal-external trips, and this results partly due to random estimation errors in the internalexternaltrip regression models, as well as to random errors in the home-based tripproduction and attraction models. This occurs in approximately 10 zones throughout theconsolidated region. When the IE estimate for a given zone is larger than the home-basedestimate, the difference is set to zero, which has the effect of overestimating trips by anamount equal to the difference in the estimates. For the base year model estimates, thisoverestimation amounts to 32 trip productions and 307 trip attractions, which clearlyrepresents a negligible impact on total trip generation.• Apply the attraction scale factors prior to trip balancing.Trip Generation - Trip Generation 21


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06. Trip Generation AnalysisAn initial trip generation analysis was performed prior to adjusting the production and attractionscale factors, that is, using the scale factors originally used by <strong>OKI</strong> and MVRPC. The results ofthis initial analysis are described in Section 6.1. Section 6.2 presents the final trip generationestimates, after the adjustment of the scale factors.6.1 Trip Generation Estimates, before Scale FactorsHome-based trip production and attraction estimates for the consolidated region, by purpose, arelisted in Table 6.1. This table lists trip totals including home-based trips produced and attractedat external zones (i.e., trip estimates before subtracting the internal-external trips). The tableallows direct comparisons of the home-based trip estimates without including the internalexternaltrip estimates.For the <strong>OKI</strong> region, the consolidated model estimates approximately the same number of tripproductions for all trip purposes as model v5.4. The small differences observed are due todifferences in the socioeconomic data, possibly introduced at the time when the original 1003zones were split into 1608 zones. For example, in the consolidated model the <strong>OKI</strong> regioncontains 895,322 employed residents while in version 5.4 of the <strong>OKI</strong> model the same region (i.e.not including Ohio Co.) contains 907,582 employed residents. This 1.4% reduction in thenumber of employed residents results, not surprisingly, in a 1.2% reduction in the number ofhome-based work trips.In terms of trip attractions, the <strong>OKI</strong> region gained home-based work trips, and lost home-basedother and home-based university trips. These changes are primarily due to the balancing of tripattractions to the total consolidated productions (by trip purpose). The implication for the modelis that some HBW trips produced in the Dayton region, and formerly attracted within the sameregion, are now attracted to the Cincinnati region. Conversely, for HBO trips, some trips formerlyproduced and attracted within the Cincinnati region are now attracted to the Dayton region.For the MVRPC region, the consolidated model estimates more home-based work trips and morehome-based other trips (substantially more in the case of Miami County) than their previousmodel. The consolidated model accounts for all non-transit home-based school trips as homebasedother trips; for this reason MVRPC and Miami County HBC trips have been included in theHBO column, with the exception of a small number of HBC transit trips which occur inMontgomery Co. As explained above, the MVRPC region lost HBW trip attractions, but gainedHBO attractions. Even though the consolidated model uses the MVRPC base classification tableand their own HBW and HBO trip production rates, there are still substantial differences in thetrip production estimates due to changes in the base socio-economic data. In particular, thedistribution and number of households used in MVRPC's Base 94 model was updated for use inthe consolidated model.The model estimates approximately 7.05 million home-based trip productions for the entireregion, which implies on average approximately 6.9 daily home-based trips per household.Trip Generation - Trip Generation Analysis 22


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 6-1 1995 Home-Based Trip Generation, Before Subtracting IE TripsC O N S O L I D A T E D M O D E LHome-Based Work Home-Based School Home-Based University Home-Based OtherRegion Productions Attractions Productions Attractions Productions Attractions Productions Attractions<strong>OKI</strong> 1,140,284 1,233,402 13,959 14,021 56,200 55,419 3,332,871 3,312,280MVRPC 561,712 484,665 2,042 1,994 35,658 37,159 1,603,655 1,644,772Miami Co. 74,171 58,086 0 0 5,958 5,240 221,664 201,157All 1,776,167 1,776,153 16,001 16,015 97,816 97,818 5,158,190 5,158,209<strong>OKI</strong> MODEL 5.4 AND MVRPC BASE 94 MODELHome-Based Work Home-Based School Home-Based University Home-Based OtherRegion Productions Attractions Productions Attractions Productions Attractions Productions Attractions<strong>OKI</strong> 1,152,052 1,154,614 13,886 a 13,885 a 55,890 56,096 3,338,244 3,345,972MVRPC 542,161 542,142 3,143 a 3,143 a N.A. N.A. 1,521,917 1,521,914Miami Co. 65,911 65,914 0 0 N.A. N.A. 151,540 147,802All 1,760,124 1,762,670 17,029 17,028 N.A. N.A. 5,011,701 5,015,688PERCENT DIFFERENCE (Consolidated <strong>Model</strong> - Previous <strong>Model</strong>s)Home-Based Work Home-Based School Home-Based University Home-Based OtherRegion Productions Attractions Productions Attractions Productions Attractions Productions Attractions<strong>OKI</strong> -1% 7% 0% 0% 1% -1% 0% -1%MVRPC 4% -11% -35% -36% N.C. N.C. 5% 8%Miami Co. 13% -12% 0% 0% N.C. N.C. 46% 36%All 1% 1% -6% -6% N.C. N.C. 3% 3%N.A: Not available; N.C: Not comparable.a Transit trips only; auto trips are included in HBO total.The HBW and HBO trip production rates applied in Step15 include trips attracted to zones outsideof the region, that is, internal to external trips. To avoid double-counting trips, the estimatedhome-based internal-to-external trips are subtracted from the initial estimate of HBW, HBO andNHB trips. Please refer to the <strong>OKI</strong> <strong>Model</strong> 5.4 development documentation for the procedure usedto allocate the internal to external trips. Note that, even though model 5.4 includes truck trips asa separate purpose, IE truck trips were subtracted from the HBW, HBO and NHB purposes.Tables 6.2 and 6.3 show the results of subtracting EI trips, both for the consolidated model andfor each region's original models. As expected, due to the consolidation of the three regions,there are less internal-to-external trip ends in the consolidated model than in the previousmodels. The total reduction in EI trips, approximately 366,000 vehicle trip ends, is due not onlyto the regional consolidation but also to the exclusion of IE truck trip ends from these modelestimates.Note that the IE trips listed on these tables are exclusive of truck trips; IE and EE truck trips areestimated by a separate model. Hence the IE percentages shown in Tables 6.2 and 6.3overestimate the true HBW and HBO IE proportions. It is estimated that about 30% of theestimated passenger vehicle IE trips are HBW productions and attractions while 55% are HBOproductions and attractions. The remaining 16% are NHB trips. These proportions arecalculated as follows:INTHBWPINTHBWAINTHBOPINTHBOAINTEI = EI + EI + EI + EI + EINHBINTTrip Generation - Trip Generation Analysis 23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0EIINT=EIINTP∗OCCHBWHBW+ AHBW* TOTLV+ EIINTP∗OCCHBOHBO+ AHBO* TOTLV+ EIINT* FNHBA*OCCHBWNHB+ AHBO* TOTLVwhere TOTLV is the total daily home-based and non home-based vehicle trip ends, OCC is theaverage vehicle occupancy, and F NHB is the fraction of home-based attractions that are NHB trips,TOTLVHBW HBW HBO HBOHBW HBOP + A P + ANHB A + A= ++ F ∗.HBWHBONHBOCCOCCOCCEvaluating total productions, attractions, vehicle occupancy and daily vehicle trip ends in theabove equations yields the proportion of EI trip ends that are HBW, HBO and NHB trips:EIINT= 0 .292 ∗ EI + 0.547 ∗ EI + 0. 161 ∗ EIINTINTINTPlease refer to “Methodology and Validation Report”, <strong>OKI</strong> Regional <strong>Model</strong> Tier 2 Version foradditional information on the allocation of EI trip ends.Relative to <strong>Model</strong> 5.4, <strong>OKI</strong> HBW trip productions increased, primarily due to the elimination oftruck trips. There is little net gain otherwise because the reduction in HBW IE trip productions isapproximately equal to the reduction in total <strong>OKI</strong> HBW trip productions, the latter due most likelyto the reduction in employed residents exhibited by the consolidated socio-economic data. Therewas a substantial gain in HBW trip attractions, due in part to the reduction in IE trips and in partto the redistribution of originally MVRPC trip attractions to the <strong>OKI</strong> region. Similarly, in the caseof HBO trip productions and attractions, relative to <strong>Model</strong> 5.4 the region gained trips once the IEtrips get accounted for.Table 6-2 Internal-External Trip Reconciliation, Home Based Work TripsRegionC O N S O L I D A T E D M O D E LTrip DifferenceIncluding IE Trips Excluding IE Trips Person TripsVehicle TripsProd. Attr. Prod. Attr. Prod. Attr. Prod. Attr. % of IEInternalExternalTrips<strong>OKI</strong> 1,140,284 1,233,402 1,086,364 1,187,706 53,920 45,696 47,717 40,439 41% 213,976MVRPC 561,712 484,665 534,356 453,038 27,356 31,627 24,209 27,988 43% 120,104MiamiCo. 74,171 58,086 66,272 51,516 7,899 6,570 6,990 5,814 39% 32,567All 1,776,167 1,776,153 1,686,992 1,692,260 89,175 83,893 78,916 74,242 42% 366,647Region<strong>OKI</strong> MODEL 5.4 AND MVRPC BASE 94 MODELTrip DifferenceIncluding IE Trips Excluding IE Trips Person TripsVehicle TripsProd. Attr. Prod. Attr. Prod. Attr. Prod. Attr. % of IEInternalExternalTrips<strong>OKI</strong> 1,152,052 1,154,614 1,089,151 1,088,677 62,901 65,937 55,665 58,351 34% 337,576MVRPC 542,161 542,142 501,162 480,460 40,999 61,682 36,282 54,586 27% 338,219MiamiCo. N.A N.A N.A N.A N.A N.A N.A N.A N.A 50,277All N.A N.A N.A N.A N.A N.A N.A N.A N.A 726,072Trip Generation - Trip Generation Analysis 24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 6-3 Internal-External Trip Reconciliation, Home-Based Other TripsRegionC O N S O L I D A T E D M O D E LTrip DifferenceIncluding IE Trips Excluding IE Trips Person TripsVehicle TripsProd. Attr. Prod. Attr. Prod. Attr. Prod. Attr. % of IEInternalExternalTrips<strong>OKI</strong> 3,332,871 3,312,280 3,172,980 3,197,967 159,891 114,313 90,334 64,584 72% 213,976MVRPC 1,603,655 1,644,772 1,524,547 1,579,117 79,108 65,655 44,694 37,093 68% 120,104MiamiCo. 221,664 201,157 198,042 182,270 23,622 18,887 13,346 10,671 74% 32,567All 5,158,190 5,158,209 4,895,569 4,959,354 262,621 198,855 148,373 112,347 71% 366,647Region<strong>OKI</strong> MODEL 5.4 AND MVRPC BASE 94 MODELTrip DifferenceIncluding IE Trips Excluding IE Trips Person TripsVehicle TripsProd. Attr. Prod. Attr. Prod. Attr. Prod. Attr. % of IEInternalExternalTrips<strong>OKI</strong> 3,338,244 3,345,972 3,151,922 3,183,460 186,322 162,512 105,267 91,815 58% 337,576MVRPC 1,525,060 1,525,057 1,436,850 1,369,565 88,210 155,492 49,836 87,849 41% 338,219MiamiCo. N.A N.A N.A N.A N.A N.A N.A N.A N.A 50,277All N.A N.A N.A N.A N.A N.A N.A N.A N.A 726,072Table 6.4 shows the final trip generation estimates for the consolidated model, for all trippurposes except non-home-based trips. The geographic distribution of these trip generationestimates throughout the <strong>OKI</strong>/MVRPC consolidated region is shown in Figures 6.3 to 6.11.Overall these distributions conform to previous expectations, given the geographical distributionof housing, employment and schools in the region.Table 6-4 Consolidated <strong>Model</strong> Trip Generation Estimates, Before UpdatedProduction/Attraction Scale FactorsHome-Based Work Home-Based School a Home-Based University Home-Based Other External bRegion Productions Attractions Productions Attractions Productions Attractions Productions Attractions I to E<strong>OKI</strong> 1,086,364 1,187,706 13,959 14,021 56,200 55,419 3,172,980 3,197,967 213,976MVRPC 534,356 453,038 2,042 1,994 35,658 37,159 1,524,547 1,579,117 120,104Miami Co. 66,272 51,516 0 0 5,958 5,240 198,042 182,270 32,567All 1,686,992 1,692,260 16,001 16,015 97,816 97,818 4,895,569 4,959,354 366,647a Transit trips only.b Passenger vehicle trips (vehicle units).Trip Generation - Trip Generation Analysis 25


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-1 Comparison of HBW Trip Production Estimates, Consolidated <strong>Model</strong> vs. <strong>OKI</strong>v.54 and MVRPC Base 94HBW Trip Production Difference50% (or more) fewer trips15% to 50% fewer tripsNo difference (within 15%)15% to 50% more trips50% (or more) more tripsTrip Generation - Trip Generation Analysis 26


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-2 Comparison of HBO Trip Production Estimates, Consolidated <strong>Model</strong> vs. <strong>OKI</strong>v.54 and MVRPC Base 94HBO Trip Production Difference50% (or more) fewer trips15% to 50% fewer tripsNo difference (within 15%)15% to 50% more trips50% (or more) more tripsTrip Generation - Trip Generation Analysis 27


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-3 HBW Trip Productions – Consolidated <strong>Model</strong>Trip Productions0 - 250 Trips250 - 500 Trips500 - 1000 Trips1000 - 2000 Trips2000 or more TripsTrip Generation - Trip Generation Analysis 28


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-4 Home-Based Work Trip Attractions – Consolidated <strong>Model</strong>Trip Attractions0 - 250 Trips250 - 500 Trips500 - 1000 Trips1000 - 2000 Trips2000 or more TripsTrip Generation - Trip Generation Analysis 29


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-5 Home-Based Other Trip Productions – Consolidated <strong>Model</strong>Trip Productions0 - 1000 Trips1000 - 2000 Trips2000 - 3000 Trips3000 - 4000 Trips4000 or more TripsTrip Generation - Trip Generation Analysis 30


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-6 Home-Based Other Trip Attractions – Consolidated <strong>Model</strong>Trip Attractions0 - 1000 Trips1000 - 2000 Trips2000 - 3000 Trips3000 - 4000 Trips4000 or more TripsTrip Generation - Trip Generation Analysis 31


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-7 Home-Based University Trip Productions – Consolidated <strong>Model</strong>Trip Productions0 - 25 Trips25 - 50 Trips50 - 75 Trips75 or more TripsTrip Generation - Trip Generation Analysis 32


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-8 Home-Based University Trip Attractions – Consolidated <strong>Model</strong>Trip AttractionsZero HBU AttractionsSome HBU AttractionsTrip Generation - Trip Generation Analysis 33


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-9 Home-Based School Trip Productions – Consolidated <strong>Model</strong>, Transit TripsOnlyTrip Productions0 - 10 Trips10 - 50 Trips50 or more TripsTrip Generation - Trip Generation Analysis 34


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-10 Home-Based School Trip Attractions – Consolidated <strong>Model</strong>, Transit TripsOnlyTrip AttractionsZero Trip AttractionsSome Trip AttractionsTrip Generation - Trip Generation Analysis 35


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 6-11 Internal to External Trip Ends – Consolidated <strong>Model</strong>Trip Ends0 - 250 Trips250 - 500 Trips500 - 1000 Trips1000 - 2000 Trips2000 or more TripsTrip Generation - Trip Generation Analysis 36


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06.2 Trip Generation Estimates, with Scale FactorsScale factors, both for HBW and HBO productions and attractions, were estimated in the highwayvalidation phase. The production scale factors were adjusted to match estimated VMT withineach region to the observed VMT. The process of adjusting these factors involves severalsensitivity tests of the VMT estimates to each factor. The attraction scale factors were adjustedto improve the validation of screenlines that capture trip interchanges between <strong>OKI</strong> and MVRPC.This process also involves performing a number of sensitivity tests of the screenline and regionalVMT estimates to each factor. The production and attraction scale factors are adjusted jointly bytrial and error, with guidance from the results of the sensitivity tests. Final factors are shown inAppendix B.Table 6.5 shows the final trip generation model estimates. The effect of the production scalefactors is to reduce the overall trip production, a result required because regional VMT wasoriginally overestimated in both regions. The underlying reason is that the consolidated modelestimates significantly longer trip lengths than the <strong>OKI</strong> v.5.4 model. Please refer to Part IV (TripDistribution) of the <strong>Model</strong> Development Report.The effect of the attraction scale factors is to redistribute HBW attractions from the <strong>OKI</strong> region tothe MVRPC regions, while redistributing HBO attractions from the MVRPC region to the <strong>OKI</strong>region. Overall this reduces the number of trip interchanges between the two regions, whichwere originally overestimated. Note however that the main trends described in Section 6.1 aremaintained; namely, there’s a positive flow of HBW trips from the MVRPC region to the <strong>OKI</strong>region, and a positive flow of HBO trips from the <strong>OKI</strong> region to the MVRPC region.The need for attraction scale factors is that the <strong>OKI</strong> trip attraction models do not fully apply tothe MVRPC region. Original trip attraction models for MVRPC could not be estimated, due to lackof data. Instead, attraction scale factors were introduced to allow control over the allocation ofattractions between the two regions. These scale factors were estimated jointly with theproduction scale factors by adjusting the model regional volume and VMT estimates to theobserved volume and VMT. Special attention was paid to the screenlines, in particular those ator near the border between the two regions.Table 6-5 Final Consolidated Trip Generation Estimates, with Updated Scale FactorsHome-Based Work Home-Based School a Home-Based University Home-Based Other External bRegion Productions Attractions Productions Attractions Productions Attractions Productions Attractions I to E<strong>OKI</strong> 972,020 1,007,984 13,959 14,021 56,200 55,419 2,838,810 2,867,287 213,976MVRPC 529,615 507,300 2,042 1,994 35,658 37,159 1,132,927 1,177,279 120,104Miami Co. 64,927 57,027 0 0 5,958 5,240 145,495 134,439 32,567All 1,566,562 1,572,311 16,001 16,015 97,816 97,818 4,117,232 4,179,005 366,647Trip Generation - Trip Generation Analysis 37


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07. Non-Home Based Trip GenerationThe <strong>OKI</strong>/MVRPC model retains the non-home based trip generation technique of the <strong>OKI</strong> Version5.4 model. The philosophy behind this technique is that non-home based trips are derived fromhome-based trips, because NHB trips occur in between home based trips. The <strong>OKI</strong> model appliesNHB trip generation rates that are a function of mode and area type, and that vary by homebasedtrip purpose. This trip generation model is applied to all <strong>OKI</strong> and MVRPC zones in theconsolidated system.Non-Home based trip rates are mode-dependent; for this reason non-home based trip generationoccurs after mode choice in the model stream. Due to changes in the execution of the modechoice model, in the current version of the <strong>OKI</strong>/MVRPC model (6.0) all non-home based tripgeneration calculations take place in a new step, Step 35. Please refer to the User’s Guide fordetails on model application.Table 7.1 shows the <strong>OKI</strong>/MVRPC trip generation rates. These trip rates were taken from Version5.4 of the <strong>OKI</strong> model. Table 7.2 shows a summary of the NHB trip generation estimates, as wellas a comparison with each region’s previous model estimates. The reduction in NHB tripsobserved with respect to the previous models stems from the reductions in HBW and HBO trips:as discussed in Section 6, <strong>OKI</strong> HBW and HBO trips were reduced by about 10%, while MVRPCHBO trips were reduced by approximately 25%.Table 7-1 NHB Trip Generation RatesPurposeHBW andHBOHBUModeAutoTransitAllTrip EndArea TypeCBD Urban Suburban RuralOrigins 0.4328 0.4476 0.4092 0.3163Destinations 0.3719 0.4482 0.4230 0.3367Origins 0.1458 0.4558 0.3889 0.3889Destinations 0.2778 0.3469 0.4167 0.4167Origins 0.3801 0.4478 0.4092 0.3175Destinations 0.3546 0.4453 0.4230 0.3373Table 7-2 Non Home Based Trip Generation EstimatesRegionConsolidated <strong>Model</strong> <strong>OKI</strong> v 5.4 & MVRPC Bas94 Percent DifferenceOrigins Destinations Origins Destinations Origins Destinations<strong>OKI</strong> 1,598,936 1,623,648 1,783,293 1,815,543 -10% -11%MVRPC 716,364 730,069 782,381 775,052 -8% -6%Miami 69,280 72,791 80,851 68,218 -14% 7%Total 2,384,580 2,426,508 2,646,525 2,658,813 -10% -9%Trip Generation - Non-Home Based Trip Generation 38


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.08. External Cordon Survey AnalysisAs part of the work involved in consolidating the MVRPC and <strong>OKI</strong> databases, two activities wereundertaken to re-number the 1995 ODOT external cordon surveys:• For stations that are part of the consolidated region, trip origin locations were projected ontothe consolidated traffic analysis zone map.• For stations that are not part of the consolidated region, both trip origin and trip destinationlocations were projected onto the consolidated traffic analysis zone map.Data from the consolidated region stations were then used to estimate an external-to-externaltrip table, as well as to re-estimate the internal-to-external trip end equations. These stationsare listed in Table 8.1 under "in-consolidated system". Data from stations at the border between<strong>OKI</strong>/MVRPC and MVRPC/Miami will be used to estimate observed trip length distribution functions(see Table 8.1, "not-in-consolidated-system" column for a list of stations). Note that only one setof boundary stations needs to be examined, either those included in the MVRPC set or thoseincluded in the <strong>OKI</strong> or Miami set. The additional <strong>OKI</strong> stations listed are those that do not havean equivalent station in the MVRPC model. The next sections describe in detail the geocodingeffort, survey expansion procedures, and the external trip table and trip end estimation.Table 8-1 External Stations to GeocodePlanning RegionIn the Consolidated SystemStation NumberNot in the Consolidated System<strong>OKI</strong> 4-25,43-83 36,37,41,42MVRPC 827,837,840-848,850-858, 872-877, 878, 880 828-836, 838, 839, 859-871, 881, 883, 884Miami Co. 120-132,142,145 NoneStation numbers correspond to ODOT’s numbering system.8.1 Geocoding Procedures and Results8.1.1 8.1.1 Stations in the Consolidated RegionAn extensive geocoding effort was undertaken to assign consolidated TAZ numbers to the ODOTexternal cordon survey records. Even though the survey data already included geographical triporigin information (latitude/longitude decimal coordinates and TAZs in the 1995 zone system),the conversion of this location information into the consolidated TAZs was not straight-forward,for two main reasons:• Due to the zone system modifications undertaken as part of this project, many of the 1995TAZs had no single corresponding TAZ in the consolidated system. 3 Hence a simple one-toonerelationship was ruled out for many zones. While in principle it should be possible to usethe coordinate information to locate the trip origin in the new, consolidated zone map, inreality this was also ruled-out because there are substantial inconsistencies between thecoordinate and the 1995 TAZ data.3 Appendix A of Part II contains a TAZ equivalence table.Trip Generation - External Cordon Survey Analysis 39


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• Due to the regional consolidation some previously external-to-external trips actually originatein the consolidated region. These trips need to have their origin geocoded for basic streetaddress and landmark information.In general, greater confidence was placed in the TAZ data than in the coordinate data. Thisresulted from the process used by ODOT to revise the previous geocoding effort. 4 A process wasdevised to assign the consolidated TAZs making extensive use of the 1995 TAZ information whenavailable, and otherwise address matching and various rules involving the zip code and landmarksurvey information. Figure 8.1 depicts the process and rules used. The pre-geocoding script,which assigned TAZs based on the 1995 TAZ data and lat/long coordinates, resolved 68% of alltrip origins. Of the remaining records, 2% were resolved through address matching, 10% wereresolved solely on the basis of the 1995 TAZ (using the zone centroid as the location of the triporigin), 2% were resolved on the basis of the survey zip code (using the location of the zip coderegion as the location of the trip origin), 0.5 % were resolved through landmark matching, 4%were assigned a ESN on the basis of the city of origin or exact origin location, and 15% remainedunresolved. Of the unresolved records, 10% are known to have started inside the consolidatedregion, 1% outside the consolidated region, and 4% are completely ungeocodable.Table 8-2 Number of Records from Stations in the Consolidated <strong>Model</strong>, <strong>OKI</strong> RegionConsolidated <strong>Model</strong> GeocodingTAZODOT Geocoding Valid TAZ Valid ESN UnknownESNUnknownUncodableTotalODOTPercentODOTExternal-InternalValid TAZ 21,196 0 0 1 0 21,197 72%TAZ unknown (9999) 933 12 2,004 684 0 3,633 12%Ungeocodable (9998) 0 0 0 0 696 696 2%External-ExternalValid ESN 538 3,204 287 40 22 4,091 14%ESN unknown (9999) 0 0 0 1 0 1 0%Ungeocodable (9998) 0 0 0 0 1 1 0%Total Consolidated 22,667 3,216 2,291 726 719 29,619Percent Consolidated 77% 11% 8% 2% 2%Table 8-3 Number of Records from Stations in the Consolidated <strong>Model</strong>, Mon/GreCountiesConsolidated <strong>Model</strong> GeocodingTAZUnknownESNUnknownTotalODOTPercentODOTODOT GeocodingValid TAZ Valid ESNUncodableExternal-InternalValid TAZ 14,249 0 241 0 0 14,490 73%TAZ unknown (9999) 112 2 1,528 29 0 1,671 8%Ungeocodable (9998) 0 0 0 0 1,090 1,090 6%External-ExternalValid ESN 472 1,677 259 26 17 2,451 12%ESN unknown (9999) 5 4 0 8 58 75 0%Ungeocodable (9998) 0 0 0 0 6 6 0%Total Consolidated 14,838 1,683 2,028 63 1,171 19,783Percent Consolidated 75% 9% 10% 0% 6%4 Please refer to Technical Memorandum: Processing of Cordon Line OD Survey Data. Ohio Department ofTransportation, Planning Division, Office of Technical Services. Volumes <strong>OKI</strong> Council of Governments,Miami Valley Regional Planning Commission, Miami Valley Expansion Area. Feb-Mar 2000.Trip Generation - External Cordon Survey Analysis 40


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 8-1 Cordon Survey Geocoding Process and Results, In-Consolidated RegionRecordsTotal surveys: 82,514In Consolidated RegionTotal surveys: 58,345Total addresses: 58,34571% of surveys55% of addressesTotal addresses: 106,664Out of Consolidated RegionTotal surveys: 24,169Total addresses: 48,33929% of surveys45% of addressesPre GeocodingScriptNeedGeocoding16,20228%GeocodedResolved42,14372%New TAZ assigned automatically*1:1 assignment: 29,171Zone assigned from ESN Lat/Long: 1,555Zone assigned from Lat/Long: 8,444Zone assigned from old TAZ centroid: 632* Details of process at bottom of page39,80268%Streetlevelmatch?YesTAZ code insurvey =spatial oldTAZ?YesAV_status = STAssign new TAZspatially4941%New TAZ cannot be assignedSurvey is coded asungeocodableCodes 998/99982,0894%NoNoZip code insurvey =spatial zip?YesAV_status= SZAssign new TAZspatially4871%Lat/Long point felloutside of newTAZ region2520.05%ESN to beassigned later1,1042%Survey hasTAZcode?YesNoZip code outside of region50%Get centroidof TAZ insurveyAV_status= OTAssign new TAZspatially5,52510%NoSurveyhas Zipcode?YesZip codecentroid inregion?YesAV_status= ZPAssign new TAZspatially1,1072%NoNoUnresolved7,73713%Zip code outside of region8471%Surveys with no new TAZ assigned8,84117%Details of new TAZ assignment process1:1 assignment: Consolidated TAZ code assigned directly from Rosella’s spreadsheetZone assigned from ESN Lat/Long: Survey has an ESN assigned and a Lat/Long. Lat/Long location was used to spatially determineconsolidated TAZ code.Zone assigned from Lat/Long: Survey had a TAZ assigned and a Lat/Long. Lat/Long location was verified to be spatially within oldTAZ, and used to determine consolidated TAZ code.Zone assigned from old TAZ centroid: Survey had a TAZ assigned and a Lat/Long. Lat/Long location was not in assigned old TAZ, sosurvey TAZ centroid was used to assign a consolidated TAZ code.Source: Rowekamp and Associates, Inc.Trip Generation - External Cordon Survey Analysis 41


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-4 Number of Records from Stations in the Consolidated Region, Miami CountyConsolidated <strong>Model</strong> GeocodingTAZUnknownESNUnknown UncodableTotalODOTPercentODOTODOT GeocodingValid TAZ Valid ESNExternal-InternalValid TAZ 4,417 0 3 0 0 4,420 49%TAZ unknown (9999) 112 5 1,192 18 0 1,327 15%Ungeocodable (9998) 0 0 0 0 297 297 3%External-ExternalValid ESN 1,007 1,161 685 41 6 2,900 32%ESN unknown (9999) 0 0 0 0 0 0 0%Ungeocodable (9998) 0 0 0 0 0 0 0%Total Consolidated 5,536 1,166 1,880 59 303 8,944Percent Consolidated 62% 13% 21% 1% 3%8.1.2 Stations not in the Consolidated RegionThese stations lie in the common border between <strong>OKI</strong> and MVRPC regions, or betweenMontgomery/Greene and Miami Counties. These surveys are the only source of origindestinationdata for trips that originate in one region and end in another. The data will be usedin the trip distribution calibration process to examine the trip length distribution of inter-regionaltrips. For these border stations, both the origin and the destination trip ends need to begeocoded. The geocoding methodology is as follows:• Trip Origins: the trip origin end had already been geocoded by ODOT, and thus can betreated in the same way as the "in-consolidated" stations. A process similar to the onedescribed in section 8.1.1 was used to geocode trip origins. Approximately 85% of all triporigin records were successfully assigned a consolidated TAZ (see Table 8.5).• Trip Destinations: trip destinations had not been previously geocoded to 1995 TAZs orlatitude/longitude coordinates, and so it was not possible to use the pre-geocoding script onthese trip ends. Hence the geocoding effort involved street address matching, zip codematching, and landmark matching. Approximately 63% of all trip destinations weresuccessfully assigned a consolidated TAZ. Of the records that could not be geocoded, 7,833(32% of the total) were identified as external trip destinations (see Table 8.5). Theserecords are of no interest to this study, given that only trips that start and end in the regioncan be used in trip distribution calibration. The remaining 1,098 records are presumed to beinternal destinations. Note that a large number of the records with valid TAZ or ESN couldonly be geocoded with precision up to the zip code level.In summary, an exact TAZ location could not be elicited for many records, primarily due tothe poor quality of the street address information. The problems that hindered thegeocoding effort include:• Lack of, incomplete or incorrect street address data• Misspelled data entries• Mis-entered data entries (for example, records shifted by a few columns)• Multiple abbreviations for city names• Multiple abbreviations for landmark namesTrip Generation - External Cordon Survey Analysis 42


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-5 Border Station Geocoding Summary StatisticsGeocoding StageTrip OriginTrip DestinationInternal External Internal ExternalPre-Geocoding Script 16,160 1,331 286 4Street Level Match 869 0 8,788 0Survey TAZ Centroid Match 1,731 0 76 0Survey ZipCode Centroid Match 470 14 5,594 208Landmark Match 85 1 278 4City Name Match (no TAZ/ESN) 0 0 0 7,833Ungeocodable 3,493 15 1,098 0Total Surveys 22,808 1,361 16,120 8,0498.2 Survey Expansion8.2.1 Expansion of "In-Consolidated" Trip SurveysFinal expanded vehicle volumes at each station are shown in Table 8.6. The expansion factorsalready calculated by ODOT for each station were used "as-is", with the exception of the EE/IEbias factors. These factors were initially developed by ODOT to produce summary count andvolume statistics including records for which only limited location information was available 5 .Some of these records have now been properly located and thus should be included in thesummaries.The new EE/IE bias factors were calculated for each station and vehicle type group (autos vs.trucks) as follows:EE Bias FactorTotal Expanded EE Trips=Total Expanded EE Trips,Not Including Limited Location (" 9999") Re cordsEI Bias FactorTotal Expanded EI Trips=Total Expanded EI Trips,Not Including Limited Location (" 9999") Re cordsBesides the expansion factors estimated by ODOT, an additional expansion factor was calculatedto account for records which had a valid ESN (including records with limited location information,coded '9999') but which were found to be "ungeocodable" by this geocoding effort. In themajority of cases, these appear to be records where the origin and destination data have beenreversed. Given their small number (approximately 100 records, as shown in Tables 8.2 to 8.4),rather than guess the original intent it was preferred to eliminate these records from the analysis.The adjustment factor was estimated for each station as follows:5 For some records ODOT ascertained whether the trip started inside or outside of the region, but it was notpossible to locate its origin more precisely. These records were assigned a "9999" code to the origin TAZ (ifstarting inside the region) or ESN (if starting outside of the region).Trip Generation - External Cordon Survey Analysis 43


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-6 External Station Vehicle Counts (Expanded)External - External TripsExternal - Internal TripsAll TripsStationNameCars Trucks Subtotal Cars Trucks Subtotal Total % E - E % Trucks2426 US 52 174 30 203 1,818 152 1,970 2,173 9.4% 8.4%2427 SR 756 4 0 4 907 51 958 962 0.4% 5.3%2428 sr 774 42 0 42 676 60 736 778 5.4% 7.7%2429 SR 125 49 43 92 5,492 340 5,832 5,924 1.6% 6.5%2430 Spring Grove Rd 55 0 55 831 44 875 930 5.9% 4.7%2431 Starling Rd 46 0 46 1,382 71 1,453 1,499 3.1% 4.7%2432 Old SR 32 18 0 18 2,896 203 3,100 3,118 0.6% 6.5%2433 SR 32 632 277 909 17,302 1,924 19,226 20,135 4.5% 10.9%2434 Dela Palma Rd 84 2 86 3,156 72 3,228 3,314 2.6% 2.2%2435 Jackson Pk 16 0 16 1,086 51 1,137 1,153 1.4% 4.4%2436 US 50 73 42 114 3,217 350 3,567 3,681 3.1% 10.6%2437 SR 131 15 5 21 2,409 155 2,565 2,585 0.8% 6.2%2438 Lucas Rd 164 9 173 422 38 460 633 27.4% 7.4%2439 SR 133 79 3 82 2,233 56 2,289 2,371 3.5% 2.5%2440 SR 28 163 48 211 6,305 570 6,875 7,087 3.0% 8.7%2441 SR 132 0 0 0 585 58 643 643 0.0% 9.0%2442 SR 350 19 0 19 919 44 963 981 1.9% 4.5%2443 US 22 58 19 77 1,693 160 1,854 1,931 4.0% 9.3%2444 Harveysburg Rd 44 0 44 480 18 498 542 8.2% 3.3%2445 Wilmington Rd 22 0 22 607 19 626 648 3.4% 2.9%2446 IR 71 3,196 4,872 8,068 20,507 4,870 25,376 33,444 24.1% 29.1%2447 SR 73 801 111 912 4,218 635 4,852 5,765 15.8% 12.9%2448 SR 122 44 7 50 3,104 269 3,373 3,423 1.5% 8.1%2449 SR 503 23 3 26 1,458 121 1,579 1,605 1.6% 7.7%2450 Wayne Trace Rd 0 0 0 378 23 401 401 0.0% 5.8%2451 SR 744 40 11 51 1,314 55 1,369 1,421 3.6% 4.6%2452 US 127 67 40 107 2,904 899 3,804 3,911 2.7% 24.0%2453 SR 177 11 4 14 1,134 48 1,182 1,197 1.2% 4.3%2454 SR 732 47 2 49 2,185 55 2,240 2,289 2.1% 2.5%2455 US 27 108 72 179 4,776 381 5,157 5,336 3.4% 8.5%2456 Contreras Rd 0 0 0 496 54 550 550 0.0% 9.8%2457 Fairfield Rd 9 0 9 1,283 72 1,355 1,363 0.6% 5.3%Trip Generation - External Cordon Survey Analysis 44


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8.6 External Station Vehicle Counts (cont.)External - External Trips External - Internal Trips All TripsStationNameCars Trucks Subtotal Cars Trucks Subtotal Total % E - E % Trucks2458 Brookville Rd 0 0 0 721 29 750 750 0.0% 3.9%2459 Peoria-Reily Rd 4 0 4 348 24 372 376 1.1% 6.4%2460 SR 126 6 0 6 1,438 135 1,573 1,578 0.4% 8.5%2461 Okeana Drewsburg Rd 4 0 4 533 29 562 565 0.7% 5.1%2462 Carolina Trace Rd 23 11 34 565 57 621 655 5.2% 10.4%2463 US 52 370 0 370 4,513 543 5,056 5,426 6.8% 10.0%2464 SR 1 230 130 360 1,541 195 1,736 2,096 17.2% 15.5%2465 Peters Rd 536 66 602 358 0 358 960 62.7% 6.9%2466 IR 74 328 2,193 2,521 13,142 4,567 17,709 20,230 12.5% 33.4%2467 SR 46 527 0 527 2,055 314 2,369 2,896 18.2% 10.9%2468 N Dearborn Rd 26 0 26 1,218 69 1,287 1,313 2.0% 5.3%2469 SR 48 35 0 35 1,660 136 1,796 1,831 1.9% 7.4%2470 SR 350 467 34 500 3,590 370 3,960 4,461 11.2% 9.1%2471 Old SR 350 37 0 37 674 0 674 711 5.3% 0.0%2472 US 50 817 0 817 4,006 1,293 5,299 6,116 13.4% 21.1%2473 SR 62 126 40 166 362 40 402 568 29.2% 14.1%2474 SR 262 395 10 405 652 10 662 1,068 38.0% 1.9%2475 SR 56 1,352 0 1,352 10,915 549 11,463 12,815 10.5% 4.3%2476 US 42 91 0 91 2,755 223 2,978 3,069 2.9% 7.3%2477 IR 71 3,718 4,397 8,114 10,310 5,087 15,396 23,511 34.5% 40.3%2478 SR 16 104 0 104 1,538 0 1,538 1,642 6.4% 0.0%2479 SR 491 71 0 71 862 0 862 933 7.6% 0.0%2480 IR 75 3,799 6,595 10,394 20,021 5,400 25,421 35,815 29.0% 33.5%2481 US 25 84 0 84 2,887 371 3,258 3,341 2.5% 11.1%2482 SR 17 69 0 69 1,361 185 1,547 1,616 4.3% 11.5%2483 SR 177 0 0 0 570 51 621 621 0.0% 8.2%2484 US 27 202 0 202 5,776 1,356 7,132 7,334 2.7% 18.5%2485 SR 154 33 0 33 959 14 973 1,006 3.3% 1.4%2486 SR 10 0 0 0 748 27 775 775 0.0% 3.5%2487 AA Highway 185 0 185 5,290 1,065 6,355 6,540 2.8% 16.3%2488 SR 8 0 0 0 472 23 495 495 0.0% 4.7%2489 SR 49 646 209 855 6,423 470 6,893 7,748 11.0% 8.8%2490 US 40 E 854 105 958 2,685 94 2,779 3,738 25.6% 5.3%2491 Bellefontaine Rd 0 0 0 509 27 536 536 0.0% 5.0%2492 SR 235 882 85 967 10,902 572 11,474 12,441 7.8% 5.3%2493 I 675 N 880 41 920 5,969 203 6,172 7,092 13.0% 3.4%Trip Generation - External Cordon Survey Analysis 45


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-6 External Station Vehicle Counts (cont.)External - External Trips External - Internal Trips All TripsStationNameCars Trucks Subtotal Cars Trucks Subtotal Total % E - E % Trucks2494 I 70 E 8,765 70 8,835 51,183 4 51,186 60,021 14.7% 0.1%2495 Lower Valley Pk 11 0 11 1,362 222 1,584 1,595 0.7% 13.9%2496 Medway Rd 12 0 12 1,779 42 1,821 1,832 0.6% 2.3%2497 Haddia Rd 0 13 13 1,484 163 1,647 1,661 0.8% 10.6%2498 Spangler Rd 26 0 26 336 35 371 397 6.5% 8.8%2499 Dayton-Springfield Rd 157 30 186 11,029 258 11,287 11,473 1.6% 2.5%2500 W Enon Rd 45 1 47 941 35 976 1,022 4.6% 3.5%2501 Polecat Rd 31 0 31 1,017 6 1,023 1,054 2.9% 0.6%2502 US 68 N 425 110 535 6,530 339 6,869 7,404 7.2% 6.1%2503 SR 72 N 375 195 569 3,184 104 3,288 3,857 14.8% 7.7%2504 US 42 N 56 56 111 940 62 1,003 1,114 10.0% 10.6%2505 Selma-Jamestown Rd 136 0 136 297 20 318 453 29.9% 4.5%2506 SR 734 37 4 41 711 47 758 799 5.1% 6.4%2507 US 35 E 496 664 1,161 3,019 623 3,642 4,803 24.2% 26.8%2508 SR 72 S 358 70 428 1,345 110 1,455 1,883 22.7% 9.5%2509 US 68 S 660 254 914 4,555 418 4,973 5,887 15.5% 11.4%2510 SR 380 133 11 145 1,873 127 1,999 2,144 6.7% 6.4%2511 SR 725 W 217 86 303 3,388 94 3,482 3,785 8.0% 4.7%2512 US 35 W 132 21 153 4,521 184 4,705 4,858 3.2% 4.2%2513 Lexington-Salem Rd 18 0 18 1,055 44 1,099 1,117 1.6% 3.9%2514 I 70 W 5,574 7,051 12,626 15,493 1,614 17,107 29,733 42.5% 29.1%2515 US 40 W 216 42 258 2,236 89 2,325 2,584 10.0% 5.1%2516 Baltimore-Phillispburg Pk 20 5 25 746 35 781 806 3.1% 5.0%2517 SR 571 W 436 56 492 1,361 84 1,445 1,937 25.4% 7.2%2518 US 36 W 583 173 756 3,987 222 4,209 4,966 15.2% 8.0%2519 SR 185 192 48 240 1,724 84 1,808 2,048 11.7% 6.4%2520 SR 48 N 262 135 397 1,192 222 1,415 1,812 21.9% 19.7%2521 SR 66 143 42 185 2,414 113 2,526 2,711 6.8% 5.7%2522 I 75 N 5,847 7,720 13,568 25,969 1,431 27,400 40,968 33.1% 22.3%2523 County Rd 25 A 134 23 158 1,807 42 1,849 2,006 7.9% 3.2%2524 SR 589 108 9 117 290 9 299 415 28.1% 4.3%2525 US 36 E 832 227 1,059 3,574 233 3,807 4,866 21.8% 9.5%2526 Old Troy Pike 25 0 25 280 6 286 312 8.2% 1.9%2527 SR 55 108 0 108 1,532 62 1,594 1,702 6.3% 3.7%2528 SR 41 172 10 182 1,854 96 1,950 2,132 8.5% 5.0%2529 SR 571 E 710 45 755 3,045 98 3,143 3,898 19.4% 3.7%2530 Scarff Rd 45 0 45 613 27 640 685 6.6% 3.9%Note: Station 2531, originally assigned to Palmer Rd., was later assigned to New US 35 East. This road did not exist in 1995, hence station2531 has no traffic volume.Trip Generation - External Cordon Survey Analysis 46


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0" Ungeocodable"AdjustmentFactorTotal Expanded Trips=Total Expanded Trips,Not Including Ungeocodable (" 9998") Re cords8.2.2 Expansion of Border Station Trip SurveysData expansion was based on records with a valid internal trip origin and valid trip destination(internal or external), that is, trips that were originally recorded as IE trips. Records of trips thatstart outside of the consolidated region are of no interest for trip distribution comparisonpurposes. The expansion factor was calculated as:Expansion Factor =Station KT arg et VolumeNumber of SurveysStation KStation KExpansion target volumes were obtained from the previous ODOT expansion work. 6 Table 8.7shows the weighted or expanded trip data.Table 8-7 Border Station Trip VolumesIE Car TripsIE Car TripsStation Vehicle units Person units Station Vehicle units Person units36 3,374 5,047 860 1,200 1,78937 1,162 1,655 861 2,165 3,10441 327 483 862 9,127 13,60342 226 349 863 3,624 5,117828 1,281 1,772 864 15,014 22,830829 6,879 10,669 865 48,984 61,755830 3,194 4,236 866 5,015 7,048831 1,396 1,787 867 3,336 4,882832 6,049 7,912 868 2,830 4,162833 35,114 43,753 869 501 782834 1,968 2,663 870 4,357 6,121835 821 1,055 871 614 909836 944 1,230 881 2,708 3,697838 4,668 6,140 883 273 394839 2,679 3,635 884 72 105859 3,673 6,272Data from these border stations were used to calibrate and validate the trip length frequencydistribution of trips that start in the <strong>OKI</strong> and end in the MVRPC region (and vice-versa). Tables8.8 and 8.9 are summaries of this OD table (work and non-work trips respectively). Trips thatended outside of the region were dropped, as they are not relevant to trip distribution calibration.Because the cordon survey intercepted trips traveling in the outbound direction only, thetranspose of the trip table obtained from the expansion process was used to represent traffic inthe opposite direction. And while in principle these OD trip tables should have zeros in thediagonal, the fact that they have non-zero diagonals probably is due to reporting and geocodingerrors.6 The original source of the traffic volume data is Processing of Cordon Line OD Survey Data, TechnicalMemorandum, Ohio DOT, Planning Division, Office of Technical Services, 2000; see Figure 8, Work and NonWork IE Trip columns.Trip Generation - External Cordon Survey Analysis 47


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-8 Border Station OD Work Trip Table, Car Trips OnlyTrip DestinationTrip Origin<strong>OKI</strong> Mont/Gren. Miami Total<strong>OKI</strong> 1,539 22,899 456 24,894Mont/Gren. 22,899 2,890 12,452 38,241Miami 456 12,452 528 13,436Total 24,894 38,241 13,436 76,571Table 8-9 Border Station Non-Work OD Trip Table, Car Trips OnlyTrip DestinationTrip Origin<strong>OKI</strong> Mont/Gren. Miami Total<strong>OKI</strong> 3,019 24,142 456 27,617Mont/Gren. 24,142 5,654 11,022 40,818Miami 456 11,022 564 12,042Total 27,617 40,817 12,042 80,4768.3 External-Internal Trip End EstimationInternal to External trips that originate or end at each internal zone are estimated using linearregression models, where trips are forecasted as a function of the zonal population andemployment. These models are stratified by proximity to the external cordon line. In total fivemodels have been estimated:• Centrally-located zones in Cincinnati (cordon location code 1)• Centrally-located zones in Dayton and Xenia (cordon location code 7)• Intermediate zones (cordon location code 2)• Close-to-the-cordon zones (cordon location 3)• Special trip generator zones (cordon location 5)Figure 8.2 shows the distribution of the cordon location variable in the consolidated zonal system.The last category listed above is comprised of zones where regional shopping, recreation and/oremployment centers are located. These zones generate more trips per inhabitant and per jobthan would be expected from their geographical location alone, and for this reason have beensingled-out as a separate category. Table 8.10 lists these special generator zones. Two of thesetrip generators, downtown Oxford and Withamsville, represent sub-regional shopping centers(large discount stores appear to be located in both zones).Total external trips generated at each internal zone were estimated from the expanded cordonsurvey data. Two further adjustments, besides those discussed in Section 8.2.1, were made tothe station volumes:• Total traffic counts at three stations in the MVRPC region were updated, per their request.Three station volumes were adjusted: Lower Valley Pike (station 2495), US 35 West (station2512) and SR 66 (station 2521). The update factor was calculated as:Update Factor =MVRPC Revised Station Volume TotalODOT Station Volume TotalTrip Generation - External Cordon Survey Analysis 48


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 8-2 Proximity to the External CordonCordon Location CodesCentral CincinnatiDayton/XeniaIntermediateClose to CordonSpecial GeneratorsTrip Generation - External Cordon Survey Analysis 49


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-10 External-Internal Trip Special Generator ZonesTAZ No. Special Trip Generator TAZ No. Special Trip Generator9 Coney Island Amusement Park 1490 Dream St. Commercial Area27 Beechmont Mall 1502 Florence Mall39 SENCO Products at Mt. Carmel 1559 Argosy Casino89 Blue Ash Industrial 1606 Saint Luke's Hosp. / Turfway Racetrack118 General Electric Plant at Evendale 1794 Miami Valley Hospital177 Cincinnati Machine 1869 Salem Mall249 River Front / Art Museum 1872 Meijer's/Shopping Area at Englewood273 Convention 1927 Chrysler Corporation286 Hyatt Regency at Cincinnati 1940 ITT Technical Institute294 Cinergy Field 1949 Delco & Delphi Plants337 Veterans' Administration Medical Center 1957 Dayton International Airport346 Cincinnati Zoo 1971 Children's Medical Center at Dayton355 Spring Grove Industrial 1999 Shopping Area at Huber Heights405 Lazarus Distribution Center 2046 General Motors Plant at Moraine417 Tri County Mall 2047 General Motors Plant at Moraine706 Downtown Oxford 2125 Walmart at Huber Heights1014 King's Island Amusement Park 2139 Wright-Patterson Air Force Base1015 King's Island Amusement Park 2141 Wright-Patterson Air Force Base1181 Eastgate Mall 2143 WPAFB Residential Area (Fairborn)1193 Bethesda Medical Building / Bigg's Mall 2145 Wright State University / Shopping Area1204 Withamsville Shopping Area 2188 Fairfield Mall1217 Clermont County Hospital 2352 Downtown Tipp City1423 Saint Elizabeth's Hospital at Edgewood 2359 Miami Valley Mall at Piqua1477 Cincinnati-Northern Kentucky Intl. Airport 2399 Downtown Piquawhere the revised station volumes are 4,900 for 2495, 6,700 for 2512 and 3,800 for 2521, andthe ODOT station volume totals are listed in Table 8.6. In addition, the volume at station 2531(Palmer Road) was set to zero since this station in fact represents the same location as station2491 (Bellefontaine Road).• Total traffic counts at seven stations were discounted so as not to double-count trips that reenterthe region after crossing the external cordon. Trips between Warren and GreeneCounties may exit the region via I-71 or SR-73 and then re-enter it via SR-72, US-68 and SR-380 (or vice-versa). Similarly, trips between Butler and Montgomery Counties may exit theregion via SR-503 or SR-122 and then re-enter it via SR-725 or US-35. The discount factorsapplied to each station are listed in Table 8.11. The factors represent the proportion ofoutbound trips at each station with a final destination inside the combined region; theproportions were calculated using cordon survey data.Table 8-11 External Station Volume Discount FactorsStation No. LocationIE TripsEE TripsAutos Trucks Autos Trucks2446 IR-71 5% 1% 5% 0%2447 SR-73 10% 1% 3% 3%2508 SR 72 S 20% 0% 20% 14%2509 US 68 S 10% 10% 9% 13%2510 SR 380 10% 45% 8% 12%2449 SR 503 10% 11% 0% 0%2511 SR 725 W 15% 26% 11% 8%2512 US 35 W 5% 0% 0% 3%Trip Generation - External Cordon Survey Analysis 50


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The internal-external trip production equations (at each internal zone i) take the followinggeneral form:IE Trip Pr odctionsi= β ∗ Populationi+ γ ∗ Employment iThe coefficients of this equation were estimated for each cordon location strata using OrdinaryLeast Squares estimation. Zones not reported in the cordon survey were assigned zero tripproductions, instead of setting them to missing values. The results of the estimation aresummarized in Table 8.12. Note that, as expected, the closer a zone is to the cordon line thehigher the trip rate per inhabitant and per job is. In all cases the coefficient estimates for and are statistically significant and have the correct signs, indicating that increases in zonalpopulation and employment result in higher internal-to-external trip productions. The R 2reported in Table 8.12 has been redefined to account for the zero intercept. The models may beimproved by stratifying them, for example into work and non-work trips, and using variables suchas retail employment or retail square footage to explain non-work trips.A few zones were excluded from the estimation dataset because they appeared to be outliers.The criteria for excluding individual zones were defined based on residual plots, and are asfollows:• Central Cincinnati (cloc=1), exclude ifo Population greater than 3,500 and less than 100 trips reportedo Population greater than 2,300 and more then 400 trips reportedo Population less than 1,000 and more then 250 trips reportedo Employment less than 1,000 and more than 400 trips reported• Central Dayton/Xenia (cloc=7), exclude if population less than 500 and more than 500 tripsreported• Intermediate Zones (cloc=2), exclude ifo Population less than 1,500 and more than 500 trips reportedo Population more than 6,000o Employment less than 4,000o Employment less than 1,500 and more than 600 trips reported• Close to the Cordon Zones (cloc=3), exclude ifo Employment greater than 3,000o Population greater than 4,500o Population greater than 1000 and more than 1,500 trips reportedo Employment less than 1,000 and more than 1,350 trips reported• Special Generators (cloc=5), exclude if Employment less than 2,500 and more than 2,000trips reported.Note that these criteria are completely empirical and would not necessarily apply with differentcordon location classifications, zonal aggregations or cordon survey dataset. The limits definedabove are merely a convenient way to exclude outliers and to document the reason for theirexclusion.Trip Generation - External Cordon Survey Analysis 51


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-12 Internal-External Trip Production <strong>Model</strong>sCordonCodeLocationPopulation (b) Employment (g) WPAFB Emp.Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.R 2F-value1 Central Cincinnati 0.043 25.7 0.040 16.8 0.65 7242 Intermediate 0.075 21.7 0.080 10.9 0.60 4763 Close to Cordon 0.194 10.5 0.306 7.5 0.58 1855 Special Generators 0.241 9.2 0.215 5.3 0.85 1487 Central Dayton/Xenia 0.057 15.5 0.079 13.3 0.63 3548.4 External-External Trip TableAn external-to-external vehicle trip table for the entire consolidated region was estimated fromthe cordon survey data. As indicated in the ODOT Cordon Survey documentation, to avoiddouble-counting external trips a factor of 0.5 is applied in addition to all the expansion factors.Furthermore, the MVRPC update factor discussed in Section 8.2.1 was applied as well to ensurethe external-external trip table reflects the most accurate traffic counts available. The stationvolume discount factors for external-external trips were shown in Table 8.11. The daily externalexternaltrip table is stored in M0007.Trip Generation - External Cordon Survey Analysis 52


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09. Appendix AUpdated Batch, Control and Parameter FilesTrip Generation - Appendix A 53


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.1 Step12.bat@ECHO OFFECHO ******************************************************ECHO *** ***ECHO *** STEP 12 ***ECHO *** ***ECHO ******************************************************REMREM Delete previous run filesREMIF EXIST a1201 DEl a1201REMREM Check for required filesREMIF NOT EXIST st1201.inp ECHO Cannot locate st1201.inp in model run directory!!IF NOT EXIST st1201.inp PAUSEIF NOT EXIST model.inp ECHO Cannot locate model.inp in model run directory!!IF NOT EXIST model.inp PAUSEIF NOT EXIST hbsctuse.txt ECHO Cannot locate hbsctuse.txt in model run directory!!IF NOT EXIST hbsctuse.txt PAUSEIF NOT EXIST costs.txt ECHO Cannot locate costs.txt in model run directory!!IF NOT EXIST costs.txt PAUSEIF NOT EXIST a1001.ext ECHO Cannot locate a1001.ext in model run directory!!IF NOT EXIST a1001.ext PAUSEREMREM Create Demographic FileREMst120160.exeTrip Generation - Appendix A 54


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.2 STEP14.BAT@ECHO OFFECHO ******************************************************ECHO *** ***ECHO *** STEP 14 ***ECHO *** ***ECHO ******************************************************REMREM Delete previous run filesREMIF EXIST c1401 DEL c1401IF EXIST step14.out DEL step14.outIF EXIST r1401 DEL r1401IF EXIST r1402 DEL r1402REMREM Check for required filesREMIF NOT EXIST st1401.oki ECHO Cannot locate st1401.oki in model run directory!!IF NOT EXIST st1401.oki PAUSEIF NOT EXIST st1401.mv ECHO Cannot locate st1401.mv in model run directory!!IF NOT EXIST st1401.mv PAUSEIF NOT EXIST t0006 ECHO Cannot locate t0006 in model run directory!!IF NOT EXIST t0006 PAUSEIF NOT EXIST t0007 ECHO Cannot locate t0007 in model run directory!!IF NOT EXIST t0007 PAUSEIF NOT EXIST a1201 ECHO Cannot locate a1201 in model run directory!!IF NOT EXIST a1201 PAUSEREMREM Create Household by Market Segment Trips - <strong>OKI</strong> regionREMcopy st1401.oki st1401.inpst140160.exeREMREM Create Household by Market Segment Trips - MVRPC regionREMcopy st1401.mv st1401.inpst140160.exeTrip Generation - Appendix A 55


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.3 ST1401.oki&CONFFIN(1) = 'T0006'FIN(2) = 'A1201'FOUT(1) = 'C1401'FOUT(2) = 'R1401'FOUT(3) = 'R1402'REGION = '<strong>OKI</strong>'&END1608 2425 4 T F FWRK 5 0.000 1.000 2.000 3.000 4.254HHSZ 6 1.000 2.000 3.000 4.000 5.000 6.627AUTO 4 0.000 1.000 2.000 3.379SELECTED ZONES 25 28 61 87 292 355 436 546 574 869File Description:a. FIN(1): Base Household Classification Tableb. FIN(2): Zonal Socio-Economic Datac. FOUT(1): Modified Household Classification Tabled. FOUT(2): Report filee. FOUT(3): Detailed report, selected zones onlyf. Region: Indicates region to be processedg. Parameters:- Highest internal zone number in <strong>OKI</strong> region (1608)- Highest internal zone number in MVRPC region (2425)- Number of Area Type classes (4)- Report flagsh. Average values for Workers per Household classification:- Total number of classes (5)- Average number of workers per household, class 1 (1.000)- Average number of workers per household, class 2 (2.000)- Average number of workers per household, class 3 (3.000)- Average number of workers per household, class 4 (4.000)- Average number of workers per household, class 5 (4.254)i. Average values for Household Size classification:- Total number of classes (6)- Average number of persons per household, class 1 (1.000)- Average number of persons per household, class 2 (2.000)- Average number of persons per household, class 3 (3.000)- Average number of persons per household, class 4 (4.000)- Average number of persons per household, class 5 (5.000)- Average number of persons per household, class 6 (6.627)j. Average values for Auto Ownership classification:- Total number of classes (4)- Average number of autos per household, class 1 (1.000)- Average number of autos per household, class 2 (2.000)- Average number of autos per household, class 3 (3.000)- Average number of autos per household, class 4 (3.379)k. Selected Zones for detailed reporting (I5 format)For a description of input file formats (A1201, T0006 and T0007), please refer to <strong>OKI</strong>/MVRPC <strong>Travel</strong><strong>Demand</strong> <strong>Model</strong> User's Guide, Version 6. Prepared by Parsons Brinckerhoff, June 2002.Trip Generation - Appendix A 56


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.4 ST1401.mv&CONFFIN(1) = 'T0007'FIN(2) = 'A1201'FOUT(1) = 'C1401'FOUT(2) = 'R1401'FOUT(3) = 'R1402'REGION = 'MV'&END1608 2425 4 T F FWRK 5 0.000 1.000 2.000 3.000 4.254HHSZ 6 1.000 2.000 3.000 4.000 5.000 6.627AUTO 4 0.000 1.000 2.000 3.379SELECTED ZONES 25 28 61 87 292 355 436 546 574 869File Description:a. FIN(1): Base Household Classification Tableb. FIN(2): Zonal Socio-Economic Datac. FOUT(1): Modified Household Classification Tabled. FOUT(2): Report filee. FOUT(3): Detailed report, selected zones onlyf. Region: Indicates region to be processedg. Parameters:- Highest internal zone number in <strong>OKI</strong> region (1608)- Highest internal zone number in MVRPC region (2425)- Number of Area Type classes (4)- Report flagsh. Average values for Workers per Household classification:- Total number of classes (5)- Average number of workers per household, class 1 (1.000)- Average number of workers per household, class 2 (2.000)- Average number of workers per household, class 3 (3.000)- Average number of workers per household, class 4 (4.000)- Average number of workers per household, class 5 (4.254)i. Average values for Household Size classification:- Total number of classes (6)- Average number of persons per household, class 1 (1.000)- Average number of persons per household, class 2 (2.000)- Average number of persons per household, class 3 (3.000)- Average number of persons per household, class 4 (4.000)- Average number of persons per household, class 5 (5.000)- Average number of persons per household, class 6 (6.627)j. Average values for Auto Ownership classification:- Total number of classes (4)- Average number of autos per household, class 1 (1.000)- Average number of autos per household, class 2 (2.000)- Average number of autos per household, class 3 (3.000)- Average number of autos per household, class 4 (3.379)k. Selected Zones for detailed reporting (I5 format)For a description of input file formats (A1201, T0006 and T0007), please refer to <strong>OKI</strong>/MVRPC <strong>Travel</strong><strong>Demand</strong> <strong>Model</strong> User's Guide, Version 6. Prepared by Parsons Brinckerhoff, June 2002.Trip Generation - Appendix A 57


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.5 ST1501.INP&CONFFIN(1) = 'C1401'FOUT(1) = 'A1501'FOUT(2) = 'S1502'FOUT(3) = 'S1503'FOUT(4) = 'S1504'HBWRATE(1,1,1) = 0.8797, HBWRATE(2,1,1) = 2.3579, HBWRATE(3,1,1) = 3.2211, HBWRATE(4,1,1) = 4.2048,HBWRATE(1,2,1) = 1.2348, HBWRATE(2,2,1) = 2.2947, HBWRATE(3,2,1) = 3.2211, HBWRATE(4,2,1) = 4.4887,HBWRATE(1,3,1) = 1.3465, HBWRATE(2,3,1) = 2.4629, HBWRATE(3,3,1) = 3.2211, HBWRATE(4,3,1) = 4.4887,HBWRATE(1,4,1) = 1.5354, HBWRATE(2,4,1) = 2.4629, HBWRATE(3,4,1) = 4.1244, HBWRATE(4,4,1) = 4.4887,HBWRATE(1,1,2) = 1.3768, HBWRATE(2,1,2) = 2.3455, HBWRATE(3,1,2) = 2.5024, HBWRATE(4,1,2) = 4.2048,HBWRATE(1,2,2) = 1.3768, HBWRATE(2,2,2) = 2.3455, HBWRATE(3,2,2) = 2.5024, HBWRATE(4,2,2) = 4.4887,HBWRATE(1,3,2) = 1.4109, HBWRATE(2,3,2) = 2.4647, HBWRATE(3,3,2) = 2.5024, HBWRATE(4,3,2) = 4.4887,HBWRATE(1,4,2) = 1.4109, HBWRATE(2,4,2) = 2.5887, HBWRATE(3,4,2) = 3.8954, HBWRATE(4,4,2) = 4.4887,HBWRATE(1,1,3) = 1.3139, HBWRATE(2,1,3) = 2.3702, HBWRATE(3,1,3) = 2.5024, HBWRATE(4,1,3) = 4.2048,HBWRATE(1,2,3) = 1.3139, HBWRATE(2,2,3) = 2.3702, HBWRATE(3,2,3) = 3.6792, HBWRATE(4,2,3) = 4.4887,HBWRATE(1,3,3) = 1.4198, HBWRATE(2,3,3) = 2.3702, HBWRATE(3,3,3) = 3.6792, HBWRATE(4,3,3) = 4.4887,HBWRATE(1,4,3) = 1.4198, HBWRATE(2,4,3) = 2.6629, HBWRATE(3,4,3) = 4.2048, HBWRATE(4,4,3) = 4.4887HBWRATE2(1,1,1) = 1.5423, HBWRATE2(2,1,1) = 2.8939, HBWRATE2(3,1,1) = 4.2103, HBWRATE2(4,1,1) = 4.2103,HBWRATE2(1,2,1) = 1.7108, HBWRATE2(2,2,1) = 2.9969, HBWRATE2(3,2,1) = 4.4182, HBWRATE2(4,2,1) = 6.6775,HBWRATE2(1,3,1) = 1.8483, HBWRATE2(2,3,1) = 3.0917, HBWRATE2(3,3,1) = 4.4182, HBWRATE2(4,3,1) = 6.8732,HBWRATE2(1,4,1) = 2.4614, HBWRATE2(2,4,1) = 3.0961, HBWRATE2(3,4,1) = 4.8855, HBWRATE2(4,4,1) = 7.4900,HBWRATE2(1,1,2) = 1.4464, HBWRATE2(2,1,2) = 2.8939, HBWRATE2(3,1,2) = 4.2103, HBWRATE2(4,1,2) = 4.2103,HBWRATE2(1,2,2) = 1.6100, HBWRATE2(2,2,2) = 2.9969, HBWRATE2(3,2,2) = 4.4182, HBWRATE2(4,2,2) = 6.6775,HBWRATE2(1,3,2) = 1.7239, HBWRATE2(2,3,2) = 3.0917, HBWRATE2(3,3,2) = 4.4182, HBWRATE2(4,3,2) = 6.8732,HBWRATE2(1,4,2) = 1.7239, HBWRATE2(2,4,2) = 3.0961, HBWRATE2(3,4,2) = 4.8855, HBWRATE2(4,4,2) = 7.4900,HBWRATE2(1,1,3) = 1.4767, HBWRATE2(2,1,3) = 2.8939, HBWRATE2(3,1,3) = 4.2103, HBWRATE2(4,1,3) = 4.2103,HBWRATE2(1,2,3) = 1.5366, HBWRATE2(2,2,3) = 2.9969, HBWRATE2(3,2,3) = 4.4182, HBWRATE2(4,2,3) = 6.6775,HBWRATE2(1,3,3) = 1.6465, HBWRATE2(2,3,3) = 3.0917, HBWRATE2(3,3,3) = 4.4182, HBWRATE2(4,3,3) = 6.8732,HBWRATE2(1,4,3) = 2.0911, HBWRATE2(2,4,3) = 3.0961, HBWRATE2(3,4,3) = 4.8855, HBWRATE2(4,4,3) = 7.4900HBURATE(1,1) = 0.0278, HBURATE(2,1) = 0.0762, HBURATE(3,1) = 0.0872, HBURATE(4,1) = 0.1428,HBURATE(1,2) = 0.0200, HBURATE(2,2) = 0.0420, HBURATE(3,2) = 0.0576, HBURATE(4,2) = 0.1294,HBURATE(1,3) = 0.0160, HBURATE(2,3) = 0.0818, HBURATE(3,3) = 0.1200, HBURATE(4,3) = 0.1950HBORATE(1,1,1) = 0.8972, HBORATE(2,1,1) = 1.6581, HBORATE(3,1,1) = 2.3884, HBORATE(4,1,1) = 2.3884, HBORATE(5,1,1) = 2.5448, HBORATE(6,1,1) = 2.7005,HBORATE(1,2,1) = 1.6603, HBORATE(2,2,1) = 3.5892, HBORATE(3,2,1) = 4.0137, HBORATE(4,2,1) = 6.4326, HBORATE(5,2,1) = 6.4326, HBORATE(6,2,1) = 6.4326,HBORATE(1,3,1) = 2.0213, HBORATE(2,3,1) = 3.5892, HBORATE(3,3,1) = 5.2097, HBORATE(4,3,1) = 7.7801, HBORATE(5,3,1) = 10.5647, HBORATE(6,3,1) = 10.5647,HBORATE(1,4,1) = 2.5384, HBORATE(2,4,1) = 3.5892, HBORATE(3,4,1) = 7.2816, HBORATE(4,4,1) = 9.7026, HBORATE(5,4,1) = 10.5647, HBORATE(6,4,1) = 13.0152,HBORATE(1,1,2) = 0.9455, HBORATE(2,1,2) = 1.6581, HBORATE(3,1,2) = 2.3884, HBORATE(4,1,2) = 2.3884, HBORATE(5,1,2) = 2.5450, HBORATE(6,1,2) = 3.2612,HBORATE(1,2,2) = 1.7396, HBORATE(2,2,2) = 4.1105, HBORATE(3,2,2) = 5.5828, HBORATE(4,2,2) = 8.3771, HBORATE(5,2,2) = 9.9859, HBORATE(6,2,2) = 10.5012,HBORATE(1,3,2) = 1.3552, HBORATE(2,3,2) = 4.1105, HBORATE(3,3,2) = 5.5828, HBORATE(4,3,2) = 8.3771, HBORATE(5,3,2) = 9.9859, HBORATE(6,3,2) = 13.6907,HBORATE(1,4,2) = 1.1170, HBORATE(2,4,2) = 4.1105, HBORATE(3,4,2) = 5.5848, HBORATE(4,4,2) = 8.3771, HBORATE(5,4,2) = 9.9859, HBORATE(6,4,2) = 13.6907,Trip Generation - Appendix A 58


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0HBORATE(1,1,3) = 0.9455, HBORATE(2,1,3) = 1.6581, HBORATE(3,1,3) = 2.3884, HBORATE(4,1,3) = 2.3884, HBORATE(5,1,3) = 2.5450, HBORATE(6,1,3) = 3.2612,HBORATE(1,2,3) = 1.7113, HBORATE(2,2,3) = 2.1742, HBORATE(3,2,3) = 5.6078, HBORATE(4,2,3) = 6.5226, HBORATE(5,2,3) = 10.0055, HBORATE(6,2,3) = 10.0055,HBORATE(1,3,3) = 1.9099, HBORATE(2,3,3) = 3.9482, HBORATE(3,3,3) = 5.6124, HBORATE(4,3,3) = 7.2951, HBORATE(5,3,3) = 10.0055, HBORATE(6,3,3) = 14.5124,HBORATE(1,4,3) = 1.9099, HBORATE(2,4,3) = 3.4157, HBORATE(3,4,3) = 5.6124, HBORATE(4,4,3) = 7.2951, HBORATE(5,4,3) = 10.8559, HBORATE(6,4,3) = 14.5124HBORATE2(1,1,1) = 0.8454, HBORATE2(2,1,1) = 0.9251, HBORATE2(3,1,1) = 1.3111, HBORATE2(4,1,1) = 1.3111, HBORATE2(5,1,1) = 1.3111, HBORATE2(6,1,1) = 1.3111,HBORATE2(1,2,1) = 0.9703, HBORATE2(2,2,1) = 1.9290, HBORATE2(3,2,1) = 2.2515, HBORATE2(4,2,1) = 2.2515, HBORATE2(5,2,1) = 2.2515, HBORATE2(6,2,1) = 2.2515,HBORATE2(1,3,1) = 1.9144, HBORATE2(2,3,1) = 2.4494, HBORATE2(3,3,1) = 2.7659, HBORATE2(4,3,1) = 5.1366, HBORATE2(5,3,1) = 5.1366, HBORATE2(6,3,1) = 5.1366,HBORATE2(1,4,1) = 1.9144, HBORATE2(2,4,1) = 2.4494, HBORATE2(3,4,1) = 2.7659, HBORATE2(4,4,1) = 5.1366, HBORATE2(5,4,1) = 5.1366, HBORATE2(6,4,1) = 5.1366,HBORATE2(1,1,2) = 0.7227, HBORATE2(2,1,2) = 0.8792, HBORATE2(3,1,2) = 1.6211, HBORATE2(4,1,2) = 1.6494, HBORATE2(5,1,2) = 1.6494, HBORATE2(6,1,2) = 1.6494,HBORATE2(1,2,2) = 1.5082, HBORATE2(2,2,2) = 2.4384, HBORATE2(3,2,2) = 3.4913, HBORATE2(4,2,2) = 4.1952, HBORATE2(5,2,2) = 4.6840, HBORATE2(6,2,2) = 5.2011,HBORATE2(1,3,2) = 2.8954, HBORATE2(2,3,2) = 2.8954, HBORATE2(3,3,2) = 4.5366, HBORATE2(4,3,2) = 6.0474, HBORATE2(5,3,2) = 7.3303, HBORATE2(6,3,2) = 8.3510,HBORATE2(1,4,2) = 3.2738, HBORATE2(2,4,2) = 4.1036, HBORATE2(3,4,2) = 5.4212, HBORATE2(4,4,2) = 6.7871, HBORATE2(5,4,2) = 8.0589, HBORATE2(6,4,2) = 8.9992,HBORATE2(1,1,3) = 0.3106, HBORATE2(2,1,3) = 0.6055, HBORATE2(3,1,3) = 0.8824, HBORATE2(4,1,3) = 0.8824, HBORATE2(5,1,3) = 0.8824, HBORATE2(6,1,3) = 0.8824,HBORATE2(1,2,3) = 1.5405, HBORATE2(2,2,3) = 2.4326, HBORATE2(3,2,3) = 3.3601, HBORATE2(4,2,3) = 4.0258, HBORATE2(5,2,3) = 4.6460, HBORATE2(6,2,3) = 5.1953,HBORATE2(1,3,3) = 1.5405, HBORATE2(2,3,3) = 2.4326, HBORATE2(3,3,3) = 3.8679, HBORATE2(4,3,3) = 5.5629, HBORATE2(5,3,3) = 6.0212, HBORATE2(6,3,3) = 6.2527,HBORATE2(1,4,3) = 1.5405, HBORATE2(2,4,3) = 2.4326, HBORATE2(3,4,3) = 3.8679, HBORATE2(4,4,3) = 5.9776, HBORATE2(5,4,3) = 7.0927, HBORATE2(6,4,3) = 7.8606HBSCRATE(1,1,1) = 0.0122, HBSCRATE(2,1,1) = 0.1997, HBSCRATE(3,1,1) = 0.9514, HBSCRATE(4,1,1) = 1.7030, HBSCRATE(5,1,1) = 2.3813, HBSCRATE(6,1,1) = 3.0589,HBSCRATE(1,2,1) = 0.0122, HBSCRATE(2,2,1) = 0.1527, HBSCRATE(3,2,1) = 0.4615, HBSCRATE(4,2,1) = 1.1413, HBSCRATE(5,2,1) = 2.0873, HBSCRATE(6,2,1) = 2.7064,HBSCRATE(1,3,1) = 0.0122, HBSCRATE(2,3,1) = 0.0226, HBSCRATE(3,3,1) = 0.1880, HBSCRATE(4,3,1) = 0.7244, HBSCRATE(5,3,1) = 2.0873, HBSCRATE(6,3,1) = 2.7064,HBSCRATE(1,4,1) = 0.0122, HBSCRATE(2,4,1) = 0.0226, HBSCRATE(3,4,1) = 0.1880, HBSCRATE(4,4,1) = 0.7244, HBSCRATE(5,4,1) = 2.0873, HBSCRATE(6,4,1) = 2.1191,HBSCRATE(1,1,2) = 0.0011, HBSCRATE(2,1,2) = 0.1984, HBSCRATE(3,1,2) = 0.9514, HBSCRATE(4,1,2) = 1.7030, HBSCRATE(5,1,2) = 2.3813, HBSCRATE(6,1,2) = 3.0589,HBSCRATE(1,2,2) = 0.0011, HBSCRATE(2,2,2) = 0.1984, HBSCRATE(3,2,2) = 0.5679, HBSCRATE(4,2,2) = 1.1413, HBSCRATE(5,2,2) = 1.8561, HBSCRATE(6,2,2) = 2.7064,HBSCRATE(1,3,2) = 0.0011, HBSCRATE(2,3,2) = 0.0127, HBSCRATE(3,3,2) = 0.4225, HBSCRATE(4,3,2) = 1.1413, HBSCRATE(5,3,2) = 1.8561, HBSCRATE(6,3,2) = 2.7064,HBSCRATE(1,4,2) = 0.0011, HBSCRATE(2,4,2) = 0.0127, HBSCRATE(3,4,2) = 0.1585, HBSCRATE(4,4,2) = 0.8736, HBSCRATE(5,4,2) = 1.3228, HBSCRATE(6,4,2) = 2.1191,HBSCRATE(1,1,3) = 0.0049, HBSCRATE(2,1,3) = 0.1984, HBSCRATE(3,1,3) = 0.9514, HBSCRATE(4,1,3) = 1.7030, HBSCRATE(5,1,3) = 2.3813, HBSCRATE(6,1,3) = 3.0589,HBSCRATE(1,2,3) = 0.0049, HBSCRATE(2,2,3) = 0.0539, HBSCRATE(3,2,3) = 0.8913, HBSCRATE(4,2,3) = 1.5360, HBSCRATE(5,2,3) = 2.2934, HBSCRATE(6,2,3) = 3.1372,HBSCRATE(1,3,3) = 0.0049, HBSCRATE(2,3,3) = 0.0539, HBSCRATE(3,3,3) = 0.5970, HBSCRATE(4,3,3) = 1.5360, HBSCRATE(5,3,3) = 2.2934, HBSCRATE(6,3,3) = 3.1372,HBSCRATE(1,4,3) = 0.0049, HBSCRATE(2,4,3) = 0.0539, HBSCRATE(3,4,3) = 0.3493, HBSCRATE(4,4,3) = 0.8742, HBSCRATE(5,4,3) = 1.9476, HBSCRATE(6,4,3) = 2.3032&END2531 1608 00.90 1.0 0.90 1.0 0.9979 1.7090 1.2595Trip Generation - Appendix A 59


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.6 ST1601.INP&SETUPFIN(1) = 'A1201'FIN(2) = 'A1501'FIN(3) = 'UNIV.PRN'FIN(4) = 'HISCH.PRN'FIN(5) = 'ELEM.PRN'FIN(6) = 'SHOP.PRN'FIN(7) = 'RECR.PRN'FIN(8) = 'EXTINFO.PRN'FIN(9) = 'M0007'FIN(10) = 'MISC.PRN'FIN(11) = 'SCHLPOP.PRN'FIN(12) = 'ZTOCTOS.PRN'FOUT(1) = 'A1601'FOUT(2) = 'A1602'FOUT(3) = 'A1603'FOUT(4) = 'A1604'FOUT(5) = 'A1605'FOUT(6) = 'A1606'FOUT(7) = 'A1607'FOUT(8) = 'A1608'FOUT(9) = 'R1608'FOUT(10) = 'A0018'NIZ = 2425CAHBW = 1.506CAHBO = 0.230, 2.000, 12.744, 1.062SCALHBW = 0.850, 1.120SCALHBO = 0.900, 0.750CAHBSCEL= 87CHBOADD = .0169, 7579CPTRK = 0.138, 0.272CATRK = 0.137, 0.294CEIINT = 1, 1, 0, 0.043, 0.040, 0.02, 1, 0, 0.075, 0.080, 0.03, 1, 0, 0.193, 0.306, 0.04, 1, 0, 0.0, 0.0, 0.05, 1, 0, 0.0, 0.241, 0.2156, 1, 0, 0.0, 0.0, 0.07, 1, 0, 0.057, 0.079, 0.08, 1, 0, 0.0, 0.0, 0.0CNHBEI = 0.4104OCCHBW = 1.13OCCHBO = 2.06OCCNHB = 1.77TAXIYGF = 1.0338TAXIBY = 1978CTAXI = 0.8223SCHSPLIT(1) = 0.1275SCHSPLIT(2) = 0.0506SCHSPLIT(3) = 0.0506&ENDTrip Generation - Appendix A 60


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09.7 STEP16.BAT@ECHO OFFECHO ******************************************************ECHO *** ***ECHO *** STEP 16 ***ECHO *** ***ECHO ******************************************************REMREM Delete previous run filesREMIF EXIST a0018 DEL a0018IF EXIST A1601 DEL A1601IF EXIST A1602 DEL A1602IF EXIST A1603 DEL A1603IF EXIST A1604 DEL A1604IF EXIST A1605 DEL A1605IF EXIST A1606 DEL A1606IF EXIST A1607 DEL A1607IF EXIST R1608 DEL R1608REMREM Check for required filesREMIF NOT EXIST m0007 ECHO Cannot locate m0007 in model run directory!!IF NOT EXIST m0007 PAUSEIF NOT EXIST model.inp ECHO Cannot locate model.inp in model run directory!!IF NOT EXIST model.inp PAUSEIF NOT EXIST schlpop.prn ECHO Cannot locate schlpop.prn in model run directory!!IF NOT EXIST schlpop.prn PAUSEIF NOT EXIST a1201 ECHO Cannot locate a1201 in model run directory!!IF NOT EXIST a1201 PAUSEIF NOT EXIST a1501 ECHO Cannot locate a1501 in model run directory!!IF NOT EXIST a1501 PAUSEIF NOT EXIST elem.prn ECHO Cannot locate elem.prn in model run directory!!IF NOT EXIST elem.prn PAUSEIF NOT EXIST extinfo.prn ECHO Cannot locate extinfo.prn in model run directory!!IF NOT EXIST extinfo.prn PAUSEIF NOT EXIST univ.prn ECHO Cannot locate univ.prn in model run directory!!IF NOT EXIST univ.prn PAUSEIF NOT EXIST ztoctos.prn ECHO Cannot locate ztoctos.prn in model run directory!!IF NOT EXIST ztoctos.prn PAUSEIF NOT EXIST misc.prn ECHO Cannot locate misc.prn in model run directory!!IF NOT EXIST misc.prn PAUSEIF NOT EXIST recr.prn ECHO Cannot locate recr.prn in model run directory!!IF NOT EXIST recr.prn PAUSEIF NOT EXIST hisch.prn ECHO Cannot locate hisch.prn in model run directory!!IF NOT EXIST hisch.prn PAUSEIF NOT EXIST shop.prn ECHO Cannot locate shop.prn in model run directory!!IF NOT EXIST shop.prn PAUSEIF NOT EXIST st1601.inp ECHO Cannot locate st1601.inp in model run directory!!IF NOT EXIST st1601.inp PAUSEREMREM Trip generationREMst160160.exeTrip Generation - Appendix A 61


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010. Appendix BTrip Production RatesTrip Generation - Appendix B 62


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table B.1 - HBW Trip Production Rates, <strong>OKI</strong> RegionArea TypeCBD &UrbanSuburbanRuralAutos perWorkers per HouseholdHousehold 0 1 2 3 4+0 n/a 1.2614 2.2729 3.5359 3.85441 n/a 1.2614 2.2729 3.5359 3.85442 n/a 1.3701 2.4690 3.5359 3.85443+ n/a 1.5330 2.4690 4.2048 4.43840 n/a 1.3405 2.1024 3.1536 3.85441 n/a 1.3954 2.3652 3.1536 3.85442 n/a 1.3954 2.5067 3.1536 3.85443+ n/a 1.4156 2.6192 3.9335 4.43840 n/a 1.2668 2.3827 3.1536 3.85441 n/a 1.3690 2.3827 3.1536 3.85442 n/a 1.3690 2.3827 3.1536 3.85443+ n/a 1.4222 2.7110 3.9935 4.4384Table B.2 – HBW Trip Production Rates, MVRPC RegionArea TypeCBD &UrbanSuburbanRuralAutos perWorkers per HouseholdHousehold 0 1 2 3 4+0 n/a 1.5423 2.8939 4.2103 4.21031 n/a 1.7108 2.9969 4.4182 6.67752 n/a 1.8483 3.0917 4.4182 6.87323+ n/a 2.4614 3.0961 4.8855 7.49000 n/a 1.4464 2.8939 4.2103 4.21031 n/a 1.6100 2.9969 4.4182 6.67752 n/a 1.7239 3.0917 4.4182 6.87323+ n/a 1.7239 3.0961 4.8855 7.49000 n/a 1.4767 2.8939 4.2103 4.21031 n/a 1.5366 2.9969 4.4182 6.67752 n/a 1.6465 3.0917 4.4182 6.87323+ n/a 2.0911 3.0961 4.8855 7.4900Table B.3 – HBO Trip Production Rates, <strong>OKI</strong> RegionArea TypeCBD &UrbanSuburbanRuralAutos perPersons per HouseholdHousehold 1 2 3 4 5 6+0 0.8086 1.6172 2.9820 3.1950 3.1950 3.19501 1.5845 3.2907 3.4192 4.6524 4.6524 6.39002 1.9018 3.2907 4.8147 9.0271 9.7033 9.70333+ 2.6625 3.2907 5.5913 9.0271 9.7033 9.70330 1.0650 1.6172 3.1950 3.1950 3.1950 3.19501 1.6411 3.6649 5.3167 7.9927 8.4940 6.39002 1.6411 3.6649 5.3167 7.9927 8.6383 12.82103+ 1.6411 3.6649 5.3167 7.9927 9.1708 12.70900 1.0650 1.6172 3.1950 3.1950 3.1950 3.19501 1.7204 2.7342 5.1120 7.0290 8.4940 6.39002 1.7750 2.7342 5.2689 7.0290 8.6383 12.82103+ 1.7750 3.2897 5.2689 7.0290 9.1708 12.8210Trip Generation - Appendix B 63


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table B.4 – HBO Trip Production Rates, MVRPC RegionArea TypeCBD &UrbanSuburbanRuralAutos perPersons per HouseholdHousehold 1 2 3 4 5 6+0 0.8454 0.9251 0.3111 1.3111 1.3111 1.31111 0.9703 1.9290 2.2515 2.2515 2.2515 2.25152 1.9144 2.4494 2.7659 5.1366 5.1366 5.13663+ 1.9144 2.4494 2.7659 5.1366 5.1366 5.13660 0.7227 0.8792 1.6211 1.6494 1.6494 1.64941 1.5082 2.4384 3.4913 4.1952 4.6840 5.20112 2.8954 2.8954 4.5366 6.0474 7.3303 8.35103+ 3.2738 4.1036 5.4212 6.7871 8.0589 8.99920 0.3106 0.6055 0.8824 0.8824 0.8824 0.88241 1.5405 1.4633 3.3601 4.0258 4.6460 5.19532 1.5405 2.4326 3.8679 5.5629 6.0212 6.25273+ 1.5405 2.4326 3.8679 5.9776 7.0927 7.8606Table B.5 – HBU Trip Production RatesAutos perArea TypeHousehold CBD & Urban Suburban Rural0 0.0667 0.0667 0.00141 0.0667 0.0667 0.04692 0.0857 0.0451 0.04693+ 0.2250 0.1580 0.1103Table B.6 – NHB Trip Production RatesAutoTransitArea TypeCBD Urban Suburban RuralOrigins 0.4328 0.4476 0.4092 0.3163Destinations 0.3719 0.4482 0.4230 0.3367Origins 0.1458 0.4558 0.3889 0.3889Destinations 0.2778 0.3469 0.4167 0.4167Table B.7 – Trip Production and Attraction Scale Factors<strong>OKI</strong>RegionMVRPCRegionTrip PurposeHBW HBU HBSC HBO NHBProductions 0.9000 1.0000 1.0000 0.9000 1.0000Attractions 0.8500 1.0000 1.0000 0.9000 1.0000Productions 0.9979 1.7090 1.0000 1.2595 1.0000Attractions 1.1200 1.0000 1.0000 0.7500 1.0000Trip Generation - Appendix B 64


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 4 – Trip Distribution


Table of Contents1. Background ..................................................................................................................... 12. Gravity <strong>Model</strong> Calibration .................................................................................................. 22.1 Background ............................................................................................................ 22.2 <strong>Model</strong> Calibration Process ........................................................................................ 32.3 <strong>Model</strong> Calibration Data ............................................................................................ 32.3.1 Impedance Matrix (Logsums) ............................................................................ 32.3.2 Observed Trip Data .......................................................................................... 32.4 Friction Factor Calculation........................................................................................ 32.5 <strong>Model</strong> Calibration Results......................................................................................... 52.6 <strong>Model</strong> Calibration Refinements ............................................................................... 102.6.1 K Factor Estimation......................................................................................... 102.6.2 Bridge Penalties ............................................................................................. 102.7 External-Internal Trip Distribution Calibration .......................................................... 173. Gravity <strong>Model</strong> Application................................................................................................ 183.1 Trip Distribution <strong>Model</strong> Validation ........................................................................... 183.2 Sub-Region Average Trip <strong>Travel</strong> Time ..................................................................... 254. Appendix A .................................................................................................................... 26Trip Distribution - Backgroundii


Index of TablesTable 2-1 Trip Length Frequency Distribution Statistics, Logsum Impedance ............................. 5Table 2-2 Logsum Parameters............................................................................................... 6Table 2-3 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBW Peak ........................ 11Table 2-4 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBW Off Peak................... 12Table 2-5 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBO Peak......................... 13Table 2-6 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBO Off Peak ................... 14Table 2-7 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, NHB Peak......................... 15Table 2-8 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, NHB Off Peak ................... 16Table 2-9 <strong>OKI</strong>/MVRPC <strong>Model</strong> K-Factors ................................................................................ 17Table 2-10 K-factor Districts................................................................................................ 17Table 3-1 Average Trip Length in the <strong>OKI</strong> Region (Logsums), <strong>Model</strong> Application Results........... 18Table 3-2 Average Highway <strong>Travel</strong> Time and Distance, <strong>OKI</strong> Region ........................................ 22Table 3-3 Average Intra-Regional <strong>Travel</strong> Time, excluding intrazonal and external trips ............. 25Index of FiguresFigure 2-1 Gamma Function.................................................................................................. 4Figure 2-2 Trip Length Frequency Distribution Functions, Peak Period HBW............................... 7Figure 2-3 Trip Length Frequency Distribution Functions, Off Peak Period HBW ......................... 7Figure 2-4 Trip Length Frequency Distribution Functions, Peak Period HBO ............................... 8Figure 2-5 Trip Length Frequency Distribution Functions, Off Peak Period HBO.......................... 8Figure 2-6 Trip Length Frequency Distribution Functions, Peak Period NHB ............................... 9Figure 2-7 Trip Length Frequency Distribution Functions, Off Peak Period NHB.......................... 9Figure 2-8 Trip Length Frequency Distribution Functions, External-Internal Trips ..................... 17Figure 3-1 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBW Peak.................... 19Figure 3-2 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBW Off Peak .............. 19Figure 3-3 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBO Peak .................... 20Figure 3-4 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBO Off Peak............... 20Figure 3-5 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), NHB Peak .................... 21Figure 3-6 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), NHB Off Peak ............... 21Figure 3-7 <strong>Travel</strong> Time Trip Length Frequency Distribution Functions, HBW Peak..................... 22Figure 3-8 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBW Off Peak.............................. 23Figure 3-9 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBO Peak Period.......................... 23Figure 3-10 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBO Off Peak............................. 24Figure 3-11 <strong>Travel</strong> Time Trip Length Frequency Distribution, NHB Peak .................................. 24Figure 3-12 <strong>Travel</strong> Time Trip Length Frequency Distribution, NHB Off Peak............................. 25Trip Distribution - Backgroundiii


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. BackgroundThis is Part IV of the <strong>OKI</strong>/MVRPC model development report. It has been previously released asthe Task A.4.4, Trip Distribution, a report that is part of a series of working papers thatdocument the development of a consolidated travel demand model for the Ohio-Kentucky-Indiana Council of Governments and the Miami Valley Regional Transportation Commission (<strong>OKI</strong>and MVRPC respectively). This model development is undertaken under the framework of theNorth-South Transportation Initiative, a Major Investment Study focusing on the Interstate 75corridor.This report documents the calibration and validation of the trip distribution models. The<strong>OKI</strong>/MVRPC model uses gravity models and fratar models to distribute trip productions andattractions in the region. The main activity undertaken is the calibration of friction factors usedin the various gravity models. In addition, executable, control and input files have been revisedto conform to the consolidated model characteristics.Trip Distribution - Background 1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Gravity <strong>Model</strong> Calibration2.1 BackgroundThe <strong>OKI</strong>/MVRPC consolidated trip distribution model departs in several ways from the original<strong>OKI</strong> (<strong>Model</strong> 5.4) trip distribution model. The original <strong>Model</strong> 5.4 trip distribution model usesgravity models to distribute daily HBW, HBO, HBU and NHB trip production and attractions. Theimpedance measure used is a composite highway travel time, constructed as the weighted sumof the peak travel time and the off peak travel time. The weights are defined as the proportionof trips occurring at each time period, and they vary by trip purpose.While this method obviates the need to maintain separate peak and off peak friction factors, itrelies on the assumption that peak and off-peak trip patterns are identical. There is of course noevidence that this is the case. Instead of relying on this assumption, different peak and off-peakfriction factors were developed for the <strong>OKI</strong>/MVRPC model.The use of highway travel time as the impedance measure ignores the effects that cost andtransit service may have on trip distribution. It is in fact possible to formulate an approach inwhich all modes and all components of travel (cost, time and distance) affect the distribution oftravel. This requires the use of a composite measure of accessibility, the logsum, which isobtained from the denominator of the mode choice model.The logsum measures the spatial separation between zones giving adequate consideration totravel time, travel cost and other variables included in the mode choice model. This impedancealso gives weight to household characteristics of the traveler, such as income or auto ownership,through the use of these characteristics in the stratification of mode-specific constants. Thelogsum has all the desirable characteristics of impedance measures, including:• Its value decreases as any mode improves, that is, as the time or cost decreases.• Its value increases if any mode is unavailable.For use in trip distribution, the logsum is calculated at the upper level of the mode choice nestand its value scaled by the in-vehicle time coefficient, to obtain equivalent minutes of travel.Trip Distribution - Gravity <strong>Model</strong> Calibration 2


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.2 <strong>Model</strong> Calibration ProcessThe <strong>OKI</strong>/MVRPC model uses logsums as the impedance for HBW, HBU, HBO and NHB peak andoff peak trip distribution models. Because the logsums are obtained from the mode choicemodel, full model calibration requires iteration between the calibration of the gravity models andthe calibration of the mode choice models.For the initial trip distribution calibration, the mode choice model was applied using thealternative-specific constants obtained in model estimation. After the first calibration, the tripdistribution model is applied, and the resulting trip tables are used to re-calibrate the modechoice model. With the newly computed alternative-specific constants, the calibration of thegravity models is checked again, and adjusted if necessary. This process of iterating betweenthe mode choice calibration and the trip distribution calibration is repeated until there are nochanges in the convergence criteria of the calibration process. The entire calibration process wasrepeated several times during the model validation phase to incorporate any changes in logsumsdue to refinements made to either the mode choice or the trip distribution models during thisphase. The results reported below correspond to the final trip distribution and mode choicecalibrations.2.3 <strong>Model</strong> Calibration DataThe calibration of gravity models requires three data items: the impedance matrix, an observedtrip table, and observed trip production and attractions. Below is a description of these dataitems.2.3.1 Impedance Matrix (Logsums)The logsums are obtained from a special application of the mode choice model. The controlparameters of the mode choice application program allow the user to output either trip tables orlogsum tables. Because the computation of logsums requires only the calculation of mode choiceprobabilities, it is not necessary to have a trip table in order to produce logsums.2.3.2 Observed Trip DataThe observed trip table and observed productions and attractions were developed from the <strong>OKI</strong>home interview survey, based on expanded data records. It was not possible to includeinformation about MVRPC trips on the trip distribution calibration because the MVRPC survey isnot geocodable. It must be assumed then that the <strong>OKI</strong> Council region trip length pattern appliesto MVRPC. This assumption and possibly the trip distribution calibration should be revised asMVRPC origin/destination data become available. A correction to the gravity model, in the formof K-factors for trip interchanges between <strong>OKI</strong> and MVRPC, was computed based on data fromthe ODOT cordon surveys. This process is described in Section 2.62.4 Friction Factor CalculationThe purpose of the calibration process is to determine a set of friction factors that, when appliedin the gravity model, yield an estimated trip length frequency distribution (TLFD) function withcharacteristics similar to the observed TLFD function.Trip Distribution - Gravity <strong>Model</strong> Calibration 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Friction factors are calibrated by fitting a gamma function:f (I )β= α ∗I∗ EXP( γ ∗I),where f is the friction factor for impedance I, and α, β and γ are the parameters to bedetermined. The gamma function can take the general forms shown below:Figure 2-1 Gamma Functionfriction factors400035003000β>0250020001500β


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Sometimes the iterative process does not yield a good enough set of friction factors. When thishappens, the final friction factor adjustments are done manually. The values of the estimatedparameters or the statistics of the regression are of no particular interest nor contain anybehavioral information, and for this reason they are not reported here.2.5 <strong>Model</strong> Calibration ResultsTable 2.1 shows the final estimated and observed average trip length for HBW, HBO and NHBtrips, peak and off peak. The difference between observed and estimated average trip length isof the order of 1%, indicating that the model reproduces observed trip lengths with small error.Trip length is in logsum units, that is, equivalent travel time minutes. Logsum values have beenshifted by a fixed amount (see Table 2.2), to ensure all logsum values are positive; hence thevalues reported do not represent average travel times.Table 2-1 Trip Length Frequency Distribution Statistics, Logsum ImpedanceTripAverage Trip LengthCoincidenceIntrazonal TripsPurpose Observed Estimated % Error Ratio Observed Estimated % ErrorHBWPeak 275.4 276.2 0.3% 0.847 18,291 19,254 5.3%Off Peak 250.4 248.1 -0.9% 0.777 22,718 26,731 17.7%HBOPeak 115.5 116.0 0.4% 0.865 130,247 128,935 -1.0%Off Peak 159.8 162.0 1.4% 0.860 126,758 142,053 12.1%NHBPeak 242.1 241.2 -0.4% 0.801 125,355 127,726 1.9%Off Peak 239.0 238.3 -0.3% 0.897 176,148 171,666 -2.5%Table 2.1 also shows the coincidence ratio, an index that defines how close two distributions areto each other. The coincidence ratio is calculated as follows:CoincidenceRatio =Min(%EstimatedTrips ,% ObservedTrips )HighestLogSumkk∑k = 0 Max(%EstimatedTripsk,% ObservedTripsk),where k indicates each interval of the TLFD function (i.e., the logsum values) and % EstimatedTrips and % Observed Trips are the proportion of estimated and observed trips, respectively, ateach logsum interval. A coincidence ratio equal to 1.0 indicates that the two distributions areidentical.For the <strong>OKI</strong>/MVRPC observed and estimated TLFD functions, the coincidence ratios areapproximately 0.8 or higher for all purposes, which indicates that the overall shape of theestimated trip length distribution functions closely approximate the shape of their respectiveobserved functions.Figures 2.2 to 2.7 show the observed and estimated trip length distribution functions, usinglogsum as the measure of impedance. Again, note that the purpose of the calibration wasachieved, that is, the estimated TLFD function closely approximates the observed TLFD function.Trip Distribution - Gravity <strong>Model</strong> Calibration 5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0In addition to average trip length and coincidence ratio, another important characteristic of theestimated trip tables is the number or proportion of intrazonal trips. The proportion of intrazonaltrips is a function of the intrazonal logsums. The intrazonal logsums measure the “cost” oftraveling inside the zone. Rather than use intrazonal times, intrazonal logsums are computedhere as a fraction of the “cost” (i.e. logsum) of traveling to the nearest neighbor. These fractionsor logsum intrazonal factors are calibrated simultaneously with the friction factors. The finallogsum intrazonal factors are shown in Table 2.2. These factors are not comparable acrosspurposes just as the logsum values are not comparable across purposes.Table 2-2 Logsum ParametersTrip PurposeIntrazonal FactorShift ParameterPeak Off Peak Peak Off PeakHBW 0.850 0.905 300 300HBU 1.000 1.000 300 300HBO 0.935 0.935 500 500NHB 0.937 0.991 300 300Due to the relatively few HBU trip observations reported in the home interview survey, it was notpossible to calibrate HBU friction factors or intrazonal factors. HBW friction factors will be usedfor HBU trips.The calibrated friction factors are listed in Appendix A. Note that, because the logsum matrixvalues were shifted by +300.0 or +500.0, initial friction factors correspond to logsum values forwhich there are no estimated trips. They are included only due to the way in which the gravitymodel inputs need to be specified, but they do not affect the trip distribution.Trip Distribution - Gravity <strong>Model</strong> Calibration 6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-2 Trip Length Frequency Distribution Functions, Peak Period HBW2.0%Trip Frequency (%)1.5%1.0%0.5%Est % Obs %0.0%150 200 250 300 350 400Impedance (LogSum)Figure 2-3 Trip Length Frequency Distribution Functions, Off Peak Period HBW3.0%2.5%Est % Obs %Trip Frequency (%)2.0%1.5%1.0%0.5%0.0%175 200 225 250 275 300 325 350Impedance (LogSum)Trip Distribution - Gravity <strong>Model</strong> Calibration 7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-4 Trip Length Frequency Distribution Functions, Peak Period HBO3.0%2.5%Est % Obs %Trip Frequency (%)2.0%1.5%1.0%0.5%0.0%50 75 100 125 150 175 200 225 250Impedance (LogSum)Figure 2-5 Trip Length Frequency Distribution Functions, Off Peak Period HBO2.5%2.0%Trip Frequency (%)1.5%1.0%Est % Obs %0.5%0.0%100 125 150 175 200 225 250 275 300Impedance (Logsum)Trip Distribution - Gravity <strong>Model</strong> Calibration 8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-6 Trip Length Frequency Distribution Functions, Peak Period NHB6.0%5.0%Est % Obs %Trip Frequency (%)4.0%3.0%2.0%1.0%0.0%200 225 250 275 300 325 350Impedance (LogSum)Figure 2-7 Trip Length Frequency Distribution Functions, Off Peak Period NHB7.0%6.0%5.0%Est % Obs %Trip Frequency (%)4.0%3.0%2.0%1.0%0.0%200 225 250 275 300 325 350Impedance (LogSum)Trip Distribution - Gravity <strong>Model</strong> Calibration 9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.6 <strong>Model</strong> Calibration Refinements2.6.1 K Factor Estimation(a) Within the <strong>OKI</strong> Council RegionThe initial estimated trip distribution was validated on a county-to-county basis against <strong>OKI</strong>household survey data. On the basis of this comparison a small set of K-factors were calculatedand applied to the model, primarily to correct the over-estimation of trips between NorthernKentucky and Ohio. This kind of overestimation is not unusual, given that the two regions areconnected only by a small number of bridges. It was also found that a correction was necessaryto better estimate Cincinnati CBD bound trips. Tables 2.3 to 2.8 show the observed andestimated <strong>OKI</strong> county-to-county trip tables for HBW, HBO and NHB trip purposes, after theapplication of K-factors. The final estimated K-factors are shown in Table 2.9. The K-factordistricts are shown in Table 2.10.(b) Between the <strong>OKI</strong> and MVRPC RegionsAs mentioned in the Introduction, the calibration of the <strong>OKI</strong>/MVRPC friction factors was basedentirely on trip distribution data from the <strong>OKI</strong> region. While there is no geocoded observed tripdata for the MVRPC region, the ODOT cordon survey allows validation of the distribution of tripsbetween <strong>OKI</strong>, Montgomery and Greene counties, and Miami County.The ODOT cordon data are limited in that only two trip purposes were recorded, work and nonwork,and also in that it is not known whether trips are home-based or non-home based 1 . Forthese reasons, the inter-regional K factors were calculated on the basis of total trips (i.e., not bytrip purpose). According to the ODOT cordon survey, there were approximately 94,000 personvehicle trips crossing the cordon between <strong>OKI</strong> and MVRPC. K-factors for the inter-regional ODpairs were estimated by trial-and-error with the objective of achieving approximately the ODOTtarget total. An adjustment by trip purpose was made to consider the trip estimate sensitivity tothe K-factor value. The final estimated K-factors are shown in Table 2.19. The K-factor districtsare shown Table 2.10.2.6.2 Bridge PenaltiesAs part of the highway assignment validation phase, it was found that, even with the use ofNorthern Kentucky to Ohio K-factors, the model still overestimated trips between these tworegions. For this reason, the bridge travel time penalties used in <strong>Model</strong> v54 were added to theskims derived from the highway network. The calibration of the gravity models and mode choicemodels was adjusted as a result of the updated skims. The results discussed in this reportalready reflect these adjustments.1 While the ODOT cordon survey questionnaire form includes a question requesting whether the trip startedor ended at home, this information was not included in the cordon survey data files provided to PB for thisstudy. The data items available for this study are listed in Figure 10 of the ODOT Cordon Line OD SurveyData Technical Memoranda.Trip Distribution - Gravity <strong>Model</strong> Calibration 10


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-3 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBW PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 44,954 1,693 37,180 7,113 1,313 720 1,602 659 1,896 97,130Clermont 1,830 15,280 24,791 1,510 1,957 1,828 3,065 57 3,004 53,322Hamilton 15,973 9,025 201,083 4,694 3,692 2,801 6,009 2,340 35,838 281,455Warren 7,580 1,804 15,333 10,172 497 419 842 58 963 37,668Boone 152 238 3,310 56 11,364 1,192 5,410 227 1,153 23,102Campbell 309 580 9,084 172 3,227 5,224 6,007 76 3,617 28,296Kenton 422 725 11,145 200 12,220 4,308 15,859 219 4,467 49,565Dearborn 525 77 4,499 60 1,969 313 1,146 3,366 478 12,433Cinc. CBD 7 8 391 5 36 38 80 3 137 705Total 71,752 29,430 306,816 23,982 36,275 16,843 40,020 7,005 51,553 583,676O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 55,196 0 36,647 5,656 227 680 454 0 3,613 102,473Clermont 1,466 19,736 25,176 2,552 664 0 1,909 0 4,471 55,973Hamilton 10,350 8,231 196,903 5,967 2,990 2,317 5,516 3 43,998 276,276Warren 2,743 1,474 14,957 13,249 417 0 0 0 840 33,680Boone 236 0 4,777 0 12,121 0 3,815 0 2,389 23,338Campbell 0 943 11,204 0 3,207 8,304 4,149 0 3,772 31,579Kenton 475 1,431 10,737 0 7,420 4,058 20,986 0 5,004 50,111Dearborn 712 0 3,584 960 239 0 0 4,040 711 10,246Cinc. CBD 0 0 0 0 0 0 0 0 0 0Total 71,179 31,815 303,985 28,384 27,285 15,359 36,829 4,043 64,797 583,676E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 0.8 n/a 1.0 1.3 5.8 1.1 3.5 n/a 0.5 0.9Clermont 1.2 0.8 1.0 0.6 2.9 n/a 1.6 n/a 0.7 1.0Hamilton 1.5 1.1 1.0 0.8 1.2 1.2 1.1 786.8 0.8 1.0Warren 2.8 1.2 1.0 0.8 1.2 n/a n/a n/a 1.1 1.1Boone 0.6 n/a 0.7 n/a 0.9 n/a 1.4 n/a 0.5 1.0Campbell n/a 0.6 0.8 n/a 1.0 0.6 1.4 n/a 1.0 0.9Kenton 0.9 0.5 1.0 n/a 1.6 1.1 0.8 n/a 0.9 1.0Dearborn 0.7 n/a 1.3 0.1 8.3 n/a n/a 0.8 0.7 1.2Cinc. CBD n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aTotal 1.0 0.9 1.0 0.8 1.3 1.1 1.1 1.7 0.8 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-4 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBW Off PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 34,193 391 24,017 3,764 121 180 377 55 842 63,940Clermont 871 14,423 15,358 962 291 629 728 2 1,175 34,439Hamilton 8,539 3,442 135,888 2,311 1,467 2,008 4,177 494 23,456 181,782Warren 4,473 680 10,126 9,623 40 73 165 2 362 25,544Boone 15 16 852 3 9,407 523 3,518 38 515 14,887Campbell 50 104 4,589 31 1,747 4,542 4,097 4 3,073 18,237Kenton 67 73 4,542 17 9,077 2,792 12,123 19 3,254 31,964Dearborn 117 3 2,609 3 936 58 331 3,840 119 8,016Cinc. CBD 2 2 188 1 12 17 39 0 193 454Total 48,327 19,134 198,169 16,715 23,098 10,822 25,555 4,454 32,989 379,263O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 35,874 861 19,356 3,935 216 0 434 0 861 61,537Clermont 816 13,436 11,617 1,741 279 350 732 0 759 29,730Hamilton 7,133 6,680 144,098 3,147 1,205 2,176 5,251 425 23,857 193,973Warren 2,207 399 8,768 10,000 201 0 0 0 598 22,173Boone 225 229 3,177 0 7,260 681 2,955 0 680 15,207Campbell 0 180 5,909 0 1,614 8,425 1,791 0 1,075 18,993Kenton 227 227 5,443 0 4,553 2,046 14,267 0 3,408 30,172Dearborn 0 0 2,712 0 225 0 677 2,956 449 7,019Cinc. CBD 0 0 460 0 0 0 0 0 0 460Total 46,482 22,011 201,540 18,823 15,554 13,677 26,107 3,381 31,687 379,263E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 1.0 0.5 1.2 1.0 0.6 n/a 0.9 n/a 1.0 1.0Clermont 1.1 1.1 1.3 0.6 1.0 1.8 1.0 n/a 1.5 1.2Hamilton 1.2 0.5 0.9 0.7 1.2 0.9 0.8 1.2 1.0 0.9Warren 2.0 1.7 1.2 1.0 0.2 n/a n/a n/a 0.6 1.2Boone 0.1 0.1 0.3 n/a 1.3 0.8 1.2 n/a 0.8 1.0Campbell n/a 0.6 0.8 n/a 1.1 0.5 2.3 n/a 2.9 1.0Kenton 0.3 0.3 0.8 n/a 2.0 1.4 0.8 n/a 1.0 1.1Dearborn n/a n/a 1.0 n/a 4.2 n/a 0.5 1.3 0.3 1.1Cinc. CBD n/a n/a 0.4 n/a n/a n/a n/a n/a n/a 1.0Total 1.0 0.9 1.0 0.9 1.5 0.8 1.0 1.3 1.0 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-5 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBO PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 121,956 1,191 61,722 13,592 838 466 1,141 225 697 201,828Clermont 629 68,054 33,668 1,229 1,310 1,503 2,354 4 1,182 109,933Hamilton 11,217 13,790 507,156 3,180 1,355 2,009 4,630 1,429 15,698 560,464Warren 7,445 2,186 22,315 38,840 200 229 518 9 333 72,075Boone 12 45 402 10 36,112 534 7,481 58 258 44,912Campbell 39 381 5,409 47 3,416 26,330 17,083 13 3,726 56,444Kenton 48 257 3,812 29 25,547 7,571 56,769 25 2,950 97,008Dearborn 272 56 7,110 34 3,521 314 1,761 12,524 342 25,934Cinc. CBD 2 7 763 1 48 85 190 1 157 1,254Total 141,620 85,967 642,357 56,962 72,347 39,041 91,927 14,288 25,343 1,169,852O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 166,876 0 27,353 9,637 226 449 0 0 897 205,438Clermont 499 72,760 20,158 1,781 214 213 423 0 771 96,819Hamilton 6,861 15,251 502,560 3,149 690 3,715 3,189 571 12,475 548,461Warren 5,257 413 18,127 63,680 0 835 417 0 412 89,141Boone 236 0 946 0 43,157 2,600 8,272 0 0 55,212Campbell 188 0 5,353 0 1,866 48,711 3,358 188 373 60,038Kenton 0 239 4,716 236 7,117 5,202 62,108 0 1,655 81,273Dearborn 231 0 4,011 0 1,409 0 233 20,050 0 25,934Cinc. CBD 0 63 5,749 0 0 0 0 0 1,723 7,535Total 180,148 88,727 588,974 78,483 54,679 61,724 78,000 20,810 18,307 1,169,852E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 0.7 n/a 2.3 1.4 3.7 1.0 n/a n/a 0.8 1.0Clermont 1.3 0.9 1.7 0.7 6.1 7.1 5.6 n/a 1.5 1.1Hamilton 1.6 0.9 1.0 1.0 2.0 0.5 1.5 2.5 1.3 1.0Warren 1.4 5.3 1.2 0.6 n/a 0.3 1.2 n/a 0.8 0.8Boone 0.1 n/a 0.4 n/a 0.8 0.2 0.9 n/a n/a 0.8Campbell 0.2 n/a 1.0 n/a 1.8 0.5 5.1 0.1 10.0 0.9Kenton n/a 1.1 0.8 0.1 3.6 1.5 0.9 n/a 1.8 1.2Dearborn 1.2 n/a 1.8 n/a 2.5 n/a 7.6 0.6 n/a 1.0Cinc. CBD n/a 0.1 0.1 n/a n/a n/a n/a n/a 0.1 0.2Total 0.8 1.0 1.1 0.7 1.3 0.6 1.2 0.7 1.4 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-6 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, HBO Off PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 163,934 1,310 93,731 16,865 664 643 1,670 158 1,084 280,059Clermont 1,143 95,702 45,881 2,109 1,170 1,822 2,320 2 1,179 151,328Hamilton 18,879 17,919 692,938 5,314 1,830 3,212 7,415 1,330 22,001 770,838Warren 10,596 2,879 32,291 54,050 211 265 567 3 368 101,230Boone 18 46 458 5 49,261 792 10,728 47 391 61,746Campbell 71 450 6,427 34 5,245 35,688 24,335 3 5,389 77,642Kenton 59 235 4,345 31 36,311 10,973 77,424 12 3,984 133,374Dearborn 373 40 9,089 35 5,064 346 2,066 18,129 287 35,429Cinc. CBD 2 9 953 3 66 128 284 0 276 1,721Total 195,075 118,590 886,113 78,446 99,822 53,869 126,809 19,684 34,959 1,613,367O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 203,268 1,246 44,151 13,389 496 0 501 496 2,475 266,021Clermont 837 102,242 26,463 1,834 0 758 1,568 0 1,933 135,635Hamilton 13,537 22,684 698,016 3,926 1,693 3,202 6,347 851 16,258 766,514Warren 8,470 1,387 29,324 67,204 232 2,302 462 0 1,149 110,530Boone 0 0 1,054 0 57,440 3,143 14,652 0 785 77,074Campbell 209 183 4,573 0 3,519 66,616 4,339 0 827 80,266Kenton 533 262 11,234 0 16,294 5,492 96,718 0 5,232 135,766Dearborn 256 930 4,270 0 780 0 0 24,172 0 30,408Cinc. CBD 0 0 7,439 0 0 0 0 0 3,715 11,153Total 227,110 128,934 826,525 86,353 80,453 81,514 124,588 25,518 32,372 1,613,367E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 0.8 1.1 2.1 1.3 1.3 n/a 3.3 0.3 0.4 1.1Clermont 1.4 0.9 1.7 1.1 n/a 2.4 1.5 n/a 0.6 1.1Hamilton 1.4 0.8 1.0 1.4 1.1 1.0 1.2 1.6 1.4 1.0Warren 1.3 2.1 1.1 0.8 0.9 0.1 1.2 n/a 0.3 0.9Boone n/a n/a 0.4 n/a 0.9 0.3 0.7 n/a 0.5 0.8Campbell 0.3 2.5 1.4 n/a 1.5 0.5 5.6 n/a 6.5 1.0Kenton 0.1 0.9 0.4 n/a 2.2 2.0 0.8 n/a 0.8 1.0Dearborn 1.5 0.0 2.1 n/a 6.5 n/a n/a 0.8 n/a 1.2Cinc. CBD n/a n/a 0.1 n/a n/a n/a n/a n/a 0.1 0.2Total 0.9 0.9 1.1 0.9 1.2 0.7 1.0 0.8 1.1 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-7 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, NHB PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 69,017 576 14,810 5,338 136 98 197 158 122 90,452Clermont 522 32,562 9,977 667 209 341 430 19 259 44,986Hamilton 17,061 10,750 349,396 6,360 1,781 3,754 6,549 1,422 15,372 412,445Warren 4,721 644 5,297 20,642 54 58 115 15 72 31,618Boone 114 231 1,143 58 31,429 1,148 8,605 184 400 43,312Campbell 137 440 3,837 101 1,085 11,471 5,689 32 1,708 24,500Kenton 250 528 5,586 143 8,700 6,231 31,524 129 2,675 55,766Dearborn 103 34 1,225 20 203 36 125 6,167 20 7,933Cinc. CBD 145 252 18,933 93 506 1,512 2,751 12 6,858 31,062Total 92,070 46,017 410,204 33,422 44,103 24,649 55,985 8,138 27,486 742,074O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 75,452 771 13,611 2,406 337 279 0 0 168 93,023Clermont 165 37,452 9,185 584 547 0 0 0 659 48,592Hamilton 15,014 13,458 332,215 5,640 1,983 5,135 6,565 367 10,785 391,163Warren 4,212 695 8,349 25,079 0 0 0 0 0 38,336Boone 353 157 2,422 0 30,765 700 4,273 278 705 39,652Campbell 0 559 3,061 0 1,753 19,744 1,262 0 834 27,213Kenton 349 447 4,253 0 6,777 2,172 33,370 0 2,049 49,417Dearborn 3 0 279 0 353 0 0 8,489 0 9,124Cinc. CBD 1,013 1,034 14,585 0 708 1,562 2,677 0 23,974 45,553Total 96,561 54,573 387,960 33,710 43,223 29,592 48,147 9,133 39,174 742,074E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 0.9 0.7 1.1 2.2 0.4 0.4 n/a n/a 0.7 1.0Clermont 3.2 0.9 1.1 1.1 0.4 n/a n/a n/a 0.4 0.9Hamilton 1.1 0.8 1.1 1.1 0.9 0.7 1.0 3.9 1.4 1.1Warren 1.1 0.9 0.6 0.8 n/a n/a n/a n/a n/a 0.8Boone 0.3 1.5 0.5 n/a 1.0 1.6 2.0 0.7 0.6 1.1Campbell n/a 0.8 1.3 n/a 0.6 0.6 4.5 n/a 2.0 0.9Kenton 0.7 1.2 1.3 n/a 1.3 2.9 0.9 n/a 1.3 1.1Dearborn 31.3 n/a 4.4 n/a 0.6 n/a n/a 0.7 n/a 0.9Cinc. CBD 0.1 0.2 1.3 n/a 0.7 1.0 1.0 n/a 0.3 0.7Total 1.0 0.8 1.1 1.0 1.0 0.8 1.2 0.9 0.7 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-8 Observed and Estimated County Trip Table, <strong>OKI</strong> Region, NHB Off PeakE S T I M A T E D T R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 77,177 635 19,094 5,129 72 117 193 86 142 102,645Clermont 681 40,733 10,512 850 154 406 348 6 183 53,873Hamilton 20,418 11,759 409,687 7,491 1,406 2,628 4,369 1,383 12,672 471,813Warren 4,881 768 6,773 24,340 29 48 84 6 62 36,991Boone 61 150 1,034 28 37,190 1,278 8,714 199 367 49,021Campbell 131 432 2,813 76 1,297 17,475 5,840 21 1,182 29,267Kenton 217 398 3,662 88 9,124 6,301 43,056 102 1,586 64,534Dearborn 72 3 1,141 4 219 21 100 7,394 11 8,965Cinc. CBD 172 245 15,564 84 487 1,232 2,166 12 8,366 28,328Total 103,810 55,123 470,280 38,090 49,978 29,506 64,870 9,209 24,571 845,437O B S E R V E DT R I P T A B L EBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 91,118 529 13,904 5,475 0 262 275 2 440 112,006Clermont 760 43,612 11,479 243 279 0 491 295 514 57,674Hamilton 12,803 14,673 382,320 3,017 2,487 3,998 4,610 1,088 10,890 435,886Warren 3,823 1,121 4,294 29,987 124 0 262 0 0 39,612Boone 0 642 1,909 0 37,155 1,593 6,759 276 836 49,170Campbell 552 66 2,786 244 659 23,279 3,340 0 219 31,145Kenton 262 1,047 5,336 0 5,146 3,311 48,025 0 820 63,946Dearborn 0 0 182 0 0 0 0 9,314 0 9,496Cinc. CBD 276 198 13,999 131 770 988 1,806 0 28,334 46,501Total 109,595 61,888 436,208 39,098 46,619 33,431 65,568 10,975 42,054 845,437E S T I MA T E D / O B S E R V E DBut. Cler. Ham. War. Bne. Camp. Kent. Dear. CBD TotalButler 0.8 1.2 1.4 0.9 n/a 0.4 0.7 50.0 0.3 0.9Clermont 0.9 0.9 0.9 3.5 0.6 n/a 0.7 0.0 0.4 0.9Hamilton 1.6 0.8 1.1 2.5 0.6 0.7 0.9 1.3 1.2 1.1Warren 1.3 0.7 1.6 0.8 0.2 n/a 0.3 n/a n/a 0.9Boone n/a 0.2 0.5 n/a 1.0 0.8 1.3 0.7 0.4 1.0Campbell 0.2 6.5 1.0 0.3 2.0 0.8 1.7 n/a 5.4 0.9Kenton 0.8 0.4 0.7 n/a 1.8 1.9 0.9 n/a 1.9 1.0Dearborn n/a n/a 6.3 n/a n/a n/a n/a 0.8 n/a 0.9Cinc. CBD 0.6 1.2 1.1 0.6 0.6 1.2 1.2 n/a 0.3 0.6Total 0.9 0.9 1.1 1.0 1.1 0.9 1.0 0.8 0.6 1.0For this comparison only, the observed trip table was uniformly factored to match the total number of estimated trips.Trip Distribution - Gravity <strong>Model</strong> Calibration 16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-9 <strong>OKI</strong>/MVRPC <strong>Model</strong> K-FactorsTripTrip Interchange (Origin/Destination)Purpose Ham/CBD Ham/N.KY N.KY/Ham <strong>OKI</strong>/MVRPC MVRPC/<strong>OKI</strong> MG/Mia Mia/MGHBWPeak 1.2 0.3 0.8 0.4 0.4 0.5 0.5Off Peak 0.5 0.8 0.4 0.4 0.5 0.5HBOPeak 0.8 0.2 0.3 0.4 0.4 0.25 0.25Off Peak 0.7 0.2 0.3 0.4 0.4 0.25 0.25NHBPeak 0.6 0.4 0.5 0.5 0.25 0.25Off Peak 0.4 0.4 0.5 0.5 0.25 0.25Table 2-10 K-factor DistrictsDistrict No. Counties Traffic Analysis Zones1 Cincinnati CBD 252-2952 Hamilton 1-251,296-690,1588,1601,16023 Clermont 1128-1254,16004 Butler, Warren, Dearborn 691-1127,1551-1587,1589-1599,16085 Boone, Campbell, Kenton 1255-1550,1603-16076 Montgomery, Greene 1609-21367 Greene 2137-23188 Miami 2319-24259 External Stations 2426-25312.7 External-Internal Trip Distribution CalibrationThe external-internal trip distribution model is a gravity model. Unlike the person trip models,the EI gravity model uses off-peak travel times as the measure of impedance. Figure 2.8 showsthe observed and estimated trip length distribution functions. The estimated average trip lengthis 31.2 minutes, which is within 5% of the average observed trip length (29.9 minutes). Theobserved trip table was derived from the 1995 Cordon Survey. Please refer to Part III (TripGeneration) of the <strong>Model</strong> Development Report for a description of the survey processing.Figure 2-8 Trip Length Frequency Distribution Functions, External-Internal Trips3.0%2.5%2.0%Est % Obs %1.5%1.0%0.5%0.0%0 10 20 30 40 50 60 70 80 90 100<strong>Travel</strong> Time (min)Trip Distribution - Gravity <strong>Model</strong> Calibration 17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Gravity <strong>Model</strong> ApplicationThis section presents the results obtained when applying the calibrated friction and k factors tothe <strong>OKI</strong>/MVRPC model. The average trip lengths obtained during model application aresomewhat different than those reported in Section 2 due to two reasons:• <strong>Model</strong> application includes the entire consolidated region, while model calibration wasbased on the <strong>OKI</strong> region only.• The application of the trip distribution model is based on estimated trip productions andattractions, while the calibration of the model is based on observed trip productions andattractions.Section 3.1 presents a comparison of observed and estimated trip length frequency distributionsfor the <strong>OKI</strong> region, with the estimated distributions taken from the model application results.This comparison is referred to as the distribution model validation. Section 3.2 presents averagetrip length summaries for each sub-region. While there are no data to check the average triplengths in the MVRPC region, these results are nevertheless examined for reasonableness.3.1 Trip Distribution <strong>Model</strong> ValidationFigures 3.1 to 3.6 show comparisons of the observed and estimated trip length frequencydistribution functions for each trip purpose and time period, for trips that start and end in the<strong>OKI</strong> Region only. The estimated functions closely follow the observed functions, confirming thatthe trip distribution models are able to reproduce the observed data in model application. Table3.1 below shows the forecasting error obtained for the average trip length (in logsum units). Theerrors are small and acceptable, and moreover the estimated trip lengths obtained in modelapplication are similar to those obtained in model calibration, as expected.Table 3-1 Average Trip Length in the <strong>OKI</strong> Region (Logsums), <strong>Model</strong> ApplicationResultsTripAverage Trip Length (Logsums)Intrazonal TripsPurpose Observed Estimated % Error Observed EstimatedHBWPeak 274.1 276.7 0.9% 2.3% 1.9%Off Peak 248.8 249.0 0.1% 4.2% 3.4%HBOPeak 114.9 120.9 5.2% 8.2% 5.3%Off Peak 144.2 147.4 2.2% 6.4% 5.7%NHBPeak 241.7 241.7 0.0% 18.6% 16.1%Off Peak 239.0 237.9 -0.5% 17.9% 18.5%Trip Distribution - Gravity <strong>Model</strong> Application 18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-1 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBW Peak2.5%2.0%ObservedEstimatedTrip Frequency (%)1.5%1.0%0.5%0.0%150 200 250 300 350 400LogsumFigure 3-2 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBW Off Peak3.0%2.5%Trip Frequency (%)2.0%1.5%1.0%ObservedEstimated0.5%0.0%150 200 250 300 350 400LogsumTrip Distribution - Gravity <strong>Model</strong> Application 19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-3 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBO Peak3.0%2.5%Trip Frequency (%)2.0%1.5%1.0%ObservedEstimated0.5%0.0%0 50 100 150 200 250 300LogsumFigure 3-4 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), HBO Off Peak3.0%2.5%Trip Frequency (%)2.0%1.5%1.0%ObservedEstimated0.5%0.0%50 100 150 200 250 300LogsumTrip Distribution - Gravity <strong>Model</strong> Application 20


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-5 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), NHB Peak6.0%5.0%Trip Frequency (%)4.0%3.0%2.0%ObservedEstimated1.0%0.0%175 225 275 325 375LogsumFigure 3-6 Logsum Trip Length Frequency Distributions (<strong>OKI</strong> Region), NHB Off Peak8.0%7.0%Trip Frequency (%)6.0%5.0%4.0%3.0%2.0%ObservedEstimated1.0%0.0%200 250 300 350LogsumTrip Distribution - Gravity <strong>Model</strong> Application 21


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0A measure of impedance more intuitive than logsum is either distance or travel time. Table 3.2shows observed and estimated average travel distance and travel time for each trip purpose andtime period, obtained with the base year model highway skims and person trip tables. TimebasedTLFD functions are shown in Figures 3.7 to 3.12. The comparison between observed andestimated trip length is not as close as normally observed when the gravity models are calibratedon the basis of highway travel time (or distance), because neither highway travel time nordistance include transit cost or transit travel time, while the logsums do consider all modes.However, given that the predominant mode in the <strong>OKI</strong>/MVRPC region is auto, it is expected thatthe model should estimate well average highway distance and travel time. As shown in Table3.2, for most purposes the estimates are within 10% percent of the observed values. Theseestimates were constructed excluding intrazonal trips, given that the model makes noassumptions about intrazonal travel times.Table 3-2 Average Highway <strong>Travel</strong> Time and Distance, <strong>OKI</strong> RegionTrip Purpose<strong>Travel</strong> Distance (mi)<strong>Travel</strong> Time (min)Observed Estimated % Error Observed Estimated % ErrorHBWPeak 11.7 12.7 8.5% 23.6 25.2 6.8%Off Peak 10.2 9.7 -4.9% 15.1 14.8 -2.0%HBOPeak 6.0 7.3 21.7% 12.8 16.0 25.0%Off Peak 6.2 7.1 14.5% 10.3 11.6 12.6%NHBPeak 6.0 5.8 -3.3% 12.0 11.7 -2.5%Off Peak 5.6 5.1 -8.9% 8.8 8.2 -6.8%Figure 3-7 <strong>Travel</strong> Time Trip Length Frequency Distribution Functions, HBW Peak4%3%Trip Frequency (%)3%2%2%1%ObservedEstimated1%0%0 10 20 30 40 50 60 70 80 90<strong>Travel</strong> Time (min)Trip Distribution - Gravity <strong>Model</strong> Application 22


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-8 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBW Off Peak6%5%Trip Frequency (%)4%3%2%ObservedEstimated1%0%0 10 20 30 40 50 60 70 80 90<strong>Travel</strong> Time (min)Figure 3-9 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBO Peak Period8%7%Trip Frequency (%)6%5%4%3%2%ObservedEstimated1%0%0 10 20 30 40 50 60 70 80 90<strong>Travel</strong> Time (min)Trip Distribution - Gravity <strong>Model</strong> Application 23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-10 <strong>Travel</strong> Time Trip Length Frequency Distribution, HBO Off Peak9%8%Trip Frequency (%)7%6%5%4%3%2%ObservedEstimated1%0%0 10 20 30 40 50 60<strong>Travel</strong> Time (min)Figure 3-11 <strong>Travel</strong> Time Trip Length Frequency Distribution, NHB Peak10%8%Trip Frequency (%)6%4%2%ObservedEstimated0%0 10 20 30 40 50 60<strong>Travel</strong> Time (min)Trip Distribution - Gravity <strong>Model</strong> Application 24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 3-12 <strong>Travel</strong> Time Trip Length Frequency Distribution, NHB Off Peak8%7%Trip Frequency (%)6%5%4%3%2%ObservedEstimated1%0%0 10 20 30 40 50 60 70 80 90<strong>Travel</strong> Time (min)3.2 Sub-Region Average Trip <strong>Travel</strong> TimeAverage estimated travel times for trips that start and end within each planning region are listedin Table 3.3. These trip length estimates exclude all intrazonal trips (because the <strong>OKI</strong>/MVRPCmodel does not use intrazonal travel times) as well as all external trips. As expected, trips withinthe MVRPC region are shorter than trips in the <strong>OKI</strong> region.Table 3-3 Average Intra-Regional <strong>Travel</strong> Time, excluding intrazonal and external tripsTrip PurposeEstimated Average <strong>Travel</strong> Time (minutes)<strong>OKI</strong> Mont/Gre. Miami Co.HBWPeak 25.2 15.5 11.4Off Peak 14.8 11.0 9.4HBUPeak 27.7 16.5 16.2Off Peak 18.9 12.1 14.7HBOPeak 16.0 10.1 8.4Off Peak 11.6 8.5 7.6NHBPeak 11.7 8.8 5.3Off Peak 8.2 5.8 4.4Trip Distribution - Gravity <strong>Model</strong> Application 25


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Appendix AFriction FactorsTrip Distribution - Appendix A 26


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction FactorsPEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB1 1483 1483 9999999 9999999 0 0 9999999 99999992 10004 10004 9999999 9999999 0 0 9999999 99999993 29854 29854 9999999 9999999 0 0 9999999 99999994 63797 63797 9999999 9999999 0 0 9999999 99999995 113530 113530 9999999 9999999 0 0 9999999 99999996 179950 179950 9999999 9999999 0 0 9999999 99999997 263331 263331 9999999 9999999 0 0 9999999 99999998 363461 363461 9999999 9999999 0 0 9999999 99999999 479757 479757 9999999 9999999 0 0 9999999 999999910 611344 611344 9999999 9999999 0 0 9999999 999999911 757136 757136 9999999 9999999 0 0 9999999 999999912 915887 915887 9999999 9999999 0 0 9999999 999999913 1086247 1086247 9999999 9999999 0 0 9999999 999999914 1266795 1266795 9999999 9999999 0 0 9999999 999999915 1456080 1456080 9999999 9999999 0 0 9999999 999999916 1652641 1652641 9999999 9999999 0 0 9999999 999999917 1855034 1855034 9999999 9999999 0 0 9999999 999999918 2061849 2061849 9999999 9999999 0 0 9999999 999999919 2271721 2271721 9999999 9999999 0 0 9999999 999999920 2483345 2483345 9999999 9999999 0 0 9999999 999999921 2695483 2695483 9999999 9999999 0 0 9999999 999999922 2906969 2906969 9999999 9999999 0 0 9999999 999999923 3116716 3116716 9999999 9999999 0 0 9999999 999999924 3323717 3323717 9999999 9999999 0 0 9999999 999999925 3527044 3527044 9999999 9999999 0 0 9999999 999999926 3725854 3725854 9999999 9999999 0 0 9999999 999999927 3919383 3919383 9999999 9999999 0 0 9999999 999999928 4106947 4106947 9999999 9999999 0 0 9999999 999999929 4287940 4287940 9999999 9999999 0 0 9999999 999999930 4461832 4461832 9999999 9999999 0 0 9999999 999999931 4628163 4628163 9999999 9999999 0 0 9999999 999999932 4786542 4786542 9999999 9999999 0 0 9999999 999999933 4936646 4936646 9999999 9999999 0 0 9999999 999999934 5078210 5078210 9999999 9999999 0 0 9999999 999999935 5211031 5211031 9999999 9999999 0 0 9999999 999999936 5334957 5334957 9999999 9999999 0 0 9999999 999999937 5449888 5449888 9999999 9999999 0 0 9999999 999999938 5555772 5555772 9999999 9999999 0 0 9999999 999999939 5652597 5652597 9999999 9999999 0 0 9999999 999999940 5740395 5740395 9999999 9999999 1 1 9999999 999999941 5819232 5819232 9999999 9999999 1 1 9999999 999999942 5889205 5889205 9999999 9999999 2 2 9999999 999999943 5950445 5950445 9999999 9999999 3 3 9999999 999999944 6003105 6003105 9999999 9999999 5 5 9999999 999999945 6047365 6047365 9999999 9999999 7 7 9999999 999999946 6083425 6083425 9999999 9999999 11 11 9999999 999999947 6111503 6111503 9999999 9999999 17 17 9999999 999999948 6131832 6131832 9999999 9999999 26 26 9999999 999999949 6144660 6144660 9999999 9999999 38 38 9999999 999999950 6150246 6150246 9999999 9999999 56 56 9999999 9999999Trip Distribution - Appendix A 27


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB51 6148857 6148857 9999999 9999999 82 82 9999999 999999952 6140769 6140769 9999999 9999999 118 118 9999999 999999953 6126262 6126262 8658020 9999999 168 168 9999999 999999954 6105623 6105623 6952416 9999999 236 236 9999999 999999955 6079137 6079137 5607380 9999999 330 330 9999999 999999956 6047094 6047094 4541742 9999999 456 456 9999999 999999957 6009783 6009783 3693670 9999999 625 625 9999999 999999958 5967491 5967491 3015820 9999999 848 848 9999999 999999959 5920503 5920503 2471756 9999999 1141 1141 9999999 999999960 5869101 5869101 2033308 9999999 1522 1522 9999999 999999961 5813564 5813564 1678593 9999999 2014 2014 9999999 999999962 5754166 5754166 1390536 9999999 2643 2643 9999999 999999963 5691174 5691174 1155754 9999999 3443 3443 9999999 999999964 5624851 5624851 963717 9999999 4452 4452 9999999 999999965 5555453 5555453 806105 9999999 5716 5716 9999999 999999966 5483230 5483230 676316 9999999 7287 7287 9999999 999999967 5408423 5408423 569094 9999999 9228 9228 9999999 999999968 5331268 5331268 480238 9999999 11610 11610 9999999 999999969 5251991 5251991 406380 9999999 14513 14513 9999999 999999970 5170813 5170813 344807 9999999 18031 18031 9999999 999999971 5087944 5087944 293329 9999999 22268 22268 9999999 999999972 5003587 5003587 250170 9999999 27340 27340 9999999 999999973 4917938 4917938 213890 9999999 33377 33377 9999999 999999974 4831183 4831183 183311 9999999 40523 40523 9999999 999999975 4743501 4743501 157471 9999999 48935 48935 9999999 999999976 4655064 4655064 135582 9999999 58786 58786 9999999 999999977 4566033 4566033 116995 9999999 70261 70261 9999999 999999978 4476563 4476563 101174 9999999 83561 83561 9999999 999999979 4386801 4386801 87677 9999999 98899 98899 9999999 999999980 4296886 4296886 76136 9999999 116502 116502 9999999 999999981 4206949 4206949 66247 9999999 136609 136609 9999999 999999982 4117115 4117115 57755 9999999 159470 159470 9999999 999999983 4027500 4027500 50447 9999999 185343 185343 9999999 999999984 3938215 3938215 44146 9999999 214497 214497 9999999 999999985 3849361 3849361 38703 9999999 247205 247205 9999999 999999986 3761036 3761036 33990 9999999 283743 283743 9999999 999999987 3673328 3673328 29903 9999999 324388 324388 9999999 999999988 3586323 3586323 26353 9999999 369418 369418 9999999 999999989 3500095 3500095 23262 9999999 419103 419103 9999999 999999990 3414719 3414719 20567 9999999 473710 473710 9999999 999999991 3330259 3330259 18213 9999999 533490 533490 9999999 999999992 3246776 3246776 16153 9999999 598685 598685 8712718 999999993 3164325 3164325 14348 9999999 669517 669517 7375343 999999994 3082957 3082957 12763 9999999 746187 746187 6256766 999999995 3002718 3002718 11370 9999999 828874 828874 5319050 999999996 2923648 2923648 10144 9999999 917728 917728 4531193 999999997 2845785 2845785 9062 9999999 1012870 1012870 3867803 999999998 2769160 2769160 8107 9999999 1114387 1114387 3308026 999999999 2693803 2693803 7262 9999999 1222329 1222329 2834697 9999999100 2619739 2619739 6513 9999999 1336711 1336711 2433652 9999999Trip Distribution - Appendix A 28


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB101 2546989 2546989 5850 9999999 1457503 1457503 2093177 9999999102 2475571 2475571 5260 9999999 1584635 1584635 1803563 9999999103 2405499 2405499 4736 9999999 1717994 1717994 1556744 9999999104 2336786 2336786 4269 9999999 1857420 1857420 1346007 9999999105 2269441 2269441 3853 9999999 2002709 2002709 1165750 9999999106 2203470 2203470 3481 9999999 2153609 2153609 1011291 9999999107 2138877 2138877 3149 9999999 2309826 2309826 878706 9999999108 2075664 2075664 2851 9999999 2471019 2471019 764706 9999999109 2013828 2013828 2585 9999999 2636805 2636805 666521 9999999110 1953369 1953369 2346 9999999 2806758 2806758 581818 9999999111 1894281 1894281 2131 9999999 2980412 2980412 508631 9999999112 1836557 1836557 1938 9999999 3157265 3157265 445294 9999999113 1780190 1780190 1765 9999999 3336780 3336780 390398 9999999114 1725170 1725170 1608 9999999 3518389 3518389 342746 9999999115 1671485 1671485 1467 9999999 3701497 3701497 301321 9999999116 1619124 1619124 1339 9999999 3885485 3885485 265257 9999999117 1568073 1568073 1224 9999999 4069714 4069714 233815 9999999118 1518317 1518317 1120 9999999 4253531 4253531 206366 9999999119 1469840 1469840 1025 9999999 4436270 4436270 182370 9999999120 1422626 1422626 940 9999999 4617261 4617261 161364 9999999121 1376658 1376658 862 9999999 4795832 4795832 142951 9999999122 1331916 1331916 791 9999999 4971314 4971314 126790 9999999123 1288384 1288384 727 9999999 5143045 5143045 112589 9999999124 1246041 1246041 669 9999999 5310375 5310375 100093 9999999125 1204867 1204867 616 9999999 5472673 5472673 89085 9999999126 1164842 1164842 567 9999999 5629325 5629325 79375 9999999127 1125946 1125946 523 9999999 5779746 5779746 70801 9999999128 1088157 1088157 482 9999999 5923376 5923376 63221 9999999129 1051455 1051455 445 9999999 6059688 6059688 56513 9999999130 1015817 1015817 412 9999999 6188192 6188192 50568 9999999131 981222 981222 381 9999999 6308434 6308434 45295 9999999132 947650 947650 352 9999999 6420001 6420001 40612 9999999133 915076 915076 326 9999999 6522524 6522524 36450 9999999134 883481 883481 302 9999999 6615675 6615675 32745 9999999135 852842 852842 280 9999999 6699176 6699176 29446 9999999136 823138 823138 260 9999999 6772794 6772794 26503 9999999137 794346 794346 242 9999999 6836342 6836342 23877 9999999138 766446 766446 225 9999999 6889683 6889683 21530 9999999139 739415 739415 209 9999999 6932726 6932726 19432 9999999140 713233 713233 194 9999999 6965428 6965428 17553 9999999141 687879 687879 181 9999999 6987792 6987792 15870 9999999142 663331 663331 169 9999999 6999866 6999866 14360 9999999143 639570 639570 157 9999999 7001741 7001741 13005 9999999144 616574 616574 147 9999999 6993553 6993553 11788 9999999145 594323 594323 137 9999999 6975474 6975474 10693 9999999146 572798 572798 128 9999999 6947717 6947717 9708 9999999147 551980 551980 120 9999999 6910530 6910530 8820 9999999148 531848 531848 112 9999999 6864194 6864194 8020 9999999149 512384 512384 105 9999999 6809021 6809021 7298 9999999150 493570 493570 98 9999999 6745350 6745350 6646 9999999Trip Distribution - Appendix A 29


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB151 475386 475386 92 9999999 6673546 6673546 6057 9999999152 457816 457816 86 9999999 6593997 6593997 5524 9999999153 440840 440840 81 9999999 6507108 6507108 5041 9999999154 424443 424443 76 9999999 6413302 6413302 4604 9999999155 408607 408607 71 9999999 6313015 6313015 4208 9999999156 393315 393315 67 9999999 6206695 6206695 3849 9999999157 378551 378551 63 9999999 6094795 6094795 3523 9999999158 364300 364300 59 9999999 5977777 5977777 3226 9999999159 350545 350545 56 9999999 5856103 5856103 2957 9999999160 337272 337272 52 9999999 5730236 5730236 2711 9999999161 324465 324465 49 9999999 5600637 5600637 2488 9999999162 312111 312111 47 9999999 5467762 5467762 2285 9999999163 300194 300194 44 9999999 5332061 5332061 2099 9999999164 288702 288702 41 9999999 5193976 5193976 1930 9999999165 277621 277621 39 9999999 5053938 5053938 1775 9999999166 266937 266937 37 9999999 4912367 4912367 1634 9999999167 256637 256637 35 9999999 4769668 4769668 1505 9999999168 246710 246710 33 9999999 4626234 4626234 1387 9999999169 237143 237143 31 9999999 4482441 4482441 1279 9999999170 227925 227925 29 9999999 4338647 4338647 1180 9999999171 219043 219043 28 9999999 4195195 4195195 1090 9999999172 210487 210487 26 8555967 4052408 4052408 1007 9999999173 202246 202246 25 7052117 3910592 3910592 930 9999999174 194309 194309 24 5823645 3770032 3770032 860 9999999175 186666 186666 22 4818211 3630997 3630997 796 9999999176 179308 179308 21 3993769 3493732 3493732 737 9999999177 172223 172223 20 3316478 3358466 3358466 682 9999999178 165403 165403 19 2759049 3225409 3225409 632 9999999179 158840 158840 18 2299434 3094749 3094749 586 9999999180 152523 152523 17 1919788 2966658 2966658 544 9999999181 146444 146444 16 1605637 2841289 2841289 505 9999999182 140596 140596 16 1345226 2718776 2718776 469 9999999183 134970 134970 15 1128986 2599237 2599237 436 9999999184 129558 129558 14 949115 2482772 2482772 405 9999999185 124352 124352 13 799243 2369467 2369467 376 9999999186 119346 119346 13 674155 2259391 2259391 350 9999999187 114532 114532 12 569580 2152598 2152598 326 9999999188 109903 109903 12 482010 2049129 2049129 304 9999999189 105453 105453 11 408560 1949010 1949010 283 9999999190 101175 101175 11 346854 1852258 1852258 264 9999999191 97062 97062 10 294931 1758876 1758876 246 9999999192 93110 93110 10 251173 1668855 1668855 229 9999999193 89312 89312 9 214237 1582180 1582180 214 9999999194 85662 85662 9 183011 1498822 1498822 200 9999999195 82155 82155 8 156573 1418747 1418747 187 9999999196 78786 78786 8 134155 1341911 1341911 174 9999999197 75550 75550 8 115117 1268266 1268266 163 9999999198 72441 72441 7 98925 1197754 1197754 153 9999999199 69455 69455 7 85135 1130315 1130315 143 9999999200 66587 66587 7 73372 1065881 1065881 134 9999999Trip Distribution - Appendix A 30


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB201 63834 63834 6 63324 1004381 1004381 125 9999999202 61189 61189 6 54729 945741 945741 117 9999999203 58651 58651 6 47367 889883 889883 110 9999999204 56213 56213 6 41051 836727 836727 103 9999999205 53874 53874 5 35627 786190 786190 97 9999999206 51628 51628 5 30961 738189 738189 91 9999999207 49472 49472 5 26942 692639 692639 85 9999999208 47404 47404 5 23476 649453 649453 80 9999999209 45419 45419 5 20482 608546 608546 75 9999999210 43514 43514 4 17894 569832 569832 71 9999999211 41686 41686 4 15653 533225 533225 66 9999999212 39933 39933 4 13710 498641 498641 62 7962139213 38251 38251 4 12024 465994 465994 59 5537018214 36638 36638 4 10558 435203 435203 55 3849109215 35090 35090 4 9282 406185 406185 52 2674755216 33606 33606 3 8171 378861 378861 49 1858011217 32182 32182 3 7201 353153 353153 46 1290193218 30817 30817 3 6354 328983 328983 43 895580219 29508 29508 3 5614 306278 306278 41 621438220 28253 28253 3 4965 284965 284965 39 431060221 27050 27050 3 4397 264975 264975 36 298899222 25897 25897 3 3898 246238 246238 34 207185223 24791 24791 3 3460 228690 228690 32 143563224 23731 23731 3 3075 212266 212266 31 99443225 22716 22716 2 2735 196907 196907 29 59359226 21742 21742 2 2436 182553 182553 27 31915227 20809 20809 2 2172 169148 169148 26 21783228 19915 19915 2 1939 156638 156638 24 13500229 19058 19058 2 1900 144971 144971 23 9782230 18238 18238 2 1900 134098 134098 22 8782231 17451 17451 2 1900 123972 123972 21 7537232 16698 16698 2 1900 114547 114547 20 5207233 15976 15976 2 1116 105780 105780 18 3596234 15285 15285 2 1003 97632 97632 18 3483235 14623 14623 2 902 90063 90063 17 2763236 13989 13989 2 812 83037 83037 16 1982237 13381 13381 2 732 76518 76518 15 1932238 12800 12800 2 660 70474 70474 14 1859239 12243 12243 1 596 64874 64874 13 1729240 11709 11709 1 539 59688 59688 13 1506241 11700 11700 1 487 54889 54889 12 1038242 11600 11600 1 441 50450 50450 11 975243 11500 11500 1 400 46346 46346 11 867244 11400 11400 1 363 42556 42556 10 763245 11300 11300 1 330 39056 39056 10 713246 11200 11200 1 300 35826 35826 9 567247 11100 11100 1 273 32847 32847 9 524248 11000 11000 1 248 30102 30102 8 485249 10900 10900 1 226 27573 27573 8 449250 10800 10800 1 207 25244 25244 8 415Trip Distribution - Appendix A 31


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB251 10700 10700 1 189 23101 23101 7 384252 10600 10600 1 173 21130 21130 7 355253 10500 10500 1 158 19319 19319 7 328254 9500 9500 1 145 17654 17654 6 304255 8500 8500 1 132 16126 16126 6 281256 7500 7500 1 122 14723 14723 6 260257 6500 6500 1 112 13437 13437 5 240258 5210 5210 1 103 12257 12257 5 222259 4979 4979 1 94 11176 11176 5 205260 4758 4758 1 87 10186 10186 5 190261 4546 4546 1 80 9279 9279 4 176262 4344 4344 1 74 8450 8450 4 162263 4150 4150 1 68 7691 7691 4 150264 3965 3965 1 63 6997 6997 4 139265 3788 3788 1 58 6364 6364 4 128266 3619 3619 1 54 5785 5785 4 119267 3457 3457 1 50 5257 5257 3 110268 3303 3303 1 46 4775 4775 3 102269 3155 3155 1 43 4335 4335 3 94270 3013 3013 1 40 3935 3935 3 87271 2878 2878 1 37 3569 3569 3 80272 2749 2749 1 34 3237 3237 3 74273 2625 2625 1 32 2934 2934 3 69274 2507 2507 1 30 2659 2659 2 63275 2394 2394 1 28 2408 2408 2 59276 2287 2287 0 26 2180 2180 2 54277 2184 2184 0 24 1973 1973 2 50278 2085 2085 0 22 1785 1785 2 46279 1991 1991 0 21 1615 1615 2 43280 1901 1901 0 20 1460 1460 2 40281 1815 1815 0 18 1319 1319 2 37282 1733 1733 0 17 1192 1192 2 34283 1654 1654 0 16 1076 1076 2 31284 1579 1579 0 15 971 971 2 29285 1508 1508 0 14 877 877 2 27286 1439 1439 0 13 791 791 1 25287 1374 1374 0 13 713 713 1 23288 1312 1312 0 12 643 643 1 21289 1252 1252 0 11 579 579 1 20290 1195 1195 0 10 522 522 1 18291 1141 1141 0 10 470 470 1 17292 1089 1089 0 9 423 423 1 15293 1039 1039 0 9 380 380 1 14294 991 991 0 8 342 342 1 13295 946 946 0 8 308 308 1 12296 903 903 0 7 277 277 1 11297 862 862 0 7 249 249 1 10298 822 822 0 7 223 223 1 10299 785 785 0 6 201 201 1 9300 749 749 0 6 180 180 1 8Trip Distribution - Appendix A 32


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB301 714 714 0 6 162 162 1 8302 681 681 0 5 145 145 1 7303 650 650 0 5 130 130 1 7304 620 620 0 5 117 117 1 6305 592 592 0 5 104 104 1 6306 565 565 0 4 94 94 1 5307 539 539 0 4 84 84 1 5308 514 514 0 4 75 75 1 4309 490 490 0 4 67 67 1 4310 468 468 0 4 60 60 1 4311 446 446 0 3 54 54 1 3312 425 425 0 3 48 48 1 3313 406 406 0 3 43 43 0 3314 387 387 0 3 38 38 0 3315 369 369 0 3 34 34 0 3316 352 352 0 3 31 31 0 2317 336 336 0 3 27 27 0 2318 320 320 0 3 24 24 0 2319 305 305 0 2 22 22 0 2320 291 291 0 2 19 19 0 2321 278 278 0 2 17 17 0 2322 265 265 0 2 15 15 0 1323 252 252 0 2 14 14 0 1324 241 241 0 2 12 12 0 1325 229 229 0 2 11 11 0 1326 219 219 0 2 10 10 0 1327 209 209 0 2 9 9 0 1328 199 199 0 2 8 8 0 1329 190 190 0 2 7 7 0 1330 181 181 0 2 6 6 0 1331 172 172 0 2 5 5 0 1332 164 164 0 1 5 5 0 1333 157 157 0 1 4 4 0 1334 149 149 0 1 4 4 0 1335 142 142 0 1 3 3 0 1336 136 136 0 1 3 3 0 0337 129 129 0 1 3 3 0 0338 123 123 0 1 2 2 0 0339 117 117 0 1 2 2 0 0340 112 112 0 1 2 2 0 0341 107 107 0 1 2 2 0 0342 102 102 0 1 1 1 0 0343 97 97 0 1 1 1 0 0344 92 92 0 1 1 1 0 0345 88 88 0 1 1 1 0 0346 84 84 0 1 1 1 0 0347 80 80 0 1 1 1 0 0348 76 76 0 1 1 1 0 0349 73 73 0 1 1 1 0 0350 69 69 0 1 1 1 0 0Trip Distribution - Appendix A 33


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB351 66 66 0 1 0 0 0 0352 63 63 0 1 0 0 0 0353 60 60 0 1 0 0 0 0354 57 57 0 1 0 0 0 0355 54 54 0 1 0 0 0 0356 52 52 0 1 0 0 0 0357 49 49 0 1 0 0 0 0358 47 47 0 1 0 0 0 0359 45 45 0 1 0 0 0 0360 43 43 0 1 0 0 0 0361 41 41 0 1 0 0 0 0362 39 39 0 1 0 0 0 0363 37 37 0 1 0 0 0 0364 35 35 0 1 0 0 0 0365 33 33 0 1 0 0 0 0366 32 32 0 1 0 0 0 0367 30 30 0 1 0 0 0 0368 29 29 0 1 0 0 0 0369 28 28 0 1 0 0 0 0370 26 26 0 1 0 0 0 0371 25 25 0 1 0 0 0 0372 24 24 0 1 0 0 0 0373 23 23 0 1 0 0 0 0374 22 22 0 1 0 0 0 0375 21 21 0 1 0 0 0 0376 20 20 0 0 0 0 0 0377 19 19 0 0 0 0 0 0378 18 18 0 0 0 0 0 0379 17 17 0 0 0 0 0 0380 16 16 0 0 0 0 0 0381 15 15 0 0 0 0 0 0382 15 15 0 0 0 0 0 0383 14 14 0 0 0 0 0 0384 13 13 0 0 0 0 0 0385 13 13 0 0 0 0 0 0386 12 12 0 0 0 0 0 0387 11 11 0 0 0 0 0 0388 11 11 0 0 0 0 0 0389 10 10 0 0 0 0 0 0390 10 10 0 0 0 0 0 0391 9 9 0 0 0 0 0 0392 9 9 0 0 0 0 0 0393 9 9 0 0 0 0 0 0394 8 8 0 0 0 0 0 0395 8 8 0 0 0 0 0 0396 7 7 0 0 0 0 0 0397 7 7 0 0 0 0 0 0398 7 7 0 0 0 0 0 0399 6 6 0 0 0 0 0 0400 6 6 0 0 0 0 0 0Trip Distribution - Appendix A 34


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.1Friction Factors (cont.)PEAK PERIODOFF PEAK PERIODLogsum HBW HBU HBO NHB HBW HBU HBO NHB401 6 6 0 0 0 0 0 0402 5 5 0 0 0 0 0 0403 5 5 0 0 0 0 0 0404 5 5 0 0 0 0 0 0405 5 5 0 0 0 0 0 0406 4 4 0 0 0 0 0 0407 4 4 0 0 0 0 0 0408 4 4 0 0 0 0 0 0409 4 4 0 0 0 0 0 0410 4 4 0 0 0 0 0 0411 4 4 0 0 0 0 0 0412 3 3 0 0 0 0 0 0413 3 3 0 0 0 0 0 0414 3 3 0 0 0 0 0 0415 3 3 0 0 0 0 0 0416 3 3 0 0 0 0 0 0417 3 3 0 0 0 0 0 0418 2 2 0 0 0 0 0 0419 2 2 0 0 0 0 0 0420 2 2 0 0 0 0 0 0421 2 2 0 0 0 0 0 0422 2 2 0 0 0 0 0 0423 2 2 0 0 0 0 0 0424 2 2 0 0 0 0 0 0425 2 2 0 0 0 0 0 0426 2 2 0 0 0 0 0 0427 2 2 0 0 0 0 0 0428 2 2 0 0 0 0 0 0429 1 1 0 0 0 0 0 0430 1 1 0 0 0 0 0 0431 1 1 0 0 0 0 0 0432 1 1 0 0 0 0 0 0433 1 1 0 0 0 0 0 0434 1 1 0 0 0 0 0 0435 1 1 0 0 0 0 0 0436 1 1 0 0 0 0 0 0437 1 1 0 0 0 0 0 0438 1 1 0 0 0 0 0 0439 1 1 0 0 0 0 0 0440 1 1 0 0 0 0 0 0441 1 1 0 0 0 0 0 0442 1 1 0 0 0 0 0 0443 1 1 0 0 0 0 0 0444 1 1 0 0 0 0 0 0445 1 1 0 0 0 0 0 0446 1 1 0 0 0 0 0 0447 1 1 0 0 0 0 0 0448 1 1 0 0 0 0 0 0449 1 1 0 0 0 0 0 0450 1 1 0 0 0 0 0 0Trip Distribution - Appendix A 35


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table A.2EI Friction FactorsTime Factor Time Factor1 0 46 582 0 47 563 0 48 544 2010 49 525 1820 50 496 1650 51 467 1440 52 448 1310 53 419 1190 54 3810 1085 55 3611 1015 56 3412 925 57 3313 855 58 3214 770 59 3015 700 60 2816 650 61 2617 590 62 2418 540 63 2219 487 64 2120 449 65 2021 425 66 1922 382 67 1823 352 68 1724 326 69 1625 301 70 1526 278 71 1327 257 72 1228 238 73 1129 220 74 1130 204 75 1031 188 76 1032 174 77 933 162 78 834 150 79 835 139 80 736 129 81 737 119 82 638 110 83 639 102 84 540 95 85 541 88 86 542 82 87 443 76 88 444 70 89 445 68Trip Distribution - Appendix A 36


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 5 – Mode Choice


Table of Contents1. Background ..................................................................................................................... 12. Mode Choice <strong>Model</strong> Specification ....................................................................................... 22.1 Logit Structures.................................................................................................... 22.2 Mathematical Formulation ..................................................................................... 42.3 <strong>Model</strong> Structure.................................................................................................... 52.4 Market Segmentation Considerations...................................................................... 63. Estimation File Preparation................................................................................................ 93.1 Home-Interview Survey Variables .......................................................................... 93.2 Transit On-Board Survey Variables......................................................................... 93.3 Estimation Weight Factors................................................................................... 143.4 Highway Network Times and Distances ................................................................ 143.5 Transit In-Vehicle Time, Out-of-Vehicle Time, and Fares ........................................ 143.6 Auto/Walk Access to Transit Connectors............................................................... 153.7 Parking Cost and Terminal Times......................................................................... 153.8 Zonal Attributes.................................................................................................. 164. Home-Based Work <strong>Model</strong> Estimation................................................................................ 174.1 Sample Size ....................................................................................................... 174.2 Estimation Results .............................................................................................. 185. Home-Based Other <strong>Model</strong> Estimation ............................................................................... 235.1 Sample Size ....................................................................................................... 235.2 Estimation Results .............................................................................................. 236. Non-Home-Based <strong>Model</strong> Estimation ................................................................................. 276.1 Sample Size ....................................................................................................... 276.2 Estimation Results .............................................................................................. 277. Mode Choice <strong>Model</strong> Calibration ........................................................................................ 317.1 <strong>Model</strong> Calibration Data Requirements................................................................... 317.2 <strong>Model</strong> Calibration Results .................................................................................... 357.3 Intrazonal Mode Split.......................................................................................... 407.4 Mode Choice <strong>Model</strong> Refinements.......................................................................... 408. Appendix A .................................................................................................................... 419. Appendix B .................................................................................................................... 7110. Appendix C .................................................................................................................. 93ii


Index of TablesTable 2-1 Walk Distance to Transit Market Segmentation ........................................................ 7Table 2-2 Maximum Walk Time (Sum of Access & Egress) ....................................................... 8Table 3-1 Mode Choice Estimation File Variables ................................................................... 10Table 3-2 SORTA Ridership and Survey Expansion Factors..................................................... 12Table 3-3 TANK Ridership and Survey Expansion Factors....................................................... 13Table 3-4 Transit Path Builder Parameters............................................................................ 15Table 4-1 Home-Based Work Sample Size ............................................................................ 17Table 4-2 HBW Mode Choice Estimation Results.................................................................... 20Table 4-3 Logsum Coefficients............................................................................................. 21Table 5-1 Home-Based Other Sample Size............................................................................ 23Table 5-2 Home-Based Other Estimation Results................................................................... 24Table 6-1 Non-Home-Based Sample Size.............................................................................. 27Table 6-2 Non-Home Based Mode Choice <strong>Model</strong> Estimation Results ........................................ 28Table 7-1 HBW Mode Choice Calibration Targets – Consolidated Region.................................. 33Table 7-2 HBW Mode Choice Calibration Targets – <strong>OKI</strong> Region............................................... 33Table 7-3 HBW Mode Choice Calibration Targets – MVRPC Region.......................................... 33Table 7-4 HBO Mode Choice Calibration Targets – Consolidated Region .................................. 34Table 7-5 HBO Mode Choice Calibration Targets – <strong>OKI</strong> Region ............................................... 34Table 7-6 HBO Mode Choice Calibration Targets – MVRPC Region .......................................... 34Table 7-7 HBU Mode Choice Calibration Targets ................................................................... 35Table 7-8 NHB Mode Choice Calibration Targets ................................................................... 35Table 7-9 Calibrated Mode-Specific Constants, HBW.............................................................. 36Table 7-10 Calibrated Mode-Specific Constants, HBO............................................................. 37Table 7-11 Calibrated Mode-Specific Constants, HBU and NHB ............................................... 37Table 7-12 Mode Split Estimation Error, HBW Peak ............................................................... 38Table 7-13 Mode Split Estimation Error, HBW Off Peak .......................................................... 38Table 7-14 Mode Split Estimation Error, HBO Peak ................................................................ 38Table 7-15 Mode Split Estimation Error, HBO Off Peak........................................................... 39Table 7-16 Mode Split Estimation Error, HBU ........................................................................ 39Table 7-17 Mode Split Estimation Error, NHB ........................................................................ 39Table 7-18 Intrazonal Mode Split Proportions........................................................................ 40Table 7-19 Transit-Specific Constants .................................................................................. 40iii


Index of FiguresFigure 2-1 Alternative Logit <strong>Model</strong> Formulations...................................................................... 3Figure 2-2 Proposed Mode Choice <strong>Model</strong> Structure.................................................................. 6Figure 7-1 Location of Mode-Specific Constants in the Choice Nest ......................................... 36iv


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. BackgroundThis is Part V of the <strong>OKI</strong>/MVRPC model development report. It has been previously released asthe Task A.4.5, Mode Choice, a report that is part of a series of working papers that documentthe development of a consolidated travel demand model for the Ohio-Kentucky-Indiana Councilof Governments and the Miami Valley Regional Transportation Commission (<strong>OKI</strong> and MVRPCrespectively). This model development is undertaken under the framework of the North-SouthTransportation Initiative, a Major Investment Study focusing on the Interstate 75 corridor.This report documents the estimation and calibration of the <strong>OKI</strong>/MVRPC mode choice models.These are two separate, though related activities:<strong>Model</strong> estimation refers to the calculation of coefficients for the utility expressions of themode choice models. This is accomplished using Maximum Likelihood Estimation, withdisaggregate (i.e. individual trip) data obtained from trip or activity surveys. Theestimation process can be subdivided into two steps: the first step is the estimation of amultinomial model; the second step is the subsequent estimation of a nested model.<strong>Model</strong> calibration refers to the calculation of the bias or alternative-specific constants ofthe mode choice model utility expressions. While an initial set of alternative-specificconstants are calculated during model estimation, during model calibration these initialconstants are adjusted. The goal of the adjustment is to ensure that the estimatedmodal shares are equal to the observed modal shares. The model calibration can also beviewed as a two-step process: an initial calibration that occurs prior to the calibration ofthe trip distribution model, and a second calibration that occurs after the trip distributionmodels have been calibrated.This report is organized as follows. Section 2 gives a general overview of discrete choice models,and discusses some of the characteristics of the proposed <strong>OKI</strong>/MVRPC mode choice models.Section 3 discusses the data required to estimate the mode choice models. Sections 4, 5 and 6present model estimation results for the home-based work, home-based other and non-homebased mode choice models, respectively. Section 7 covers the calibration of all mode choicemodels.Mode Choice - Background 1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Mode Choice <strong>Model</strong> SpecificationMode choice models are mathematical expressions used to estimate the modal shares of thetravel market given the time and cost characteristics of the various competing modes and thedemographic and socio-economic characteristics of the urban residents. Mode choice models aredesigned to be an integral link in the travel demand chain, and may have direct feedbackmechanisms to a number of related model components – auto ownership, trip generation, tripdistribution, and (modal) trip assignment.2.1 Logit StructuresThe mode choice model structure recommended for the <strong>OKI</strong>/MVRPC regional model is a nestedlogit mode choice model, as opposed to a hierarchical or multinomial logit model. Figure 2.1illustrates the differences between the various mode choice model structures.The multinomial logit model (shown on the top of Figure 2.1) assumes that there is equalcompetition among alternatives. This allows for the “shifting” of trips to and from other modes inproportion to the initial estimates of these modes. A common problem typically associated withthe multinomial structure is the potential for violation of the Independence from IrrelevantAlternatives (IIA) property.The hierarchical logit model (shown in the middle of Figure 2.1) is a variation of the multinomialmodel that allows for the subsequent splitting (or allocation) of trips to a set of submodes. Inmost structures of this type a logsum variable (or the denominator of the lower level choice) isused in the upper level choice together with other (typically socio-economic) explanatoryvariables. In this manner, the lower level submodes are reflected in the upper level choice, but asif they were equally competing modes with the other primary mode(s) (i.e., with a logsumcoefficient of 1.0).A nested logit model (shown at the bottom of Figure 2.1) recognizes the potential for somethingother than equal competition among modes. This structure assumes that modes, submodes, andaccess modes are distinctly different types of alternatives that present distinct choices totravelers. Its most important departure from the multinomial structure is that the lower levelchoices are more elastic than they would be in the multinomial or hierarchical structures. Thus,an improvement in walk access to transit would alter the existing diversions between walk anddrive access to transit the most. This same improvement in walk access would also shift travelersfrom auto to transit, but with elasticities that are equal to the elasticities found in the multinomiallogit models; therefore, the elasticities for access choice are higher. This increased sensitivity isreasonable if the modes included in a single level of the nest are reasonably related. It seemsintuitive that a person who has already decided to use transit would be more sensitive, withrespect to accessing the transit system, to a change in transit travel time or cost, than would bea person who is deciding to use transit or not.Mode Choice - Mode Choice <strong>Model</strong> Specification 2


Figure 2-1 Alternative Logit <strong>Model</strong> Formulations<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ChoiceDriveAloneSharedRideTransitSimple Multinomial Logit <strong>Model</strong>ChoiceAutoTransitDriveAlone2Person3+PersonWalkPNRKNRHierarchical Logit <strong>Model</strong>ChoiceAutoTransitDriveAlone2Person3+PersonWalkPNRKNRNested Logit <strong>Model</strong>Mode Choice - Mode Choice <strong>Model</strong> Specification 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.2 Mathematical FormulationThe standard logit formulation can be expressed as:P i =e Ui∑ e Uikwhere:P iU i∑ e Uikis the probability of a traveler choosing mode iis a linear function of the attributes of mode i that describe its attractivenessis the summation of the linear functions of the attributes over all thealternatives (k) for which a choice is feasibleThe utility expression for each available mode (i) is specified as a linear function thatincorporates a range of variable types, including time, cost, location measures and socioeconomiccharacteristics of the traveler. For example,U i = β * Timei+ β * Cost i + β * LocationVar+ β * SE + β12340, iwhere:U iβ 0,iβ 1β 2β 3β 4is the utility for mode iis a constant specific to mode i that captures the overall effect of any significantvariables that are missing or unexplained in the expression (e.g., comfort,convenience, safety)is a set of coefficients describing the level-of-service (in travel time) provided bymode i (e.g., in-vehicle time, wait time, walk time)is a set of coefficients describing travel cost, (e.g., transit fare, automobileoperating cost, parking costs)is a set of coefficients describing the specific attributes of the trip interchange(e.g., CBD destination, park and ride lot use)is a set of coefficients describing the influence of each socio-economiccharacteristic of the traveler (e.g., income group, auto ownership)The travel time variables are typically disaggregated into in-vehicle and out-of-vehicle time, at aminimum. Out-of-vehicle time may be further stratified into walk time, initial wait, and transferwait time – the latter two categories being applicable to the transit modes only. Similarly, travelcost is often disaggregated into the more general out-of-pocket cost (i.e., automobile operatingcost and transit fare) and destination parking cost.Location variables in utility expressions may be used to reflect a set of unique geographicallybased characteristics, such as a Central Business District. Alternatively, these geographicattributes may be represented in the form of land use variables such as employment and/orpopulation density. A wide variety of variables are possible in the socio-economic category (SE)including variables that measure the relative wealth of the trip maker (income or auto ownership)or reflect other household characteristics (i.e., workers per household, licensed drivers perhousehold, etc.). Finally, a mode specific constant reflects the unexplained behavior. Theindividual coefficients associated with each variable reflect the relative importance of eachattribute.Mode Choice - Mode Choice <strong>Model</strong> Specification 4


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0In the simple nested model structure shown in Figure 2.1, the formulation employs threemultinomial logit models, one for the primary choice of mode among auto and transit, a secondlevel choice among auto submodes (drive-alone and shared-ride) and another second levelchoice among transit access modes (walk and drive access). In application, the modelindependently addresses auto submode and transit access choice first. This is expressed as:P DA =P w =eeUDAUwU DAe+ eU we+ eU DUSRA composite of the utilities of the auto submode and transit access choices then represent autoand transit respectively in the upper tier of the model structure. This composite measure is thenatural logarithm of the denominator of the logit model, often termed the "logsum". The logsumterm is effectively the total utility provided by the submodes of a particular primary mode. Alogsum value is calculated for each of the second level nests as:lnLogSumU UA=-DA[e +SRe ]LogSum U UT= - ln [we +De ]The logsum terms for the auto submodes and transit access choice then appear in the utilityexpression for the primary mode level as:PT=eTeTθ ∗Logsumθ ∗LogsumT+ eATθ ∗LogsumAThe value of the logsum coefficients θ A and θ T in the upper tier of the model (i.e., auto versustransit), is an indicator of the degree to which the lower level choices form a subchoice that isdistinct from the primary mode alternatives. A value of 1.0 indicates that the lower level modesare not a subchoice but rather are full options equally competitive with the primary modes. Inthis instance, these lower level choices can be simplified or included directly in the upper level. Avalue of 0.0 would indicate that the lower level choices are perfect substitutes for each other.Values between 0.0 and 1.0 indicate the extent to which the lower level choices represent asubchoice.2.3 <strong>Model</strong> StructureThe proposed structure for the <strong>OKI</strong>/MVRPC mode choice model is depicted in Figure 2.2. In thisstructure, a choice is first made between auto and transit. Under the transit side, the first levelnest distinguishes between local bus, express bus, light rail and commuter rail. The second leveltransit nest models the choice between walk access, park and ride access and kiss and rideaccess to each transit mode. The highway side is divided into drive alone and shared ride, withshared ride further subdivided into 2-person and 3+ person carpools.The ability to estimate all the coefficients and mode-specific constants required by this modelstructure depends, to a large extent, on the on-board survey sample size (by transit submode)and the quality of the data. Clearly, the light rail and commuter rail branches cannot beMode Choice - Mode Choice <strong>Model</strong> Specification 5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0estimated, as these services are not currently available in the region. Data quality issues arediscussed as relevant in the remainder of this document.Figure 2-2 Proposed Mode Choice <strong>Model</strong> StructureChoiceAutoTransitDriveAloneSharedRideLocalBusExpressBusLightRailCommuterRailSR 2 SR 3+ Walk P&R K&R Walk P&R K&R Walk P&R K&R Walk P&R K&R2.4 Market Segmentation ConsiderationsTraditionally, a larger number of trip purposes are maintained in the trip generation and tripdistribution models than in mode choice. Common practice has been to compress the subset ofnon-work purposes into a single purpose because of the similarities in household and individualtravel behavior properties when considering the choice of mode. In the case of the <strong>OKI</strong>/MVRPCmode choice models, five trip purposes are used in trip generation: home-based work, homebaseduniversity, home-based school, home-based other and non home-based. Only for three ofthese purposes are mode choice models estimated. Home-based university trips are includedwith home-based work trips, so that a single mode choice model is estimated for these two trippurposes. This is necessary because there are not enough observations to estimate a separatehome-based university mode choice model. In model calibration and application, university tripsare again considered as a separate purpose, with their own calibration targets and mode-specificconstants. All home-based school trips out of trip generation are transit trips, so no mode split isrequired.Time-of-day is also an important market segmentation variable. For model estimation, peakperiod levels of service and cost are appended to trips that start during the peak period, whileoff-peak characteristics are appended to trips that start during the off-peak period. This allowsfor the estimation of a single set of model coefficients per trip purpose. However, in modelcalibration separate mode-specific constants are calculated for the peak and the off peak periods.Another element of the market segmentation strategy is the stratification of alternative specificconstants (i.e., bias coefficients) by an indicator of wealth or socio-economic status. Historically,either auto ownership or income has been used for this purpose. The existing <strong>OKI</strong> mode choicemodels (version 5.4) stratify home-based work trips as follows:• Zero auto households,• One auto households, one worker per household,• One auto households, two or more workers per household,• Two or more auto households, one worker per household,• Two or more auto households, two or more workers per household;Mode Choice - Mode Choice <strong>Model</strong> Specification 6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0and home-based other trips as follows:• Zero autos per household,• More than 0.0 but less or equal to 0.4 autos per household,• More then 0.4 but less or equal to 0.8 autos per household,• More than 0.8 autos per household.The HBW stratification intends to capture the availability of a car for each worker in thehousehold. It can be reasonably expected that, in households where there are more workersthan cars, the likelihood of share-riding or transit use would be higher than in households withequal or higher number of autos than workers. Note however that the current HBW marketsegments do not differentiate the "less autos than workers" segment. This segment, regardlessof the number of workers or autos, is included in the fifth class listed above, together withhouseholds with two cars and two workers (i.e., same number of autos as workers), andhouseholds with two or more workers and more cars than workers. Alternative marketsegmentations will be explored as part of the model estimation process, with particular attentionto vehicle availability vis-a-vis household workers.The HBO stratification presented above has little, if any, behavioral basis. The per capita autosper household values used to define the various segments are completely artificial, and do notcorrespond to any known behavioral rule, theoretical or empirical. In lieu of this classification, asegmentation based on household auto ownership (0, 1, 2, 3 or more autos per household) willbe explored.The final element of the market segmentation strategy is the use of the potential for walking totransit to calculate walk times. This segmentation stems not from behavioral considerations, asis for example the use of auto ownership, but from the need to better represent actual walkingtimes at the origin and destination ends of a trip. This segmentation recognizes that on anygiven zone, some trip-makers will have easy access to transit, others will require a long walk, andyet others will start or end their trip too far to walk to transit. Consequently, the walking time totransit will vary within each market segment. This is a considerable improvement over thepractice of assuming that everyone is at the same average distance to transit. This transit accessmarket segmentation is used only in model application; for a description of walk times used inmodel estimation see Section 3.5.To apply the transit walk access segmentation, the transit market is segmented into sevengroups, depending on the proportion of trips within short, long, or no walk, both at the origin anddestination zones (see Table 2.1). For the <strong>OKI</strong>/MVRPC model, a short walk is 1/6 of a mile orless, and a long walk is between 1/6 and 1/3 of a mile. Within each market segment, the transitwalk time is estimated as the minimum of a pre-specified time (see Table 2.2) and the walk timeestimated from the transit skims.Table 2-1 Walk Distance to Transit Market SegmentationDestination ZoneWalk Distance Short Long No WalkShort short -> short short -> longOrigin ZoneLong long -> short long -> longNo TransitNo Walk drive -> short drive -> longMode Choice - Mode Choice <strong>Model</strong> Specification 7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-2 Maximum Walk Time (Sum of Access & Egress)Market SegmentMaximum Walk Time (min)Walk to Transit Drive to Transitshort -> short 10 5short -> long 15 10long -> short 15 5long -> long 20 10drive -> short - 5drive -> long - 10Mode Choice - Mode Choice <strong>Model</strong> Specification 8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Estimation File PreparationThe input data file to estimate the mode choice models using the ALOGIT software requiresinformation on the alternative chosen, characteristics of each alternative and characteristics ofthe travelers and trips. This information was culled from several different data sources, includingamong others the home-interview survey, the transit on-board survey, and highway and transitnetwork skims. The mode choice estimation relied exclusively on <strong>OKI</strong> survey data, due to thelack of a transit on-board survey for the MVRPC region. The contents of the estimation file arelisted in Table 3.1 and described below.3.1 Home-Interview Survey VariablesThe Home-Interview Survey is the source of all the observations for which an auto mode (drivealone, shared-ride 2 or shared-ride 3+) was the chosen travel mode. The survey data werereviewed to ensure that all variables required for mode choice estimation were appropriatelycoded, to flag and recode (when possible) missing values, and to code additional, derivedvariables.The revision showed a serious shortcoming in the data: for approximately 25% of all surveyedpeople, the last reported trip did not end at home. This runs contrary to all reasonableexpectations about people's time use: on any given day, probably over 95% of all people wouldhave returned home by 3:00 AM on the day immediately following the survey day (i.e. within 24hours of starting the survey). This shortcoming is most likely due to an error in how trips werereported or entered in the survey database. To correct for it, a "synthetic" trip was added to allthe people who did not report a return trip home at the end of their survey day, withcharacteristics (mode, purpose) similar to the last reported trip.Trip records with valid information on production zone, attraction zone, mode, trip purpose, timeof day, and trip-maker characteristics were included in the estimation file.3.2 Transit On-Board Survey VariablesThe On-Board Survey is the source of all the observations for which a transit mode (local orexpress bus) was the chosen travel mode. The survey includes SORTA and TANK routes only;that is, it excludes transit usage in Hamilton and Middletown. Survey data were reviewed toensure that all variables required for mode choice estimation were appropriately coded, to flagand recode (when possible) missing values, and to code additional, derived variables.It was found that the expanded transit trips did not compare well with 1995 transit boardings,linked or unlinked. For this reason, the survey was re-expanded. Survey expansion wasperformed on the basis of unlinked, non-student trips by transit system and route. Table 3.2shows the expansion factors for SORTA routes while Table 3.3 shows the expansion factors forTANK routes. The ridership of routes not included in the survey was not considered in theexpansion factor calculation, so this factor expands only to the sum of the ridership of thesurveyed routes. Excluding the non-surveyed routes, the On-Board Survey somewhatunderestimates the transfer rate: 17% according to SORTA data vs. 15% according to thesurvey, and 11% according to TANK data vs. 9% according to the survey. This means that thesurvey overestimates linked trips by about 2% to 3%.Mode Choice - Estimation File Preparation 9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-1 Mode Choice Estimation File VariablesAlogit Variable AlogitDataVariable DescriptionNo. VariableSource1 source Home Interview (1) or On-Board (2) Survey2 recid Questionnaire No. or Household No. Survey3 recid2 Concatenation of Person ID and Trip No; for On-Board = 999 Survey4 estfac Estimation Weight Factor Survey5 syntrip Synthetic Trip Id (1 if synthetic, 0 if survey) Survey6 hhsize Household Size Survey7 hhincome Household Income Survey8 autos Auto Ownership Survey9 hhwrkers Number of workers in household Survey10 hometaz Household location (TAZ) Survey11 licdrive Licensed Driver (0 if no, 1 if yes) Survey12 employed Employment status (0 if not employed, 1 if employed) Survey13 hbwmk HBW Market Segments for v5.4 (0-5) (see note) Survey14 hbomk HBO Market Segments for v5.4 (1-5) (see note) Survey15 autopp Auto Ownership per person Survey16 tpurp Trip Purpose (1=HBW 2=HBO 3=HBU 4=HBSC 5=NHB) Survey17 period Time Period (1=AM Peak 2=PM Peak 3=Off Peak) Survey18 hour Peak Hour (1=AM 2=MD 3=PM 4=NT) Survey19 bridge Bridge Crossing Indicator Survey20 chosmode <strong>Travel</strong> Mode (11=drive alone 12=shared ride 2 13=shared ride 3+ Survey14=wlk to local bus 15=pnr to local bus 16 knr to local bus17=wlk to exp. bus 18=pnr to exp. bus 19=knr to exp. bus)21 access Transit Access Mode Survey22 driver Auto mode driver (1) or passenger (0) Survey23 pzone Production Zone Survey24 azone Attraction Zone Survey25 ozone95 Origin Zone Survey26 dzone95 Destination Zone Survey27 vehocc Vehicle Occupancy Survey28 system Transit Company (1=SORTA, 3=TANK) Survey29 route Transit Route Number Survey30 express Transit service indicator (0=local, 1=express) Survey31 pctswpk Percent short walk accessibility, production, peak pcwalk32 pctlwpk Percent long walk accessibility, production, peak pcwalk33 pctswop Percent short walk accessibility, production, off peak pcwalk34 pctlwop Percent long walk accessibility, production, off peak pcwalk35 atype Area Type a100236 hbwpcost HBW parking cost costs37 hbwptime HBW parking seek time costs38 hbwwtime HBW parking walk time costs39 hbopcost HBO parking cost costs40 hboptime HBO parking seek time costs41 hbowtime HBO parking walk time costs42 distance <strong>Travel</strong> Distance network43 hwytime Highway <strong>Travel</strong> Time networkPlease see Table 2-20 of the <strong>OKI</strong> Regional <strong>Model</strong> Tier 2 Version Methodology and Validation Report for the definition ofthe market segments used in Version 5.4 of the <strong>OKI</strong> mode choice model.Mode Choice - Estimation File Preparation 10


Table 3.1 Mode Choice Estimation File Variables (cont.)<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Alogit Variable AlogitDataVariable DescriptionNo. VariableSource44 wtltnf Number of transfers, walk to local bus Trn. Net.45 wtlfwait First wait time, walk to local bus Trn. Net.46 wtlswait Transfer wait time, walk to local bus Trn. Net.47 wtlwalk Access & egress walk time, walk to local bus Trn. Net.48 wtldrive Drive time, walk to local bus Trn. Net.49 wtlivloc In-vehicle time in local transit, walk to local bus Trn. Net.50 wtlivexp In-vehicle time in express transit, walk to local bus Trn. Net.51 dtltnf Number of transfers, drive to local bus Trn. Net.52 dtlfwait First wait time, drive to local bus Trn. Net.53 dtlswait Transfer wait time, drive to local bus Trn. Net.54 dtlwalk Access & egress walk time, drive to local bus Trn. Net.55 dtldrive Drive time, drive to local bus Trn. Net.56 dtlivloc In-vehicle time in local transit, drive to local bus Trn. Net.57 dtlivexp In-vehicle time in express transit, drive to local bus Trn. Net.58 wtetnf Number of transfers, walk to express bus Trn. Net.59 wtefwait First wait time, walk to express bus Trn. Net.60 wteswait Transfer wait time, walk to express bus Trn. Net.61 wtewalk Access & egress walk time, walk to express bus Trn. Net.62 wtedrive Drive time, walk to express bus Trn. Net.63 wteivloc In-vehicle time in local transit, walk to express bus Trn. Net.64 wteivexp In-vehicle time in express transit, walk to express bus Trn. Net.65 dtetnf Number of transfers, drive to express bus Trn. Net.66 dtefwait First wait time, drive to express bus Trn. Net.67 dteswait Transfer wait time, drive to express bus Trn. Net.68 dtewalk Access & egress walk time, drive to express bus Trn. Net.69 dtedrive Drive time, drive to express bus Trn. Net.70 dteivloc In-vehicle time in local transit, drive to express bus Trn. Net.71 dteivexp In-vehicle time in express transit, drive to express bus Trn. Net.72 wtlfare Transit fare, walk to local bus Trn. Net.73 dtlfare Transit fare, drive to local bus Trn. Net.74 wtefare Transit fare, walk to express bus Trn. Net.75 dtefare Transit fare, drive to express bus Trn. Net.76 tdazone Nearest centroid to transit station statdata77 tdanode Transit station node statdata78 tdapcost Parking cost at transit station statdata79 pnrtime Terminal transit station time, park and ride statdata80 knrtime Terminal transit station time, kiss and ride statdata81 tdatime Transit drive access time autoconn82 tdadist Transit drive access distance autoconn83 hhlds Number of households in pzone a100284 popdens Population density in pzone a100285 empdens Employment density in azone a100286 cbdind CBD indicator (1 if CBD, 0 otherwise) a100287 lowemp Proportion of employment in low trip generating occupations a100288 medemp Proportion of employment in medium trip generating occupations a100289 hihemp Proportion of employment in high trip generating occupations a100290 wtlxwalk Transfer walk time, walk to local bus Trn. Net.91 dtlxwalk Transfer walk time, drive to local bus Trn. Net.92 wtexwalk Transfer walk time, walk to express bus Trn. Net.93 dtexwalk Transfer walk time, drive to express bus Trn. Net.Mode Choice - Estimation File Preparation 11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-2 SORTA Ridership and Survey Expansion FactorsBOARDINGS aON-BOARD SURVEYRouteNo Service Unlinked Linked No.Obs Exp.Fact Unlinked Linked % Linked Diff.1 Local 1240 916 03 Express 309 296 39 7.923 309 301 2%4 Local/Exp 6781 5629 268 25.302 6781 5751 2%6 Local 2080 1739 51 40.784 2080 1849 6%10 Local/Exp 1079 988 33 32.697 1079 1046 6%11 Local/Exp 3300 2640 132 25.000 3300 2798 6%16 Local 922 762 13 70.923 922 697 -8%17 Local/Exp 6748 5530 362 18.641 6748 5857 6%18 Local/Exp 974 805 80 12.175 974 783 -3%19 Local/Exp 1261 1163 24 52.542 1261 1261 8%20 Local/Exp 1077 957 77 13.987 1077 896 -6%21 Local/Exp 2955 2416 42 70.357 2955 2533 5%22 Local/Exp 172 151 23 7.478 172 161 6%23 Express 589 559 19 31.000 589 574 3%24 Local/Exp 1152 979 12 96.000 1152 840 -14%25 Express 67 66 026 Express 54 49 027 Local 2211 1763 77 28.714 2211 1780 1%28 Local/Exp 769 638 21 36.619 769 751 18%29 Express 31 28 030 Express 491 444 61 8.049 491 471 6%31 Local/Exp 3352 2311 44 76.182 3352 2184 -6%32 Local/Exp 1413 1196 88 16.057 1413 1226 2%33 Local/Exp 4210 3412 32 131.563 4210 3881 14%39 Local 258 212 45 5.733 258 188 -11%40 Express 353 333 44 8.023 353 341 2%43 Local/Exp 6272 5206 376 16.681 6272 5178 -1%45 Local 2000 1600 046 Local 4037 3268 190 21.247 4037 3378 3%47 Local 2500 2000 049 Local 2624 2278 050 Local 700 5 051 Local 1580 1196 147 10.748 1580 1316 10%53 Local 1081 886 056 Local/Exp 280 239 26 10.769 280 236 -1%64 Local 4736 4045 69 68.638 4736 4021 -1%69 Local 1600 1280 66 24.242 1600 1414 10%70 Express 172 170 075 Express 595 579 62 9.597 595 595 3%77 Express 326 314 21 15.524 326 326 4%78 Local/Exp 4504 3807 90 50.044 4504 3878 2%79 206 200 080 Express 188 185 69 2.725 188 184 -1%81 Express 382 347 0104 30 28 3 10.000 30 30 7%110 55 54 24 2.292 55 53 -1%111 78 56 2 39.000 78 78 39%117 62 43 4 15.500 62 62 44%124 30 28 4 7.500 30 30 7%131 50 23 26 1.923 50 47 103%133 78 63 2 39.000 78 78 24%143 80 69 0 0.000Total 78094 63951 66957 57073%Transfer 18% 15%Surveyed 66957 55337% Transfer 17%a Source: Ghafoor Z. Analysis of Observed Transit Ridership in <strong>OKI</strong> Region for 1995. <strong>OKI</strong> <strong>Travel</strong> <strong>Demand</strong> TechnicalMemorandum, February 1998.Mode Choice - Estimation File Preparation 12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-3 TANK Ridership and Survey Expansion FactorsRouteNo ServiceBOARDINGSON-BOARD SURVEYUnlinked Linked No.Obs Exp.Fact Unlinked Linked % Diff.1 Local 1951 1720 317 6.155 1951 1765 3%2 Local 165 165 03 Local 445 393 87 5.115 445 377 -4%4 Local 137 131 14 9.786 137 137 5%5 Local 763 677 84 9.083 763 637 -6%6 Local 720 652 154 4.675 720 658 1%7 Local 698 622 83 8.410 698 649 4%8 Local 422 384 15 28.133 422 380 -1%9 Local 273 251 8 34.125 273 273 9%10 12 12 011 Local 582 536 147 3.959 582 544 1%12 Local 577 482 97 5.948 577 510 6%16 Local 418 372 78 5.359 418 372 0%17 Express 208 186 108 1.926 208 189 2%18 Express 103 101 22 4.682 103 94 -7%19 81 78 020 Local 146 124 021 Local 14 11 022 37 37 023 Local 233 204 81 2.877 233 211 3%24 Local 668 564 211 3.166 668 629 12%25 168 165 026 71 69 027 28 25 030/31 Local 158 142 9 17.556 158 158 11%32 50 48 033 39 37 17 2.294 39 37 1%Total 9167 8188 8395 7620Transfers 11% 9%Surveyed 8395 7454Transfers 11%a Source: Ghafoor Z. Analysis of Observed Transit Ridership in <strong>OKI</strong> Region for 1995. <strong>OKI</strong> <strong>Travel</strong> <strong>Demand</strong> TechnicalMemorandum, February 1998.The survey data do not differentiate local bus trips from express bus trips. This is problematicbecause SORTA runs several bus routes which provide local, limited stop and express service, allwith the same route number. While there are plausible ways to decide whether a surveyobservation corresponds to a local or an express bus, the usefulness of doing so is limited by thefact that both services charge the same fare. This means that, for estimation purposes, the twoservices are equal but for their running times, which implies that there is virtually no competitionbetween them (i.e. no time vs. cost tradeoff), other than perhaps in waiting times (assumingexpress service has longer headways than local service). Under these circumstances it is difficult,and often impossible, to consider the two services as separate estimation modes. This issue isfurther discussed in the next sections, along with the model estimation results.A final issue with the On-Board Survey is the question regarding transit access and egressmodes. Instead of asking for the mode used to initially access transit (i.e. the first transit vehicleof the trip), the questionnaire requests the mode in which the current vehicle was accessed.Thus, the initial access (or egress) mode for passengers who transferred from another transitvehicle is unknown. For estimation purposes it was assumed that these passengers walked tothe first transit vehicle (access mode), or walked from their last transit vehicle to their finaldestination (egress mode).Mode Choice - Estimation File Preparation 13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03.3 Estimation Weight FactorsThe available estimation sample is a choice-based sample: auto observations are taken from thehome interview survey, while transit observations are taken from the transit on-board survey. Aweight factor is applied during estimation to preserve the actual proportions of each mode in theregion. For auto trips, the factor is 1.0. For transit trips, the factor is calculated as the ratio ofthe number of transit observations in the home interview survey to the number of observations inthe on-board survey, and it is equal to 0.089.3.4 Highway Network Times and DistancesPeak and off-peak travel times were obtained from the <strong>Model</strong> 54 1995 highway networks. Peaktravel times were skimmed from the final (i.e. second-pass) loaded AM network. Off-peak traveltimes were skimmed from the free-flow network speeds. Terminal times were obtained from<strong>Model</strong> 54. Intrazonal times are not used because the model estimation excludes intrazonal trips.3.5 Transit In-Vehicle Time, Out-of-Vehicle Time, and FaresExisting transit skims (from <strong>Model</strong> 54) were inappropriate for use in mode choice estimation forthe following reasons, related to the model structure itself and to data/program problems foundin <strong>Model</strong> 54 transit skimming routines:• The consolidated model considers drive access to local and express service separately, while<strong>Model</strong> 54 considers drive access to the "best" transit service;• Bus run times are unreasonably high in <strong>Model</strong> 54, due to the use of observed counts in theestimation of congested speeds. As explained in Part II, in the consolidated model thesespeeds are capped to ensure they do not become unreasonably low;• <strong>Model</strong> 54 uses an inappropriate setup to build transit paths, which results in incorrect waittimes; and• <strong>Model</strong> 54 limits the maximum driving distance to transit stations to 5 miles, in most cases,and 0 miles for the stations/transfer centers at or near Cincinnati downtown.• <strong>Model</strong> 54 performs a limited search of walk access connectors, unnecessarily restricting thesearch for walk connectors when an acceptable highway connector exists.• <strong>Model</strong> 54 uses a "shadow price" for parking costs at park and ride lots, to capture thedifference between “formal” and “informal” lots. In the base year all P&R lots are “informal”,and since there’s no cost to park the estimation uses zero parking cost for the park and ridealternatives.The restrictions on creating walk and drive access connectors are troublesome because they mayartificially limit transit accessibility. For estimation purposes, it is preferable to let the modechoice model determine the likelihood that any given transit path is chosen (allowing the modelto consider paths that may appear unreasonable), than to let the path builder determine theavailability of these paths. One can reasonably expect that long transit drive access legs areuncommon in the data, and consequently the probability of driving to transit when one lives farfrom the station will be very small, if not zero. Similarly, setting the maximum drive accessdistance to zero for some stations precludes the option of being dropped off at the station. It ispreferable to let the mode choice model decide the likelihood of this behavior. In the case of thewalk access connectors, the model should consider all transit access points within reasonablewalking distance of a zone, regardless of whether a centroid connector already exists in thehighway network. The search should not be limited to the shortest walk connector, becausethese connectors may not necessarily result in the shortest transit paths.Mode Choice - Estimation File Preparation 14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0For these reasons, 1995 <strong>OKI</strong> transit skims were rebuilt using the setups developed for theconsolidated model, but applied only to the <strong>OKI</strong> highway and transit networks. The transitskimmed variables are number of transfers, first wait time, transfer wait time, total (access andegress) walk time, transfer (i.e. sidewalk) walk time, drive access time, local bus in-vehicle time,express bus in-vehicle time and total fare. Access and egress walk times were calculated as afunction of centroid connector distance and 2.5 mph walk speed. All variables were computedseparately for four transit submodes: walk to local bus, drive to local bus, walk to express busand drive to express bus.Table 3.4 shows the path parameters used to build peak and off-peak transit skims. Therelatively high transfer penalties (expressed here in weighted minutes) were chosen so as torepresent during path building the relative high cost of transferring between SORTA and TANK.Even with transfer penalties of 10 minutes (in un-weighted time), the proportion of transfersobtained when posting these paths to the On-Board Survey was higher than observed: 20-25%(depending on trip purpose) compared to less than 20% for either transit system. Becausetransfers are not free, unnecessary transfers artificially raise the cost of the transit modes in theestimation data, upsetting the time vs. cost tradeoffs.Table 3-4 Transit Path Builder ParametersPeak PeriodOff Peak PeriodParameterMode:Mode:Walk Drive Bus Walk Drive BusRun Time Factor 2.0 1.0 1.0 2.0 1.0 1.0Wait Time Factor 1.0 1.0 3.0 1.0 1.0 2.0Transfer Penalty 0 0 30 0 0 30Maximum Wait Penalty 0 0 60 0 0 603.6 Auto/Walk Access to Transit ConnectorsThe auto and walk access connectors to transit lines and stations were rebuilt together with therest of the transit network skims. Consistently with <strong>Model</strong> 54, no differentiation was madebetween access and egress walk modes, and the drive mode is allowed only in the transit accessleg.3.7 Parking Cost and Terminal TimesParking costs and terminal times were obtained from <strong>Model</strong> 54 (costs.txt). The costs aresegmented by trip purpose (HBW and HBO), and represent average cost per trip in $1978. Aninflation factor of 2.34 was applied to bring the costs up to $1995. Parking search timerepresents terminal drive time at the destination, and it is added to the auto modes in-vehicletime. Parking walk time represents terminal walk time at the destination and is consideredseparately in the mode choice model. Neither parking costs nor terminal times are segmented bytime period. It was thus assumed that HBW parking characteristics apply to all HBW and HBUtrips, while HBO parking characteristics apply to HBO and NHB trips, regardless of whether thetrip occurred in the peak or the off peak period.Mode Choice - Estimation File Preparation 15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03.8 Zonal AttributesVarious zonal attributes were obtained from the 1995 socio-economic database, includingresidential and employment density, area type, a CBD indicator, and other variables that mayprove useful to explain modal usage.Mode Choice - Estimation File Preparation 16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Home-Based Work <strong>Model</strong> Estimation4.1 Sample SizeThe final dataset used for estimating the HBW mode choice model consisted of 7514observations, of which a total of 7021 were available for estimation. The excluded records includeintrazonal trips, records where the chosen mode was transit but no transit path was available 1and records with a highway in-vehicle time longer than 60 minutes. The latter amount to lessthan 1% of the total, and are considered outliers. Table 4.1 shows the number of records bychosen mode. A common rule of thumb suggests that at least 300 records per mode arerequired to obtain robust estimation results. In this particular case, the relatively few recordswith chosen mode park & ride and kiss & ride suggest that these submodes will most likely needto be collapsed. Table 4.1 also shows the modal shares, i.e., the weighted number ofobservations. Please see Section 3.3 for an explanation of the weight factors. All estimationresults were derived using estimation weight factors, as corresponds given that the sample ischoice-based.Table 4-1 Home-Based Work Sample SizeMode ChosenNo. ObsModalSharesDrive Alone 4480 84.70%Shared Ride 2 482 9.11%Shared Ride 3+ 157 2.97%Local BusWalk 907 1.53%Park & Ride 54 0.09%Kiss & Ride 15 0.02%Express BusWalk 782 1.32%Park & Ride 125 0.21%Kiss & Ride 19 0.04%Total 7021 100.00%Modal shares are weighted proportions.The HBW estimation dataset includes all HBU records. This is necessary because there are fewHBU observations, and certainly not enough to estimate even a simple model. People makinghome-based university trips are considered to behave more like people making HBW trips thanpeople making other types of trips, and for this reason the HBU model is estimated jointly withthe HBW model. The HBU mode choice models however will be calibrated separately from theHBW models.Table 4.1 assumes that all trips using a "mixed service" route during the peak period areconsidered express bus trips, while similar trips during the off peak period are considered localbus trips. In the initial estimation runs it was assumed instead that all "mixed service trips" werelocal bus trips. In the end, however, it was preferred to collapse the local and express trips as asingle transit mode, for several reasons: uncertainty regarding the identification of express bustrips, no fare differential for express service relative to local service, and unsatisfactory1 The model may fail to find a path for several reasons: survey reporting errors, survey geocoding errors orerrors in coding the transit lines or the transit connectors. In addition, Tranplan limits the maximumweighted travel time to 255 minutes, so very long transit trips do not get a path assignment.Mode Choice - Home-Based Work <strong>Model</strong> Estimation 17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0estimation results when the submodes are considered separately. Specific local and express busconstants will be computed during model calibration.Similarly, the original drive-to-transit access modes, park & ride and kiss & ride, were collapsedinto a single mode, drive-to-transit, because there is no difference in the utility equation betweenthe two modes, other than the constant term. Normally, these access modes differ due to theparking cost incurred by the park & ride choice; however, in the present case all park & ride lots(in the base year) are free. Specific park & ride and kiss & ride constants will be computedduring model calibration.4.2 Estimation ResultsNearly 100 estimation runs were conducted in the search for an appropriate HBW mode choicemodel. A complete listing of all runs is available in Appendix 1. Table 4.2 shows the bestmultinomial model estimated, and others that serve to illustrate the estimation process. The bestmultinomial model exhibits significant coefficients on all variables (i.e., t-statistics greater than1.8), with coefficient values within acceptable ranges. In particular the in-vehicle time coefficientis expected to be in the [-0.02 to –0.03] range. The rho-square statistic, which may beinterpreted similarly as the R 2 statistic in a regression model, is typical for mode choice models.For this model, costs were not apportioned among the occupants of a carpool, consistent withrecent findings that indicate that most carpools are composed of members of the samehousehold. The coefficient of transit drive access time was specified to be equal to the in-vehicletime coefficient.The implied value of time for the region is approximately $7, which is somewhat higher thanexpected given the region's average income. 2 The ratios of out-of-vehicle to in-vehicle time areall reasonable and within acceptable ranges, and are comparable to results obtained in other U.S.metropolitan areas. The walk access variable has a relatively high coefficient, possibly the resultof using centroid link times in lieu of actual walk times in the estimation file 3 .The model was stratified by market segments defined as a function of household auto ownershipand the number of workers in the household. The estimation results corroborate reasonableexpectations regarding modal usage among people in the various market segments. Forexample, there is a higher likelihood of transit usage and ride sharing among workers in zeroauto households and workers in households with less cars available than workers. Similarly themodel indicates that the likelihood of choosing transit decreases as the ratio of cars to workersincreases.Run #79d was one of several attempts to separate transit wait time into two components: waittime if 10 minutes or less and additional wait time. The rationale is that the first 7 to 10 minutesare the true actual wait time, while the additional time represents the inconvenience ofinfrequent service. The reasoning behind the 7-10 minute figure is as follows: people who useroutes that run headways of 15-20 minutes do not normally pay much attention to the schedulewhen planning their trip, and so on average incur a wait time equal to one half the headway,2 The home-based work value of time is expected to be approximately 20% to 30% of the averagehousehold hourly income. According to the 1990 CTPP, the average household income in the <strong>OKI</strong> RegionalCouncil region is $38,379, which results in a household hourly rate of $18.45. Adjusted for inflation, in$1995 the value of time should be expected to be approximately between $4.3 and $6.5 per hour.3 A better measure of actual walk times can be computed when the trip origin and destination coordinates(latitude and longitude) are available in the Home Interview and On-Board Surveys.Mode Choice - Home-Based Work <strong>Model</strong> Estimation 18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0while people who use routes than run longer headways tend to pay attention to the schedule andarrive at the bus stop about 7-10 minutes before the bus is supposed to arrive. Typically oneexpects a higher coefficient on the initial wait when compared to the additional wait. Thisexpectation was fulfilled by the estimation result; however the initial wait variable had lowsignificance and a very high ratio with respect to the in-vehicle time.Run #70a considered a separate coefficient for transit drive access time. As shown in Table 4.2the estimated coefficient is too high and results in an unacceptably high ratio of drive access toin-vehicle time. The model also exhibits an unacceptably high ratio of walk access time to invehicletime.Run #67 was an attempt to estimate separate coefficients for parking cost and out-of-pocketcosts (auto operating cost and transit fare). In this run, as well as in several others where thisseparation was tried, the result was a positive coefficient for the out-of-pocket cost variable.Some of the other models explored considered the following:• Attempts were also made to estimate separate coefficients for centroid (i.e. access andegress) walk and transfer (i.e. sidewalk) walk, with no satisfactory estimation results.Typically this resulted in very high centroid walk access coefficients and insignificant transferwalk coefficients.• Alternative market segmentation schemes, including auto ownership, were also tried, but weconcluded that the chosen segmentation best explains modal usage given the availability (orlack thereof) of a private car for each household worker.• As mentioned above, the initial estimation runs considered local bus and express bus asseparate modes. In general this resulted in very low in-vehicle time coefficients, as shown inthe Appendix.• Terminal walk and park times were excluded from the model because they consistentlyshowed unacceptably high coefficients.• Due to the importance of the CBD in attracting work trips, a CBD indicator variable was usedto capture modal preferences for CBD trips after controlling for time and cost. While thevariable was significant, it had a very high correlation with the parking cost variable, andresulted in models with low, insignificant, and sometimes positive cost coefficients.• The effect of residential density on transit usage was also explored through an indicatorvariable. This variable was significant in models that considered local and express busmodes separately, but not in models that considered a single transit mode.Finally, several attempts were made to estimate a nested structure for the most promisingmultinomial models. Run #83, shown in Table 4.2, was one such attempt, in this case using atwo-level nest (auto vs. transit) for the model shown in Run #71h. As shown, the estimatedcoefficient for the logsum variable (Theta) is larger than 1.0, indicating that the nesting structureis not supported by the data. Similar results were obtained for various other nesting structures.Since the data do not support the estimation of a nesting structure, the logsum coefficients to beused in the application program were synthesized from other metropolitan area models.Proposed values for the <strong>OKI</strong>/MVRPC mode choice models are listed in Table 4.3, along with thevalues current used in <strong>Model</strong> 5.4. The logsum, or structural, model coefficients directly influencemodel elasticity at lower levels of the nest as well as the impact of lower level choices on upperlevel decisions. Based on a number of nested logit model estimation activities completed overthe last few years, it has become clear that logsum coefficient values less than 0.5 are unlikelyand may overstate the elasticity responses of lower level choices. Use of 0.2 and 0.3 values inthe existing model are, therefore, problematic and may distort overall model sensitivities. Therecommended set of values is more consistent with recent experience and applicable to thenesting structure proposed for the <strong>OKI</strong>/MVRPC mode choice model.Mode Choice - Home-Based Work <strong>Model</strong> Estimation 19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-2 HBW Mode Choice Estimation ResultsBest <strong>Model</strong>VariablesRun #71hRun #79d Run #70a Run #67 Run #83Estimate t stat. Estimate t stat. Estimate t stat. Estimate t stat. Estimate t stat.In-vehicle time -0.0248 -2.8 -0.0248 -2.8 -0.0223 -2.5 -0.0106 -1.4 -0.0170 -2.1Cost -0.0021 -3.9 -0.0021 -3.9 -0.0018 -4.4 -0.0014 -2.5Parking Cost -0.0023 -5.2Out-of-Pocket Cost 0.0018 1.9First wait -0.0409 -2.8 -0.0424 -2.9 -0.0419 -3.1 -0.0287 -2.2First wait < 10 min. -0.0717 -1.3First wait > 10 min. -0.0341 -1.8Transfer wait -0.0461 -2.8 -0.0461 -2.8 -0.0518 -3.1 -0.0444 -3.3 -0.0327 -2.3Walk access time -0.0876 -5.6 -0.0880 -5.6 -0.0892 -5.8 -0.0975 -6.9 -0.0612 -3.0Drive access time -0.0970 -1.8 -0.0940 -1.9Logsum (Theta) 1.462 3.5Constants:Shared Ride 2 -2.41Zero Auto Hhlds.Autos < Workers -0.81 -0.81 -0.91 -0.81Autos = Workers -2.31 -2.31 -2.45 -2.31Autos > Workers -2.51 -2.51 -2.66 -2.51Shared Ride 3+ -3.59Zero Auto Hhlds.Autos < Workers -2.16 -2.16 -2.32 -2.16Autos = Workers -3.31 -3.31 -3.52 -3.31Autos > Workers -3.77 -3.77 -3.99 -3.77Walk to Transit 0.50Zero Auto Hhlds. 3.76 4.00 3.83 2.43Autos < Workers 1.58 1.83 1.69 1.24Autos = Workers -0.83 -0.58 -0.72 -0.54Autos > Workers -1.32 -1.07 -1.22 -0.90Drive to Transit -1.91Zero Auto Hhlds. -1.10 -0.89 -0.74 -2.23Autos < Workers -1.47 -1.24 -0.98 -1.55Autos = Workers -2.99 -2.76 -2.44 -2.45Autos > Workers -3.39 -3.16 -2.77 -2.63No. of observations 7032 7032 7032 7032 7032Log-likelihood -2632 -2632 -2639 -2765 -2631Rho-squared 0.64 0.64 0.64 0.62 0.64Value of Time $7.04 $6.98 $7.51 $7.16Ratios to IVT:First wait 1.7 1.9 4.0 1.7First wait < 10 min. 2.9First wait > 10 min. 1.4Transfer wait 1.9 1.9 2.3 4.2 1.9Walk access 3.5 3.6 4.0 9.2 3.6Drive access 1.0 1.0 4.3 8.9 1.0All time variables expressed in minutes, all cost variables expressed in 1995 cents.Mode Choice - Home-Based Work <strong>Model</strong> Estimation 20


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-3 Logsum CoefficientsLogsum CoefficientProposed Current<strong>Model</strong> 6.0 <strong>Model</strong> 5.4Shared Ride 0.55 0.20Auto Submodes 0.85 0.80Transit Submodes 0.85 0.50Transit Access 0.55 0.30The final HBW utility expressions to be used in model application are listed below. In theseequations, all times are expressed in minutes and all costs are expressed in 1995 cents. "LB"stands for local bus and "EB" stands for express bus. The "K??? TM " terms are the mode specificconstants, stratified by time period (T) and market segment (M). Please refer to Section 7 forthe constants' final, calibrated values. Note that parking and auto operating costs are not sharedamong a vehicle's occupants, consistent with the finding that most carpools are composed ofmembers of the same household. Note also that these utility expressions, unlike the choice setused for model estimation, do differentiate between local and express bus, as well as betweenpark&ride vs. kiss&ride transit access.In model application, utilities corresponding to lower level choices are divided by the appropriatelogsum coefficients. Hence, U(drive-alone) is divided by 0.85, while all the other utilities aredivided by the product (0.85*0.55).The final HBU utility expressions are identical to the HBW utility functions, with the exception ofthe mode-specific constants, which were specifically calibrated for HBU mode share data (pleasesee Section 7).• U(drive-alone) TM = -0.0248 * (highway travel time + terminal parking time) +-0.0021 * (parking cost + auto operating cost) +KDA TM• U(share-ride 2) TM = -0.0248 * (highway travel time + terminal parking time) +-0.0021 * (parking cost + auto operating cost)• U(share-ride 3+) TM = -0.0248 * (highway travel time + terminal parking time) +-0.0021 * (parking cost + auto operating cost) +K3P TM• U(LB,walk) TM = -0.0248 * in-vehicle time +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * fare +KLBW TM• U(LB, p&r) TM = -0.0248 * (in-vehicle time + drive access time) +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * (fare + p&r park cost + access auto oper. cost) +KLBP TMMode Choice - Home-Based Work <strong>Model</strong> Estimation 21


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• U(LB, k&r) TM = -0.0248 * (in-vehicle time + drive access time) +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * (fare + access auto operating cost) +KLBK TM• U(EB,walk) TM = -0.0248 * in-vehicle time +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * fare +KEBW TM• U(EB, p&r) TM = -0.0248 * (in-vehicle time + drive access time) +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * (fare + p&r park cost + access auto oper. cost) +KEBP TM• U(EB, k&r) TM = -0.0248 * (in-vehicle time + drive access time) +-0.0876 * (centroid walk time + transfer walk time) +-0.0409 * first wait time +-0.0461 * transfer wait time +-0.0021 * (fare + access auto operating cost) +KEBK TMMode Choice - Home-Based Work <strong>Model</strong> Estimation 22


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05. Home-Based Other <strong>Model</strong> Estimation5.1 Sample SizeThe final dataset used for estimating the HBO mode choice model consisted of over 14,000observations, of which a total of 12,404 were available for estimation. The excluded recordsinclude intrazonal trips, records where the chosen mode was transit but no transit path wasavailable and records with a highway in-vehicle time longer than 60 minutes. Table 5.1 showsthe number of observations by chosen mode. A common rule of thumb suggests that at least300 records per mode are required to obtain robust estimation results. For this reason, local andexpress bus modes were collapsed into a single transit mode, and park & ride and kiss & ridetransit access modes were collapsed into a single transit access mode. Table 5.1 also shows themodal shares, i.e., the weighted number of observations. Please see Section 3.3 for anexplanation of the weight factors. All estimation results were derived using estimation weightfactors, as corresponds given that the sample is choice-based.Table 5-1 Home-Based Other Sample SizeMode ChosenNo. ObsModalShareDrive Alone 4520 39.60%Shared Ride 2 3806 33.35%Shared Ride 3+ 2992 26.21%TransitWalk 1062 0.82%Drive 24 0.02%Total 12404 100.00%Modal shares are weighted proportions.5.2 Estimation ResultsThe final multinomial coefficients for the Home-Based Other mode choice model are shown inTable 5.2. The in-vehicle time coefficient is well within the typical range for home-based nonworkpurposes. Composite variables were used to obtain reasonable out-of-vehicle and costcoefficients. In the unconstrained models, the in-vehicle time or the cost coefficients werepositive (see runs #38 and #29 in Table 5.2). To constrain the cost coefficient, a value of timeof $3.00 was chosen, given that the HBO value of time is typically about 50% of the HBW valueof time. As in HBW, parking and auto operating costs are not shared among a vehicle'soccupants (this applies to the shared-ride modes). Parking costs were based on hourly rates fordowntown zones. An out-of-vehicle time to in-vehicle time ratio of 2.0 was used to construct acomposite out-of-vehicle time variable. This ratio is typical for HBO models.The mode-specific constants are based on the auto ownership properties of the home. Theyshow that, all else equal, drive-alone is the most preferred option, followed by the shared-ridemodes, with the transit modes as the least preferred across all auto ownership categories. Thisis indicated by the decreasing value of the bias constants (when ordered drive alone, shared ride,transit) within each market segment.Mode Choice - Home-Based Other <strong>Model</strong> Estimation 23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-2 Home-Based Other Estimation ResultsVariablesBest <strong>Model</strong>Run #38 Run #29Run #41aEstimate t stat. Estimate t stat. Estimate t stat.In-vehicle time -0.0085 -4.4 0.0005 -0.0079Cost -0.0017 0.0001 0.0005Out-of-vehicle time -0.0169 -0.0165 -0.0131Constants:Shared Ride 2Zero Auto Hhlds. -0.41 -0.41 -0.39One Auto Hhlds. -0.94 -0.94 -0.91Two Auto Hhlds. -2.14 -2.33 -2.37Three+ Auto Hhlds. -5.46 -5.79 -5.73Shared Ride 3+Zero Auto Hhlds. -0.01 -0.01 0.01One Auto Hhlds. -0.16 -0.15 -0.13Two Auto Hhlds. -3.47 -3.66 -3.72Three+ Auto Hhlds. -6.64 -6.93 -6.89Walk to TransitZero Auto Hhlds. -0.26 -0.26 -0.24One Auto Hhlds. -0.67 -0.66 -0.64Two Auto Hhlds. -3.88 -4.09 -4.14Three+ Auto Hhlds. -6.62 -6.92 -6.86Drive to TransitZero Auto Hhlds. -0.55 -0.54 -0.53One Auto Hhlds. -0.62 -0.62 -0.59Two Auto Hhlds. -3.74 -3.93 -3.99Three+ Auto Hhlds. -5.89 -6.18 -6.12No. of observations 12404 12404 12404Log-likelihood -12497 -12497 -12497Rho-squared 0.20 0.20 0.20Value of Time $3.00 $3.00 -$8.65Ratios to IVT:Out-of-vehicle time 2.0 -33.6 1.7All time variables expressed in minutes, all cost variables expressed in 1995 cents.Mode Choice - Home-Based Other <strong>Model</strong> Estimation 24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The results for all estimation runs are shown in Appendix 2. These runs include the followingmodels:• unconstrained cost coefficient (see run #29),• separate coefficients for each out-vehicle time component (first wait, transfer wait and walkaccess time),• unconstrained out-of-vehicle time coefficient (see run #38),• an indicator variable for the ratio of autos to workers in the household,• a low income indicator variable,• an indicator variable for the number of workers in the household, and• separate coefficients on operating cost and parking cost.The data did not allow the estimation of a satisfactory nesting structure, and therefore thelogsum coefficients and structure for the HBO purpose will be assumed to be equal to thecoefficients listed in Table 4.3.The final HBO utility expressions to be used in model application are listed below. In theseequations, all times are expressed in minutes and all costs are expressed in 1995 cents. "LB"stands for local bus and "EB" stands for express bus. The "K??? TM " terms are the mode specificconstants, stratified by time period (T) and market segment (M). Please refer to Section 7 forthe constants' final, calibrated values. Note that parking and auto operating costs are not sharedamong a vehicle's occupants, consistent with the finding that most carpools are composed ofmembers of the same household. Note also that these utility expressions, unlike the choice setused for model estimation, do differentiate between local and express bus, as well as betweenpark&ride vs. kiss&ride transit access.In model application, utilities corresponding to lower level choices are divided by the appropriatelogsum coefficients. Hence, U(drive-alone) is divided by 0.85, while all the other utilities aredivided by the product (0.85*0.55).• U(drive-alone) TM = -0.0085 * (highway travel time + terminal parking time) +-0.0017 * (parking cost + auto operating cost) +KDA TM• U(share-ride 2) TM = -0.0085 * (highway travel time + terminal parking time) +-0.0017 * (parking cost + auto operating cost)• U(share-ride 3+) TM = -0.0085 * (highway travel time + terminal parking time) +-0.0017 * (parking cost + auto operating cost) +K3P TM• U(LB,walk) TM = -0.0085 * in-vehicle time +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * fare +KLBW TMMode Choice - Home-Based Other <strong>Model</strong> Estimation 25


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• U(LB, p&r) TM = -0.0085 * (in-vehicle time + drive access time) +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * (fare + p&r park cost + access auto oper. cost) +KLBP TM• U(LB, k&r) TM = -0.0085 * (in-vehicle time + drive access time) +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * (fare + access auto operating cost) +KLBK TM• U(EB,walk) TM = -0.0085 * in-vehicle time +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * fare +KEBW TM• U(EB, p&r) TM = -0.0085 * (in-vehicle time + drive access time) +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * (fare + p&r park cost + access auto oper. cost) +KEBP TM• U(EB, k&r) TM = -0.0085 * (in-vehicle time + drive access time) +-0.0169 * (centroid walk time + transfer walk time) +-0.0169 * first wait time +-0.0169 * transfer wait time +-0.0017 * (fare + access auto operating cost) +KEBK TMMode Choice - Home-Based Other <strong>Model</strong> Estimation 26


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06. Non-Home-Based <strong>Model</strong> Estimation6.1 Sample SizeThe NHB estimation dataset includes 6,385 records, of which 5,188 were available for estimation.As in the case of the HBW and HBO models, records that could not be used for estimation includeintrazonal trips, records where the chosen mode was transit but no transit path was available andrecords with a highway in-vehicle time longer than 60 minutes. Table 6.1 shows the number ofobservations by chosen mode. A common rule of thumb suggests that at least 300 records permode are required to obtain robust estimation results. For this reason, local and express busmodes were collapsed into a single transit mode, and park & ride and kiss & ride transit accessmodes were collapsed into a single transit access mode. Table 6.1 also shows the modal shares,i.e., the weighted number of observations. Please see Section 3.3 for an explanation of theweight factors. All estimation results were derived using estimation weight factors, ascorresponds given that the sample is choice-based.Table 6-1 Non-Home-Based Sample SizeMode ChosenNo. ObsModalShareDrive Alone 2807 60.61%Shared Ride 2 1090 23.54%Shared Ride 3+ 679 14.66%TransitWalk 422 0.82%Drive 190 0.37%Total 5188 100.00%Modal shares are weighted proportions.6.2 Estimation ResultsThe NHB models were the last set of models estimated, and thus much had been learned aboutthe dataset from the HBW and HBO model estimation efforts. For this reason comparatively fewruns were required to arrive at a good NHB model for the <strong>OKI</strong>/MVRPC region. All NHB estimationruns are included in Appendix 3.Table 6.2 shows the recommended NHB model. NHB trips are almost as sensitive to in-vehicletime as HBW trips, as indicated by the similar in-vehicle time coefficients obtained for NHB andHBW. The NHB model however exhibits a lower value of time compared to the HBW model, asexpected. In fact, NHB values of time equal to one-half of the HBW value of time are common.In the recommended model, the relationship of centroid walk to in-vehicle time is kept constantat 2.5. This is necessary because in models with an unconstrained centroid walk coefficient theout-of-vehicle to in-vehicle time ratio is unacceptably high, while the in-vehicle time coefficient ispositive and insignificant (see for example Run #1).CBD indicator variables were used to capture differences in the attractiveness of the CBD bymode, after controlling for time and cost. The estimated CBD coefficients indicate that, all elseequal, transit trips are more likely than auto trips to have a CBD destination. This result makessense given that the transit network is primarily radial and CBD oriented, that is, it providesbetter service to suburb-to-CBD trips than to suburb-to-suburb trips.Mode Choice - Non-Home-Based <strong>Model</strong> Estimation 27


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Run #7 is an attempt to estimate separate coefficients for the initial wait time (less than 10minutes) and the additional wait time. As shown in Table 6.2, the values obtained for the waittime coefficients show a relationship opposite to what was expected: the initial wait coefficient islower than the additional wait coefficient. This model was thus rejected.Given the experience with the HBW and HBO models, it was unlikely that a satisfactory nestedstructure could be estimated for the NHB model. And indeed, a simple auto vs. transit nestedmodel (Run #10) resulted in a logsum coefficient greater than 1.0. For the application program,the NHB model will use similar logsum coefficients as the HBW model (see Table 4.3).Table 6-2 Non-Home Based Mode Choice <strong>Model</strong> Estimation ResultsVariablesBest <strong>Model</strong>Run #1 Run #7 Run #10Run #9cEstimate t stat. Estimate t stat. Estimate t stat. Estimate t stat.In-vehicle time -0.0265 -3.2 0.0004 0 -0.0265 -3.7 -0.0059 -2.9Cost -0.0030 -2.0 -0.0048 -4.2 -0.0052 -4.5 -0.0008 -2.0First wait -0.0405 -2.0 -0.0528 -2.8 -0.0095 -1.9First wait < 10 min. -0.0260 -0.4First wait > 10 min. -0.0535 -2.1Transfer wait -0.0301 -1.4 -0.0663 -2.7 -0.0419 -2.0 -0.0093 -1.7Walk access time -0.0663 -0.0986 -4.2Transfer walk time -0.0623 -1.7Drive access time -0.0588 -0.9 -0.0334 -0.5 -0.0468 -0.8 -0.0096 -0.4CBD IndicatorShared Ride 2 -0.36 -1.6Shared Ride 3+ -1.21 -3.1Walk to Transit 0.45 0.8 -0.38 -1.3Drive to Transit 1.93 3.0 0.65 2.0Logsum (Theta) 4.69 9.7Constants:Shared Ride 2 -0.97 -0.97 -0.97 -0.95Shared Ride 3+ -1.44 -1.44 -1.44 -1.41Walk to Transit -1.48 -0.96 -1.47 -0.24Drive to Transit -2.65 -1.93 -2.11 -1.10No. of observations 5188 5188 5188 5188Log-likelihood -4446 -4456 -4459 -4413Rho-squared 0.31 0.30 0.30 0.31Value of Time $5.32 $3.08 $4.48Ratios to IVT:First wait 1.5 1.6First wait < 10 min. 1.0First wait > 10 min. 2.0Transfer wait 1.1 1.6 1.6Walk access 2.5 2.5 2.5Transfer walk 2.4Drive access 2.2 1.8 1.6All time variables expressed in minutes, all cost variables expressed in 1995 cents.Mode Choice - Non-Home-Based <strong>Model</strong> Estimation 28


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The final NHB utility expressions to be used in model application are listed below. In theseequations, all times are expressed in minutes and all costs are expressed in 1995 cents. "LB"stands for local bus and "EB" stands for express bus. The "K??? TM " terms are the mode specificconstants, stratified by time period (T) and market segment (M). Please refer to Section 7 forthe constants' final, calibrated values. Note that parking and auto operating costs are not sharedamong a vehicle's occupants, consistent with the finding that most carpools are composed ofmembers of the same household. Note also that these utility expressions, unlike the choice setused for model estimation, do differentiate between local and express bus, as well as betweenpark&ride vs. kiss&ride transit access.In model application, utilities corresponding to lower level choices are divided by the appropriatelogsum coefficients. Hence, U(drive-alone) is divided by 0.85, while all the other utilities aredivided by the product (0.85*0.55).• U(drive-alone) TM = -0.0265 * (highway travel time + terminal parking time) +-0.0030 * (parking cost + auto operating cost) +KDA TM• U(share-ride 2) TM = -0.0265 * (highway travel time + terminal parking time) +-0.0030 * (parking cost + auto operating cost)• U(share-ride 3+) TM = -0.0265 * (highway travel time + terminal parking time) +-0.0030 * (parking cost + auto operating cost) +K3P TM• U(LB,walk) TM = -0.0265 * in-vehicle time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * fare +KLBW TM• U(LB, p&r) TM = -0.0265 * in-vehicle time +-0.0588 * drive access time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * (fare + p&r park cost + access auto oper. cost) +KLBP TM• U(LB, k&r) TM = -0.0265 * in-vehicle time +-0.0588 * drive access time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * (fare + access auto operating cost) +KLBK TMMode Choice - Non-Home-Based <strong>Model</strong> Estimation 29


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• U(EB,walk) TM = -0.0265 * in-vehicle time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * fare +KEBW TM• U(EB, p&r) TM = -0.0265 * in-vehicle time +-0.0588 * drive access time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * (fare + p&r park cost + access auto oper. cost) +KEBP TM• U(EB, k&r) TM = -0.0265 * in-vehicle time +-0.0588 * drive access time +-0.0663 * centroid walk time +-0.0623 * transfer walk time +-0.0405 * first wait time +-0.0301 * transfer wait time +-0.0030 * (fare + access auto operating cost) +KEBK TMMode Choice - Non-Home-Based <strong>Model</strong> Estimation 30


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07. Mode Choice <strong>Model</strong> CalibrationThe calibration of the mode choice model entails calculating the values of the mode-specificconstants so that the estimated regional mode shares match the actual, observed mode shares.<strong>Model</strong> calibration is an iterative process, where the model is applied in its full, nested form, theestimated shares (by mode and market segment) are compared to the observed shares, theconstants are adjusted, and the adjusted model is applied again. This process is repeated untilthe estimated shares converge to the observed shares. The mode specific constants arecalculated separately for each trip purpose (HBW, HBO, HBU and NHB) and time period (peakand off peak).7.1 <strong>Model</strong> Calibration Data RequirementsWhile the mode choice model estimation was based on <strong>OKI</strong> region data only, the modelcalibration considers the entire consolidated region. To calibrate the model, all data required toapply the model are needed. These input data are:• Highway time and distance skim matrices, by time period,• Transit time matrices, by transit submode and time period,• Transit fare matrices, by transit submode and time period,• Daily and hourly parking costs, by TAZ,• Household market share vectors, by TAZ,• Trip tables, by purpose and time period,• Calibration target values (i.e., observed trips), by mode and market segment.The highway and transit skims are available from the network build and skim steps, alreadydeveloped for the consolidated model. Similarly, parking costs and other zonal data are availablefrom the trip generation steps.Initial trip table estimates were constructed by applying the existing <strong>Model</strong> 5.4 gravity model tothe entire consolidated region. These trip tables were used in the initial mode choice calibration,and were later updated once the trip distribution model was calibrated. Additional re-calibrationswere performed whenever adjustments were made to the model in the validation phase (highwayor transit). The results reported here correspond to the last, final model calibration.The calibration target values were developed from the various home and transit surveys, andsupplemented with transit ridership and census data from both the <strong>OKI</strong> and the MVRPC region.These target values represent the total number of trips, for each mode and market segment, thatoccur in the region. Typically the trip totals by market segment and purpose are obtained fromtrip generation, the number of transit trips is obtained from the on-board survey, and the sharesby mode are obtained from the home interview survey.More specifically, the calibration target values are calculated as follows:(i) Calculate, using home interview survey data, the proportion of trips by time period, mode andmarket segment, for each trip purpose. The proportions should be calculated using expanded(i.e. weighted) survey records.(ii) Compute, by applying the trip generation steps of the model, the total number of trips by trippurpose and region (<strong>OKI</strong> and MVRPC).Mode Choice - Mode Choice <strong>Model</strong> Calibration 31


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0(iii) Distribute the trips from (ii) according to the proportions calculated in (i). The end result isthe computation of the total number of trips occurring in each region, by trip purpose, timeperiod, mode and market segment.(iv) Calculate, from the on-board survey, the total number of transit trips for each trip purpose,by transit submode, access mode, time period and market segment. These should be totalexpanded trips, i.e., calculated based on weighted survey records.(v) Typically, the transit trip totals calculated in (iv) are not equal to the transit trip totalscalculated in (iii). This is in fact the case for the <strong>OKI</strong> on-board survey. When this happens, it isaccepted convention to assume that the on-board survey better captures transit trip-making inthe region. The rationale is that the home interview survey is unlikely to capture arepresentative sample of transit trips, because the transit share in the region is small (i.e., a fewpercentage points of the total regional trip-making). For this reason, the transit trip totalscalculated in (iii) are substituted with transit trip totals from (iv).(vi) Adjust the auto trips calculated in (iii), (drive alone, shared-ride 2 and shared ride 3+), sothat the total trips by trip purpose (transit and non-transit) are equal to the totals obtained fromtrip generation, i.e., from (ii). These gives the calibration target values by region, shown inTables 7.2 and 7.3 for HBW, 7.5 and 7.6 for HBO, 7.7 for HBU and 7.8 for NHB.(vii) Sum the regional trip targets calculated in (vi) to obtain the grand regional total. These arethe calibration targets input to the mode choice calibration process. These trip targets are shownin Tables 7.1 (HBW), 7.4 (HBO), 7.7 (HBU) and 7.8 (NHB).In the case of the <strong>OKI</strong>/MVRPC model, some of these data were not available. In particular, theMVRPC transit targets were calculated using average daily ridership (from MVRTA) and transitsub-mode shares developed from the SORTA/TANK on-board survey. In addition, the MVRPChome interview survey proved inadequate to develop target values, because the trip timeinformation was recorded in one-hour intervals, which made it impossible to accurately classifysurvey trips by time period. For this reason MVRPC auto mode shares were assumed to be equalto the shares observed in the <strong>OKI</strong> region.A small adjustment was made to the modal shares of the zero-auto household market segment,because the survey did not capture any HBW Shared-Ride 3+ trips. This is not unusual given thesmall proportion of these trips in the region (0.1% according to the 1990 CTPP). The number ofHBW SR3+ trips was calculated so that the ratio of SR3+ to SR2 trips matched the 1990 CTPPratio.The on-board survey showed few express bus trips in the off peak period; in fact for severalcombinations of trip purpose and market segment there were no observed express bus trips.Given that many of the express bus sub-mode constants could not be calibrated (due to the lackof observed data), the models were calibrated assuming that no express bus service is availablein the off peak period. Off peak express bus trips, when observed, were added to the local bustargets.Mode Choice - Mode Choice <strong>Model</strong> Calibration 32


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-1 HBW Mode Choice Calibration Targets – Consolidated RegionPeak PeriodOff Peak Period0 cars carwrk all 0 cars carwrk allda 0 69,050 384,467 318,213 771,730 0 38,846 255,402 207,527 501,775sr2 13,812 23,902 40,980 26,757 105,450 8,203 18,468 27,063 17,996 71,731sr3+ 3,453 8,347 15,782 8,760 36,341 2,051 9,552 8,568 4,378 24,548loc - wlk 10,418 6,749 11,657 2,057 30,881 8,198 3,750 3,647 533 16,122loc - pnr 11 517 2,115 730 3,373 0 14 386 40 336loc - knr 76 160 141 70 447 76 106 51 32 264exp - wlk 153 508 920 227 1,809 0 0 0 0 0exp - pnr 18 151 813 273 1,255 0 0 0 0 0exp - knr 0 125 14 0 139 0 0 0 0 0transit 10,675 8,212 15,660 3,357 37,903 8,273 3,869 4,084 605 16,832auto 17,265 101,298 441,229 353,729 913,521 10,254 66,866 291,034 229,901 598,054auto+tran. 27,940 109,510 456,888 357,086 951,424 18,528 70,735 295,117 230,506 614,886Table 7-2 HBW Mode Choice Calibration Targets – <strong>OKI</strong> RegionPeak PeriodOff Peak Period0 cars carwrk all 0 cars carwrk allda 0 33,721 245,132 196,720 475,574 0 19,078 162,701 128,285 310,064sr2 13,812 11,673 26,128 16,541 68,154 8,203 9,070 17,240 11,125 45,638sr3+ 3,453 4,076 10,062 5,415 23,007 2,051 4,691 5,458 2,706 14,906loc - wlk 6,667 4,320 7,460 1,316 19,764 5,246 2,400 2,334 341 10,318loc - pnr 7 331 1,354 467 2,159 0 9 246 26 215loc - knr 48 102 90 45 286 48 68 33 20 169exp - wlk 98 325 589 145 1,158 0 0 0 0 0exp - pnr 11 97 520 175 803 0 0 0 0 0exp - knr 0 80 9 0 89 0 0 0 0 0transit 6,832 5,255 10,022 2,149 24,258 5,295 2,476 2,614 387 10,772auto 17,265 49,470 281,323 218,677 566,734 10,254 32,840 185,399 142,115 370,608auto+tran. 24,096 54,725 291,345 220,825 590,992 15,549 35,316 188,013 142,503 381,380Table 7-3 HBW Mode Choice Calibration Targets – MVRPC RegionPeak PeriodOff Peak Period0 cars carwrk all 0 cars carwrk allda 0 35,329 139,335 121,493 296,156 0 19,768 92,702 79,242 191,711sr2 0 12,229 14,851 10,216 37,296 0 9,398 9,823 6,872 26,092sr3+ 0 4,270 5,719 3,344 13,334 0 4,861 3,110 1,672 9,642loc - wlk 3,751 2,430 4,197 741 11,118 2,951 1,350 1,313 192 5,806loc - pnr 4 186 761 263 1,214 0 5 138 15 158loc - knr 27 58 51 25 161 27 38 18 11 95exp - wlk 55 183 331 82 651 0 0 0 0 0exp - pnr 6 54 293 98 452 0 0 0 0 0exp - knr 0 45 5 0 50 0 0 0 0 0transit 3,843 2,956 5,638 1,209 13,646 2,978 1,393 1,470 218 6,060auto 0 51,828 159,906 135,053 346,786 0 34,026 105,635 87,785 227,446auto+tran. 3,843 54,784 165,543 136,261 360,432 2,978 35,419 107,105 88,003 233,506Mode Choice - Mode Choice <strong>Model</strong> Calibration 33


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-4 HBO Mode Choice Calibration Targets – Consolidated RegionPeak PeriodOff Peak Period0 autos 1 auto 2 autos 3+ autos all 0 autos 1 auto 2 autos 3+ autos allda 0 134,112 273,801 194,707 602,619 0 242,117 480,274 289,296 1,011,686sr2 17,123 106,886 306,036 145,119 575,163 29,553 153,502 426,464 209,039 818,559sr3+ 17,123 89,744 308,026 117,043 531,935 18,471 64,403 322,057 132,889 537,820loc - wlk 9,676 5,229 2,622 484 18,010 12,763 4,531 2,082 716 20,009loc - pnr 4 135 164 4 306 0 83 29 11 104loc - knr 0 7 58 0 65 0 37 0 0 37exp - wlk 53 113 197 46 408 0 0 0 0 0exp - pnr 0 23 5 14 42 0 0 0 0 0exp - knr 0 0 0 14 14 0 0 0 0 0transit 9,732 5,507 3,046 561 18,846 12,764 4,650 2,110 727 20,250auto 34,246 330,741 887,862 456,869 1,709,718 48,024 460,022 1,228,795 631,224 2,368,065auto+tran. 43,978 336,248 890,908 457,430 1,728,564 60,788 464,672 1,230,905 631,951 2,388,316Table 7-5 HBO Mode Choice Calibration Targets – <strong>OKI</strong> RegionPeak PeriodOff Peak Period0 autos 1 auto 2 autos 3+ autos all 0 autos 1 auto 2 autos 3+ autos allda 0 93,146 193,067 126,228 412,441 0 168,025 338,579 187,548 694,152sr2 14,204 74,237 215,798 94,080 398,319 24,421 106,528 300,645 135,519 567,112sr3+ 14,204 62,331 217,201 75,878 369,614 15,263 44,695 227,041 86,151 373,149loc - wlk 6,192 3,347 1,678 310 11,526 8,169 2,900 1,332 458 12,859loc - pnr 2 87 105 2 196 0 53 18 7 78loc - knr 0 5 37 0 42 0 24 0 0 24exp - wlk 34 72 126 29 261 0 0 0 0 0exp - pnr 0 15 3 9 27 0 0 0 0 0exp - knr 0 0 0 9 9 0 0 0 0 0transit 6,228 3,525 1,949 359 12,061 8,168 2,976 1,350 465 12,960auto 28,409 229,714 626,066 296,186 1,180,374 39,683 319,247 866,265 409,218 1,634,413auto+tran. 34,637 233,238 628,015 296,545 1,192,435 47,852 322,223 867,615 409,683 1,647,373Table 7-6 HBO Mode Choice Calibration Targets – MVRPC RegionPeak PeriodOff Peak Period0 autos 1 auto 2 autos 3+ autos all 0 autos 1 auto 2 autos 3+ autos allda 0 40,965 80,733 68,479 190,178 0 74,092 141,695 101,748 317,534sr2 2,918 32,649 90,238 51,039 176,845 5,133 46,974 125,819 73,521 251,447sr3+ 2,918 27,413 90,825 41,165 162,321 3,208 19,708 95,016 46,738 164,671loc - wlk 3,483 1,883 944 174 6,484 4,595 1,631 749 258 7,233loc - pnr 1 49 59 1 110 0 30 10 4 44loc - knr 0 3 21 0 23 0 13 0 0 13exp - wlk 19 41 71 16 147 0 0 0 0 0exp - pnr 0 8 2 5 15 0 0 0 0 0exp - knr 0 0 0 5 5 0 0 0 0 0transit 3,504 1,983 1,097 202 6,785 4,595 1,674 760 262 7,290auto 5,837 101,027 261,797 160,683 529,344 8,341 140,775 362,531 222,007 733,653auto+tran. 9,341 103,010 262,893 160,885 536,129 12,936 142,449 363,290 222,268 740,943Mode Choice - Mode Choice <strong>Model</strong> Calibration 34


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-7 HBU Mode Choice Calibration TargetsConsolidated<strong>OKI</strong> RegionMVRPC RegionPeak Off Peak Peak Off Peak Peak Off Peakda 26,936 53,341 15,459 30,624 11,477 22,717sr2 6,717 6,933 3,855 3,980 2,862 2,952sr3+ 1,901 1,192 1,091 684 810 508loc - wlk 420 289 267 184 161 105loc - pnr 0 0 0 0 0 0loc - knr 34 34 21 21 12 12exp - wlk 21 0 14 0 0 0exp - pnr 0 0 0 0 0 0exp - knr 0 0 0 0 0 0transit 475 322 302 205 173 117auto 35,554 61,465 20,405 35,288 15,149 26,177auto+tran. 36,029 61,787 20,707 35,493 15,322 26,294Table 7-8 NHB Mode Choice Calibration TargetsConsolidated<strong>OKI</strong> RegionMVRPC RegionPeak Off Peak Peak Off Peak Peak Off Peakda 672,936 737,440 457,616 503,306 215,321 234,135sr2 275,862 316,398 187,594 215,943 88,268 100,455sr3+ 162,868 200,164 110,755 136,613 52,113 63,551loc - wlk 6,318 7,017 4,044 4,491 2,275 2,526loc - pnr 2,718 941 1,740 603 979 339loc - knr 746 345 477 221 269 124exp - wlk 77 0 50 0 28 0exp - pnr 727 0 465 0 262 0exp - knr 32 0 20 0 11 0transit 10,619 8,303 6,796 5,314 3,823 2,989auto 1,111,666 1,254,002 755,964 855,861 355,702 398,141auto+tran. 1,122,285 1,262,305 762,760 861,175 359,525 401,1307.2 <strong>Model</strong> Calibration ResultsTables 7.9 to 7.11 show the final calibrated mode-specific constants. These constants wereobtained after several re-calibration efforts, directed both at the trip distribution and mode choicemodels, and that resulted from model adjustments conducted during the model validation phase.For non-available modes, such as express mode for off-peak period travel, the constants were setto zero. A constant value of –15.0 also indicates a non-available mode. The followingassumptions were made regarding the constants of modes not available in the base year: theconstants for light rail have been set equal to the local bus constants, while the constants forcommuter rail have been set equal to the express bus constants.Note that for model calibration, constants are added at all levels of the nest. Moreover,additional constants have been added to the equations within any given level of the nest. Giventhat a logit model requires N-1 constants (where N is the number of choices), the latter is notstrictly necessary. However, the additional constant helps to speed the convergence of thecalibration process. This additional constant does not, in any way, affect the computation ofmodal probabilities; exactly the same probabilities would be obtained if one constant were set tozero and all others were scaled accordingly. Please refer to Figure 7.1 for the location of eachconstant in the mode choice nest.Mode Choice - Mode Choice <strong>Model</strong> Calibration 35


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Tables 7.12 to 7.17 show a comparison of the model output to the target values. The percenterror of the estimated trips, with respect to the target values, is generally small for most modes.The larger errors are observed for some transit submodes, particularly where the number ofobserved transit trips is small. When the shares are very small, the error tends to be of the sameorder of magnitude as the precision of the calculation.Figure 7-1 Location of Mode-Specific Constants in the Choice NestChoiceAutoKATTransitKTRNDriveAloneKDASharedRideKSRLocalBusKLBExpressBusKEXPLightRailCommuterRailSR 2SR 3+K3PWalkKLBWP&RKLBPK&RKLBKWalkKEBWP&RKEBPK&RKEBKWalkKURWP&RKURPK&RKURKWalkKCRWP&RKCRPK&RKCRKHOVnonHOVHOVnonHOVTable 7-9 Calibrated Mode-Specific Constants, HBWConstantPeak PeriodOff Peak PeriodName Constant Description 0 cars carwrk 0 cars carwrkKAT Auto Modes 0.187 0.290 0.599 1.125 -0.517 0.396 0.860 1.657KSR Shared-Ride 0.000 -0.504 -1.153 -1.295 0.000 -0.285 -1.165 -1.293KDA Drive Alone 0.000 0.504 1.153 1.295 0.000 0.285 1.165 1.293K3P S.R. 3 person -0.660 -0.498 -0.453 -0.530 -0.663 -0.313 -0.546 -0.673KLBP Local bus, p&r -2.668 -0.739 -0.425 -0.224 -15.000 -2.027 -0.615 -0.822KLBK Local bus, k&r -1.765 -1.287 -1.691 -1.320 -1.614 -1.080 -1.562 -0.927KLBW Local bus, walk 1.984 1.318 1.136 0.922 2.130 1.772 1.358 1.330KEBP Exp. bus, p&r -0.874 -0.556 -0.055 0.078 0.000 0.000 0.000 0.000KEBK Exp. bus, k&r -15.000 -0.644 -1.954 -15.000 0.000 0.000 0.000 0.000KEBW Exp. bus, walk 1.894 1.225 1.223 1.101 0.000 0.000 0.000 0.000KEXP Express bus -1.492 -0.532 -0.634 -0.527 -15.000 -15.000 -15.000 -15.000KLB Local bus 1.492 0.532 0.634 0.527 0.000 0.000 0.000 0.000KTRN Transit Modes -0.186 -0.284 -0.581 -1.149 0.512 -0.396 -0.863 -1.644KURP Light rail, p&r -2.668 -0.739 -0.425 -0.224 -15.000 -2.027 -0.615 -0.822KURK Light rail, k&r -1.765 -1.287 -1.691 -1.320 -1.614 -1.080 -1.562 -0.927KURW Light rail, walk 1.984 1.318 1.136 0.922 2.130 1.772 1.358 1.330KPCRCBD Com.rail CBD, p&r -0.874 -0.556 -0.055 0.078 0.000 0.000 0.000 0.000KKCRCBD Com.rail CBD, k&r -15.000 -0.644 -1.954 -15.000 0.000 0.000 0.000 0.000KWCRCBD Com.rail CBD, walk 1.894 1.225 1.223 1.101 0.000 0.000 0.000 0.000KPCROTH Com.rail other, p&r -0.874 -0.556 -0.055 0.078 0.000 0.000 0.000 0.000KKCROTH Com.rail other, k&r -15.000 -0.644 -1.954 -15.000 0.000 0.000 0.000 0.000KWCROTH Com.rail other, walk 1.894 1.225 1.223 1.101 0.000 0.000 0.000 0.000KCR Commuter rail -1.492 -0.532 -0.634 -0.527 -15.000 -15.000 -15.000 -15.000KRAL Light rail 1.492 0.532 0.634 0.527 0.000 0.000 0.000 0.000Modes that do not exist in the region in the base year (1995) are in italics.Mode Choice - Mode Choice <strong>Model</strong> Calibration 36


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-10 Calibrated Mode-Specific Constants, HBOConstantPeak PeriodOff Peak PeriodName Constant Description 0 cars carwrk 0 cars carwrkKAT Auto Modes 1.070 2.120 2.673 3.064 -0.222 1.928 2.631 2.668KSR Shared-Ride 0.000 0.024 0.241 -0.019 0.000 -0.170 0.077 -0.059KDA Drive Alone 0.000 -0.024 -0.241 0.019 0.000 0.170 -0.077 0.059K3P S.R. 3 person 0.001 -0.084 0.004 -0.104 -0.226 -0.423 -0.133 -0.217KLBP Local bus, p&r -4.275 -1.078 -0.715 -1.726 -15.000 -1.326 -1.547 -1.442KLBK Local bus, k&r -15.000 -2.462 -1.201 -15.000 -15.000 -1.703 -15.000 -15.000KLBW Local bus, walk 2.047 1.555 1.130 1.874 0.000 1.645 1.903 1.850KEBP Exp. bus, p&r -15.000 -0.595 -1.565 -0.504 0.000 0.000 0.000 0.000KEBK Exp. bus, k&r -15.000 -15.000 -15.000 -0.504 0.000 0.000 0.000 0.000KEBW Exp. bus, walk 0.000 1.578 2.396 0.970 0.000 0.000 0.000 0.000KEXP Express bus -0.788 -1.082 -1.118 0.125 -15.000 -15.000 -15.000 -15.000KLB Local bus 0.788 1.082 1.118 -0.125 0.000 0.000 0.000 0.000KTRN Transit Modes -1.078 -2.167 -2.769 -3.140 0.219 -1.996 -3.086 -3.497KURP Light rail, p&r -4.275 -1.078 -0.715 -1.726 -15.000 -1.326 -1.547 -1.442KURK Light rail, k&r -15.000 -2.462 -1.201 -15.000 -15.000 -1.703 -15.000 -15.000KURW Light rail, walk 2.047 1.555 1.130 1.874 0.000 1.645 1.903 1.850KPCRCBD Com.rail CBD, p&r -15.000 -0.595 -1.565 -0.504 0.000 0.000 0.000 0.000KKCRCBD Com.rail CBD, k&r -15.000 -15.000 -15.000 -0.504 0.000 0.000 0.000 0.000KWCRCBD Com.rail CBD, walk 0.000 1.578 2.396 0.970 0.000 0.000 0.000 0.000KPCROTH Com.rail other, p&r -15.000 -0.595 -1.565 -0.504 0.000 0.000 0.000 0.000KKCROTH Com.rail other, k&r -15.000 -15.000 -15.000 -0.504 0.000 0.000 0.000 0.000KWCROTH Com.rail other, walk 0.000 1.578 2.396 0.970 0.000 0.000 0.000 0.000KCR Commuter rail -0.788 -1.082 -1.118 0.125 -15.000 -15.000 -15.000 -15.000KRAL Light rail 0.788 1.082 1.118 -0.125 0.000 0.000 0.000 0.000Modes that do not exist in the region in the base year (1995) are in italics.Table 7-11 Calibrated Mode-Specific Constants, HBU and NHBConstantHome Based UniversityNon Home BasedName Constant Description Peak Off Peak Peak Off PeakKAT Auto Modes 0.953 1.530 1.398 1.435KSR Shared-Ride -0.710 -1.092 -0.408 -0.383KDA Drive Alone 0.710 1.092 0.408 0.383K3P S.R. 3 person -0.599 -0.832 -0.222 -0.214KLBP Local bus, p&r -15.000 -15.000 -0.238 -0.652KLBK Local bus, k&r -0.713 -0.552 -0.843 -1.119KLBW Local bus, walk 1.584 1.486 0.718 1.159KEBP Exp. bus, p&r -15.000 0.000 0.725 0.000KEBK Exp. bus, k&r -15.000 0.000 -0.766 0.000KEBW Exp. bus, walk 0.000 0.000 0.224 0.000KEXP Express bus 0.344 -15.000 -0.686 -15.000KLB Local bus -0.344 0.000 0.686 0.000KTRN Transit Modes -0.949 -1.526 -1.652 -1.490KURP Light rail, p&r -15.000 -15.000 -0.238 -0.652KURK Light rail, k&r -0.713 -0.552 -0.843 -1.119KURW Light rail, walk 1.584 1.486 0.718 1.159KPCRCBD Com.rail CBD, p&r -15.000 0.000 0.725 0.000KKCRCBD Com.rail CBD, k&r -15.000 0.000 -0.766 0.000KWCRCBD Com.rail CBD, walk 0.000 0.000 0.224 0.000KPCROTH Com.rail other, p&r -15.000 0.000 0.725 0.000KKCROTH Com.rail other, k&r -15.000 0.000 -0.766 0.000KWCROTH Com.rail other, walk 0.000 0.000 0.224 0.000KCR Commuter rail 0.344 -15.000 -0.697 -15.000KRAL Light rail -0.344 0.000 0.697 0.000Modes that do not exist in the region in the base year (1995) are in italics.Mode Choice - Mode Choice <strong>Model</strong> Calibration 37


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-12 Mode Split Estimation Error, HBW PeakEstimated TripsEstimation Error0 cars carwrk all 0 cars carwrk allda 0 68,943 384,314 319,780 773,037 n/a -0.2% 0.0% 0.5% 0.2%sr2 14,659 23,778 40,892 26,844 106,172 6.1% -0.5% -0.2% 0.3% 0.7%sr3+ 3,665 8,293 15,721 8,778 36,456 6.1% -0.6% -0.4% 0.2% 0.3%loc - wlk 9,676 6,587 10,926 1,959 29,149 -7.1% -2.4% -6.3% -4.7% -5.6%loc - pnr 11 533 2,124 743 3,410 1.4% 3.0% 0.4% 1.7% 1.1%loc - knr 74 165 142 71 452 -2.1% 3.0% 0.6% 1.3% 1.1%exp - wlk 136 451 809 203 1,599 -11.4% -11.3% -12.1% -10.4% -11.6%exp - pnr 16 136 723 246 1,121 -10.2% -10.1% -11.1% -9.8% -10.6%exp - knr 0 113 12 0 125 n/a -9.8% -11.9% n/a -10.0%All Modes 28,236 108,998 455,662 358,624 951,520 1.1% -0.5% -0.3% 0.4% 0.0%Table 7-13 Mode Split Estimation Error, HBW Off PeakEstimated TripsEstimation Error0 cars carwrk all 0 cars carwrk allda 0 38,913 255,231 207,344 501,489 n/a 0.2% -0.1% -0.1% -0.1%sr2 9,197 18,412 26,989 17,951 72,549 12.1% -0.3% -0.3% -0.3% 1.1%sr3+ 2,298 9,511 8,536 4,364 24,710 12.1% -0.4% -0.4% -0.3% 0.7%loc - wlk 7,151 3,497 3,240 476 14,364 -12.8% -6.7% -11.2% -10.8% -10.9%loc - pnr 0 13 351 37 401 n/a -4.8% -9.1% -9.3% 19.4%loc - knr 67 102 46 29 244 -11.4% -3.7% -9.3% -7.5% -7.4%exp - wlk 0 0 0 0 0 n/a n/a n/a n/a n/aexp - pnr 0 0 0 0 0 n/a n/a n/a n/a n/aexp - knr 0 0 0 0 0 n/a n/a n/a n/a n/aAll Modes 18,714 70,448 294,394 230,200 613,757 1.0% -0.4% -0.2% -0.1% -0.2%Table 7-14 Mode Split Estimation Error, HBO PeakEstimated TripsEstimation Error0 cars carwrk all 0 cars carwrk allda 0 133,830 273,717 194,247 601,794 n/a -0.2% 0.0% -0.2% -0.1%sr2 17,648 106,702 304,789 145,010 574,149 3.1% -0.2% -0.4% -0.1% -0.2%sr3+ 17,629 89,671 306,436 117,195 530,930 3.0% -0.1% -0.5% 0.1% -0.2%loc - wlk 8,411 4,530 2,234 422 15,597 -13.1% -13.4% -14.8% -12.8% -13.4%loc - pnr 4 122 146 4 276 13.7% -9.7% -10.8% 5.1% -9.8%loc - knr 0 6 52 0 58 n/a -9.1% -11.1% n/a -10.9%exp - wlk 43 94 164 38 339 -18.0% -16.4% -16.8% -16.7% -16.9%exp - pnr 0 20 4 11 36 n/a -13.4% -16.6% -19.0% -15.7%exp - knr 0 0 0 11 11 n/a n/a n/a -19.0% -19.0%All Modes 43,734 334,976 887,542 456,938 1,723,190 -0.6% -0.4% -0.4% -0.1% -0.3%Mode Choice - Mode Choice <strong>Model</strong> Calibration 38


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 7-15 Mode Split Estimation Error, HBO Off PeakEstimated TripsEstimation Error0 cars carwrk all 0 cars carwrk allda 0 239,465 476,491 287,550 1,003,506 n/a -1.1% -0.8% -0.6% -0.8%sr2 30,363 152,267 421,980 207,981 812,590 2.7% -0.8% -1.1% -0.5% -0.7%sr3+ 19,046 64,540 318,935 132,700 535,221 3.1% 0.2% -1.0% -0.1% -0.5%loc - wlk 10,846 3,870 1,890 689 17,294 -15.0% -14.6% -9.2% -3.9% -13.6%loc - pnr 0 77 27 11 115 n/a -7.5% -5.5% 3.2% 10.6%loc - knr 0 34 0 0 34 n/a -7.7% n/a n/a -7.7%exp - wlk 0 0 0 0 0 n/a n/a n/a n/a n/aexp - pnr 0 0 0 0 0 n/a n/a n/a n/a n/aexp - knr 0 0 0 0 0 n/a n/a n/a n/a n/aAll Modes 60,255 460,252 1,219,324 628,930 2,368,761 -0.9% -1.0% -0.9% -0.5% -0.8%Table 7-16 Mode Split Estimation Error, HBUPeakOff PeakTrips % Error Trips % Errorda 26,893 -0.2% 53,387 0.1%sr2 6,708 -0.1% 6,939 0.1%sr3+ 1,899 -0.1% 1,193 0.1%loc - wlk 412 -1.8% 298 3.1%loc - pnr 0 n/a 0 n/aloc - knr 34 0.8% 34 0.8%exp - wlk 21 -3.5% 0 n/aexp - pnr 0 n/a 0 n/aexp - knr 0 n/a 0 n/aall modes 35,966 -0.2% 61,851 0.1%Table 7-17 Mode Split Estimation Error, NHBPeakOff PeakTrips % Error Trips % Errorda 672,160 -0.1% 738,664 0.2%sr2 276,300 0.2% 315,190 -0.4%sr3+ 162,908 0.0% 199,592 -0.3%loc - wlk 5,918 -6.3% 6,259 -10.8%loc - pnr 2,794 2.8% 862 -8.4%loc - knr 766 2.7% 317 -8.1%exp - wlk 67 -13.1% 0 n/aexp - pnr 804 10.7% 0 n/aexp - knr 33 4.5% 0 n/aall modes 1,121,750 0.0% 1,260,882 -0.1%Mode Choice - Mode Choice <strong>Model</strong> Calibration 39


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07.3 Intrazonal Mode SplitThe <strong>OKI</strong>/MVRPC model does not apply the mode choice model to intrazonal trip interchanges. Atransit path cannot be built for an intrazonal trip, and hence the mode choice model cannot beapplied reliably to this type of trip. Instead, the model splits intrazonal trips among the threeauto modes on the basis of a mode split proportion, invariant with respect to any zonecharacteristic (see Table 7.18). These proportions were derived from the <strong>OKI</strong> Home InterviewSurvey. The intrazonal mode split for HBU trips was assumed equal as the split for HBW trips.Table 7-18 Intrazonal Mode Split ProportionsTripPurposeDriveAloneSharedRide 2SharedRide 3+HBWPeak 92% 6% 2%Off Peak 92% 6% 2%HBOPeak 39% 32% 29%Off Peak 43% 32% 25%NHBPeak 55% 31% 14%Off Peak 53% 29% 18%7.4 Mode Choice <strong>Model</strong> RefinementsIn addition to the mode-specific constants listed above, the <strong>OKI</strong>/MVRPC model includes transitspecificconstants. These constants were added to improve the validation of transit boardings, inparticular for TANK and Hamilton transit. Table 7.19 below lists the values of the transitconstants. The summaries above already include the effect of these constants.Table 7-19 Transit-Specific ConstantsTrip PurposeTransit Agency HBW HBU HBO NHBPeak OffPk Peak OffPk Peak OffPk Peak OffPkSORTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TANK -0.75 -1.00 0.00 0.00 -0.75 -0.75 -0.75 -0.75Middletown 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Hamilton -1.50 -1.50 0.00 0.00 -1.50 -1.50 -1.50 -1.50MVRTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Mode Choice - Mode Choice <strong>Model</strong> Calibration 40


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.08. Appendix AHBW Mode Choice Estimation ResultsMode Choice - Appendix A 41


NORTH-SOUTH TRANSPORTATION INITIATIVEMODE CHOICE MODELSHOME-BASED WORKCoefficient Estimates (see note) (see note)Run Number 2 3 4 5 6 7 8 9 10 11 12 13 14 15Base Five Drive First vs First Exclude First Linear park AOC all sep. hwy. vs. Walk time: Walk time:Auto K SR2 K Walk Wait fw* = 7.5 Wlk-Only fw* = 5.0 fare cost fare cost cost transit wlkt*=12min. wlkt*=18min.Utility Expression VariablesIn-Vehicle Time - - -0.00645 -0.00684 -0.01255 -0.01450 -0.01336 -0.01408 -0.01074 -0.01225 -0.01126 -0.01363 -0.01571 -0.01518Cost - - -0.00179 -0.00183 -0.00189 -0.00188 -0.00186 -0.00187 -0.00186 -0.00177 -0.00179Parking Cost -0.00260 -0.00262 -0.00262Auto Operating Cost 0.00096 0.00094 0.00099Transit Fare -0.00130 -0.00290Walk Time - - -0.10000 -0.09928 -0.07983 -0.06817 -0.07037 -0.06940 -0.06601 -0.06502 -0.06559 -0.06969Transfer Walk TimeWalk Access if less than (wlkt*) min. -0.15000 -0.07482Walk Access (addtl) over (wlkt*) min. -0.04145 -0.05519Terminal TimeDrive Access Time -0.15800 -0.14890Wait Time - - -0.02144First Wait -0.02608 -0.05345 -0.05239 -0.05283 -0.05253 -0.05333 -0.05600 -0.05460Transfer Wait -0.01750 -0.01825 -0.01844 -0.01875 -0.01857 -0.01662 -0.01865 -0.01733 -0.01799 -0.01449 -0.01628First Wait if less than (fw*) min. 0.23010 0.02696 -0.44210First Wait (addtl) if more than (fw*) min. -0.06516 -0.05999 -0.04868Number of TransfersCBD wlk-locCBD pnr-locCBD knr-locCBD wlk-expCBD pnr & knr expRes.Density wlk-locRes.Density pnr-locRes.Density knr-locRes.Density wlk-expRes.Density pnr&knr expDistance pnr-locDistance knr-locDistance pnr&knr expLogsum CoefficientsAutoTransit42


Run Number 2 3 4 5 6 7 8 9 10 11 12 13 14 15Base Five Drive First vs First Exclude First Linear park AOC all sep. hwy. vs. Walk time: Walk time:Auto K SR2 K Walk Wait fw* = 7.5 Wlk-Only fw* = 5.0 fare cost fare cost cost transit wlkt*=12min. wlkt*=18min.Mode Specific ConstantsDrive Alone 0.000zero & one autos 1.697 1.700 1.702 1.708 1.707 1.705 1.705 1.595 1.597 1.594 1.705 1.698 1.700two+ autos, one worker 3.196 3.200 3.203 3.209 3.208 3.206 3.206 3.053 3.055 3.052 3.206 3.197 3.200two+ autos, one+ workers 2.316 2.319 2.322 2.327 2.326 2.325 2.325 2.182 2.184 2.180 2.324 2.317 2.319Shared Ride 2 -2.327Shared Ride 3+ -3.651zero&one autos, one+ workers -1.523 -1.525 -1.526 -1.528 -1.527 -1.526 -1.526 -1.473 -1.474 -1.473 -1.526 -1.522 -1.523two+ autos, one worker -1.712 -1.714 -1.715 -1.719 -1.718 -1.717 -1.717 -1.648 -1.650 -1.648 -1.717 -1.712 -1.714two+ autos, one+ workers -1.162 -1.164 -1.165 -1.168 -1.168 -1.167 -1.167 -1.102 -1.103 -1.102 -1.167 -1.163 -1.164Walk to Local Bus -0.123zero autos, one+ workers 3.197 3.199 3.233 1.640 2.984 5.396 3.517 3.504 3.241 3.407 3.594 4.166 3.476one auto, one worker 0.863 0.864 0.903 -0.760 0.532 2.943 1.068 0.980 0.709 0.879 1.147 1.675 1.006one auto, one+ workers 2.495 2.499 2.531 0.857 2.110 4.525 2.639 2.567 2.287 2.463 2.721 3.303 2.597two+ autos, one worker 1.017 1.018 1.065 -0.597 0.714 3.112 1.246 1.109 0.833 1.006 1.327 1.886 1.171two+ autos, one+ workers 0.750 0.752 0.794 -0.868 0.441 2.841 0.978 0.872 0.589 0.767 1.060 1.588 0.923P&R to Local Bus -4.032zero autos, one+ workers -2.905 -1.867 -1.810 -3.452 -2.208 0.200 -1.675 -1.686 -1.945 -1.782 -1.599 -0.197 -0.855one auto, one worker -1.911 -0.799 -0.742 -2.430 -1.127 1.308 -0.579 -0.621 -0.890 -0.721 -0.500 0.855 0.247one auto, one+ workers -0.986 0.221 0.265 -1.497 -0.179 2.284 0.385 0.341 0.074 0.241 0.463 1.840 1.302two+ autos, one worker -1.622 -0.424 -0.369 -2.073 -0.768 1.671 -0.216 -0.286 -0.571 -0.392 -0.132 1.270 0.658two+ autos, one+ workers -1.579 -0.377 -0.333 -2.096 -0.820 1.642 -0.259 -0.309 -0.591 -0.414 -0.175 1.277 0.639K&R to Local Bus -5.243zero autos, one+ workers -1.705 -0.685 -0.630 -2.261 -1.015 1.392 -0.483 -0.529 -0.791 -0.626 -0.406 0.948 0.328one auto, one worker -3.957 -2.858 -2.803 -4.482 -3.164 -0.730 -2.616 -2.691 -2.963 -2.792 -2.535 -1.232 -1.800one auto, one+ workers -2.703 -1.501 -1.454 -3.176 -1.851 0.603 -1.292 -1.367 -1.633 -1.466 -1.214 0.127 -0.380two+ autos, one worker -3.449 -2.279 -2.226 -3.918 -2.600 -0.161 -2.048 -2.166 -2.454 -2.273 -1.963 -0.624 -1.192two+ autos, one+ workers -4.036 -2.866 -2.824 -4.566 -3.248 -0.789 -2.688 -2.778 -3.063 -2.884 -2.604 -1.215 -1.810Walk to Express Bus -2.684zero autos, one+ workers 0.193 0.194 0.224 -1.395 -0.057 2.353 0.476 0.473 0.205 0.374 0.555 1.117 0.430one auto, one worker -0.793 -0.793 -0.759 -2.480 -1.160 1.266 -0.616 -0.678 -0.961 -0.783 -0.533 -0.009 -0.684one auto, one+ workers 0.499 0.500 0.531 -1.208 0.073 2.504 0.613 0.555 0.267 0.448 0.698 1.277 0.572two+ autos, one worker -0.639 -0.639 -0.600 -2.352 -1.038 1.391 -0.491 -0.596 -0.894 -0.707 -0.403 0.136 -0.571two+ autos, one+ workers -1.010 -1.009 -0.974 -2.735 -1.450 0.979 -0.901 -0.973 -1.277 -1.086 -0.811 -0.301 -0.965P&R to Express Bus -4.981zero autos, one+ workers -3.047 -2.017 -1.980 -3.732 -2.511 -0.078 -1.976 -1.952 -2.244 -2.059 -1.891 -0.551 -1.181one auto, one worker -3.238 -2.121 -2.090 -3.954 -2.732 -0.259 -2.180 -2.169 -2.479 -2.283 -2.088 -0.738 -1.381one auto, one+ workers -2.037 -0.773 -0.744 -2.600 -1.369 1.096 -0.816 -0.814 -1.120 -0.927 -0.726 0.706 0.125two+ autos, one worker -1.763 -0.563 -0.526 -2.392 -1.135 1.339 -0.574 -0.578 -0.905 -0.698 -0.477 0.865 0.251two+ autos, one+ workers -2.685 -1.490 -1.460 -3.339 -2.085 0.400 -1.521 -1.506 -1.833 -1.626 -1.424 -0.058 -0.677K&R to Express Bus -7.057zero & one autos -4.129 -3.031 -3.000 -4.812 -3.583 -1.126 -3.037 -3.057 -3.363 -3.170 -2.947 -1.640 -2.229two+ autos -6.446 -5.293 -5.265 -7.122 -5.854 -3.372 -5.291 -5.323 -5.652 -5.444 -5.194 -3.915 -4.478Walk to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersDrive to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersFinal Likelihood Value -4188 -3960 -3959 -3959 -3944 -3916 -3915 -3917 -3909 -3910 -3917 -3912 -3915Rho Squared (Zero) 0.64 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66Rho Squared (Constants) 0.11 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16Wait / In-Vehicle Ratio 6.84 3.03 3.32 3.82 3.80 4.88 4.31 4.67 3.91 3.56 3.60First Wait < fw* / In-Vehicle Ratio -18.33 -1.86 33.09First Wait > fw* / In-Vehicle Ratio 5.19 4.14 3.64Transfer / In-Vehicle Ratio 2.56 1.45 1.27 1.40 1.32 1.55 1.52 1.54 1.32 0.92 1.07Walk / In-Vehicle Ratio 22.37 14.51 15.50 14.53 6.36 4.70 5.27 4.93 6.15 5.31 5.83 5.11Transfer Walk / In-Vehicle RatioWalk Access < wlkt* min / In-Vehicle Ratio 9.55 4.93Walk Access > wlkt* min / In-Vehicle Ratio 2.64 3.64Drive Access Time / In-Vehicle Ratio 10.06 9.81Terminal Time / In-Vehicle RatioImplied Value of Time $2.11 $2.37 $2.16 $2.25 $3.98 $4.63 $4.30 $4.53 $4.40 $5.33 $5.09Implied Value of Time (op. cost) -$6.68 -$7.83 -$6.81Implied Value of Time (park. cost) $2.48 $2.80 $2.58Implied Value of Time (transit fare) $2.82Notes:Runs 14 & 15: parking walk time for auto modes has same coefficient as transit drive43


NORTH-SOUTH TRANSPORTATION INITIATIVEMODE CHOICE MODELSHOME-BASED WORKCoefficient Estimates (see note) (see note)Run Number 16 17 18 19 20 21 22 23 24 25 26 27 28 29drive drive drive acc. no no term.walk= first wait xfer wait first wait xfer wait drive drive xfer wait @ sum waitin- terminal terminal walk time walk or 2nd walk 2.5 in- 2.5 in- 2.5 in- 2.5 in- 2.5 in- 3.0 in- 2.0 in-veh.Utility Expression VariablesIn-Vehicle Time - - -0.01542 -0.01464 -0.01387 -0.01428 -0.01887 -0.00971 -0.01936 -0.00992 -0.01602 -0.01608 -0.01152 -0.01184Cost - - -0.00154 -0.00199 -0.00200 -0.00188 -0.00190 -0.00184 -0.00201 -0.00195 -0.00197 -0.00197 -0.00196 -0.00188Parking CostAuto Operating CostTransit FareWalk TimeTransfer Walk TimeWalk Access if less than (wlkt*) min. - -0.15080 -0.07600 -0.07258 -0.07275 -0.06941 -0.06953 -0.07007 -0.07281 -0.07302 -0.07172 -0.07180 -0.07281Walk Access (addtl) over (wlkt*) min. - -0.04253 -0.05589 -0.05577 -0.05634 -0.06738 -0.06714 -0.07005 -0.05525 -0.05906 -0.05554 -0.05542 -0.05800Terminal Time - - -0.29230Drive Access Time - -0.09402 -0.09401 -0.09371 -0.09285 -0.09352 -0.09126 -0.09468 -0.09237 -0.09293 -0.08887Wait Time -0.03379First Wait - - -0.05359 -0.05521 -0.05541 -0.05383 -0.05523 -0.05660 -0.05438 -0.05443 -0.05611Transfer Wait - - -0.01405 -0.01872 -0.01944 -0.01841 -0.01529 -0.01549 -0.01775 -0.01771First Wait if less than (fw*) min.First Wait (addtl) if more than (fw*) min.Number of TransfersCBD wlk-locCBD pnr-locCBD knr-locCBD wlk-expCBD pnr & knr expRes.Density wlk-locRes.Density pnr-locRes.Density knr-locRes.Density wlk-expRes.Density pnr&knr expDistance pnr-locDistance knr-locDistance pnr&knr expLogsum CoefficientsAutoTransit44


Run Number 16 17 18 19 20 21 22 23 24 25 26 27 28 29drive drive drive acc. no no term.walk= first wait xfer wait first wait xfer wait drive drive xfer wait @ sum waitin- terminal terminal walk time walk or 2nd walk 2.5 in- 2.5 in- 2.5 in- 2.5 in- 2.5 in- 3.0 in- 2.0 in-veh.Mode Specific ConstantsDrive Alone 0.000zero & one autos 1.678 1.679 1.680 1.715 1.716 1.707 1.708 1.703 1.717 1.712 1.714 1.714 1.713 1.706two+ autos, one worker 3.173 3.175 3.177 3.218 3.219 3.208 3.210 3.204 3.220 3.214 3.216 3.217 3.215 3.207two+ autos, one+ workers 2.296 2.297 2.298 2.335 2.336 2.326 2.328 2.323 2.337 2.332 2.333 2.334 2.333 2.326Shared Ride 2Shared Ride 3+zero&one autos, one+ workers -1.512 -1.513 -1.514 -1.531 -1.532 -1.527 -1.528 -1.525 -1.532 -1.530 -1.531 -1.531 -1.530two+ autos, one worker -1.699 -1.700 -1.701 -1.724 -1.724 -1.718 -1.719 -1.716 -1.725 -1.722 -1.723 -1.723 -1.722 -1.718two+ autos, one+ workers -1.151 -1.152 -1.153 -1.173 -1.173 -1.168 -1.169 -1.166 -1.173 -1.171 -1.172 -1.172 -1.171 -1.167Walk to Local Buszero autos, one+ workers 3.265 3.971 3.283 3.656 3.657 3.523 3.483 3.515 3.615 3.648 3.648 3.651 3.652 3.449one auto, one worker 0.745 1.428 0.760 1.232 1.237 1.076 1.030 1.072 1.186 1.230 1.224 1.226 1.232 1.029one auto, one+ workers 2.355 3.075 2.374 2.805 2.811 2.647 2.596 2.654 2.754 2.813 2.793 2.795 2.812 2.626two+ autos, one worker 0.868 1.599 0.884 1.429 1.435 1.254 1.202 1.249 1.376 1.425 1.418 1.421 1.428 1.194two+ autos, one+ workers 0.674 1.354 0.692 1.132 1.139 0.985 0.928 0.988 1.075 1.138 1.121 1.123 1.137 0.918P&R to Local Buszero autos, one+ workers -2.582 -1.033 -1.685 -1.227 -1.230 -1.402 -1.443 -1.452 -1.266 -1.277 -1.832 -1.736 -1.259 -1.629one auto, one worker -1.602 -0.045 -0.648 -0.106 -0.109 -0.292 -0.324 -0.347 -0.138 -0.160 -0.746 -0.643 -0.140 -0.494one auto, one+ workers -0.633 0.903 0.384 0.859 0.858 0.691 0.653 0.650 0.821 0.818 0.167 0.276 0.833 0.510two+ autos, one worker -1.326 0.304 -0.302 0.289 0.286 0.091 0.061 0.032 0.258 0.232 -0.402 -0.291 0.253 -0.102two+ autos, one+ workers -1.321 0.342 -0.283 0.228 0.226 0.048 0.024 -0.004 0.204 0.176 -0.466 -0.355 0.195 -0.119K&R to Local Buszero autos, one+ workers -1.364 0.141 -0.479 -0.046 -0.049 -0.214 -0.260 -0.259 -0.090 -0.091 -0.642 -0.548 -0.075 -0.446one auto, one worker -3.616 -2.111 -2.673 -2.155 -2.158 -2.333 -2.367 -2.385 -2.189 -2.206 -2.788 -2.686 -2.187 -2.536one auto, one+ workers -2.293 -0.795 -1.282 -0.826 -0.826 -0.987 -1.035 -1.024 -0.874 -0.862 -1.514 -1.406 -0.848 -1.189two+ autos, one worker -3.122 -1.557 -2.119 -1.561 -1.564 -1.748 -1.779 -1.803 -1.593 -1.614 -2.235 -2.127 -1.594 -1.943two+ autos, one+ workers -3.715 -2.116 -2.700 -2.219 -2.222 -2.388 -2.416 -2.437 -2.247 -2.267 -2.895 -2.787 -2.249 -2.560Walk to Express Buszero autos, one+ workers 0.217 0.919 0.234 0.613 0.616 0.482 0.439 0.480 0.571 0.613 0.604 0.607 0.614 0.432one auto, one worker -0.951 -0.262 -0.936 -0.452 -0.445 -0.610 -0.658 -0.605 -0.502 -0.446 -0.463 -0.461 -0.447 -0.630one auto, one+ workers 0.335 1.053 0.353 0.776 0.783 0.621 0.572 0.628 0.727 0.785 0.765 0.767 0.783 0.608two+ autos, one worker -0.872 -0.148 -0.855 -0.315 -0.307 -0.484 -0.537 -0.479 -0.370 -0.308 -0.328 -0.325 -0.309 -0.506two+ autos, one+ workers -1.222 -0.544 -1.204 -0.748 -0.739 -0.895 -0.954 -0.881 -0.808 -0.731 -0.762 -0.760 -0.735 -0.918P&R to Express Buszero autos, one+ workers -2.894 -1.393 -2.009 -1.543 -1.542 -1.710 -1.753 -1.735 -1.585 -1.567 -2.144 -2.050 -1.558 -1.841one auto, one worker -3.240 -1.642 -2.281 -1.715 -1.710 -1.898 -1.941 -1.914 -1.759 -1.729 -2.365 -2.263 -1.723 -1.960one auto, one+ workers -1.850 -0.230 -0.797 -0.343 -0.340 -0.501 -0.540 -0.523 -0.382 -0.365 -1.071 -0.958 -0.356 -0.608two+ autos, one worker -1.698 -0.065 -0.681 -0.086 -0.083 -0.276 -0.318 -0.299 -0.130 -0.107 -0.778 -0.668 -0.098 -0.365two+ autos, one+ workers -2.595 -0.974 -1.582 -1.048 -1.044 -1.223 -1.265 -1.243 -1.090 -1.066 -1.739 -1.630 -1.058 -1.305K&R to Express Buszero & one autos -4.019 -2.501 -3.082 -2.596 -2.593 -2.760 -2.807 -2.774 -2.644 -2.609 -3.234 -3.134 -2.603 -2.857two+ autos -6.329 -4.789 -5.347 -4.838 -4.834 -5.004 -5.049 -5.019 -4.883 -4.851 -5.505 -5.399 -4.845 -5.088Walk to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersDrive to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersFinal Likelihood Value -3910 -3913 -3919 -3919 -3917 -3917 -3917 -3919 -3919 -3919 -3919 -3919 -3923Rho Squared (Zero) 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66Rho Squared (Constants) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16Wait / In-Vehicle Ratio 3.30 3.44 3.48 3.77 3.99 3.77 2.50 5.69 2.50 5.71 3.39 3.38 4.87 2.85First Wait < fw* / In-Vehicle RatioFirst Wait > fw* / In-Vehicle RatioTransfer / In-Vehicle Ratio 0.86 0.77 0.91 1.28 1.40 1.29 0.81 2.50 0.80 2.50 1.11 1.10 2.00Walk / In-Vehicle RatioTransfer Walk / In-Vehicle RatioWalk Access < wlkt* min / In-Vehicle Ratio 4.69 9.45 4.93 4.96 5.25 4.86 3.68 7.22 3.76 7.36 4.48 4.47 6.32Walk Access > wlkt* min / In-Vehicle Ratio 3.52 2.66 3.62 3.81 4.06 4.72 3.56 7.22 2.85 5.95 3.47 3.45 5.03Drive Access Time / In-Vehicle Ratio 6.42 6.10 6.42 6.76 6.50 4.96 9.40 4.89 9.31 2.50 3.00 8.07Terminal Time / In-Vehicle Ratio 18.26 18.82 18.96Implied Value of Time $6.38 $6.32 $6.02 $4.42 $4.17 $4.56 $5.96 $3.17 $5.78 $3.05 $4.88 $4.89 $3.53 $3.79Implied Value of Time (op. cost)Implied Value of Time (park. cost)Implied Value of Time (transit fare)45


NORTH-SOUTH TRANSPORTATION INITIATIVEMODE CHOICE MODELSHOME-BASED WORKCoefficient Estimates (see note) (see note)Run Number 29 30 31 32 33 34 35 36 37 38 39 40 41 42sum CBD on Res. Res. sum wait mode dist. Revised Revised No k&r pnr & knr Revised inc. revised pnr & knrtransit on transit on wlk- distance (if gt 6 tdadist tdadist same walk variables same modeUtility Expression VariablesIn-Vehicle Time - - -0.01424 -0.01677 -0.01254 -0.01261 -0.01302 -0.01426 -0.01229 -0.01422 -0.01424 -0.01428 -0.01655 -0.01657Cost - - -0.00204 -0.00080 -0.00074 -0.00072 -0.00073 -0.00205 -0.00081 -0.00202 -0.00205 -0.00205 -0.00087 -0.00087Parking CostAuto Operating CostTransit FareWalk TimeTransfer Walk TimeWalk Access if less than (wlkt*) min. - -0.07156 -0.07144 -0.06827 -0.07231 -0.07201 -0.07075 -0.07445 -0.07382 -0.07105 -0.07399 -0.07465 -0.06999Walk Access (addtl) over (wlkt*) min. - -0.04141 -0.05294 -0.03535 -0.05947 -0.05933 -0.05967 -0.05492 -0.05894 -0.05680 -0.05524 -0.05440 -0.03443Terminal TimeDrive Access Time - - -0.09536 -0.10580 -0.09640 -0.12600 -0.10210 -0.07859 -0.08824 -0.07313 -0.08156 -0.08109 -0.09695 -0.10090Wait Time - -0.02069 -0.02148 -0.02089 -0.02081First Wait - -0.05572 -0.05594 -0.05564 -0.05755 -0.05564 -0.05565 -0.05614 -0.05618Transfer Wait 0.00549 -0.01774 0.00888 -0.01864 -0.01849 -0.01863 -0.01856 0.00885 0.00887First Wait if less than (fw*) min.First Wait (addtl) if more than (fw*) min.Number of TransfersCBD wlk-loc 1.33 1.042 1.035 1.041 1.026 1.315 1.311 1.33CBD pnr-loc 1.998 1.813 1.696 1.456 1.801 1.978 2.096 1.998CBD knr-loc 2.413 2.249 2.106 1.724 2.224 2.385 2.413CBD wlk-exp 2.128 1.865 1.862 1.865 1.85 2.113 2.11 2.128CBD pnr & knr exp 3.271 3.19 3.026 2.997 3.172 3.242 3.224 3.271Res.Density wlk-loc 0.3385 0.527 0.4374 0.4358 0.4396 0.4383 0.5286 0.5282 0.3385 0.527Res.Density pnr-loc -0.3318 -0.3318Res.Density knr-loc -0.0851 -0.0851Res.Density wlk-exp -0.6206 -0.6206Res.Density pnr&knr exp -0.5437 -0.5437Distance pnr-loc 0.0776 1.831Distance knr-loc 0.0753 3.205Distance pnr&knr exp 0.0801 0.7171Logsum CoefficientsAutoTransit46


Run Number 29 30 31 32 33 34 35 36 37 38 39 40 41 42sum CBD on Res. Res. sum wait mode dist. Revised Revised No k&r pnr & knr Revised inc. revised pnr & knrtransit on transit on wlk- distance (if gt 6 tdadist tdadist same walk variables same modeMode Specific ConstantsDrive Alonezero & one autos 1.706 1.620 1.719 1.625 1.621 1.620 1.621 1.720 1.626 1.719 1.721 1.721 1.630 1.631two+ autos, one worker 3.207 3.105 3.222 3.111 3.106 3.105 3.105 3.224 3.112 3.221 3.223 3.224 3.117 3.117two+ autos, one+ workers 2.326 2.234 2.339 2.240 2.235 2.234 2.235 2.340 2.241 2.338 2.340 2.340 2.245 2.245Shared Ride 2Shared Ride 3+-1.527 -1.484 -1.533 -1.487 -1.485 -1.484 -1.484 -1.534 -1.487 -1.532 -1.534 -1.534 -1.489two+ autos, one worker -1.718 -1.664 -1.726 -1.667 -1.664 -1.664 -1.664 -1.727 -1.667 -1.726 -1.727 -1.727 -1.670 -1.670two+ autos, one+ workers -1.167 -1.119 -1.175 -1.122 -1.120 -1.119 -1.120 -1.175 -1.122 -1.174 -1.175 -1.175 -1.125 -1.125Walk to Local Buszero autos, one+ workers 3.449 3.307 3.557 3.119 2.867 2.881 2.859 3.678 2.887 3.675 3.671 3.678 3.141 3.138one auto, one worker 1.029 0.672 1.118 0.440 0.261 0.276 0.252 1.251 0.281 1.237 1.246 1.253 0.462 0.462one auto, one+ workers 2.626 2.323 2.700 2.105 1.939 1.954 1.930 2.829 1.961 2.813 2.826 2.834 2.130 2.133two+ autos, one worker 1.194 0.814 1.297 0.543 0.331 0.347 0.321 1.452 0.353 1.436 1.446 1.454 0.568 0.568two+ autos, one+ workers 0.918 0.599 1.012 0.354 0.155 0.170 0.144 1.155 0.176 1.140 1.149 1.156 0.378 0.378P&R to Local Buszero autos, one+ workers -1.629 -1.751 -1.174 -1.761 -2.369 -2.609 -3.549 -1.149 -2.309 -1.220 0.484 0.341 -1.835 -0.239one auto, one worker -0.494 -1.103 -0.037 -1.137 -1.692 -2.045 -3.010 -0.047 -1.647 -0.111 0.129 -0.014 -1.230 -1.126one auto, one+ workers 0.510 0.071 0.897 0.040 -0.465 -0.703 -1.716 0.925 -0.435 0.864 1.164 1.022 -0.044 0.143two+ autos, one worker -0.102 -0.747 0.353 -0.782 -1.324 -1.723 -2.726 0.294 -1.319 0.226 0.508 0.364 -0.914 -0.771two+ autos, one+ workers -0.119 -0.731 0.294 -0.766 -1.228 -1.618 -2.556 0.242 -1.209 0.169 0.378 0.234 -0.879 -0.808K&R to Local Buszero autos, one+ workers -0.446 -0.662 -0.025 -0.675 -1.292 -1.511 -3.704 -0.167 -1.342 -0.762one auto, one worker -2.536 -3.373 -2.138 -3.415 -3.990 -4.306 -6.530 -2.293 -4.045 -3.508one auto, one+ workers -1.189 -1.808 -0.813 -1.846 -2.381 -2.606 -4.873 -0.976 -2.447 -1.950two+ autos, one worker -1.943 -2.807 -1.546 -2.852 -3.413 -3.771 -6.040 -1.714 -3.480 -2.957two+ autos, one+ workers -2.560 -3.367 -2.202 -3.410 -3.887 -4.236 -6.437 -2.371 -3.952 -3.514Walk to Express Buszero autos, one+ workers 0.432 -0.090 0.675 -0.155 -0.377 -0.362 -0.384 0.636 -0.357 0.628 0.628 0.635 -0.131 -0.138one auto, one worker -0.630 -1.587 -0.371 -1.666 -1.819 -1.807 -1.830 -0.433 -1.799 -0.449 -0.438 -0.431 -1.643 -1.644one auto, one+ workers 0.608 -0.186 0.857 -0.251 -0.415 -0.401 -0.424 0.800 -0.392 0.787 0.798 0.806 -0.226 -0.218two+ autos, one worker -0.506 -1.504 -0.216 -1.585 -1.756 -1.742 -1.767 -0.293 -1.735 -0.311 -0.299 -0.291 -1.562 -1.562two+ autos, one+ workers -0.918 -1.802 -0.659 -1.885 -2.031 -2.019 -2.045 -0.725 -2.009 -0.743 -0.730 -0.723 -1.860 -1.860P&R to Express Buszero autos, one+ workers -1.841 -3.061 -1.463 -3.072 -3.499 -3.789 -3.857 -1.464 -3.422 -1.539 -1.440 -1.584 -3.136 -3.093one auto, one worker -1.960 -3.956 -1.619 -3.997 -4.344 -4.766 -4.757 -1.671 -4.292 -1.746 -1.488 -1.627 -4.081 -3.870one auto, one+ workers -0.608 -2.340 -0.277 -2.375 -2.765 -3.204 -3.179 -0.318 -2.763 -0.381 0.284 0.139 -2.498 -1.850two+ autos, one worker -0.365 -2.241 0.002 -2.280 -2.695 -3.184 -3.160 -0.098 -2.700 -0.172 -0.067 -0.206 -2.414 -2.354two+ autos, one+ workers -1.305 -3.118 -0.946 -3.156 -3.535 -4.020 -3.958 -1.037 -3.509 -1.113 -0.974 -1.115 -3.264 -3.170K&R to Express Buszero & one autos -2.857 -4.494 -2.511 -4.530 -4.898 -5.306 -5.303 -2.732 -4.957 -4.621two+ autos -5.088 -6.810 -4.743 -6.852 -7.229 -7.722 -7.661 -4.984 -7.294 -6.946Walk to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersDrive to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersFinal Likelihood Value -3923 -3886 -3915 -3886 -3893 -3891 -3890 -3917 -3892 -3880 -3908 -3908 -3881 -3871Rho Squared (Zero) 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.63 0.63 0.63 0.66 0.63Rho Squared (Constants) 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.16 0.17 0.16 0.16 0.16 0.17 0.17Wait / In-Vehicle Ratio 2.85 3.23 3.91 3.34 1.65 1.70 1.60 3.90 1.69 4.05 3.91 3.90 3.39 3.39First Wait < fw* / In-Vehicle RatioFirst Wait > fw* / In-Vehicle RatioTransfer / In-Vehicle Ratio -0.32 1.25 -0.53 1.31 1.30 1.31 1.30 -0.53 -0.54Walk / In-Vehicle RatioTransfer Walk / In-Vehicle Ratio6.37 4.21 5.02 4.07 5.77 5.71 5.43 5.22 6.01 5.00 5.20 5.23 4.235.82 2.44 3.72 2.11 4.74 4.70 4.58 3.85 4.80 3.99 3.88 3.81 2.087.51 6.18 6.70 6.31 7.69 9.99 7.84 5.51 7.18 5.14 5.73 5.68 5.86Terminal Time / In-Vehicle RatioImplied Value of Time $3.79 $14.04 $4.19 $12.60 $10.15 $10.45 $10.66 $4.17 $9.12 $4.22 $4.17 $4.18 $11.41 $11.46Implied Value of Time (op. cost)Implied Value of Time (park. cost)47


NORTH-SOUTH TRANSPORTATION INITIATIVEMODE CHOICE MODELSHOME-BASED WORKCoefficient EstimatesRun Number 43 44 45 46 47 48 49 50 51 52 53 54 55 56including Res. drive all transit all transit pnr & knr Res. drive pnr & knr Res. drive park cst park cst vs.HBU on wlk- 2.5 in- modes modes same on wlk- 2.5 in- same on wlk- 2.5 in- AOC&fare AOC&fareUtility Expression VariablesIn-Vehicle Time -0.01426 - -0.01554 -0.01434 -0.02639 -0.02675 -0.02620 -0.03105 -0.02748 -0.02571 -0.03349 -0.02526 -0.03070Cost -0.00193 - -0.00201 -0.00193 -0.00173 -0.00172 -0.00177 -0.00178 -0.00138 -0.00142 -0.00148Parking Cost -0.00309 -0.00309Auto Operating Cost 0.00200 0.00198Transit FareWalk TimeTransfer Walk TimeWalk Access if less than (wlkt*) min. - -0.07261 -0.07228 -0.07523 -0.15000 -0.15390 -0.14900 -0.14670 -0.15470 -0.14830 -0.14330 -0.15070 -0.14870Walk Access (addtl) over (wlkt*) min. - -0.05031 -0.04963 -0.05351 -0.09526 -0.09687 -0.09156 -0.08915 -0.09738 -0.09081 -0.08689 -0.08810 -0.08579Terminal TimeDrive Access Time -0.08573 - -0.09032 -0.15870 -0.15990 -0.15870 -0.18500 -0.18450 -0.16210Wait TimeFirst Wait -0.05690 - -0.05677 -0.05734 -0.09384 -0.09473 -0.09409 -0.09024 -0.10120 -0.10120 -0.09480 -0.09584 -0.09178Transfer Wait -0.01889 - -0.01653 -0.01895 -0.04047 -0.04140 -0.03922 -0.03535 -0.04111 -0.03842 -0.03343 -0.03986 -0.03586First Wait if less than (fw*) min.First Wait (addtl) if more than (fw*) min.Number of TransfersCBD wlk-locCBD pnr-locCBD knr-locCBD wlk-expCBD pnr & knr expRes.Density wlk-loc 0.37020 0.36840 0.4866 0.4832 0.664 0.6375 0.5269 0.5243Res.Density pnr-locRes.Density knr-locRes.Density wlk-expRes.Density pnr&knr expDistance pnr-locDistance knr-locDistance pnr&knr expLogsum CoefficientsAuto 0.5287 0.517 0.4866 0.5287 1.633 1.731 1.524 0.505 0.5079Transit 0.5287 0.517 0.4866 0.5287 0.5232 0.5316 0.5447 0.505 0.507948


Run Number 43 44 45 46 47 48 49 50 51 52 53 54 55 56including Res. drive all transit all transit pnr & knr Res. drive pnr & knr Res. drive park cst park cst vs.HBU on wlk- 2.5 in- modes modes same on wlk- 2.5 in- same on wlk- 2.5 in- AOC&fare AOC&fareMode Specific ConstantsDrive Alonezero & one autos 1.714 1.721 1.721 1.713 1.698 1.698 1.702 1.702 1.673 1.676 1.681 1.568 1.569two+ autos, one worker 3.142 3.150 3.149 3.142 3.124 3.123 3.127 3.128 3.092 3.095 3.101 2.938 2.939two+ autos, one+ workers 2.341 2.348 2.348 2.341 2.325 2.324 2.328 2.329 2.297 2.300 2.305 2.150 2.151Shared Ride 2Shared Ride 3+-1.535 -1.539 -1.539 -1.536 -1.528 -1.528 -1.530 -1.531 -1.513 -1.515 -1.517 -1.470 -1.470two+ autos, one worker -1.542 -1.547 -1.546 -1.542 -1.532 -1.532 -1.534 -1.534 -1.515 -1.517 -1.520 -1.455 -1.455two+ autos, one+ workers -1.180 -1.184 -1.184 -1.180 -1.171 -1.171 -1.173 -1.174 -1.156 -1.158 -1.161 -1.097 -1.097Walk to Local Buszero autos, one+ workers 3.697 3.581 3.586 3.714 6.668 6.791 6.554 6.500 6.434 6.128 5.932 6.402 6.366one auto, one worker 1.259 1.118 1.121 1.272 1.036 0.975 0.806 0.800 3.846 3.819 3.069 0.287 0.277one auto, one+ workers 2.857 2.733 2.732 2.869 3.899 3.964 3.771 3.734 6.966 6.920 6.079 3.366 3.333two+ autos, one worker 1.377 1.211 1.212 1.392 0.115 0.034 -0.142 -0.143 5.542 5.682 4.407 -0.814 -0.827two+ autos, one+ workers 1.175 1.026 1.026 1.189 0.330 0.272 0.111 0.101 4.182 4.240 3.248 -0.494 -0.513P&R to Local Buszero autos, one+ workers 0.393 0.400 -0.116 -1.149 1.159 2.837 2.775 1.830 2.773 2.704 1.449 2.748 1.760one auto, one worker 0.044 0.039 -0.508 -0.037 -0.601 -0.613 -0.622 -1.540 2.314 2.491 0.621 -0.995 -1.973one auto, one+ workers 1.086 1.082 0.484 0.948 1.378 1.655 1.633 0.581 4.816 4.995 2.922 1.372 0.262two+ autos, one worker 0.357 0.350 -0.236 0.244 -1.240 -1.179 -1.164 -2.088 4.285 4.659 2.236 -1.674 -2.657two+ autos, one+ workers 0.274 0.270 -0.316 0.234 -0.896 -0.883 -0.872 -1.844 3.033 3.308 1.130 -1.311 -2.350K&R to Local Buszero autos, one+ workers -0.040 2.290one auto, one worker -2.157 -2.696one auto, one+ workers -0.829 -0.376two+ autos, one worker -1.640 -3.098two+ autos, one+ workers -2.207 -3.310Walk to Express Buszero autos, one+ workers 0.654 0.616 0.619 0.672 3.169 3.277 3.150 3.099 2.881 2.717 2.524 2.988 2.952one auto, one worker -0.423 -0.463 -0.463 -0.410 -0.923 -1.021 -1.079 -1.092 1.738 1.853 1.086 -1.593 -1.614one auto, one+ workers 0.828 0.792 0.791 0.839 1.417 1.497 1.427 1.389 4.393 4.499 3.664 1.016 0.979two+ autos, one worker -0.367 -0.409 -0.411 -0.352 -1.932 -2.027 -2.059 -2.089 3.298 3.613 2.285 -2.727 -2.774two+ autos, one+ workers -0.719 -0.762 -0.766 -0.705 -1.951 -2.021 -2.062 -2.076 1.726 1.934 0.927 -2.665 -2.693P&R to Express Buszero autos, one+ workers -1.538 -1.534 -2.050 -1.473 0.347 0.404 0.346 -0.539 0.180 0.118 -1.070 0.294 -0.635one auto, one worker -1.571 -1.578 -2.133 -1.663 -2.690 -2.754 -2.748 -3.643 0.018 0.223 -1.645 -3.139 -4.094one auto, one+ workers 0.206 0.203 -0.444 -0.290 -0.423 0.245 0.236 -0.836 3.221 3.414 1.249 -0.051 -1.181two+ autos, one worker -0.217 -0.225 -0.808 -0.153 -2.150 -2.290 -2.259 -3.174 3.003 3.402 0.984 -2.776 -3.757two+ autos, one+ workers -1.076 -1.082 -1.662 -1.044 -2.745 -2.825 -2.800 -3.716 0.910 1.206 -0.909 -3.265 -4.246K&R to Express Buszero & one autos -2.602 -3.032two+ autos -4.874 -6.585Walk to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersDrive to Transitzero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersFinal Likelihood Value -3982 -3980 -3981 -3993 -3981 -3970 -3969 -3970 -3957 -3954 -3956 -3954 -3957Rho Squared (Zero) 0.63 0.63 0.63 0.66 0.66 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63Rho Squared (Constants) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16Wait / In-Vehicle Ratio 3.99 4.08 3.65 4.00 3.56 3.54 3.59 2.91 3.68 3.94 2.83 3.79 2.99First Wait < fw* / In-Vehicle RatioFirst Wait > fw* / In-Vehicle RatioTransfer / In-Vehicle Ratio 1.32 1.25 1.06 1.32 1.53 1.55 1.50 1.14 1.50 1.49 1.00 1.58 1.17Walk / In-Vehicle RatioTransfer Walk / In-Vehicle Ratio5.24 5.17 4.65 5.25 5.68 5.75 5.69 4.72 5.63 5.77 4.28 5.97 4.843.79 3.58 3.19 3.73 3.61 3.62 3.49 2.87 3.54 3.53 2.59 3.49 2.796.01 6.14 2.50 6.30 6.01 5.98 6.06 2.50 6.73 7.18 2.50 6.42 2.50Terminal Time / In-Vehicle RatioImplied Value of Time $4.44 $4.19 $4.65 $4.46 $9.17 $9.34 $8.88 $10.49 $11.96 $10.89 $13.57Implied Value of Time (op. cost) -$7.57 -$9.31Implied Value of Time (park. cost) $4.91 $5.9749


NORTH-SOUTH TRANSPORTATION INITIATIVEMODE CHOICE MODELSHOME-BASED WORKCoefficient EstimatesRun Number 58 59 60 61 62tdatime transfer First wait: park cst no transitwalk fw* = 7.5 AOC&fare park costUtility Expression VariablesIn-Vehicle Time -0.02151 - -0.02132 -0.01814Cost -0.00162 - -0.00163Parking Cost -0.00265Auto Operating Cost 0.00204Transit FareWalk Time -0.09457 - -0.09501 -0.08940Transfer Walk Time -Walk Access if less than (wlkt*) min.Walk Access (addtl) over (wlkt*) min.Terminal TimeDrive Access Time -0.10040 - -0.09997 -0.10440Wait TimeFirst Wait -0.03504 - -0.03264Transfer Wait -0.04879 - -0.04860 -0.04664First Wait if less than (fw*) min. -0.09132First Wait (addtl) if more than (fw*) min. -0.03040Number of TransfersCBD wlk-locCBD pnr-locCBD knr-locCBD wlk-expCBD pnr & knr expRes.Density wlk-locRes.Density pnr-locRes.Density knr-locRes.Density wlk-expRes.Density pnr&knr expDistance pnr-locDistance knr-locDistance pnr&knr expLogsum CoefficientsAutoTransit50


Run Number 58 59 60 61 62tdatime transfer First wait: park cst no transitwalk fw* = 7.5 AOC&fare park costMode Specific ConstantsDrive Alonezero & one autos 2.064 2.053 2.064 1.924two+ autos, one worker 3.122 3.109 3.122 2.931two+ autos, one+ workers 2.312 2.300 2.313 2.133Shared Ride 2Shared Ride 3+-1.114 -1.108 -1.114 -1.053two+ autos, one worker -1.552 -1.545 -1.553 -1.469two+ autos, one+ workers -1.174 -1.168 -1.174 -1.096Walk to Local Buszero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersP&R to Local Buszero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersK&R to Local Buszero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersWalk to Express Buszero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersP&R to Express Buszero autos, one+ workersone auto, one workerone auto, one+ workerstwo+ autos, one workertwo+ autos, one+ workersK&R to Express Buszero & one autostwo+ autosWalk to Transitzero autos, one+ workers 4.584 4.496 4.925 4.162one auto, one worker 1.803 1.641 2.151 1.291one auto, one+ workers 3.604 3.538 3.950 3.102two+ autos, one worker 1.734 1.624 2.081 1.156two+ autos, one+ workers 1.413 1.296 1.763 0.875Drive to Transitzero autos, one+ workers 0.129 -0.121 0.439 -0.138one auto, one worker -0.235 -0.633 0.098 -0.580one auto, one+ workers 1.159 0.926 1.485 0.811two+ autos, one worker 0.385 0.034 0.728 -0.020two+ autos, one+ workers 0.058 -0.287 0.396 -0.295Final Likelihood Value -2680 -2675 -2675 -2671Rho Squared (Zero) 0.63 0.63 0.63 0.63Rho Squared (Constants) 0.08 0.08 0.08 0.09Wait / In-Vehicle Ratio 1.63 0.90 1.80First Wait < fw* / In-Vehicle Ratio 4.28First Wait > fw* / In-Vehicle Ratio 1.43Transfer / In-Vehicle Ratio 2.27 1.64 2.28 2.57Walk / In-Vehicle Ratio 4.40 5.15 4.46 4.93Transfer Walk / In-Vehicle Ratio 0.83Terminal Time / In-Vehicle RatioImplied Value of Time $7.96 $9.59 $7.87Implied Value of Time (op. cost) -$8.87Implied Value of Time (park. cost) $6.8451


Run # 63: Start with 7.17 estimation fileVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0134Cost -0.0014First wait -0.0430First wait le 7First wait gt 7Transfer wait -0.0461Walk -0.1023Transfer walkDrive acc. IVT -0.0901Constant 2.4030 -1.1820 2.2880 0.0440No. of Observations 7032Log-likelihood -2766Rho-squared 0.62Value of Time $5.69Ratio to IVT:First wait 3.2First wait le 7First wait gt 7Transfer wait 3.5Walk 7.7Transfer walkDrive acc. IVT 6.7Run # 64:Modified drive-access parking costs (zero all xcp downtown)VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0135Cost -0.0014First wait -0.0434First wait le 7First wait gt 7Transfer wait -0.0464Walk -0.1021Transfer walkDrive acc. IVT -0.0904Constant 2.4040 -1.183 2.2910 -0.0913No. of Observations 7032Log-likelihood -2766Rho-squared 0.62Value of Time $5.70Ratio to IVT:First wait 3.2First wait le 7First wait gt 7Transfer wait 3.4Walk 7.6Transfer walkDrive acc. IVT 6.752


Run # 65:Split WaitTime: access/egress & xferVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0152Cost -0.0013First wait -0.0320First wait le 7First wait gt 7Transfer wait -0.0369Walk -0.1230Transfer walk -0.0381Drive acc. IVT -0.0929Constant 2.3900 -1.176 2.177 -0.3686No. of Observations 7032Log-likelihood -2761Rho-squared 0.62Value of Time $7.29Ratio to IVT:First wait 2.1First wait le 7First wait gt 7Transfer wait 2.4Walk 8.1Transfer walk 2.5Drive acc. IVT 6.1Run # 66:Split FirstWaitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0132Cost -0.0014First waitFirst wait le 7 -0.1418First wait gt 7 -0.0356Transfer wait -0.0461Walk -0.1028Transfer walkDrive acc. IVT -0.0899Constant 2.4050 -1.184 2.901 0.4956No. of Observations 7032Log-likelihood -2765Rho-squared 0.62Value of Time $5.50Ratio to IVT:First waitFirst wait le 7 10.7First wait gt 7 2.7Transfer wait 3.5Walk 7.8Transfer walkDrive acc. IVT 6.853


Run # 67:Split parking cost from other costsVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0106Parking cost -0.0023AOC & Fare 0.0018First wait -0.04191First wait le 7First wait gt 7Transfer wait -0.0444Walk -0.0975Transfer walkDrive acc. IVT -0.0940Constant 2.4050 -1.184 2.901 0.4956-2.4050 -3.5890 0.4960 -1.9094No. of Observations 7032Log-likelihood -2765Rho-squared 0.62Value of Time | Park $2.81Value of Time | Other -$3.49Ratio to IVT:First wait 4.0First wait le 7First wait gt 7Transfer wait 4.2Walk 9.2Transfer walkDrive acc. IVT 8.9Run # 68:Segment constants by auto ownershipVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0223Cost -0.0016First wait -0.03855First wait le 7First wait gt 7Transfer wait -0.0469Walk -0.0921Transfer walkDrive acc. IVT -0.0932AO=0 4.599 0.0286AO=1 2.0650 -1.111 2.394 -0.0465AO=2+ 2.444 -1.214 1.4660 -0.1No. of Observations 7032Log-likelihood -2710Rho-squared 0.63Value of Time $8.58Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 2.1Walk 4.1Transfer walkDrive acc. IVT 4.254


Run # 69:Segment constants by (autos, workers)VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0217Cost -0.0016First wait -0.03555First wait le 7First wait gt 7Transfer wait -0.0492Walk -0.0944Transfer walkDrive acc. IVT -0.0996(0 autos, 1+ wrks) 4.596 0.0611(1 auto, 2+ wrkrs) 2.064 -1.114 3.613 1.0540(1 auto, 1 wrkr) 1.811 -0.3884(2+ auto, 1 wrkr) 3.121 -1.5520 1.742 0.1967(2+ auto, 2+ wrkrs) 2.312 -1.1740 1.4210 -0.1233No. of Observations 7032Log-likelihood -2680Rho-squared 0.63Value of Time $8.06Ratio to IVT:First wait 1.6First wait le 7First wait gt 7Transfer wait 2.3Walk 4.3Transfer walkDrive acc. IVT 4.6Run # 70:Segment constants by autosworkersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0165Cost -0.0018First wait -0.04237First wait le 7First wait gt 7Transfer wait -0.0483Walk -0.0959Transfer walkDrive acc. IVT -0.0891autos < workers 1.069 -1.407 3.153 -0.1869autos = workers 2.451 -1.079 1.716 -0.0661autos > workers 2.664 -1.33 1.382 -0.1257No. of Observations 7032Log-likelihood -2652Rho-squared 0.64Value of Time $5.39Ratio to IVT:First wait 2.6First wait le 7First wait gt 7Transfer wait 2.9Walk 5.8Transfer walkDrive acc. IVT 5.455


Run # 70a:Include zero-auto segment and put bias constants on drive aloneVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0223Cost -0.0018First wait -0.04241First wait le 7First wait gt 7Transfer wait -0.0518Walk -0.0892Transfer walkDrive acc. IVT -0.0970autos = zero 3.827 -0.7374autos < workers -0.911 -2.316 1.689 -0.9795autos = workers -2.445 -3.521 -0.7209 -2.4350autos > workers -2.659 -3.987 -1.218 -2.773No. of Observations 7032Log-likelihood -2629Rho-squared 0.64Value of Time $7.51Ratio to IVT:First wait 1.9First wait le 7First wait gt 7Transfer wait 2.3Walk 4.0Transfer walkDrive acc. IVT 4.3Run # 71:Include drive access as in-vehicle timeVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0184Cost -0.0018First wait -0.04151First wait le 7First wait gt 7Transfer wait -0.0469Walk -0.0957Transfer walkDrive acc. IVTautos < workers 1.07 -1.407 3.153 -0.6065autos = workers 2.452 -1.079 1.712 -0.5445autos > workers 2.665 -1.331 1.379 -0.6731No. of Observations 7032Log-likelihood -2653Rho-squared 0.64Value of Time $5.99Ratio to IVT:First wait 2.3First wait le 7First wait gt 7Transfer wait 2.5Walk 5.2Transfer walkDrive acc. IVT56


Run # 71a:Repeat #71 with the new transit skim parametersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0211Cost -0.0017First wait -0.0413First wait le 7First wait gt 7Transfer wait -0.0500Walk -0.0855Transfer walkDrive acc. IVTautos < workers 1.065 -1.403 3.123 -0.5971autos = workers 2.443 -1.074 1.647 -0.5576autos > workers 2.656 -1.326 1.3490 -0.7426No. of Observations 7032Log-likelihood -2644Rho-squared 0.64Value of Time $7.26Ratio to IVT:First wait 2.0First wait le 7First wait gt 7Transfer wait 2.4Walk 4.1Transfer walkDrive acc. IVTRun # 71b:Repeat #71a, peak period observationsVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0282Cost -0.0015First wait -0.04017First wait le 7First wait gt 7Transfer wait -0.0619Walk -0.0931Transfer walkDrive acc. IVTautos < workers 1.269 -1.627 3.508 0.0151autos = workers 2.408 -1.052 1.98 -0.2229autos > workers 2.649 -1.184 1.733 -0.3225No. of Observations 4451Log-likelihood -1655Rho-squared 0.64Value of Time $11.42Ratio to IVT:First wait 1.4First wait le 7First wait gt 7Transfer wait 2.2Walk 3.3Transfer walkDrive acc. IVT57


Run # 71c:Repeat #71a with zero auto market segmentVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0243Cost -0.0018First wait -0.04117First wait le 7First wait gt 7Transfer wait -0.0502Walk -0.0891Transfer walkDrive acc. IVTautos=0 4.744 -0.2030autos < workers 0.9116 -1.405 2.596 -0.5039autos = workers 2.446 -1.076 1.718 -0.4789autos > workers 2.66 -1.328 1.435 -0.6638No. of Observations 7032Log-likelihood -2630Rho-squared 0.64Value of Time $8.16Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 2.1Walk 3.7Transfer walkDrive acc. IVTRun # 71d:Repeat #71c with no cost sharing among vehicle passengersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0248Cost -0.0021First wait -0.04093First wait le 7First wait gt 7Transfer wait -0.0461Walk -0.0876Transfer walkDrive acc. IVTautos=0 4.567 -0.2929autos < workers 0.8069 -1.352 2.389 -0.6599autos = workers 2.307 -1.006 1.48 -0.6792autos > workers 2.512 -1.253 1.193 -0.8786No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $7.04Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 1.9Walk 3.5Transfer walkDrive acc. IVT58


Run # 71e:Add household size indicator variablesVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0245Cost -0.0021First wait -0.04047First wait le 7First wait gt 7Transfer wait -0.0468Walk -0.0868Transfer walkDrive acc. IVTHh Size = 1 -0.7337Hh Size le 2 -1.5170autos=0 4.315 -0.5447autos < workers 0.817 -1.085 2.3770 -0.6707autos = workers 2.201 -0.5965 1.35 -0.8005autos > workers 2.474 -0.9249 1.134 -0.9299No. of Observations 7032Log-likelihood -2593Rho-squared 0.64Value of Time $6.97Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 1.9Walk 3.5Transfer walkDrive acc. IVTRun # 71f:Repeat #71d with wait time set to 2.5 IVTVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0317Cost -0.0022First wait -0.04022First wait le 7First wait gt 7Transfer wait -0.0407WalkTransfer walkDrive acc. IVTautos=0 4.494 -0.2710autos < workers 0.8069 -1.352 2.3050 -0.6252autos = workers 2.307 -1.006 1.385 -0.6605autos > workers 2.512 -1.253 1.093 -0.8499No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $8.84Ratio to IVT:First wait 1.3First wait le 7First wait gt 7Transfer wait 1.3Walk 2.5Transfer walkDrive acc. IVT59


Run # 71g:Repeat #71d with wait time set to 3.0 IVTVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0281Cost -0.0021First wait -0.04045First wait le 7First wait gt 7Transfer wait -0.0435WalkTransfer walkDrive acc. IVTautos=0 4.54 -0.2784autos < workers 0.8069 -1.3520 2.3560 -0.6404autos = workers 2.307 -1.006 1.442 -0.6669autos > workers 2.512 -1.253 1.153 -0.8618No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $7.91Ratio to IVT:First wait 1.4First wait le 7First wait gt 7Transfer wait 1.5Walk 3.0Transfer walkDrive acc. IVTRun # 71h:Repeat #71d with bias constants on drive aloneVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0248Cost -0.0021First wait -0.04093First wait le 7First wait gt 7Transfer wait -0.0461Walk -0.0876Transfer walkDrive acc. IVTautos=0 3.76 -1.1000autos < workers -0.8069 -2.159 1.582 -1.467autos = workers -2.307 -3.313 -0.8272 -2.986autos > workers -2.512 -3.765 -1.32 -3.391No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $7.04Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 1.9Walk 3.5Transfer walkDrive acc. IVT60


Run # 72:Split fwait at 10 min.VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0210Cost -0.0017First waitFirst wait le 10 -0.07116First wait gt 10 -0.03474Transfer wait -0.0501Walk -0.0859Transfer walkDrive acc. IVTautos < workers 1.065 -1.403 3.364 -0.3844autos = workers 2.444 -1.075 1.893 -0.3342autos > workers 2.657 -1.326 1.593 -0.515No. of Observations 7032Log-likelihood -2644Rho-squared 0.64Value of Time $7.22Ratio to IVT:First waitFirst wait le 10 3.4First wait gt 10 1.7Transfer wait 2.4Walk 4.1Transfer walkDrive acc. IVTRun # 72a:Repeat #72, peak period observations onlyVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0278Cost -0.0015First waitFirst wait le 10 -0.1401First wait gt 10 -0.001999Transfer wait -0.0613Walk -0.0959Transfer walkDrive acc. IVTautos < workers 1.273 -1.629 4.294 0.6841autos = workers 2.412 -1.055 2.781 0.486autos > workers 2.654 -1.187 2.522 0.4234No. of Observations 4451Log-likelihood -1654Rho-squared 0.64Value of Time $10.84Ratio to IVT:First waitFirst wait le 10 5.0First wait gt 10 0.1Transfer wait 2.2Walk 3.5Transfer walkDrive acc. IVT61


Run # 73:Include residential density on walk-transitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0210Cost -0.0017First wait -0.04169First wait le 7First wait gt 7Transfer wait -0.0503Walk -0.0864Transfer walkDrive acc. IVTRes.Dens gt 10 per/acre -0.1276autos < workers 1.063 -1.402 3.172 -0.5871autos = workers 2.44 -1.073 1.698 -0.5454autos > workers 2.653 -1.324 1.402 -0.7297No. of Observations 7032Log-likelihood -2644Rho-squared 0.64Value of Time $7.37Ratio to IVT:First wait 2.0First wait le 7First wait gt 7Transfer wait 2.4Walk 4.1Transfer walkDrive acc. IVTRun # 74:Repeat #71a with zero constants on drive aloneVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0211Cost -0.0017First wait -0.0413First wait le 7First wait gt 7Transfer wait -0.0500Walk -0.0855Transfer walkDrive acc. IVTautos < workers -1.065 -2.468 2.059 -1.662autos = workers -2.443 -3.517 -0.7959 -3.001autos > workers -2.656 -3.981 -1.306 -3.398No. of Observations 7032Log-likelihood -2644Rho-squared 0.64Value of Time $7.26Ratio to IVT:First wait 2.0First wait le 7First wait gt 7Transfer wait 2.4Walk 4.1Transfer walkDrive acc. IVT62


Run # 75:Nest: drive alone vs all othersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0204Cost -0.0008First wait -0.04143First wait le 7First wait gt 7Transfer wait -0.0572Walk -0.0746Transfer walkDrive acc. IVTautos=0 4.435 -0.5217autos < workers 0.6938 -1.38 2.152 -0.8007autos = workers 1.488 -1.041 1.291 -0.8121autos > workers 1.56 -1.287 1.056 -0.7978theta 1.888No. of Observations 7032Log-likelihood -2622Rho-squared 0.64Value of Time $14.53Ratio to IVT:First wait 2.0First wait le 7First wait gt 7Transfer wait 2.8Walk 3.7Transfer walkDrive acc. IVTdasr2sr3wlk_trndrv_trndashared vehchoice63


Run # 76:Nest: auto vs transitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0155Cost -0.0014First wait -0.02656First wait le 7First wait gt 7Transfer wait -0.0307Walk -0.0566Transfer walkDrive acc. IVTautos=0 3.094 -1.5520autos < workers 0.8897 -1.393 2.075 -0.6669autos = workers 2.418 -1.061 1.913 0.03509autos > workers 2.63 -1.312 1.779 0.1053theta 1.585No. of Observations 7032Log-likelihood -2628Rho-squared 0.64Value of Time $6.46Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 2.0Walk 3.6Transfer walkDrive acc. IVTdasr2sr3+walkdriveautotransitchoice64


Run # 77:Nest: auto vs shared ride vs transitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0235Cost -0.0017First wait -0.03787First wait le 7First wait gt 7Transfer wait -0.0484Walk -0.0874Transfer walkDrive acc. IVTautos=0 4.626 0.5471autos < workers 0.9094 -1.404 2.508 0.1343autos = workers 2.443 -1.075 1.638 0.3109autos > workers 2.657 -1.326 1.35 0.1867theta 1.238No. of Observations 7032Log-likelihood -2630Rho-squared 0.64Value of Time $8.08Ratio to IVT:First wait 1.6First wait le 7First wait gt 7Transfer wait 2.1Walk 3.7Transfer walkDrive acc. IVTdasr2sr3+driveautochoicewalktransit65


Run # 79:Repeat #72 with zero autos constantVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0243Cost -0.0018First waitFirst wait le 10 -0.06866First wait gt 10 -0.03502Transfer wait -0.0503Walk -0.0896Transfer walkDrive acc. IVTautos=0 4.961 -0.0176autos < workers 0.9121 -1.405 2.818 -0.3018autos = workers 2.447 -1.077 1.944 -0.2736autos > workers 2.661 -1.328 1.659 -0.4546No. of Observations 7032Log-likelihood -2630Rho-squared 0.64Value of Time $8.12Ratio to IVT:First waitFirst wait le 10 2.8First wait gt 10 1.4Transfer wait 2.1Walk 3.7Transfer walkDrive acc. IVTRun # 79a:Repeat #79 with CBD dummy on drive aloneVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0251Cost -0.0004First waitFirst wait le 10 -0.06687First wait gt 10 -0.03297Transfer wait -0.0445Walk -0.0914Transfer walkDrive acc. IVTCBD Indicator -0.6854autos=0 4.903 -0.2204autos < workers 0.8849 -1.3630 2.755 -0.4404autos = workers 2.422 -1.02 1.866 -0.422autos > workers 2.621 -1.268 1.54 -0.6027No. of Observations 7032Log-likelihood -2620Rho-squared 0.64Value of Time $41.44Ratio to IVT:First waitFirst wait le 10 2.7First wait gt 10 1.3Transfer wait 1.8Walk 3.6Transfer walkDrive acc. IVT66


Run # 79c:Repeat #79 with no cost sharing among vehicle passengersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0248Cost -0.0021First waitFirst wait le 10 -0.07168First wait gt 10 -0.03405Transfer wait -0.0461Walk -0.0880Transfer walkDrive acc. IVTautos=0 4.809 -0.0860autos < workers 0.8069 -1.352 2.635 -0.4346autos = workers 2.3070 -1.006 1.731 -0.4507autos > workers 2.5120 -1.253 1.441 -0.6466No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $6.98Ratio to IVT:First waitFirst wait le 10 2.9First wait gt 10 1.4Transfer wait 1.9Walk 3.6Transfer walkDrive acc. IVTRun # 79d:Repeat #79c with zero bias constants on drive aloneVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0248Cost -0.0021First waitFirst wait le 10 -0.07168First wait gt 10 -0.03405Transfer wait -0.0461Walk -0.0880Transfer walkDrive acc. IVTautos=0 4.002 -0.8929autos < workers -0.8069 -2.159 1.828 -1.242autos = workers -2.307 -3.313 -0.5757 -2.758autos > workers -2.512 -3.765 -1.072 -3.159No. of Observations 7032Log-likelihood -2632Rho-squared 0.64Value of Time $6.98Ratio to IVT:First waitFirst wait le 10 2.9First wait gt 10 1.4Transfer wait 1.9Walk 3.6Transfer walkDrive acc. IVT67


Run # 80:Nest: auto vs. all othersVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0204Cost -0.0008First waitFirst wait le 10 -0.05296First wait gt 10 -0.03862Transfer wait -0.0571Walk -0.0748Transfer walkDrive acc. IVTautos=0 4.524 -0.4447autos < workers 0.6949 -1.38 2.2460 -0.7166autos = workers 1.491 -1.041 1.384 -0.7247autos > workers 1.563 -1.288 1.15 -0.7082theta 1.884No. of Observations 7032Log-likelihood -2622Rho-squared 0.64Value of Time $14.42Ratio to IVT:First waitFirst wait le 10 2.6First wait gt 10 1.9Transfer wait 2.8Walk 3.7Transfer walkDrive acc. IVTdadasr2sr3wlk_trndrv_trnshared vehchoice68


Run # 81:Nest: auto vs transitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0154Cost -0.0014First waitFirst wait le 7 -0.04926First wait gt 7 -0.0214Transfer wait -0.0305Walk -0.0564Transfer walkDrive acc. IVTautos=0 3.251 -1.4180autos < workers 0.8897 -1.393 2.251 -0.4967autos = workers 2.418 -1.061 2.103 0.2134autos > workers 2.63 -1.312 1.968 0.2919theta 1.598No. of Observations 7032Log-likelihood -2628Rho-squared 0.64Value of Time $6.40Ratio to IVT:First waitFirst wait le 7 3.2First wait gt 7 1.4Transfer wait 2.0Walk 3.7Transfer walkDrive acc. IVTdasr2sr3+walkdriveautotransitchoice69


Run # 82:(071h) nested: auto vs transitVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0170Cost -0.0014First wait -0.02866First wait le 7First wait gt 7Transfer wait -0.0327Walk -0.0612Transfer walkDrive acc. IVTautos=0 2.434 -2.2250autos < workers -0.8069 -2.159 1.238 -1.548autos = workers -2.307 -3.313 -0.5364 -2.451autos > workers -2.512 -3.765 -0.8993 -2.63theta 1.462No. of Observations 7032Log-likelihood -2631Rho-squared 0.64Value of Time $7.16Ratio to IVT:First wait 1.7First wait le 7First wait gt 7Transfer wait 1.9Walk 3.6Transfer walkDrive acc. IVT70


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.09. Appendix BHBO Mode Choice Estimation ResultsMode Choice - Appendix B 71


Run #3VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time 0.0084cost 0.0008wait -0.0519walk -0.1556xwalk 0.0181dttivt -0.0588constant -0.1612 -0.3899 0.0364 -4.3800No. of OBS 11416LL = -12645rho-squared 0.1945Value of time 6.63Ratio to IVT:wait -6.16walk -18.45xwalk 2.15Run #5VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0005cost 0.0010wait 0.0034walk -0.0451xwalk 0.0739dttivt -0.5856auto0 -0.3802 -0.8938 -2.6211 -3.8378auto1 0.0223 -0.1088 -3.8519 -5.0595auto2 -0.2268 -0.6172 -4.2161 -5.0095auto3 -0.5095 -0.5675 -4.0978 -4.1451No. of OBS 11416LL = -12519rho-squared 0.2025Value of time -0.32Ratio to IVT:wait -6.46walk 86.84xwalk -142.2272


Run #6VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0007cost 0.0005parking cost 0.0039wait 0.0041walk -0.0446xwalk 0.0763dttivt -0.5816auto0 -0.3880 -0.9119 -2.6124 -3.8440auto1 0.0106 -0.1327 -3.8522 -5.0688auto2 -0.2397 -0.6433 -4.2157 -5.0219auto3 -0.5248 -0.5979 -4.0991 -4.1621No. of OBS 11416LL = -12480rho-squared 0.205costparking costValue of time -0.91 -0.11Ratio to IVT:wait -5.95walk 64.95xwalk -111.03Run #7VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0113cost 0.0003parking cost 0.0041wait -0.0045walk -0.0441xwalk 0.0551auto0 -0.3923 -0.9160 -2.2044 -5.6804auto1 0.0059 -0.1373 -3.4672 -6.8353auto2 -0.2447 -0.6483 -3.8138 -6.7677auto3 -0.5305 -0.6034 -3.7187 -6.0727No. of OBS 11416LL = -12500rho-squared 0.2037costparking costValue of time -22.97 -1.65Ratio to IVT:wait 0.40walk 3.92xwalk -4.9073


Run #8VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0047cost 0.0003parking cost 0.0039ovt -0.0152auto0 -0.3918 -0.9157 -2.3531 -5.6788auto1 0.0065 -0.1368 -3.7074 -6.8423auto2 -0.2440 -0.6477 -4.0857 -6.8077auto3 -0.5297 -0.6027 -4.0041 -6.1078No. of OBS 11416LL = -12500rho-squared 0.2037cost parking costValue of time -8.65 -0.71Ratio to IVT:ovt 3.27Run #9VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0087cost 0.0003parking cost 0.0039ovt -0.0168nxfers 0.2584auto0 -0.3919 -0.9158 -2.3732 -5.6664auto1 0.0065 -0.1368 -3.7171 -6.8239auto2 -0.2441 -0.6477 -4.0943 -6.7864auto3 -0.5297 -0.6027 -3.9901 -6.0687No. of OBS 11416LL = -12504rho-squared 0.2035cost parking costValue of time -16.18 -1.34Ratio to IVT:ovt 1.9374


Run #10test: transit paths unavailableif fare > 120VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0078cost 0.0003parking cost 0.0039ovt -0.0170nxfers 0.2709auto0 -0.3919 -0.9158 -2.3471 -5.7229auto1 0.0065 -0.1368 -3.6901 -6.7940auto2 -0.2441 -0.6477 -4.0470 -6.7610auto3 -0.5297 -0.6027 -3.9376 -6.0422No. of OBS 11416LL = -12499rho-squared 0.1937cost parking costValue of time -14.50 -1.19Ratio to IVT:ovt 2.18Run #11 test: make aoc=10.5 instead of 9.5VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0087cost 0.0003parking cost 0.0039ovt -0.0167nxfers 0.2584auto0 -0.3929 -0.9168 -2.3731 -5.6661auto1 0.0054 -0.1379 -3.7172 -6.8239auto2 -0.2452 -0.6489 -4.0944 -6.7864auto3 -0.5310 -0.6040 -3.9902 -6.0690No. of OBS 11416LL = -12504rho-squared 0.2035cost parking costValue of time -20.02 -1.33Ratio to IVT:ovt 1.9275


Run #12 test: make aoc=10.5 instead of 9.5combine cost & parking costVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0048cost 0.0008ovt -0.0158nxfers 0.2584auto0 -0.3838 -0.8990 -2.3611 -5.6869auto1 0.0186 -0.1142 -3.7036 -6.8384auto2 -0.2306 -0.6228 -4.0818 -6.8022auto3 -0.5137 -0.5736 -3.9998 -6.0996No. of OBS 11416LL = -12506rho-squared 0.2034costValue of time -3.68Ratio to IVT:ovt 3.30Run #13 test: make aoc=10.5 instead of 9.5drop no. xferscombine cost & parking costVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time 0.0056cost 0.0008ovt -0.0363auto0 -0.2930 -0.6074 -2.7588 -3.7782auto1 0.0569 0.0029 -3.6225 -5.9148auto2 -0.1938 -0.5107 -3.8762 -5.9472auto3 -0.4855 -0.4877 -3.7896 -5.3549loinc -0.1143 -0.3748 1.2021 -3.0230No. of OBS 11416LL = -12444rho-squared 0.2073costValue of time 4.47Ratio to IVT:ovt -6.48loinc includes all hhincome categories 0 through 4Run #28revised transit skimsVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0075cost 0.0003parking cost 0.0040ovt -0.0126auto0 -0.3917 -0.9155 -2.3609 -5.7066auto1 0.0066 -0.1367 -3.7283 -6.8847auto2 -0.2440 -0.6476 -4.1461 -6.8556auto3 -0.5296 -0.6026 -3.9944 -6.119276


No. of OBS 12404LL = -12498rho-squared 0.2037cost parking costValue of time -14.01 -1.13Ratio to IVT:ovt 1.6777


Run #29VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0079cost 0.0005ovt -0.0131auto0 -0.3939 -0.9136 -2.3666 -5.7287auto1 0.0081 -0.1293 -3.7222 -6.8877auto2 -0.2417 -0.6388 -4.1380 -6.8605auto3 -0.5258 -0.5912 -3.9872 -6.1239No. of OBS 12404LL = -12500rho-squared 0.2009costValue of time -8.65Ratio to IVT:ovt 1.66Run #30parking costs for both drive and drive to transitVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0077cost 0.0007parking cost -0.0003ovt -0.0129auto0 -0.3920 -0.9110 -2.3886 -5.7229auto1 0.0111 -0.1251 -3.7412 -6.8913auto2 -0.2384 -0.6341 -4.1576 -6.8599auto3 -0.5219 -0.5855 -4.0066 -6.1213No. of OBS 12404LL = -12500rho-squared 0.201costparking costValue of time -6.75 14.93Ratio to IVT:ovt 1.6878


Run #31VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0012cost 0.0006ovt -0.0187auto0 -0.5823 -2.0314 -3.5669 -5.1593auto1 -0.2791 -1.5442 -5.4605 -5.8770auto2 -0.4933 -2.0094 -6.2768 -6.2214auto3 -0.7339 -1.8437 -6.0372 -5.7192emp0 0.3090 1.5334 1.6586 -1.3772emp1 0.3802 1.6093 2.2183 -1.3392emp2 0.0846 1.1369 2.8878No. of OBS 12404LL = -12276rho-squared 0.2153costValue of time -1.27Ratio to IVT:ovt 15.19Run #32VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time 0.0141cost 0.0007ovt -0.0701afw 0.0718 -0.2319 1.6143 -5.0322asw -0.1165 -0.2933 -0.5467 -4.8111amw -0.2046 -0.4672 -2.0534 -5.2595No. of OBS 12404LL = -12586rho-squared 0.1955costValue of time 11.90Ratio to IVT:ovt -4.9679


Run #33VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time 0.0101cost 0.0007ovt -0.0815auto0 -0.3876 -0.9045 -0.1457 -4.0617afw 0.0146 -0.5822 2.0346asw -0.0352 -0.1589 0.0476 -4.7969amw -0.1575 -0.3610 -1.9898 -4.9769No. of OBS 12404LL = -12556rho-squared 0.1974costValue of time 8.16Ratio to IVT:ovt -8.09Run #34vot constrained to $7.20VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0010cost -0.0001ovt -0.0154auto0 -0.4144 -0.9426 -2.3466 -5.7760auto1 -0.0130 -0.1590 -3.6852 -6.9301auto2 -0.2640 -0.6702 -4.1089 -6.9178auto3 -0.5504 -0.6256 -3.9543 -6.1744No. of OBS 12404LL = -12501rho-squared 0.2009costValue of time 7.20Ratio to IVT:ovt 15.2880


Run #35vot constrained to $5.00VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.00006cost -0.00001ovt -0.0160auto0 -0.4120 -0.9400 -2.3370 -5.7826auto1 -0.0104 -0.1564 -3.6729 -6.9328auto2 -0.2613 -0.6674 -4.0976 -6.9228auto3 -0.5474 -0.6226 -3.9419 -6.1779No. of OBS 12404LL = -12501rho-squared 0.2009costValue of time 5.00Ratio to IVT:ovt 257.77Run #36vot constrained to $8.00VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0014cost -0.0001ovt -0.0152auto0 -0.4150 -0.9432 -2.3499 -5.7736auto1 -0.0136 -0.1596 -3.6894 -6.9289auto2 -0.2647 -0.6709 -4.1127 -6.9157auto3 -0.5511 -0.6264 -3.9585 -6.1729No. of OBS 12404LL = -12501rho-squared 0.2009costValue of time 8.00Ratio to IVT:ovt 11.1181


Run #37vot constrained to $7.00VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0009cost -0.0001ovt -0.0155auto0 -0.4143 -0.9424 -2.3458 -5.7766auto1 -0.0128 -0.1588 -3.6841 -6.9304auto2 -0.2638 -0.6700 -4.1079 -6.9183auto3 -0.5502 -0.6254 -3.9532 -6.1748No. of OBS 12404LL = -12501rho-squared 0.2009costValue of time 7.00Ratio to IVT:ovt 16.86Run #38vot constrained to $3.00VariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time 0.0005cost 0.0001ovt -0.0165auto0 -0.4085 -0.9365 -2.3290 -5.7864auto1 -0.0069 -0.1528 -3.6632 -6.9332auto2 -0.2576 -0.6636 -4.0885 -6.9247auto3 -0.5433 -0.6185 -3.9319 -6.1786No. of OBS 12404LL = -12501rho-squared 0.2009costValue of time 3.00Ratio to IVT:ovt -33.5882


Run #39vot constrained to $7.2 & ovt constrained to 2.5*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0052cost -0.0004ovt -0.0130auto0 -0.4258 -0.9543 -2.3817 -5.6730auto1 -0.0245 -0.1708 -3.7315 -6.8515auto2 -0.2763 -0.6827 -4.1508 -6.8245auto3 -0.5638 -0.6393 -4.0014 -6.0893No. of OBS 12404LL = -12500rho-squared 0.201costValue of time 7.20Ratio to IVT:ovt 2.50Run #40vot constrained to $7.2 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0060cost -0.0005ovt -0.0121auto0 -0.4281 -0.9567 -2.4061 -5.6708auto1 -0.0269 -0.1732 -3.7593 -6.8547auto2 -0.2788 -0.6852 -4.1783 -6.8249auto3 -0.5666 -0.6421 -4.0300 -6.0911No. of OBS 12404LL = -12500rho-squared 0.201costValue of time 7.20Ratio to IVT:ovt 2.00New Runs without spreading costs for SRRun #30aSame as #30, without spreading costs for SRVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0106cost -0.0008parking cost -0.0203ovt -0.0066auto0 -0.4117 -0.9398 -2.9971 -6.0873auto1 -0.0102 -0.1561 -4.2084 -7.2191auto2 -0.2610 -0.6672 -4.6198 -7.2338auto3 -0.5471 -0.6223 -4.5606 -6.4572No. of OBS 12404LL = -12469rho-squared 0.2029costparking costValue of time 7.74 0.31Ratio to IVT:ovt 0.6383


Run #30bSame as #30a, combine cost & parking costVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0186cost -0.0123ovt 0.0007auto0 -0.4117 -0.9398 -2.6276 -5.7931auto1 -0.0102 -0.1561 -3.9605 -7.2026auto2 -0.2610 -0.6672 -4.3761 -7.3802auto3 -0.5471 -0.6223 -4.3138 -6.5222No. of OBS 12404LL = -12479rho-squared 0.2023costValue of time 0.91Ratio to IVT:ovt -0.04Run #41vot constrained to $3.00 & ovt constrained to 2.5*ivtcosts not spread for SRVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0069cost -0.0014ovt -0.0172auto0 -0.4117 -0.9398 -2.1575 -5.5026auto1 -0.0102 -0.1561 -3.4907 -6.6767auto2 -0.2610 -0.6672 -3.9013 -6.6521auto3 -0.5471 -0.6223 -3.7562 -5.9251No. of OBS 12404LL = -12496rho-squared 0.2012costValue of time 3.00Ratio to IVT:ovt 2.5084


Run #41avot constrained to $3.00 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0085cost -0.0017ovt -0.0169auto0 -0.4117 -0.9398 -2.1409 -5.4623auto1 -0.0102 -0.1561 -3.4750 -6.6427auto2 -0.2610 -0.6672 -3.8833 -6.6153auto3 -0.5471 -0.6223 -3.7409 -5.8916No. of OBS 12404LL = -12496rho-squared 0.2012costValue of time 3.00Ratio to IVT:ovt 2.00Run #139 (same as run #39)vot constrained to $7.2 & ovt constrained to 2.5*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0066cost -0.0005ovt -0.0164auto0 -0.4294 -0.9582 -3.2532 -6.6354auto1 -0.0283 -0.1747 -5.0700 -8.3542auto2 -0.2803 -0.6868 -5.5437 -8.3074auto3 -0.5683 -0.6438 -5.3274 -7.4927theta 0.7817No. of OBS 12404LL = -12500rho-squared 0.201costValue of time 7.20Ratio to IVT:ovt 2.50Nested Structure:choice8- |' Auto Transit- 6 7- | |- DA 2P 3P Walk Drive1 2 3 4 585


Run #140 (same as run #40)vot constrained to $7.2 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0078cost -0.0007ovt -0.0195auto0 -0.4328 -0.9617 -3.4054 -6.7647auto1 -0.0317 -0.1782 -5.2893 -8.5609auto2 -0.2839 -0.6905 -5.7701 -8.5088auto3 -0.5723 -0.6479 -5.5468 -7.6856theta 0.7596No. of OBS 12404LL = -12500rho-squared 0.201costValue of time 7.20Ratio to IVT:ovt 2.50Nested Structure:choice8- |' Auto Transit- 6 7- | |- DA 2P 3P Walk Drive1 2 3 4 586


Run #140a (same as run #40)vot constrained to $7.2 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0268cost -0.0022ovt -0.0670auto0 -0.2993 -0.8298 -0.0647 -14.1161auto1 2.1163 1.9688 -1.2238 -12.7319auto2 0.5564 0.1489 -2.4872 -13.2021auto3 -0.2417 -0.3183 -2.7229 -10.4833theta90 0.2177theta91 2.9507No. of OBS 12404LL = -12490rho-squared 0.2016costValue of time 7.20Ratio to IVT:ovt 2.50Nested Structure:choice- |' Auto Transit theta 91| |DA SR Walk Drive theta 90| | | |DA 2P 3P Walk Drive87


Run #140b (same as run #40)vot constrained to $7.2 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0129cost -0.0011ovt -0.0323auto0 -0.3400 -0.8692 -4.1516 -7.5936auto1 0.9604 0.8137 -6.2151 -9.6812auto2 0.1121 -0.2947 -7.2436 -10.0343auto3 -0.4070 -0.4829 -7.1024 -9.2696theta90 0.5434theta91 0.6914No. of OBS 12404LL = -12497rho-squared 0.2011costValue of time 7.20Ratio to IVT:ovt 2.50Nested Structure:choice- |' DA Other theta 91| |DA SR Transit theta 90| | |DA 2P 3P Walk DriveNew runs without sharing costs for SR88


Run #141 (same as run #41)vot constrained to $3.00 & ovt constrained to 2.5*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0058cost -0.0012ovt -0.0145auto0 -0.3677 -0.8958 -2.3903 -5.7494auto1 0.0351 -0.1109 -3.7964 -7.0045auto2 -0.2132 -0.6194 -4.2195 -6.9736auto3 -0.4947 -0.5699 -4.0599 -6.2269theta 0.9614No. of OBS 12404LL = -12497rho-squared 0.2011costValue of time 3.00Ratio to IVT:ovt 2.50Nested Structure:choice8- |' Auto Transit- 6 7- | |- DA 2P 3P Walk Drive1 2 3 4 589


Run #141avot constrained to $3.00 & ovt constrained to 2.5*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0138cost -0.0028ovt -0.0346auto0 0.0048 -0.5232 -3.8336 -7.4812auto1 2.7316 2.5856 -4.7217 -8.4525auto2 0.9309 0.5247 -6.6854 -9.6971auto3 0.0574 -0.0178 -6.8779 -9.2630theta90 0.5076theta91 0.3729No. of OBS 12404LL = -12495rho-squared 0.2013costValue of time 3.00Ratio to IVT:ovt 2.50Nested Structure:choice- |' DA Other theta 91| |DA SR Transit theta 90| | |DA 2P 3P Walk Drive90


Run #141bvot constrained to $3.00 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0222cost -0.0044ovt -0.0444auto0 0.2936 -0.2344 -4.7897 -8.5052auto1 4.6756 4.5296 -5.1634 -9.0627auto2 1.7688 1.3627 -8.2363 -11.2833auto3 0.4754 0.4001 -8.7077 -11.1370theta90 0.3913theta91 0.3065No. of OBS 12404LL = -12493rho-squared 0.2014costValue of time 3.00Ratio to IVT:ovt 2.00Nested Structure:choice- |' DA Other theta 91| |DA SR Transit theta 90| | |DA 2P 3P Walk Drive91


Run #141cvot constrained to $3.00 & ovt constrained to 2.0*ivtVariableModeDrive Shared Ride TransitAlone 2P 3P Walk DriveIn-vehicle time -0.0063cost -0.0013ovt -0.0126auto0 -0.3638 -0.8919 -2.2696 -5.5910auto1 0.0391 -0.1068 -3.5958 -6.7533auto2 -0.2090 -0.6151 -4.0094 -6.7235auto3 -0.4900 -0.5652 -3.8633 -5.9914theta 1.0116No. of OBS 12404LL = -12497rho-squared 0.2012costValue of time 3.00Ratio to IVT:ovt 2.00Nested Structure:choice8- |' Auto Transit- 6 7- | |- DA 2P 3P Walk Drive1 2 3 4 592


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.010. Appendix CNHB Mode Choice Estimation ResultsMode Choice - Appendix C 93


Run # 1:Base RunVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time 0.0004Cost -0.0048First wait -0.0528First wait le 7First wait gt 7Transfer wait -0.0663Walk -0.0986Transfer walkDrive acc. IVT -0.0334Constant -0.9651 -1.438 -0.9638 -1.9280No. of Observations 5188Log-likelihood -4456Rho-squared 0.3Value of Time -$0.04Ratio to IVT:First wait -150.3First wait le 7First wait gt 7Transfer wait -188.7Walk -280.7Transfer walkDrive acc. IVT -95.0Run # 2:Collapse shared-ride modesVariablesModesDA Shared Ride TransitWalk DriveIn-vehicle time 0.0004Cost -0.0048First wait -0.0528First wait le 7First wait gt 7Transfer wait -0.0663Walk -0.0986Transfer walkDrive acc. IVT -0.0334Constant -0.4809 -0.9638 -1.9280No. of Observations 5185Log-likelihood -3278Rho-squared 0.35Value of Time -$0.04Ratio to IVT:First wait -150.4First wait le 7First wait gt 7Transfer wait -188.8Walk -280.9Transfer walkDrive acc. IVT -95.094


Run # 3: Collapse transit modesUse walk skims for transitVariablesModesDA Shared Ride Transit2P 3P+In-vehicle time -0.0015Cost -0.0058First wait -0.0504First wait le 7First wait gt 7Transfer wait -0.0643Walk -0.0759Transfer walkDrive acc. IVTConstant -0.9651 -1.4380 -0.9231No. of Observations 5186Log-likelihood -4422Rho-squared 0.23Value of Time $0.15Ratio to IVT:First wait 34.5First wait le 7First wait gt 7Transfer wait 44.1Walk 52.0Transfer walkDrive acc. IVTRun # 4:Ignore Drive to TransitVariablesModesDA Shared Ride Transit2P 3P+In-vehicle time 0.0092Cost -0.0041First wait -0.0534First wait le 7First wait gt 7Transfer wait -0.0703Walk -0.0866Transfer walkDrive acc. IVTConstant -0.9652 -1.4380 -1.169No. of Observations 5186Log-likelihood -4369Rho-squared 0.24Value of Time -$1.34Ratio to IVT:First wait -5.8First wait le 7First wait gt 7Transfer wait -7.6Walk -9.4Transfer walkDrive acc. IVT95


Run # 5:Base Run with walk time set to 2.5 IVTVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0264Cost -0.0052First wait -0.0481First wait le 7First wait gt 7Transfer wait -0.0419WalkTransfer walkDrive acc. IVT -0.0464Constant -0.9653 -1.439 -1.3020 -1.9570No. of Observations 5188Log-likelihood -4459Rho-squared 0.3Value of Time $3.07Ratio to IVT:First wait 1.8First wait le 7First wait gt 7Transfer wait 1.6Walk 2.5Transfer walkDrive acc. IVT 1.8Run # 5a: add CBD dummies to #5VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0261Cost -0.0030First wait -0.0410First wait le 7First wait gt 7Transfer wait -0.0307WalkTransfer walkDrive acc. IVT -0.0578CBD Indicator -0.3932 -1.2460 0.2301 1.7160Constant -0.9542 -1.414 -1.4710 -2.6360No. of Observations 5188Log-likelihood -4447Rho-squared 0.31Value of Time $5.20Ratio to IVT:First wait 1.6First wait le 7First wait gt 7Transfer wait 1.2Walk 2.5Transfer walkDrive acc. IVT 2.296


Run # 6:Split first wait at 7 min.VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0264Cost -0.0052First waitFirst wait le 7 0.0042First wait gt 7 -0.0524Transfer wait -0.0419WalkTransfer walkDrive acc. IVT -0.0471Constant -0.9653 -1.439 -1.6120 -2.2590No. of Observations 5188Log-likelihood -4459Rho-squared 0.3Value of Time $3.08Ratio to IVT:First waitFirst wait le 7 -0.2First wait gt 7 2.0Transfer wait 1.6Walk 2.5Transfer walkDrive acc. IVT 1.8Run # 7:Split first wait at 10 min.VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0265Cost -0.0052First waitFirst wait le 7 -0.0260First wait gt 7 -0.0535Transfer wait -0.0419WalkTransfer walkDrive acc. IVT -0.0468Constant -0.9653 -1.439 -1.4650 -2.1100No. of Observations 5188Log-likelihood -4459Rho-squared 0.3Value of Time $3.08Ratio to IVT:First waitFirst wait le 7 1.0First wait gt 7 2.0Transfer wait 1.6Walk 2.5Transfer walkDrive acc. IVT 1.897


Run # 8:Base Run, split walkVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0011Cost -0.0045First wait -0.0449First wait le 7First wait gt 7Transfer wait -0.0592Walk -0.1168Transfer walk -0.0640Drive acc. IVT -0.0356Constant -0.9651 -1.438 -0.9638 -1.9280No. of Observations 5188Log-likelihood -4455Rho-squared 0.3Value of Time $0.14Ratio to IVT:First wait 41.5First wait le 7First wait gt 7Transfer wait 54.8Walk 108.0Transfer walk 59.2Drive acc. IVT 32.9Run # 9:Base Run, split walk, set a/e walk to 2.5 IVTVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0287Cost -0.0050First wait -0.0436First wait le 7First wait gt 7Transfer wait -0.0377WalkTransfer walk -0.0487Drive acc. IVT -0.0481Constant -0.9651 -1.438 -0.9920 -2.0540No. of Observations 5188Log-likelihood -4459Rho-squared 0.3Value of Time $3.43Ratio to IVT:First wait 1.5First wait le 7First wait gt 7Transfer wait 1.3Walk 2.5Transfer walk 1.7Drive acc. IVT 1.798


Run # 9a: Add CBD dummies to #009VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0265Cost -0.0030First wait -0.0403First wait le 7First wait gt 7Transfer wait -0.0301WalkTransfer walk -0.0618Drive acc. IVT -0.0581CBD Indicator -0.3934 -1.2460 0.217 1.7010Constant -0.9542 -1.414 -1.4750 -2.6440No. of Observations 5188Log-likelihood -4446Rho-squared 0.31Value of Time $5.29Ratio to IVT:First wait 1.5First wait le 7First wait gt 7Transfer wait 1.1Walk 2.5Transfer walk 2.3Drive acc. IVT 2.2Run # 9b: Add Residential Density dummy to #009aVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0253Cost -0.0028First wait -0.0393First wait le 7First wait gt 7Transfer wait -0.0302WalkTransfer walk -0.0631Drive acc. IVT -0.0568CBD Indicator -0.3935 -1.2460 0.3253 1.7780Residential Density 0.3072Constant -0.9542 -1.414 -1.6380 -2.7150No. of Observations 5188Log-likelihood -4446Rho-squared 0.31Value of Time $5.44Ratio to IVT:First wait 1.5First wait le 7First wait gt 7Transfer wait 1.2Walk 2.5Transfer walk 2.5Drive acc. IVT 2.299


Run # 10: Nested structure (autos vs transit) on #005aVariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0059Cost -0.0008First wait -0.0095First wait le 7First wait gt 7Transfer wait -0.0093WalkTransfer walkDrive acc. IVT -0.0096CBD Indicator -0.3581 -1.2110 -0.3788 0.6549Constant -0.9504 -1.41 -0.2438 -1.0990Theta 4.694No. of Observations 5188Log-likelihood -4413Rho-squared 0.31Value of Time $4.48Ratio to IVT:First wait 1.6First wait le 7First wait gt 7Transfer wait 1.6Walk 2.5Transfer walkDrive acc. IVT 1.6Run # 11: Nested structure (autos vs transit) on #005VariablesModesDA Shared Ride Transit2P 3P+ Walk DriveIn-vehicle time -0.0059Cost -0.0013First wait -0.0109First wait le 7First wait gt 7Transfer wait -0.0127WalkTransfer walkDrive acc. IVT 0.0016Constant -0.9603 -1.434 -0.2697 -0.8587Theta 4.716No. of Observations 5188Log-likelihood -4413Rho-squared 0.31Value of Time $2.75Ratio to IVT:First wait 1.8First wait le 7First wait gt 7Transfer wait 2.1Walk 2.5Transfer walkDrive acc. IVT -0.3100


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 6 – Trip Assignment


Part VITRIP ASSIGNMENT ANDVALIDATION


Table of Contents1. Background ..................................................................................................................... 12. Time of Day and Vehicle Occupancy Factoring .................................................................... 22.1 Vehicle Occupancy Factoring and Sub-<strong>Model</strong> Trip Consolidation................................ 22.2 Time of Day Factoring and PA to OD Format Conversion.......................................... 33. Highway Assignment Methodology..................................................................................... 54. Highway Assignment Validation ......................................................................................... 94.1 Facility Type Validation ....................................................................................... 104.2 Volume Group Validation..................................................................................... 114.3 Observed vs. Estimated Volume Correlation.......................................................... 144.4 Screenline Validation .......................................................................................... 155. Transit Assignment Methodology and Validation................................................................ 245.1 Transit Assignment Methodology ......................................................................... 245.2 Transit Assignment Validation.............................................................................. 246. Appendix A .................................................................................................................... 276.1 MVRPC Base 1994 <strong>Model</strong> Validation ..................................................................... 286.2 <strong>OKI</strong> <strong>Model</strong> v54 Validation .................................................................................... 297. Appendix B .................................................................................................................... 317.1 Modifications undertaken by PB ........................................................................... 327.2 Modifications undertaken by MVRPC..................................................................... 338. Appendix C .................................................................................................................... 34ii


Index of TablesTable 2-1 Average Vehicle Occupancy.................................................................................... 2Table 2-2 Taxi and External Trip Diurnal Factors..................................................................... 4Table 2-3 Auto Trip Summary, by Time Period and Mode......................................................... 4Table 3-1 Capacity Factors.................................................................................................... 6Table 3-2 Final Link Convergence Report................................................................................ 7Table 3-3 Final Trip Table Convergence Report....................................................................... 8Table 4-1 Facility Type Validation Statistics – Consolidated Region ......................................... 10Table 4-2 Facility Type Validation Statistics – <strong>OKI</strong> Council Region........................................... 10Table 4-3 Facility Type Validation Statistics – MVRPC Region.................................................. 11Table 4-4 Volume Group Validation Statistics – Consolidated Region....................................... 12Table 4-5 Volume Group Validation Statistics – <strong>OKI</strong> Council Region ........................................ 13Table 4-6 Volume Group Validation Statistics – MVRPC Region ............................................... 13Table 4-7 <strong>OKI</strong> Council Region Screenline Validation Statistics................................................. 17Table 4-8 <strong>OKI</strong> Region Cutline Validation Statistics ................................................................. 17Table 4-9 Montgomery/Greene Counties Screenline Validation Statistics.................................. 19Table 4-10 Miami County Screenline Validation Statistics ....................................................... 20Table 5-1 Observed vs. Estimated Boardings, by Transit Agency ............................................ 24Table 5-2 Observed vs. Estimated Boardings by Corridor in the <strong>OKI</strong> Region ............................ 25Table 5-3 Observed vs. Estimated Boardings by Route, SORTA .............................................. 25Table 5-4 Observed vs. Estimated Boardings by Route, TANK ................................................ 26Table 5-5 Observed vs. Estimated Boardings by Route, MVRTA.............................................. 26Table 6-1 Facility Type Validation – by Link VMT................................................................... 28Table 6-2 Volume Group Validation – by Link VMT ................................................................ 28Table 6-3 Facility Type Validation – by Link Volume .............................................................. 28Table 6-4 Volume Group Validation – by Link Volume............................................................ 29Table 6-5 Facility Type Validation ........................................................................................ 29Table 6-6 Volume Group Validation...................................................................................... 30Table 6-7 Transit Validation, by Agency ............................................................................... 30Table 6-8 Transit Validation, by Corridor .............................................................................. 30Table 8-1 <strong>OKI</strong> Council Region Cutline Validation Statistics...................................................... 35Table 8-2 Montgomery and Greene Counties Screenline Validation Statistics ........................... 47Table 8-3 Miami County Screenline Validation Statistics ......................................................... 54iii


Index of FiguresFigure 2-1 <strong>OKI</strong> <strong>Model</strong> v54 Diurnal Factors, Auto Trips.............................................................. 3Figure 3-1 <strong>OKI</strong> <strong>Model</strong> v54 Volume-Delay Functions ................................................................. 5Figure 4-1 Volume Percent RMSE Tolerances, Consolidated Region......................................... 11Figure 4-2 Volume Percent RMSE Tolerances, <strong>OKI</strong> and MVRPC............................................... 12Figure 4-3 Observed vs. Estimated Volumes – <strong>OKI</strong> Region..................................................... 14Figure 4-4 Observed vs. Estimated Volumes – MVRPC Region ................................................ 14Figure 4-5 Cutline Validation Tolerances, <strong>OKI</strong> Council Region................................................. 15Figure 4-6 Screenline Validation Tolerances, <strong>OKI</strong> Council Region ............................................ 16Figure 4-7 Screenline Validation Tolerances, MVRPC Region................................................... 16Figure 4-8 Screenline Location – <strong>OKI</strong> Council Region............................................................. 21Figure 4-9 Screenline Location – Montgomery and Greene Counties ....................................... 22Figure 4-10 Screenline Location – Miami County ................................................................... 23iv


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. BackgroundThis is Part VI of the <strong>OKI</strong>/MVRPC model development report. It has been previously released asthe Task A.4.6, Trip Assignment and Validation, a report that is part of a series of working papersthat document the development of a consolidated travel demand model for the Ohio-Kentucky-Indiana Council of Governments and the Miami Valley Regional Transportation Commission (<strong>OKI</strong>and MVRPC respectively). This model development is undertaken under the framework of theNorth-South Transportation Initiative, a Major Investment Study focusing on the Interstate 75corridor.This report covers the last two model development activities: trip assignment and modelvalidation. In trip assignment, highway trips are loaded onto the highway network and transittrips are loaded onto the transit network. The consolidated model uses trip assignmentmethodologies similar to those developed for <strong>OKI</strong> <strong>Model</strong> v54: highway equilibrium assignmentand all-or-nothing transit assignment. One important enhancement over <strong>Model</strong> v54 is theimplementation of a multi-class assignment that considers five different modes: singleoccupancyvehicles, two-occupant vehicles, three-occupant vehicles, single-unit trucks andmultiple-unit trucks. This assignment methodology allows testing the effect of transportationsystem and demand management policies such as high-occupancy lanes and truck trafficprohibitions on local and regional traffic movements.<strong>Model</strong> validation refers to the comparison of estimated and observed individual highway linkloadings and transit route boardings. The purpose of model validation is to gauge howaccurately the model predicts observed base year travel patterns, and to identify potential modelshortcomings and likely improvements. The <strong>OKI</strong>/MVRPC consolidated model was validatedagainst traffic counts collected between 1994 and 2000, and 1995 transit boardings. As a resultof the validation process, a number of adjustments were made to model parameters in all modelcomponents (generation, distribution and mode choice). This report presents the results of thefinal model validation, with some discussion of the required model adjustments. Additionaldiscussion of these adjustments is available in Parts III to V of the <strong>Model</strong> Development Report.This report consists of four main parts: Section 2 describes time of day factoring and vehicleoccupancy factoring, operations which take place in preparation for highway assignment;Sections 3 and 4 deal with the highway assignment methodology and validation, respectively,while Section 5 addresses jointly the transit assignment method and validation.Assignment and Validation - Background 1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Time of Day and Vehicle Occupancy FactoringPrior to trip assignment, the trip tables produced by all the previous model steps (mode choice,airport and King's Island sub-models, EI trip distribution model, EE fratar model, taxi fratar modeland truck model) need to be consolidated into the modes and time periods required by theassignment method. In terms of modes, the consolidated model requires that all auto trips beallocated into five modes: single-occupant cars, two-occupant cars, three or more occupant cars,single unit trucks and multiple unit trucks. In terms of time periods, the model requires that tripsbe allocated to four periods: AM or morning peak (6:00 AM to 8:30 AM), MD or midday (8:30 AMto 3:00 PM), PM or evening peak (3:00 PM to 6:30 PM) and NT or night (6:30 PM to 6:00 AM).In order to obtain the trip tables that correspond to each of these time periods and modes, themodel performs the following matrix consolidation operations:• Vehicle occupancy factoring• Time of day factoring• Production/Attraction to Origin/Destination format conversion• Sub-model trip consolidation2.1 Vehicle Occupancy Factoring and Sub-<strong>Model</strong> Trip ConsolidationThe trip tables produced by the mode choice model are in units of person trips. Each table needsto be converted to units of vehicle trips prior to assignment. Thus, all tables for the two-personshared ride mode are divided by a factor of 2, and all tables for the three or more shared ridemode are divided by the average 3+ occupancy. Table 2.1 shows average occupancies by trippurpose. These occupancy factors were taken from <strong>Model</strong> v5.4.Table 2-1 Average Vehicle OccupancyTrip PurposeAverage 3+ Auto OccupancyHBW 3.77HBO 3.61HBU 3.77NHB 3.75The CVG Airport and King's Island sub-models produce trip tables already factored to vehicleunits. Please refer to <strong>Model</strong> v5.4 documentation for details. The EE and EI trip tables and taxiand truck tables are expressed in vehicle units as well.After applying the occupancy factors, the CVG Airport and King's Island trips are added to theHBW and HBO trip tables. The airport's business trips are added the HBW trip tables, while thenon-business trips are added to the HBO trip tables. All King's Island trips are added to the HBOtrip tables.In preparation for time of day factoring, peak and off peak period trips are summed up, so thatdaily trip tables, by mode and trip purpose, are input to the next modeling step.Assignment and Validation - Time of Day and Vehicle Occupancy Factoring 2


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.2 Time of Day Factoring and PA to OD Format ConversionTime of day factoring is the process of allocating daily trips (by purpose and mode) into the timeperiods used for highway assignment. The allocation is achieved via use of time of day or diurnalfactors.A time of day factor gives the proportion of total trips (by purpose) that are in-motion during acertain period of the day. These factors are typically developed separately for the production toattraction direction of travel (P-to-A) and the attraction to production direction of travel (A-to-P).This consideration is necessary to ensure that the trips loaded to the networks are in Origin-Destination format, and not in the Production-Attraction format used in all previous modelingsteps.The consolidated model uses the time of day factors developed for <strong>Model</strong> v54. While the MVRPChousehold survey data include the time at which trips were taken, the information is notsufficiently detailed to develop trip-in-motion factors at 30-minute intervals, the minimumrequirements of the <strong>OKI</strong> model.<strong>Model</strong> v54 diurnal factors are structured by direction, hence the PA to OD conversion occurssimultaneously as the time of day factoring. These factors are applied to HBW, HBO, HBU andNHB trips, after they have been augmented with the airport and King's Island trips. Figure 2.1shows the diurnal factors.Figure 2-1 <strong>OKI</strong> <strong>Model</strong> v54 Diurnal Factors, Auto Trips20%Trip Proportion15%10%5%0%0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00Time of DayHBW HBO NHB HBUAssignment and Validation - Time of Day and Vehicle Occupancy Factoring 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0EE, EI and taxi trips are factored into time periods separately. The factors applied to these tripswere taken from <strong>Model</strong> v54 (see Table 2.2). These tables are always expressed in OD format.Table 2-2 Taxi and External Trip Diurnal FactorsTrip PurposeTime PeriodAM MD PM NTTaxi 40% 10% 40% 10%EI 22% 28% 30% 20%EE 25% 25% 25% 25%Single and multiple unit truck trip tables by time period (OD format) are obtained from the truckmodel. Please refer to the truck model documentation for details.Table 2.3 gives a summary of all auto trips by mode, after the application of the diurnal factors.These are the total trips loaded onto the highway networks.Table 2-3 Auto Trip Summary, by Time Period and ModeTimePeriodDriveAloneShared Ride 2TrucksTwo Occ. Three + Occ. Single U. Multiple U.All ModesAM 874,652 134,648 46,001 22,849 15,742 1,093,892MD 1,533,057 376,581 141,605 68,260 51,499 2,171,002PM 1,478,909 327,277 122,111 30,465 20,013 1,978,775NT 948,970 252,850 99,560 22,131 34,780 1,358,291All Periods 4,835,588 1,091,356 409,277 143,705 122,034 6,601,960Assignment and Validation - Time of Day and Vehicle Occupancy Factoring 4


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Highway Assignment MethodologyThe <strong>OKI</strong>/MVRPC consolidated model uses multi-class equilibrium assignment to load trips ontothe highway networks. Five trip classes or modes are considered, three for passenger traffic(single-occupant cars, two-occupant cars, three or more occupant cars) and two for truck traffic(single unit trucks and multiple unit trucks). This class separation allows the modeling ofrestrictions in network usage, to represent for example HOV lanes, which should be used only bymultiple occupant vehicles, or truck prohibitions, to keep multiple unit trucks from using certainstreets.Highway assignments are performed in three separate steps of the model: initial loop, feedbackloops and final loop. The purpose of the initial and feedback loops is to calculate congested peakperiod speeds to feed back into trip distribution and mode choice. Thus, only the AM trips areassigned during these loops. The full set of highway networks (AM, MD, PM and NT) are loadedat the end of the feedback process, once the AM assignment has converged.The consolidated model uses the volume-delay functions developed for <strong>OKI</strong> <strong>Model</strong> v54 1 . Thereare five functions, one for each facility type. Figure 3.1 shows the functions developed forfreeways and major roads. The volume-delay functions are used to calculate the degradation infree-flow speed (i.e. the congested speed) that results from non-zero traffic volumes.Figure 3-1 <strong>OKI</strong> <strong>Model</strong> v54 Volume-Delay Functions1.0Congested/FreeFlowSpeed0.80.60.40.2BPRFreewaysMajor Road0.00.0 0.5 1.0 1.5 2.0 2.5Volume/CapacityIn this multi-class assignment, the link volume input to the volume-delay function is the sum ofall vehicle modes using the link. In particular, truck vehicles are counted as one unit each,instead of factoring them to passenger car equivalents. The effect of trucks on traffic flow speedis considered instead by a reduction in link capacity. These capacity reductions follow Highway1 See Development of Classified Speed/Capacity Table and Speed-Volume Relationships. Prepared by theOhio-Kentucky-Indiana Regional Council of Governments. June 2000.Assignment and Validation - Highway Assignment Methodology 5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Capacity Manual procedures, and are important primarily in links with long steep uphill grades.The reductions apply only to a subset of freeway and expressway links in the <strong>OKI</strong> portion of thehighway network. The <strong>OKI</strong> Regional Council was responsible for calculating the capacityreductions.In addition to these customized speed-delay functions, two other sets of parameters were takenfrom the <strong>Model</strong> v54 assignment process: the capacity factor and the time and distance factors.The capacity factors are necessary to factor up hourly capacities to values representative of thetime period being considered in the assignment. The capacity factor indicates, for eachassignment period, what proportion of trips occurs in the most congested hour of each timeperiod. These values were initially derived from the time-in-motion data described in Section 2,and may be adjusted during model validation. The consolidated model uses the same factorsderived for <strong>Model</strong> v54 (see Table 3.1), except for the night time factor. The latter wasrecalculated from the time-in-motion data because the prior factor (0.10) is unreasonable.Table 3-1 Capacity FactorsTrip Assignment PeriodCapacity FactorMorning (AM) 6:00 AM - 8:30 AM 0.53Midday (MD) 8:30 AM - 3:00 PM 0.23Evening (PM) 3:00 PM - 6:30 PM 0.35Night (NT) 6:30 PM - 6:00 AM 0.36Time and distance factors are used to calculate a composite impedance, which in turn is used tofind the minimum path between each origin and destination during assignment. The standardmethodology is to use a time factor of 1.0 and a distance factor of 0.0, which results in minimumtravel time paths and a travel time user equilibrium. The <strong>OKI</strong> <strong>Model</strong> v54 uses a time factor of0.414 and a distance factor of 0.46. The effect of the distance factor is to favor less circuitous,but slower, paths. The consolidated model uses the factors originally developed for <strong>Model</strong> v54.An important new feature was added to the <strong>OKI</strong>/MVRPC model that did not exist in version 5.4 ofthe <strong>OKI</strong> model: feedback iteration until model convergence. The previous version of the <strong>OKI</strong>model applied only one feedback loop, but no check was made at the end of this loop to ensurethat the estimated AM speeds approximated well the initial, assumed AM speeds. Theconvergence algorithm added to the <strong>OKI</strong>/MVRPC model checks, at the end of each feedbackloop, whether the model has converged. If it has not, then the estimated speeds are fed back tothe highway network build step and the full model run is repeated until convergence is reached.The following two criteria need to be met for the model to converge:• Link convergence: at least 95% of all links have an assigned ADT volume that is within 10%of the volume assigned in the previous model iteration.• Trip table convergence: at least 95% of the OD interchanges have a number of trips that iswithin 10% of the trips estimated for the OD interchange in the previous model iteration.The trip table convergence is applied at the district level (i.e., 300x300 trip table instead of a2531x2531 trip table). Districts with less than 10 trips are not included in the convergencecheck, because oftentimes the convergence criteria are exceeded simply due to bucket rounding.Assignment and Validation - Highway Assignment Methodology 6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The convergence checks are performed on the basis of weighted links and OD interchanges,where the weight factor is the link volume or the OD trips. Thus, high volume links weigh moreheavily in the convergence calculation than low volume links, so that the model is less likely toconverge if there are high errors on the major facilities than if there are high errors on the lowvolume roads (and similarly for the trip table).In order to reduce the number of feedback loops required to reach convergence, the <strong>OKI</strong>/MVRPCmodel uses the method of successive averages to feed the estimated AM volumes back to tripdistribution. At any given model iteration k, the feedback volume for link i is the average of allthe volumes estimated for link i up to that iteration, that is:Volumeki1= ∗kk∑n = 1VolumeniWith the application of this method, the 1995 model setup reaches convergence in three fullmodel iterations (one initial loop and two feedback loops). Tables 3.2 and 3.3 show the final linkand trip table convergence distributions.Table 3-2 Final Link Convergence ReportPercent Number of Total Cumulative No. of LinksDifference Links Volume Unweighted Weighted (*)0.00 - 0.05 23,116 27,066,988 70.56 86.410.05 - 0.10 5,012 2,763,214 85.85 95.230.10 - 0.15 1,913 897,117 91.69 98.100.15 - 0.20 985 369,897 94.70 99.280.20 - 0.25 533 122,681 96.33 99.670.25 - 0.30 275 53,678 97.16 99.840.30 - 0.35 235 20,333 97.88 99.900.35 - 0.40 154 13,090 98.35 99.950.40 - 0.45 55 4,451 98.52 99.960.45 - 0.50 141 4,014 98.95 99.970.50 - 0.55 23 1,951 99.02 99.980.55 - 0.60 38 562 99.14 99.980.60 - 0.65 8 165 99.16 99.980.65 - 0.70 31 352 99.26 99.980.70 - 0.75 30 243 99.35 99.980.75 - 0.80 7 350 99.37 99.990.80 - 0.85 6 591 99.39 99.990.85 - 0.90 6 196 99.40 99.990.90 - 0.95 4 132 99.42 99.990.95 - 1.00 138 272 99.84 99.991.00 - ++ 53 3,467 100.00 100.00(*) The link weight factor is the link volume.Assignment and Validation - Highway Assignment Methodology 7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3-3 Final Trip Table Convergence ReportPercent Number ofCumulative No. of OdsTotal TripsDifference OD PairsUnweighted Weighted (*)0.00 - 0.05 9,348 856,244 64.18 88.070.05 - 0.10 2,756 72,409 83.10 95.520.10 - 0.15 1,427 27,552 92.90 98.350.15 - 0.20 650 10,589 97.36 99.440.20 - 0.25 230 3,363 98.94 99.790.25 - 0.30 82 1,178 99.51 99.910.30 - 0.35 53 661 99.87 99.980.35 - 0.40 13 141 99.96 99.990.40 - 0.45 5 55 99.99 100.000.45 - 0.50 1 6 100.00 100.000.50 - ++ 0 0 100.00 100.00(*) The OD weight factor is the OD volume.Assignment and Validation - Highway Assignment Methodology 8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Highway Assignment ValidationThe validation year for the consolidated model is 1995. <strong>Model</strong> results for the base year werecompared against ADT traffic counts circa 1995. For validation purposes, an ADT traffic estimateis constructed by adding up the estimated volumes of all four time period assignments. All linkbasedvalidation statistics are calculated for directional ADT counts and estimated volumes. Thissection discusses the final model validation. For comparison purposes, validation results for the<strong>OKI</strong> <strong>Model</strong> v54 and MVRPC 1994 Base <strong>Model</strong> are included in Appendix A.Three criteria are used to assess the adequacy of the model validation: percent VMT error,percent VMT root mean square error and percent Volume root mean square error. Thesemeasures of performance are calculated separately for the <strong>OKI</strong> and the MVRPC regions, andacross two link classifications: facility type and volume group.As part of the model validation process, a number of adjustments were made to the model andhighway networks:• Because model convergence now requires more feedback loops than initially assumed, it wasnecessary to recalibrate the trip distribution and mode choice models with the highway andtransit skims estimated after the implementation of the model convergence application.• Trip generation estimates were scaled to correct for a global VMT overestimation, as well asfor <strong>OKI</strong>-to-MVRPC (and vice versa) trip overestimation. The scale factors vary by trippurpose, production/attraction end, and by region. Please refer to the Part III (TripGeneration) of the <strong>Model</strong> Development Report. The need for trip generation scale factorsstemmed from the differences in model validation statistics resulting from the updated skims.• Bridge travel time penalties were added to a number of bridges in the <strong>OKI</strong> Region, to correctan overestimation of trips between Northern Kentucky and Ohio. Please refer to Part IV (TripDistribution) of the <strong>Model</strong> Development Report.• Transit Agency –specific constants were added to the mode choice models, to improve thetransit validation for TANK and the City of Hamilton transit agency.• Speeds, capacities and/or speed/capacity classification codes were revised for selectedroadways in the MVRPC network. This was necessary because this network showed severalinconsistencies between free-flow speeds and functional classification. The MVRPC free-flowspeeds were taken from their posted speed limits. While in general there is generalagreement between these limits and reasonable free-flow speeds, in many instances localand minor collector roads showed speeds of 40 mph and above. Not surprisingly, the initialvalidation overestimated flows on these roads by more than 50%. There were also a fewinstances where the functional classification did not agree with observed volumes, forexample a collector that had volumes more typical of an arterial. An accurate functionalclassification is important because the <strong>OKI</strong> model uses facility-specific volume-delayfunctions; the wrong classification can severely over or under estimate a particular facility.Please refer to Appendix B for a list of the changes made to the MVRPC network.The results reported in the following sections already incorporate all the adjustments listedabove, and hence represent the final model validation statistics.Assignment and Validation - Highway Assignment Validation 9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.1 Facility Type ValidationTables 4.1 to 4.3 show validation statistics by facility type for the consolidated region, the <strong>OKI</strong>region and the MVRPC region, respectively. For the combined region, total VMT is within 3% ofthe observed data, while total volume is within 4% of the observed volumes. VMT for the highlevel roads (freeways, expressways, major and minor arterials) is estimated well within 8% of theobserved VMT, and similarly total volume for each of these classes is estimated within 10% oftheir respective total volumes. The percent RMSE for these facility types is approximately 40%or lower. The lower level facility classes show higher estimation error, as is typically the case. Asimilar pattern is observed for each individual region: the high level facilities show lowerestimation errors than the low level facilities. Overall however, the validation results within eachregion meet industry standards and compare very favorably with results obtained in other U.S.metropolitan areas.Table 4-1 Facility Type Validation Statistics – Consolidated RegionFacilityObserved TrafficEstimated Traffic % Error Max. %Type Code No. Obs. Volume VMT Volume VMT Volume VMT % VMT RMSEAll Types 16,723 119,146,881 47,303,224 117,152,168 46,042,955 -2% -3% 3% 37%Interstate 1 906 34,569,266 18,483,580 34,551,470 18,734,021 0% 1% 7% 14%Major Arterial 2 3,128 29,064,407 8,361,900 30,388,379 8,662,355 5% 4% 10% 35%Minor Arterial 3 3506 23,269,064 8,009,081 22,892,081 7,698,949 -2% -4% 10% 40%Major Collector 4 5,953 20,256,652 8,047,241 17,486,724 6,899,078 -14% -14% 15% 54%Minor Collector 5 664 645,071 559,619 576,587 472,779 -11% -16% 15% 101%Local 6 1,497 2,564,344 1,220,051 2,082,756 915,370 -19% -25% 15% 77%Ramp 8 865 5,738,705 940,416 5,976,192 938,872 4% 0% 15% 40%Expressway 9 204 3,039,372 1,681,337 3,197,979 1,721,532 5% 2% 10% 30%Max. % VMT error is an ODOT guideline. Please see Traffic Assignment Procedures, ODOT Division of Planning, Office ofTechnical Services, 2001.Table 4-2 Facility Type Validation Statistics – <strong>OKI</strong> Council RegionFacility Observed TrafficEstimated Traffic % Error Max. %Type Code No. Obs. Volume VMT Volume VMT Volume VMT % VMT RMSEAll Types 12,795 96,943,993 38,028,105 95,744,738 36,923,826 -1% -3% 3% 36%Interstate 1 785 30,913,276 15,100,663 30,902,687 15,275,678 0% 1% 7% 14%Major Arterial 2 2,438 22,435,548 6,615,284 23,733,179 6,919,300 6% 5% 10% 36%Minor Arterial 3 2552 17,234,972 6,259,230 17,365,555 6,081,085 1% -3% 10% 39%Major Collector 4 4,762 16,954,517 6,791,538 14,310,687 5,641,049 -16% -17% 15% 53%Minor Collector 5 486 483,569 406,200 434,067 339,104 -10% -17% 15% 106%Local 6 937 2,038,101 962,662 1,620,835 721,962 -20% -25% 15% 68%Ramp 8 689 4,885,324 766,954 5,143,252 779,814 5% 2% 15% 38%Expressway 9 146 1,998,686 1,125,575 2,234,476 1,165,833 12% 4% 10% 31%Max. % VMT error is an ODOT guideline. Please see Traffic Assignment Procedures, ODOT Division of Planning, Office ofTechnical Services, 2001.Assignment and Validation - Highway Assignment Validation 10


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-3 Facility Type Validation Statistics – MVRPC RegionFacility Observed TrafficEstimated Traffic % Error Max. %Type Code No. Obs. Volume VMT Volume VMT Volume VMT % VMT RMSEAll Types 3,918 22,092,347 9,056,599 21,300,002 8,884,874 -4% -2% 3% 42%Interstate 1 119 3,576,044 3,181,852 3,569,631 3,259,226 0% 2% 7% 17%Major Arterial 2 690 6,628,859 1,746,616 6,655,200 1,743,054 0% 0% 10% 29%Minor Arterial 3 956 6,015,225 1,748,777 5,518,532 1,614,667 -8% -8% 15% 43%Major Collector 4 1,185 3,293,047 1,243,983 3,164,701 1,242,025 -4% 0% 15% 62%Minor Collector 5 174 158,862 148,757 133,574 117,738 -16% -21% 15% 78%Local 6 560 526,243 257,389 461,921 193,408 -12% -25% 15% 106%Ramp 8 176 853,381 173,462 832,940 159,058 -2% -8% 15% 52%Expressway 9 58 1,040,686 555,762 963,503 555,698 -7% 0% 10% 27%Max. % VMT error is an ODOT guideline. Please see Traffic Assignment Procedures, ODOT Division of Planning, Office ofTechnical Services, 2001.4.2 Volume Group ValidationThe validation by volume group is shown in Figures 4.1 and 4.2 and Tables 4.4 to 4.6. In bothregions the medium and high volume groups fall below the maximum allowable percent RMSE,while the low volume groups are on or slightly above the maximum tolerance. The MVRPCregion shows higher error, which is not unexpected given that this region could not be includedin the trip distribution calibration. Even so, the validation shows that the consolidated modelapplies well to the Dayton area, and that possibly only minor adjustments may be required tofinesse the distribution model. However, it is not recommended to attempt such refinementswithout having good observed OD pattern data.Figure 4-1 Volume Percent RMSE Tolerances, Consolidated Region% RMSE100%90%80%70%60%50%40%30%20%10%0%Max.%RMSE Cons.0 10,000 20,000 30,000 40,000 50,000 60,000Volume GroupAssignment and Validation - Highway Assignment Validation 11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 4-2 Volume Percent RMSE Tolerances, <strong>OKI</strong> and MVRPC100%90%80%70%% RMSE60%50%40%30%20%10%0%Max.%RMSE <strong>OKI</strong> MVRPC0 10,000 20,000 30,000 40,000 50,000 60,000Volume GroupTable 4-4 Volume Group Validation Statistics – Consolidated RegionVolume GroupObserved TrafficEstimated Traffic % Error %Obs. Volume VMT Volume VMT Volume VMT RMSEMax. %RMSE0 - 500 697 221,959 231,006 315,147 303,838 42% 32% 197% 200%500 - 1500 2,254 2,239,282 1,616,092 2,512,746 1,754,801 12% 9% 95% 100%1500 - 2500 1,959 3,870,390 1,999,686 3,879,411 1,904,260 0% -5% 66% 62%2500 - 3500 1,991 5,893,182 2,776,671 5,503,282 2,535,255 -7% -9% 58% 54%3500 - 4500 1,393 5,533,415 2,206,941 5,079,028 1,906,274 -8% -14% 53% 48%4500 - 5500 1,480 7,348,115 2,579,381 6,667,385 2,261,112 -9% -12% 46% 45%5500 - 7000 1,635 10,126,516 3,556,230 9,504,752 3,109,646 -6% -13% 40% 42%7000 - 8500 1,256 9,682,544 2,844,934 9,712,989 2,697,618 0% -5% 39% 39%8500 - 10000 827 7,668,576 2,227,546 7,600,965 2,174,769 -1% -2% 37% 36%10000 - 12500 1,183 12,975,017 3,646,354 12,922,478 3,592,398 0% -1% 30% 34%12500 - 15000 583 7,903,586 2,583,498 7,534,589 2,549,645 -5% -1% 26% 31%15000 - 17500 384 6,177,353 2,230,868 6,179,772 2,290,588 0% 3% 26% 30%17500 - 20000 153 2,854,842 1,150,131 3,176,893 1,249,303 11% 9% 24% 28%20000 - 25000 202 4,433,963 1,924,577 4,654,791 2,002,714 5% 4% 21% 26%25000 - 35000 245 7,071,253 4,006,139 7,116,580 4,044,321 1% 1% 17% 24%35000 - 55000 297 12,967,228 7,479,432 12,974,208 7,575,046 0% 1% 14% 21%55000 + 184 12,179,660 4,243,737 11,817,152 4,091,365 -3% -4% 10% 18%Assignment and Validation - Highway Assignment Validation 12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-5 Volume Group Validation Statistics – <strong>OKI</strong> Council RegionVolume GroupObserved Traffic Estimated Traffic % Error %Obs. Volume VMT Volume VMT Volume VMT RMSEMax. %RMSE0 - 500 389 132,189 137,008 207,902 210,402 57% 54% 206% 200%500 - 1500 1,534 1,553,679 1,128,223 1,635,388 1,171,083 5% 4% 88% 100%1500 - 2500 1,446 2,841,330 1,506,549 2,728,130 1,385,035 -4% -8% 61% 62%2500 - 3500 1,551 4,574,433 2,198,761 4,166,067 1,953,082 -9% -11% 58% 54%3500 - 4500 1,100 4,380,719 1,785,461 3,997,587 1,502,050 -9% -16% 54% 48%4500 - 5500 1,196 5,941,806 2,156,955 5,412,765 1,886,519 -9% -13% 47% 45%5500 - 7000 1,370 8,501,925 3,150,903 8,020,064 2,756,283 -6% -13% 41% 42%7000 - 8500 993 7,673,705 2,376,975 7,758,484 2,273,861 1% -4% 40% 39%8500 - 10000 647 5,993,999 1,857,927 6,045,752 1,848,848 1% 0% 38% 36%10000 - 12500 953 10,431,382 2,976,791 10,529,848 2,983,879 1% 0% 30% 34%12500 - 15000 405 5,486,906 1,826,502 5,353,985 1,833,918 -2% 0% 25% 31%15000 - 17500 290 4,677,135 1,652,297 4,801,717 1,746,113 3% 6% 28% 30%17500 - 20000 120 2,240,690 819,113 2,560,600 904,151 14% 10% 26% 28%20000 - 25000 169 3,710,416 1,361,559 3,901,448 1,387,484 5% 2% 21% 26%25000 - 35000 193 5,572,481 2,564,224 5,671,794 2,549,321 2% -1% 16% 24%35000 - 55000 260 11,340,238 6,379,903 11,398,738 6,524,635 1% 2% 14% 21%55000 + 179 11,890,960 4,148,954 11,554,469 4,007,161 -3% -3% 10% 18%Table 4-6 Volume Group Validation Statistics – MVRPC RegionVolume GroupObserved TrafficEstimated Traffic % ErrorObs. Volume VMT Volume VMT Volume VMT%RMSEMax.%Error0 - 500 310 88,908 92,677 104,620 89,446 18% -3% 178% 200%500 - 1500 716 682,527 481,633 868,225 567,103 27% 18% 110% 100%1500 - 2500 509 1,021,294 484,338 1,142,757 507,889 12% 5% 79% 62%2500 - 3500 440 1,318,749 577,910 1,337,215 582,173 1% 1% 59% 54%3500 - 4500 293 1,152,696 421,479 1,081,441 404,224 -6% -4% 50% 48%4500 - 5500 284 1,406,308 428,883 1,254,620 374,594 -11% -13% 41% 45%5500 - 7000 265 1,624,591 405,326 1,484,688 353,363 -9% -13% 38% 42%7000 - 8500 263 2,008,839 467,960 1,954,505 423,757 -3% -9% 36% 39%8500 - 10000 178 1,655,687 362,063 1,547,219 322,723 -7% -11% 35% 36%10000 - 12500 230 2,543,635 669,563 2,392,630 608,520 -6% -9% 32% 34%12500 - 15000 178 2,416,680 756,996 2,180,604 715,727 -10% -5% 28% 31%15000 - 17500 94 1,500,218 578,571 1,378,055 544,475 -8% -6% 20% 30%17500 - 20000 33 614,152 331,018 616,293 345,152 0% 4% 13% 28%20000 - 25000 33 723,547 563,018 753,343 615,229 4% 9% 19% 26%25000 - 35000 52 1,498,772 1,441,916 1,444,786 1,495,000 -4% 4% 19% 24%35000 - 55000 35 1,547,044 898,465 1,496,318 851,294 -3% -5% 16% 21%55000 + 5 288700 94783 262683 84204.41 -9% -11% 16% 18%Assignment and Validation - Highway Assignment Validation 13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.3 Observed vs. Estimated Volume CorrelationThe coefficient of correlation between observed and estimated directional volumes is 0.97 for the<strong>OKI</strong> Council Region and 0.94 for the MVRPC Region (see Figures 4.3 and 4.4). As expected fromthe results discussed above, the fit between observed and estimated volumes is excellent bothfor the <strong>OKI</strong> Council region and the MVRPC region. The only localized problem is a large volumeunderestimation on US 35 just south of the Dayton downtown and east of I-75. Due to the lackof OD data, it is not possible to investigate the underlying causes of this problem. One likelycause of this underestimation is the use of distance in the minimum path algorithm. The use ofdistance may cause some trips to prefer traveling on local streets through downtown rather thanusing US 35 to I-75, a longer distance path.Figure 4-3 Observed vs. Estimated Volumes – <strong>OKI</strong> Region100,000Estimated Volume80,00060,00040,00020,000Linear Correlation: 0.9700 20,000 40,000 60,000 80,000 100,000Observed Volume (ADT Directional)Figure 4-4 Observed vs. Estimated Volumes – MVRPC Region100,000Estimated Volume80,00060,00040,00020,000Linear Correlation: 0.9400 20,000 40,000 60,000 80,000 100,000Observed Volume (ADT Directional)Assignment and Validation - Highway Assignment Validation 14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.4 Screenline ValidationThe validation of cutlines and screenlines gave very positive results, both in the <strong>OKI</strong> and theMVRPC regions. As shown in Figures 4.5 to 4.7, the percent volume error for the vast majority ofscreenlines is below the maximum allowable error. All screenlines in the <strong>OKI</strong> region fall belowthe maximum allowable error. Two screenlines in Montgomery Country fall above the maximumerror: one located south of the CBD (#15, somewhat overestimated) and one in Miamisburg(#31, underestimated). Screenline 31 is understandably underestimated given that it consistsmostly of local roads. This screenline does not include the two major roads serving Miamisburg,Interstate 75 and the Dayton-Cincinnati Pike. Screenline No.29, which is located to the north anddoes include these major roads, is estimated with only 6% error. Most screenlines in MiamiCounty tend to be underestimated, even though the screenline that captures trips between Miamiand Montgomery Counties is estimated with only 1% error. This suggests that the tripunderestimation in Miami County is likely to be related to inadequate trip production/attractionequations or to other element in trip generation. Tables 4.7 to 4.10 summarize thecutline/screenline validation statistics. A link by link listing of each cutline and screenline isprovided in Appendix B. Figures 4.8 to 4.10 show the location of screenlines for the consolidatedmodel effort.Figure 4-5 Cutline Validation Tolerances, <strong>OKI</strong> Council Region70%Percent Cutline Volume Error60%50%40%30%20%10%0%0 50,000 100,000 150,000 200,000 250,000 300,000Cutline VolumeAssignment and Validation - Highway Assignment Validation 15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 4-6 Screenline Validation Tolerances, <strong>OKI</strong> Council Region70%Percent Screenline Volume Error60%50%40%30%20%10%0%0 200,000 400,000 600,000 800,000Screenline VolumeFigure 4-7 Screenline Validation Tolerances, MVRPC Region70%Percen Screenline Volume Error60%50%40%30%20%10%Max. Error Mon/Gre Miami0%0 150,000 300,000 450,000 600,000Screenline VolumeAssignment and Validation - Highway Assignment Validation 16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-7 <strong>OKI</strong> Council Region Screenline Validation StatisticsScreenlineTraffic VolumeName ID Observed Estimated % ErrorA 374,957 389,225 4%B 298,995 304,856 2%C 270,010 275,810 2%D 115,079 131,382 14%E 107,855 100,389 -7%F 259,079 248,942 -4%G 167,115 149,025 -11%H 524,394 487,606 -7%I 737,675 733,335 -1%J 852,515 809,997 -5%K 153,004 132,767 -13%L 424,771 448,417 6%M 440,944 490,962 11%N 174,507 201,821 16%O 241,744 228,705 -5%P 166,212 156,298 -6%Q 117,526 105,997 -10%R 94,272 72,852 -23%S 95,309 90,904 -5%T 90,985 98,947 9%U 173,405 177,458 2%V 61,147 65,333 7%Table 4-8 <strong>OKI</strong> Region Cutline Validation StatisticsCutline Cutline Traffic Volume NoCutline Cutline Traffic Volume No %% ErrorID Observed Estimated CountID Observed Estimated Count Error1 26,594 34,586 0 30% 26 19,241 14,697 0 -24%2 281,175 280,297 0 0% 27 104,327 100,924 1 -3%3 67,188 74,342 0 11% 28 91,367 83,022 0 -9%4 4,798 4,788 0 0% 29 45,138 43,764 0 -3%5 69,786 61,401 0 -12% 30 18,487 19,466 0 5%6 63,877 65,154 0 2% 31 24,996 21,817 0 -13%7 155,791 164,713 0 6% 32 68,241 78,400 0 15%8 26,593 26,216 0 -1% 33 206,489 186,985 0 -9%9 155,384 157,568 0 1% 34 53,423 45,813 0 -14%10 189,534 192,623 0 2% 35 134,397 129,226 0 -4%11 129,479 118,752 0 -8% 36 61,844 47,182 0 -24%12 85,177 76,232 0 -11% 37 228,538 223,916 0 -2%13 79,284 81,764 0 3% 38 47,444 48,551 0 2%14 129,631 119,480 0 -8% 39 155,566 187,846 0 21%15 119,982 87,148 0 -27% 40 82,537 103,064 0 25%16 85,869 80,955 0 -6% 41 177,248 168,646 0 -5%17 36,581 36,818 0 1% 42 218,831 172,098 0 -21%18 20,090 18,295 1 -9% 43 56,049 53,130 0 -5%19 38,534 46,614 0 21% 44 44,034 27,864 0 -37%20 57,990 43,313 0 -25% 45 169,313 152,717 0 -10%21 55,044 50,720 0 -8% 46 137,662 136,311 0 -1%22 20,585 21,272 0 3% 47 196,037 199,833 0 2%23 4,191 4,691 0 12% 48 221,186 202,948 0 -8%24 115,079 131,382 0 14% 49 84,283 90,324 0 7%25 111,886 96,669 0 -14% 50 178,732 149,328 0 -16%Assignment and Validation - Highway Assignment Validation 17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.8 <strong>OKI</strong> Region Cutline Validation Statistics (cont.)Cutline Cutline Traffic Volume NoCutline Cutline Traffic Volume No %ID Observed Estimated Count % Error ID Observed Estimated Count Error51 13,787 13,835 0 0% 86 66,238 76,098 0 15%52 154,384 158,736 0 3% 87 23,597 21,506 0 -9%53 52,027 42,398 0 -19% 88 51,986 46,712 0 -10%54 72,788 57,554 0 -21% 89 41,943 37,779 0 -10%55 28,189 32,815 0 16% 90 55,739 55,404 0 -1%56 99,037 100,547 0 2% 91 62,537 58,141 0 -7%57 173,982 188,740 0 8% 92 49,734 50,446 0 1%58 151,752 159,130 0 5% 93 112,735 115,533 0 2%59 14,450 9,793 0 -32% 94 59,026 65,229 0 11%60 63,191 72,618 0 15% 95 110,440 113,985 0 3%61 31,640 33,806 0 7% 96 115,481 136,592 0 18%62 79,141 79,212 0 0% 97 95,590 109,999 0 15%63 89,397 83,359 0 -7% 98 170,828 176,828 0 4%64 53,790 62,262 0 16% 99 123,924 127,690 0 3%65 131,474 117,380 0 -11% 100 63,939 66,834 0 5%66 166,434 188,809 0 13% 101 20,347 19,468 0 -4%67 188,937 195,771 0 4% 102 56,480 49,063 0 -13%68 142,641 137,614 0 -4% 103 76,443 73,291 0 -4%69 207,825 204,769 0 -1% 104 60,124 53,655 0 -11%70 215,492 228,324 0 6% 105 36,381 33,097 0 -9%71 86,791 80,526 0 -7% 106 57,891 39,755 0 -31%72 141,282 137,273 0 -3% 107 31,661 39,175 0 24%73 108,391 111,817 0 3% 108 106,534 89,113 0 -16%74 119,337 153,508 0 29% 109 87,480 74,820 0 -14%75 44,982 47,705 0 6% 110 127,903 137,411 0 7%76 214,742 216,994 0 1% 111 103,287 90,184 0 -13%77 113,782 132,685 0 17% 112 29,785 30,632 0 3%78 58,079 67,487 0 16% 113 51,782 43,117 0 -17%79 86,047 85,993 0 0% 114 13,742 17,155 0 25%80 97,480 105,229 0 8% 115 38,466 42,240 0 10%81 80,540 88,586 0 10% 116 52,519 56,707 0 8%82 139,978 138,496 0 -1% 117 128,810 120,531 0 -6%83 25,892 22,402 0 -13% 118 29,323 32,889 0 12%84 43,143 47,549 0 10% 119 4,741 3,343 0 -29%85 9,442 7,823 0 -17% 120 43,612 47,914 0 10%121 n/a n/a n/aAssignment and Validation - Highway Assignment Validation 18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-9 Montgomery/Greene Counties Screenline Validation StatisticsScreenlineTraffic VolumeName ID Observed Estimated % ErrorBetween Xenia and Yellow Springs 1 8,510 9,384 10%Huber Heights - n/s 2 86,200 70,309 -18%Huber Heights - e/w 3 165,246 145,792 -12%Randolph Township e/w 4 40,530 40,160 -1%Butler/Madison/Harrison Twp. e/w 5 76,584 74,837 -2%North of CBD - e/w 7 109,859 84,635 -23%Northeast of CBD - n/s 8 109,736 137,787 26%North of CBD - e/w 9 78,836 83,101 5%West of WPAFB - e/w 10 57,290 64,370 12%Between Dayton and Xenia - e/w 11 81,622 60,449 -26%Fairborn - e/w 12 57,252 51,070 -11%Northern CBD - e/w 13 180,884 211,020 17%Western CBD - n/s 14 149,122 146,844 -2%Southern CBD - e/w 15 55,700 75,260 35%Eastern CBD - n/s 16 112,624 125,402 11%West of Smithville Rd - n/s 17 130,178 125,605 -4%East of Grange Hall Rd - n/s 18 133,232 122,878 -8%Parallel to Hoover, e. of Gettysburg - e/w 19 66,356 55,443 -16%Parallel and east of Gettysburg - n/s 20 81,700 70,927 -13%Mid-western part of Mont. County - n/s 21 14,106 13,427 -5%Parallel to South Dixie - n/s 22 71,492 83,126 16%South of CBD - e/w 23 66,300 78,483 18%Between Kettering & Dayton e/w 24 81,702 86,843 6%Parallel to and e. of Far Hills - n/s 26 84,350 73,406 -13%Moraine/Kettering e/w 27 165,453 142,082 -14%Moraine/Ketterning - e/w 28 84,084 78,902 -6%West Carrollton/Miamisburg/Centerville - e/ 29 206,154 193,807 -6%North of SR 725 / East of I 675 - e/w 30 44,712 31,035 -31%Miamisburg - e/w 31 31,408 15,708 -50%North of US 35 in Beavercreek e/w 33 30,122 34,271 14%South of Xenia - e/w 34 21,282 20,634 -3%Between Xenia & Cedarville - e/w 35 21,790 18,077 -17%E. of US 68 in Xenia downtown - n/s 38 23,112 22,564 -2%W. of US 68 in Xenia downtown - n/s 39 47,560 35,710 -25%Northwest of CBD - e/w 40 87,348 88,993 2%Part 1 of Main Screenline 41 107,654 126,322 17%Part 2 of Main Screenline 42 86,507 93,018 8%Part 3 of Main Screenline 43 118,104 111,570 -6%Part 4 of Main Screenline 44 110,080 91,475 -17%Part 5 of Main Screenline 45 94,292 83,940 -11%Dayton Aux.Cordon 1 51 231,240 263,751 14%Dayton Aux. Cordon 2 52 699,194 742,585 6%Trotwood Aux. Cordon 1 53 25,710 32,263 25%Trotwood Aux. Cordon 2 54 57,144 44,523 -22%Miamisburg Aux. Cordon 55 63,092 63,818 1%Fairborn Aux. Cordon 56 74,642 56,719 -24%Cedarville Aux. Cordon 58 16,390 10,770 -34%Jamestown Aux. Cordon 59 26,448 21,095 -20%Xenia Auxiliary Cordon 60 94,448 97,120 3%Assignment and Validation - Highway Assignment Validation 19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4-10 Miami County Screenline Validation StatisticsScreenlineTraffic VolumeName ID Observed Estimated % Error1 136,796 144,555 6%2 11,692 8,824 -25%4 63,610 37,334 -41%5 101,332 69,709 -31%6 31,100 23,696 -24%7 66,834 65,398 -2%8 15,560 18,216 17%9 129,948 110,845 -15%10 111,584 112,942 1%Assignment and Validation - Highway Assignment Validation 20


VOBFigure 4-8 Screenline Location – <strong>OKI</strong> Council RegionUNRCMLKJIAHQFGGreater Cincinnati RegionCordons and ScreenlinesPDScreenline IDDETCordon/ScreenlineS


4142238<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 4-9 Screenline Location – Montgomery and Greene CountiesMontgomery and Greene CountiesCordons and Screenlines60 Screenline ID Screenline45440573565391019135117811121141621204352232418582722333528266029445531303445Assignment and Validation - Highway Assignment Validation 22


2759<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 4-10 Screenline Location – Miami CountyMiami CountyCordons and Screenlines10 Screenline ID Screenline684110Assignment and Validation - Highway Assignment Validation 23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05. Transit Assignment Methodology and Validation5.1 Transit Assignment MethodologyThe transit assignment consists of two all-or-nothing daily assignments: peak period and offpeak period. Transit trips from the home-based and non-home based purposes are added to theairport and King's Island trips prior to assignment. Transit trips are assigned in PA format, as iscustomary.For the purposes of the validation, student trips were not included in the assignment. Forforecasting purposes these trips will be included in the transit boarding totals.5.2 Transit Assignment ValidationFor the entire region, total transit ridership is estimated within 10% of the observed ridership(see Table 5.1). The estimation error associated with the ridership of each transit agencyincreases as the total observed ridership decreases: boardings for the largest regional agency,SORTA, are estimated with only 2% error, while boardings for TANK, a medium size agency, areestimated with 30% error. City of Hamilton and Middletown exhibit very low ridership; in factthere is some uncertainty about the actual number of observed boardings for these two agencies,and consequently the estimation error shown in Table 5.1 reflects this uncertainty.Tables 5.2 to 5.5 show transit validation statistics disaggregated by corridor, region and route.Given the low observed ridership, it is expected that the estimation errors at these levels ofdisaggregation will be relatively large. Some of this error is due to a mismatch between theroutes represented in the model and the routes for which observed data, either from the onboardsurvey or the independent boarding counts, are available. This issue was referred to in thediscussion about mode choice calibration target values; please see Part V of the <strong>Model</strong>Development Report. Overall the transit validation is adequate, particularly given the low sharetransit in regional tripmaking.Table 5-1 Observed vs. Estimated Boardings, by Transit AgencyAgencyObservedEstimated BoardingsBoardings Peak Off-Peak Total% ErrorMETRO 78,099 44,151 32,481 76,632 -2%TANK 9,167 7,588 4,292 11,880 30%City of Hamilton 1000 772 616 1,388 39%Middletown 905 900 616 1,516 68%MVRTA 40883 30,033 16,499 46,532 14%All Transit 130,054 83,444 54,504 137,948 6%Assignment and Validation - Transit Assignment Methodology and Validation 24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-2 Observed vs. Estimated Boardings by Corridor in the <strong>OKI</strong> RegionCorridorObservedEstimated BoardingsBoardings Peak Off Peak Total% ErrorPrice Hill 1 7,866 6,342 4,223 10,565 34%Western Hills 2 15,217 6,483 4,128 10,611 -30%Colerain / Winton 3 14,305 8,269 6,842 15,111 6%Reading / Vine 4 16,893 7,517 5,614 13,131 -22%Montgomery / Madison 5 14,584 12,131 7,828 19,959 37%Eastern 6 1,725 1,054 0 1,054 -39%Crosstown 7 7,509 2,355 3,846 6,201 -17%Kenton County 8 5,732 4,742 2,692 7,434 30%Campbell County 9 3,435 2,846 1,600 4,446 29%City of Hamilton 10 1,000 772 616 1,388 39%Middletown 11 905 900 616 1,516 68%All <strong>OKI</strong> Corridors 89,171 53,411 38,005 91,416 3%Table 5-3 Observed vs. Estimated Boardings by Route, SORTARoute Obs. Estimated BoardingsRoute Obs. Estimated BoardingsNo. Brdgns. Peak Off Peak Total % Error No. Brdgns. Peak Off Peak Total % Error1 1,240 342 255 597 -52% 33 4,288 3,531 2,624 6,155 44%3 309 282 0 282 -9% 39 258 284 91 375 45%4 6,811 5,261 4,037 9,298 37% 40 353 31 0 31 -91%6 2,080 3,540 761 4,301 107% 43 6,352 2,228 1,902 4,130 -35%10 1,134 698 444 1,142 1% 45 2,000 1,076 482 1,558 -22%11 3,378 2,258 1,124 3,382 0% 46 4,037 1,300 1,116 2,416 -40%16 922 409 131 540 -41% 47 2,500 822 730 1,552 -38%17 6,810 4,926 2,937 7,863 15% 49 2,624 458 501 959 -63%18 974 511 842 1,353 39% 50 705 787 454 1,241 76%19 1,261 638 1,477 2,115 68% 51 1,580 1,000 998 1,998 26%20 1,077 675 725 1,400 30% 53 1,081 91 106 197 -82%21 2,955 534 1,610 2,144 -27% 56 280 469 0 469 68%22 172 112 0 112 -35% 64 4,736 1,142 865 2,007 -58%23 589 176 0 176 -70% 69 1,600 1,965 1,169 3,134 96%24 1,182 1,190 1,066 2,256 91% 70 172 19 0 19 -89%25 67 0 0 0 -100% 74 0 433 0 433 n/a26 54 55 0 55 2% 75 595 382 0 382 -36%27 2,211 494 300 794 -64% 77 326 90 0 90 -72%28 769 640 432 1,072 39% 78 4,504 2,913 2,114 5,027 12%29 31 13 0 13 -58% 79 206 0 1,043 1,043 406%30 491 21 0 21 -96% 80 188 92 0 92 -51%31 3,402 922 1,444 2,366 -30% 81 382 131 0 131 -66%32 1,413 1,236 701 1,937 37%Assignment and Validation - Transit Assignment Methodology and Validation 25


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 5-4 Observed vs. Estimated Boardings by Route, TANKRoute Obs. Estimated BoardingsRoute Obs. Estimated BoardingsNo. Brdgns. Peak Off Peak Total % Error No. Brdgns. Peak Off Peak Total % Error1 1,951 1,725 1,301 3,026 55% 17 0 0 0 0 n/a2 165 315 110 425 158% 18 0 0 0 0 n/a3 445 237 156 393 -12% 19 0 0 0 0 n/a4 137 341 0 341 149% 20 264 56 15 71 -73%5 763 200 65 265 -65% 21 414 128 0 128 -69%6 720 576 220 796 11% 22 0 0 0 0 n/a7 698 592 303 895 28% 23 233 326 120 446 91%8 422 289 111 400 -5% 24 935 960 449 1,409 51%9 273 116 270 386 41% 25 0 0 0 0 n/a10 0 0 0 0 n/a 26 0 0 0 0 n/a11 594 731 390 1,121 89% 27 0 0 0 0 n/a12 577 408 367 775 34% 30 158 351 156 507 221%16 418 237 259 496 19% 32 0 0 0 0 n/a33 0 0 0 0 n/aRoutes 10,17,18,19,22,25,26,27,32, and 33 were not in operation in 1995.Table 5-5 Observed vs. Estimated Boardings by Route, MVRTARoute Obs. Estimated BoardingsRoute Obs. Estimated BoardingsNo. Brdgns. Peak Off Peak Total % Error No. Brdgns. Peak Off Peak Total % Error2 2,763 2,087 776 2,863 4% 24 861 1,197 768 1,965 128%4 2,196 484 444 928 -58% 40 38 293 160 453 1092%5 951 1,446 643 2,089 120% 42 32 465 148 613 1816%7 3,861 3,449 1,571 5,020 30% 51 47 0 0 0 -100%8 4,953 1,988 1,267 3,255 -34% 60 225 244 228 472 110%9 3,401 753 506 1,259 -63% 62 161 0 0 0 -100%11 788 703 766 1,469 86% 63 229 116 63 179 -22%12 2,520 809 1,148 1,957 -22% 1E 1,022 443 250 693 -32%13 552 512 236 748 36% 1W 1,427 553 263 816 -43%14 1,215 1,255 578 1,833 51% 3E 598 209 293 502 -16%15 973 464 296 760 -22% 3W 1,322 686 340 1,026 -22%16 1,657 1,848 328 2,176 31% 1A 53 77 0 77 45%17 1,521 1,514 1,219 2,733 80% 1B 23 43 0 43 87%18 1,402 1,717 755 2,472 76% 3X 5 8 0 8 60%19 1,306 2,887 1,542 4,429 239% 4X 34 79 0 79 132%20 753 293 340 633 -16% 5X 754 29 0 29 -96%21 61 231 0 231 279% 7X 21 29 0 29 38%22 2,573 1,330 773 2,103 -18% 17X 30 56 0 56 87%23 536 1,721 798 2,519 370% 41 19 15 0 15 -21%Assignment and Validation - Transit Assignment Methodology and Validation 26


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06. Appendix A<strong>OKI</strong> <strong>Model</strong> v54 and MVRPC Base 94<strong>Model</strong> Validation StatisticsAssignment and Validation - Appendix A 27


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.06.1 MVRPC Base 1994 <strong>Model</strong> ValidationTable 6-1 Facility Type Validation – by Link VMTFunctional Class NumberVehicle Miles <strong>Travel</strong>edCode Name of Counts Observed Estimated Pct Diff0 Ramp 178 317,250 292,022 -8.0%1 Local 394 183,869 200,620 9.1%2 Interstate 107 2,602,674 2,616,528 0.5%3 Expressway 60 614,278 609,477 -0.8%4 Major Arterial 709 1,766,382 1,733,118 -1.9%5 Minor Arterial 819 1,545,588 1,538,367 -0.5%6 Major Collector 1,006 1,104,416 1,128,632 2.2%7 Minor Collector 144 112,738 119,448 6.0%Total 3,417 8,247,195 8,238,212 -0.1%Table 6-2 Volume Group Validation – by Link VMTADT Volume Number ofTotal VMTFrom To Counts Observed Estimated Pct Diff0 499 215 61,441 83,742 36.3%500 1,499 542 328,856 394,173 19.9%1,500 2,499 419 377,364 419,663 11.2%2,500 3,499 384 501,358 556,542 11.0%3,500 4,499 255 408,695 406,619 -0.5%4,500 5,499 268 423,454 421,461 -0.5%5,500 6,999 250 425,397 419,228 -1.5%7,000 8,499 242 447,148 430,762 -3.7%8,500 9,999 183 401,458 377,950 -5.9%10,000 12,499 224 647,421 639,298 -1.3%12,500 15,000 170 756,643 713,102 -5.8%15,000 17,500 97 651,748 643,951 -1.2%17,500 20,000 45 292,447 254,267 -13.1%20,000 25,000 39 517,883 551,862 6.6%25,000 35,000 28 636,134 577,837 -9.2%35,000 55,000 56 1,369,747 1,347,756 -1.6%55,000 + 0Total 3,417 8,247,195 8,238,212 -0.1%Table 6-3 Facility Type Validation – by Link VolumeFunctional Class NumberTotal VolumeCode Name of Counts Observed Estimated Pct Diff Pct RMSE0 Ramp 178 881,914 828,556 -6% 38%1 Local 394 425,861 447,627 5% 71%2 Interstate 107 3,314,440 3,362,128 1% 20%3 Expressway 60 1,132,756 1,077,635 -5% 27%4 Major Arterial 709 7,043,106 6,895,030 -2% 28%5 Minor Arterial 819 5,347,953 5,297,572 -1% 34%6 Major Collector 1,006 2,986,024 3,008,236 1% 44%7 Minor Collector 144 126,788 134,008 6% 43%Total 3,417 21,258,842 21,050,792 -1% 37%Assignment and Validation - Appendix A 28


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 6-4 Volume Group Validation – by Link VolumeADT Volume Number ofTotal VolumeFrom To Counts Observed Estimated Pct Diff % RMSE0 499 215 65,350 100,880 54.4% 154.2%500 1,499 542 524,022 657,363 25.4% 76.8%1,500 2,499 419 838,691 944,175 12.6% 52.0%2,500 3,499 384 1,145,165 1,321,595 15.4% 48.1%3,500 4,499 255 1,007,291 1,011,061 0.4% 36.2%4,500 5,499 268 1,336,863 1,334,017 -0.2% 27.5%5,500 6,999 250 1,539,100 1,548,539 0.6% 27.6%7,000 8,499 242 1,844,149 1,831,723 -0.7% 31.4%8,500 9,999 183 1,711,934 1,623,080 -5.2% 26.2%10,000 12,499 224 2,469,897 2,413,754 -2.3% 28.7%12,500 15,000 170 2,307,890 2,117,289 -8.3% 23.8%15,000 17,500 97 1,550,002 1,458,083 -5.9% 21.6%17,500 20,000 45 841,729 724,152 -14.0% 23.6%20,000 25,000 39 859,406 777,647 -9.5% 24.8%25,000 35,000 28 844,071 784,064 -7.1% 21.7%35,000 55,000 56 2,373,282 2,403,370 1.3% 18.4%55,000 + 0 0 06.2 <strong>OKI</strong> <strong>Model</strong> v54 ValidationTable 6-5 Facility Type ValidationObserved Observed Estimated EstimatedFacility Type No. Obs. VMT Volume VMT % Error Volume % Error % RMSEAll 12,344 33,680,062 83,942,128 32,822,917 -3% 81,316,659 -3% 42%Interstate 1 618 12,775,721 23,976,209 12,857,314 1% 23,798,394 -1% 17%Major Arterial 2 2,378 6,100,331 20,605,732 6,355,923 4% 21,004,462 2% 38%Minor Arterial 3 2,539 5,829,068 15,955,769 5,609,710 -4% 15,365,996 -4% 40%Major Collector 4 4,660 6,234,404 15,514,048 5,296,677 -15% 13,064,520 -16% 58%Minor Collector 5 490 392,741 426,812 304,925 -22% 376,866 -12% 112%Local 6 919 842,488 1,771,208 699,144 -17% 1,522,432 -14% 71%Ramp 8 605 640,271 4,138,308 677,052 6% 4,350,951 5% 58%Expressway 9 135 865,038 1,554,042 1,022,171 18% 1,833,038 18% 42%Assignment and Validation - Appendix A 29


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 6-6 Volume Group ValidationObserved Observed Estimated EstimatedVolume Group No. Obs. VMT Volume VMT % Error Volume % Error% RMSE0 - 500 495 156,529 166,967 270,678 73% 319,499 91% 257%500 - 1500 1,751 1,163,297 1,653,757 1,370,103 18% 2,101,925 27% 120%1500 - 2500 1,449 1,518,642 2,816,868 1,639,009 8% 3,229,657 15% 81%2500 - 3500 1,425 2,023,702 4,155,432 1,961,051 -3% 4,194,048 1% 62%3500 - 4500 1,210 1,936,803 4,788,987 1,774,061 -8% 4,748,495 -1% 65%4500 - 5500 1,133 2,071,471 5,616,541 1,937,429 -6% 5,280,053 -6% 49%5500 - 7000 1,241 2,829,157 7,681,096 2,492,065 -12% 7,055,688 -8% 44%7000 - 8500 923 2,151,761 7,063,027 1,891,192 -12% 6,545,555 -7% 39%8500 - 10000 650 1,860,174 5,986,494 1,791,335 -4% 5,812,817 -3% 36%10000 - 12500 800 2,584,188 8,781,026 2,460,354 -5% 8,057,045 -8% 32%12500 - 15000 312 1,419,827 4,213,392 1,373,667 -3% 3,892,228 -8% 28%15000 - 17500 213 1,160,311 3,411,000 1,164,622 0% 3,195,970 -6% 27%17500 - 20000 130 1,184,906 2,409,670 1,279,430 8% 2,498,780 4% 23%20000 - 25000 153 1,012,095 3,365,847 1,048,944 4% 3,343,141 -1% 27%25000 - 35000 157 3,259,063 4,704,674 3,445,332 6% 4,735,953 1% 18%35000 - 55000 144 3,505,113 6,448,828 3,273,580 -7% 6,080,586 -6% 16%55000 + 160 3,843,023 10,679,524 3,650,068 -5% 10,226,219 -4% 13%Table 6-7 Transit Validation, by AgencyObservedEstimated BoardingsAgency Boardings Peak Off-Peak Total % ErrorMETRO 78,099 58,135 43,688 101,823 30%TANK 9,167 11,735 6,028 17,763 94%City of Hamilton 1,000 1,201 1,338 2,539 154%Middletown 905 217 275 492 -46%All Transit 89,171 71,288 51,329 122,617 38%Table 6-8 Transit Validation, by CorridorObservedEstimated BoardingsCorridor Boardings Peak Off Peak Total % ErrorPrice Hill 1 7,861 6,933 4,210 11,143 42%Western Hills 2 12,496 5,870 6,207 12,077 -3%Colerain / Winton 3 11,216 8,824 7,850 16,674 49%Reading / Vine 4 19,982 8,614 8,977 17,591 -12%Montgomery / Madison 5 14,937 14,044 8,570 22,614 51%Eastern 6 1,725 7,333 0 7,333 325%Crosstown 7 9,877 6,532 7,874 14,406 46%Kenton County 8 6,131 6,532 3,555 10,087 65%Campbell County 9 3,037 5,188 2,473 7,661 152%City of Hamilton 10 1,000 1,201 1,338 2,539 154%Middletown 11 905 217 275 492 -46%All <strong>OKI</strong> Corridors 89,166 71,288 51,329 122,617 38%Assignment and Validation - Appendix A 30


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07. Appendix BModifications to the MVRPC NetworkAssignment and Validation - Appendix B 31


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The following are all the modifications to the MVRPC network performed during the modelvalidation phase, by either PB or MVRPC, as indicated.7.1 Modifications undertaken by PB1. Free-flow speed on all Minor Collectors: 35 mph.2. Free-flow speed on all Local Roads: 30 mph.3. Maximum free-flow speed on Major Collectors (SCC 11 & Adm.Class 4, Major Roads withsparse intersection spacing) : 50 mph.4. Maximum free-flow speed on Major Collectors (SCC 11 & Adm.Class 5 and SCC 21 andAdm.Class 4, Minor Roads and Major Roads with dense intersection spacing): 45 mph.5. Maximum free-flow speed on all Major Arterials: 55 mph.6. Minimum free-flow speed on Expressways: 57 mph.7. Free-flow speed on I-675: 67 mph.8. Free-flow speed on I-75 south of Dayton downtown: 60 mph.9. Airway Rd. reclassified as Minor Arterial.10. Frederick Pike reclassified as Minor Arterial.11. Monument Ave. reclassified as Major Arterial.12. Second Ave. reclassified as Minor Arterial.13. Olive Rd. reclassified as Minor Arterial.14. Alexanderville Rd. reclassified as Minor Arterial (two links were originally classified asMajor Collector while the rest were Major Arterials).15. Smithville Rd. reclassified as Major Arterial.16. Main Street in downtown Xenia reclassified as a Minor Arterial.17. Free-flow speed on US 35: 65 mph.18. Free-flow speed on Salem Ave from Dayton downtown to I-70 standardized to 35 mph.19. Free-flow speed on Main Street from Dayton downtown to I-70 standardized to 35 mph.20. Free-flow speed on James McGee Blvd. standardized to 35 mph.21. Free-flow speed on Mike Schmidt Pkwy. standardized to 40 mph.22. Free-flow speed on Springboro Pike between I-75/I-675 interchange and I-75standardized to 45 mph.23. Free-flow speed on SR 725 east of Miamisburg standardized to 45 mph.24. Free-flow speed on Needmore Rd. standardized to 35 mph.25. Free-flow speed on Woodman Dr. standardized to 40 mph.26. Free-flow speed on Patterson Rd. standardized to 35 mph.27. Free-flow speed on Union School House Rd. (Huber Heights) increased to 35 mph).28. Bath Rd. (Huber Heights) reclassified as Minor Collector.29. Free-flow speed on Broad Street (Fairborn) increased to 45 mph.Assignment and Validation - Appendix B 32


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.07.2 Modifications undertaken by MVRPC1. Network wide speed consistency check changes, for example:2. Eliminate sharp decreases/increases in speed limits for short distances.3. Increase speed in major and minor arterials to 35 mph unless a road passes through adowntown area other than downtown Dayton.4. Discrete changes to collector speeds based on local road knowledge.5. Correct centroid connectors with distance coded as 1. (This was causing a problem fortraffic in/out of W.P.A.F.B. at TAZ 2139).6. Count Check. Approximately 8 % of counts were changed. Major changes occurredaround: I-675/SR 844; I-75 through downtown (changed to match counts used onDowntown Dayton Subcorridor Study); I-70; and I-75/I-675.7. Centroid connector changes at TAZs 1949, 2141, 1925, 1934, 1933, 1924, 1851, 1852,1951, 1836, 1969, 1963, 1961, 1960, 2032.8. Change selected major roads in dense urban areas from SCC=11 to SCC=22 decreasingcapacity from 1350 vphpl to 930 vphpl. Reason no left turn lanes, narrow lanes, andheavy bus traffic on the following roads.a. Salem Av. from Shiloh Springs Road to Downtown.b. Main Street from Needmore Road to Patterson Roadc. Wayne Avenue from Fifth Street to Patterson Road.9. Added TAZs 1610, 1612, 1613, 1657, 1670, 1792, 1799, 1803, 1804, 1806, 1810, and2119 to downtown area type (1). Re-coded capacities and speed capacity codes ofstreets that are within these TAZs according to <strong>OKI</strong> speed capacity table major road inCBD category (490 vphpl).10. Changed counts in US 35 between I-75 and Smithville Road based on new 2001 ODOTcounts.11. Lowered speed in Stanley Avenue from 40 to 35 mph between I-75 and First Street.12. Decreased the speed of all non freeway to freeway ramps to 25 mph within the MVRPCregion.Assignment and Validation - Appendix B 33


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.08. Appendix CCutline and Screenline ValidationAssignment and Validation - Appendix C 34


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-1 <strong>OKI</strong> Council Region Cutline Validation StatisticsCutline Street Name A Node B Node Observed Estimated No Count % Error1 I-275 10824 9702 13297 17150 0 29%1 I-275 9701 11068 13297 17436 0 31%2 I-471 9544 9542 50598 46388 0 -9%2 I-471 9543 9545 50598 45972 0 -9%2 L&N 3260 4597 11696 13975 0 19%2 SUSPENSION 8201 8299 17096 22533 0 32%2 CLAY WADE SB 3257 3977 16999 8820 0 -52%2 I-71&I-75 9751 9799 67094 72620 0 8%2 I-71&I-75 9798 9750 67094 69989 0 5%3 I-275 EAST 8921 8923 33594 36846 0 10%3 I-275 EAST 8922 8920 33594 37496 0 12%4 RIVER RD 3058 3062 1696 899 0 -46%4 HIGHWATER RD 3637 3642 1051 405 0 -63%4 AMSTERDAM RD 3642 10126 2051 3484 0 70%5 DONALDSON 3196 10080 8996 9540 0 7%5 I-275 9729 11087 29197 24503 0 -17%5 I-275 10831 9728 29197 24614 0 -16%5 STATE ROUTE 8 3007 8355 2396 2744 0 16%6 STATE ROUTE 18 3343 8368 23194 29255 0 26%6 STATE ROUTE 20 8353 9943 5593 1744 0 -68%6 I-275 11082 9727 17097 16553 0 -4%6 I-275 9726 11083 17097 16334 0 -5%6 STATE ROUTE 8 8355 9935 896 1268 0 44%7 HIGHLAND 8258 9911 5051 1539 0 -68%7 I-75 9771 11114 68096 73799 0 9%7 I-75 10790 9770 68096 75841 0 11%7 DIXIE HIGHWAY 8260 9912 8497 4949 0 -42%7 AMSTERDAM 3632 9908 6051 8585 0 39%8 STATE ROUTE 177 3382 3383 13997 16987 0 21%8 MADISON PIKE 3089 3100 12596 9229 0 -28%9 DIXIE HIGHWAY 3170 3485 24194 27424 0 13%9 I-75 11109 9759 65595 64490 0 -2%9 I-75 9758 11110 65595 65654 0 0%10 TURKEYFOOT 3096 3310 30051 27214 0 -10%10 DIXIE HIGHWAY 3046 3047 25297 26310 0 3%10 HULBERT 3333 3639 6996 2123 0 -69%10 I-75 9665 9745 63595 69194 0 9%10 I-75 9744 9664 63595 67782 0 7%11 TURKEYFOOT 3034 3035 4096 7834 0 91%11 STATE ROUTE 25 3026 3847 14097 5864 0 -58%11 I-75 9655 11045 45295 42690 0 -6%11 I-75 11099 9654 45295 42082 0 -7%11 US 42 3004 3005 20696 20282 0 -2%12 STATE ROUTE 25 3853 8273 6397 5249 0 -19%12 I-75 11041 9748 22796 19229 0 -16%12 I-75 9742 11098 22796 18148 0 -20%12 STATE ROUTE 14 3804 10140 1696 2501 0 47%12 I-71 11026 9644 13698 13326 0 -3%12 I-71 9645 11042 13698 13480 0 -2%12 US 42 3825 3826 4096 4299 0 5%13 DONALDSON 3012 3013 12396 16135 0 32%13 I-275 9731 9733 28496 29846 0 4%Assignment and Validation - Appendix C 35


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error13 I-275 9732 11089 28496 29381 0 3%13 STATE ROUTE 371 3057 3337 9896 6402 0 -35%14 MT. ZION RD 4014 4015 6296 4516 0 -28%14 RICHARDSON 3006 4016 10196 3374 0 -67%14 US 42 3186 3266 31596 30164 0 -5%14 STATE ROUTE 18 3188 4121 45396 49064 0 8%14 THOROUGHBRED 4007 4008 9051 11805 0 34%14 STATE ROUTE 1017 3624 8221 27096 20557 0 -24%15 ORPHANAGE 3168 3306 18694 15111 0 -19%15 I-275 9772 9738 40995 24935 0 -39%15 I-275 9739 9773 40995 27430 0 -33%15 SR 236 3042 3044 19298 19672 0 2%16 MT. ZION 3845 4013 6296 13622 0 117%16 RICHARDSON 4016 4028 7796 1896 0 -76%16 US 42 3185 7887 33596 27229 0 -19%16 TANNERS LANE 3316 3317 6990 7993 0 14%16 STATE ROUTE 18 3017 3317 12796 9111 0 -30%16 STATE ROUTE 1017 3016 8223 18395 21104 0 14%17 STATE ROUTE 14 3804 10140 1696 2501 0 47%17 STATE ROUTE 1292 3826 11212 596 306 0 -47%17 I-71 11026 9644 13698 13326 0 -3%17 I-71 9645 11042 13698 13480 0 -2%17 STATE ROUTE 338 3202 3876 3596 4934 0 36%17 STATE ROUTE 536 3835 10182 3297 2271 0 -31%18 STATE ROUTE 16 3853 3893 10796 8705 0 -20%18 STATE ROUTE 338 3849 3879 5997 7319 0 21%18 STATE ROUTE 536 3835 10182 3297 2271 0 -31%19 RUSSELL 8252 8266 5693 11410 0 97%19 MADISON 8253 8261 13091 13538 0 2%19 SCOTT 8255 8262 9699 11451 0 21%19 GREENUP 8263 8256 10051 10215 0 2%20 SR-177 3113 10034 2797 994 0 -63%20 STATE ROUTE 16 3175 8278 23896 21352 0 -11%20 MADISON 3073 3264 31297 20967 0 -34%21 SR-17 3074 3174 28051 30268 0 8%21 SR-16 3084 3176 24196 19458 0 -19%21 SR-177 3113 10034 2797 994 0 -63%22 STATE ROUTE 177 3110 10031 3097 3658 0 18%22 STATE ROUTE 16 3079 10013 6596 5928 0 -9%22 STATE ROUTE 1486 3078 3885 1796 1113 0 -42%22 MADISON 3077 10009 9096 10573 0 16%23 STATE ROUTE 177 3907 3908 1097 309 0 -73%23 STATE ROUTE 17 3869 10206 2397 2611 0 9%23 STATE ROUTE 2043 3809 3866 697 1771 0 150%24 4TH 8207 8300 17696 35935 0 103%24 12TH 8259 8356 13296 22002 0 66%24 I-275 9786 9694 40995 35481 0 -13%24 I-275 9695 9787 40995 35227 0 -14%24 VISALIA 3897 3898 2097 2737 0 32%25 LICKING PIKE 3102 3229 7998 11762 0 47%25 ALEXANDRIA 3134 3136 15098 8141 0 -46%25 I-471 9674 11050 44395 37785 0 -15%25 I-471 11049 9675 44395 38981 0 -12%26 MEMORIAL PKWY 3149 9923 9392 4353 0 -53%26 COVERT RUN PIKE 3153 3154 2051 4789 0 134%Assignment and Validation - Appendix C 36


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error26 STATE ROUTE 8 3159 3160 7798 5555 0 -30%27 STATE ROUTE 9 3104 10026 6051 5381 0 -9%27 3-MILE 3622 9950 1093 3791 0 246%27 I-275 11055 9676 41495 39505 0 -5%27 I-275 9677 11052 41495 41379 0 0%27 US 27 3118 3127 9295 5042 0 -47%27 STATE ROUTE 445 3129 10046 4898 5826 0 20%28 STATE ROUTE 9 3183 10077 25395 24322 0 -4%28 JOHN HILL RD 3106 3447 3398 1119 0 -68%28 3-MILE 3126 3140 5795 2948 0 -51%28 I-471 3199 10082 20693 21785 0 5%28 I-471 11058 3199 20693 21653 0 5%28 US 27 3118 3127 9295 5042 0 -47%28 STATE ROUTE 8 3125 8366 6098 6153 0 2%29 STATE ROUTE 9 3918 10240 2198 803 0 -64%29 ALEXANDRIA 3922 3923 27494 29804 0 8%29 AA-HIGHWAY 4161 4162 12051 10826 0 -10%29 STATE ROUTE 547 3120 10040 3395 2331 0 -32%30 US 27 3912 3913 10696 10390 0 -3%30 AA-HIGHWAY 4164 4165 6095 2320 0 -62%30 STATE ROUTE 10 3946 3947 299 52 0 -84%30 STATE ROUTE 1121 3989 10267 599 6621 0 1006%30 STATE ROUTE 8 3945 3951 798 83 0 -89%31 SOUTHGATE 3180 3370 12998 12445 0 -5%31 GRAND AVE 3132 11334 11998 9372 0 -23%32 6TH EXPRESS 4830 10298 44051 62183 0 41%32 8TH STREET 4828 5002 15896 11825 0 -25%32 GEST 4826 5910 8294 4392 0 -47%33 SPRING GROVE 4730 4732 12051 6794 0 -42%33 I-75 9588 8852 83051 83399 0 0%33 I-75 8862 8856 80051 70988 0 -12%33 WINCHELL AVE 4734 4733 5292 7085 0 34%33 CENTRAL AVE 4736 4737 4051 2454 0 -38%33 CENTRAL PARKWAY 4729 10297 18697 16265 0 -13%33 MC MICKEN 10295 10296 3296 0 0 -100%34 RAVINE 4727 4739 9051 8899 0 -1%34 CLIFTON 4725 10294 6391 9581 0 50%34 VINE 4724 4897 16092 18674 0 15%34 AUBURN 4722 4898 16793 7607 0 -55%34 HIGHLAND 4721 4750 5096 1052 0 -79%35 I-71 9568 9566 47751 43772 0 -8%35 I-71 9517 9567 47751 48094 0 1%35 GILBERT 4625 9515 11898 7526 0 -36%35 READING 4603 4757 26997 29834 0 10%36 EASTERN 4754 4920 7750 2778 0 -64%36 US 50 9598 9599 30051 24121 0 -20%36 US 50 9599 9537 18551 17739 0 -4%36 VICTORY PKWY 4879 11565 5492 2544 0 -54%37 SPRING GROVE 5271 11377 14051 11433 0 -21%37 I-75 9314 10948 82650 85622 0 3%37 I-75 10999 9315 82650 82828 0 1%37 CENTRAL AVE 4984 5088 13097 5380 0 -59%37 CLIFTON AVE 5085 5411 20793 22018 0 4%37 JEFFERSON AVE 5082 6014 15297 16635 0 9%38 US-50 5099 5123 16097 12739 0 -22%Assignment and Validation - Appendix C 37


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error38 DELHI AVE 5124 10330 16296 17109 0 6%38 WEST 8TH ST 5126 5127 15051 18703 0 24%39 GLENWAY AVE 5118 5143 21097 30297 0 44%39 QUEEN CITY AVE 5146 5909 20692 27786 0 34%39 HARRISON AVE 5266 5790 17492 19929 0 16%39 WESTWOOD NORTHERN 5269 5906 14194 25919 0 83%39 BALTIMORE AVE 5277 11378 5094 4530 0 -11%39 I-74 9506 11027 34850 35274 0 1%39 I-74 10951 9505 34850 38208 0 9%39 WEST FORK 5382 5918 7297 5903 0 -22%40 COLERAIN AVE 5378 11390 24096 29254 0 22%40 VIRGINIA AVE 4292 6074 10597 6072 0 -42%40 KIRBY 5383 6076 8197 22624 0 182%40 HAMILTON AVE 5385 5386 16150 24128 0 43%40 WINTON RD 5420 5427 23497 20986 0 -13%41 MITCHELL AVE 5422 5742 17297 10952 0 -37%41 SPRING GROVE AVE 5422 5920 15051 12061 0 -20%41 I-75 9203 10898 72450 73930 0 2%41 I-75 10903 9202 72450 71703 0 -1%42 READING RD 5749 10490 23051 11390 0 -50%42 VICTORY PKWY 5749 10491 11792 5488 0 -54%42 US-22 5777 5778 18051 21691 0 21%42 DANA AVE 6119 6120 3595 1588 0 -57%42 I-71 9290 9288 61850 53195 0 -14%42 I-71 9289 9291 61850 53401 0 -14%42 MADISON 5800 5813 16794 8177 0 -52%42 ERIE AVE 5811 5812 8551 5241 0 -38%42 OBSERVATORY AVE 5817 5818 13297 11927 0 -10%43 COLUMBIA PKWY 9079 10882 45051 45775 0 1%43 EASTERN AVE 5037 11362 10998 7355 0 -33%44 US 50 5133 10336 9450 7961 0 -17%44 DELHI PK 5158 5159 8496 5002 0 -42%44 FOLEY 5157 5891 5896 674 0 -86%44 RAPID RUN PK 5155 5156 10397 3099 0 -71%44 CLEVES WARSAW 5153 5218 9795 11128 0 15%45 CROOKSHAKN 5219 5221 11195 11479 0 3%45 GLENWAY 5223 7872 29697 15896 0 -47%45 QUEEN CITY 3280 5238 15194 13164 0 -14%45 WERK 5241 5899 8291 7892 0 -4%45 MONTANA 5255 5256 12051 12868 0 7%45 HARRISON 5254 5258 14393 29968 0 110%45 WESTWOOD NORTHERN 5284 5285 19396 10012 0 -49%45 I-74 9334 10957 29550 27575 0 -8%45 I-74 10952 9333 25051 23157 0 -7%45 WESTFORK RD 5300 5379 4495 706 0 -85%46 NORTH BEND 5301 5368 19197 17822 0 -8%46 JESSUP 5352 5365 6296 3351 0 -47%46 BLUE ROCK 5351 5353 7397 4026 0 -46%46 COLERAIN 5350 5353 26197 29214 0 13%46 PIPPIN 5197 5354 12297 10418 0 -17%46 SIMPSON 5268 5273 5791 4381 0 -26%46 HAMILTON 5360 5361 20297 32467 0 61%46 DALY 5445 5447 14694 10328 0 -34%46 WINTON 5444 5449 25496 24304 0 -5%47 SR 4 5454 5455 20250 21060 0 3%Assignment and Validation - Appendix C 38


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error47 ANTHONY WAYNE 5616 10461 7190 1275 0 -82%47 I-75 5792 9217 74850 77833 0 4%47 I-75 9218 5791 74850 78675 0 6%47 READING RD 3450 5621 18897 20990 0 11%48 RIDGE 5660 10476 13051 12545 0 -4%48 US 22 5659 5662 22897 14135 0 -38%48 WOODFORD 5677 5977 4394 1690 0 -63%48 KENNEDY 5678 10483 6551 4693 0 -29%48 I-71 10972 9308 63550 49043 0 -23%48 I-71 9307 10944 63550 47996 0 -25%48 DUCK CREEK 5704 6193 7251 4937 0 -33%48 MADISON 5763 6194 11051 28590 0 162%48 ERIE 5766 5767 8194 16031 0 94%48 RED BANK 5766 5803 20697 23288 0 12%49 COLUMBIA 9147 9152 9994 10571 0 6%49 COLUMBIA 9143 9147 9994 11196 0 11%49 WILMER 3443 5040 5051 850 0 -82%49 BEECHMONT LEVEE 5047 6621 39794 49726 0 25%49 KELLOGG 5045 7344 19450 17981 0 -8%50 RIDGE 5589 5968 12293 17098 0 39%50 PLAINFIELD 5585 10457 10997 7986 0 -28%50 BLUE ASH 5582 5583 10096 4174 0 -57%50 KENWOOD 5579 5580 18596 5938 0 -68%50 I-71 9179 8673 53050 49401 0 -7%50 I-71 8676 9178 53050 49636 0 -6%50 US 22 5575 5967 20650 15095 0 -28%51 CAMARGO 5573 5947 4797 3046 0 -36%51 SHAWNEE RUN 5646 5696 5397 4797 0 -10%51 INDIAN HILL 5861 10505 3593 5992 0 67%52 WOOSTER PIKE 10469 10470 10898 13807 0 26%52 ROUND BOTTOM 6599 10117 4696 4290 0 -9%52 SR 32 6614 6617 17450 23262 0 33%52 CLOUGH PK 6363 6637 12795 12176 0 -5%52 SR 125 6384 7429 34397 30136 0 -12%52 I-275 8913 10810 27250 29341 0 8%52 I-275 10815 8912 27250 29819 0 10%52 FIVE MILE RD 3121 10041 2597 16 0 -99%52 US 52 6639 10564 17051 15889 0 -6%53 US 50 5162 10343 9450 9503 0 1%53 RAPID RUN PK 5887 11811 9297 2966 0 -68%53 CLEVES WARSHAW 5165 10344 6194 4748 0 -23%53 WERK 5211 5884 8896 2779 0 -68%53 BRIDGETOWN RD 5204 10377 12795 16526 0 29%53 TAYLOR 5204 11373 5395 5876 0 7%54 I-74 10970 9385 25397 17060 0 -33%54 I-74 9386 10989 25397 19673 0 -23%54 HARRISON 5187 6245 21994 20821 0 -5%55 POOLE RD 5308 5873 6595 5153 0 -21%55 CROSS CO HWY 8866 9342 5051 5916 0 18%55 CROSS CO HWY 9000 8865 5051 4612 0 -10%55 GALBRAITH 3459 5306 3695 2809 0 -26%55 BLUE ROCK 5304 5305 7797 14325 0 81%56 US-27 3460 5872 42796 45941 0 7%56 PIPPIN 5298 5482 8795 8121 0 -8%56 HAMILTON AVE 5327 11483 22350 22223 0 0%Assignment and Validation - Appendix C 39


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error56 WINTON 5483 5932 25096 24262 0 -3%57 STATE ROUTE 4 5486 5487 22897 27848 0 22%57 CHESTER RD 5937 10513 5097 4242 0 -19%57 I-75 9228 8720 62051 69214 0 12%57 I-75 8721 9229 62051 70684 0 14%57 US 42 5527 5549 15594 14161 0 -8%57 PADDOCK RD 5394 5546 6292 2591 0 -59%58 REED HARTMAN 5397 10399 15051 24330 0 61%58 KENWOOD 5531 5542 8051 4738 0 -40%58 I-71 9190 9188 52550 53061 0 1%58 I-71 9189 9191 52550 48640 0 -7%58 US 42 7707 10524 23550 28361 0 21%59 US 50 5173 10349 14450 9793 0 -33%60 I-74 8928 10825 26497 33644 0 27%60 I-74 9335 8929 26497 34973 0 32%60 HARRISON PK 5177 6472 10197 4001 0 -60%61 BLUE ROCK RD 6469 6470 3192 3656 0 14%61 OLD SR 126 3225 6485 1051 623 0 -43%61 US 27 7200 7201 27397 29527 0 8%62 HARRISON 5196 6245 23195 20821 0 -9%62 NORTH BEND 5287 11807 29895 29581 0 -2%62 MONTANA 6065 6071 26051 28810 0 10%63 I-275 10987 9527 38250 36285 0 -5%63 I-275 9528 11032 38250 38917 0 2%63 SPRINGDALE 5311 5330 12897 8157 0 -38%64 COMPTON 5466 10422 9797 10829 0 13%64 GALBRAITH 5446 5447 20397 20372 0 0%64 NORTHBEND 5432 5694 23596 31061 0 32%65 MACK 4877 7819 15594 10443 0 -32%65 I-275 9248 10915 43450 38948 0 -10%65 I-275 10988 9249 43450 41846 0 -4%65 WEST KEMPER 5318 7866 15194 14314 0 -4%65 WEST SHARON 5320 5524 11691 3920 0 -69%65 SPRINGDALE 5323 5467 2095 7909 0 276%66 CRESCENTVILLE 5495 5502 14894 4889 0 -67%66 I-275 9256 9254 53050 64846 0 22%66 I-275 10921 9257 53050 67155 0 26%66 KEMPER 5480 7051 20051 25847 0 28%66 SHARON 5481 5488 12292 8742 0 -29%66 STATE ROUTE 4 5481 7554 13097 17330 0 33%67 CRESCENTVILLE 5491 5502 13894 7998 0 -43%67 I-275 9240 9258 68050 72473 0 7%67 I-275 9259 9241 68050 76259 0 12%67 KEMPER 5522 7572 26892 26765 0 -1%67 SHARON 5523 5592 12051 12276 0 3%68 CRESCENTVILLE 3204 5503 13996 2436 0 -82%68 I-275 9264 10927 50450 58168 0 15%68 I-275 10926 9265 50450 59457 0 18%68 KEMPER 5519 5953 12051 11253 0 -6%68 SHARON 5526 5527 15694 6300 0 -61%69 SR 747 5501 5502 43796 40114 0 -8%69 CHESTER RD 5492 5493 8496 6108 0 -29%69 I-75 9239 9401 49696 54437 0 9%69 I-75 9400 9238 49696 52822 0 6%69 MOSTELLER RD 5503 5950 16551 8237 0 -51%Assignment and Validation - Appendix C 40


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error69 READING RD 3204 5504 15994 11857 0 -25%69 US 42 5505 5952 23596 31194 0 33%70 SR 747 5500 7050 39097 53244 0 36%70 CHESTER 5494 7573 12051 6973 0 -42%70 I-75 9232 10914 54051 62460 0 15%70 I-75 10913 9233 54051 59693 0 11%70 MOSTELLER 5520 6156 25594 25617 0 0%70 READING 5498 5519 10051 9725 0 -3%70 US 42 5518 7604 20597 10612 0 -50%71 BLUE ASH 5543 6163 33197 34759 0 5%71 COOPER 4940 5563 11492 4639 0 -60%71 CROSS CO HWY 8670 9031 22051 21855 0 -1%71 CROSS CO HWY 9034 8715 20051 19273 0 -4%72 FIELDS ERTEL 5506 7855 13097 13292 0 2%72 KEMPER 5516 7671 14792 13160 0 -10%72 I-275 9269 9271 50350 52624 0 4%72 I-275 9270 9268 50350 50942 0 1%72 CORNELL 5532 10433 12693 7255 0 -43%73 REMMINGTON 5566 10446 9597 15406 0 59%73 HOPEWELL 5693 10429 3497 2423 0 -36%73 I-275 9368 10983 44051 45358 0 3%73 I-275 10894 9369 44051 43200 0 -2%73 KEMPER 5535 10437 7195 5430 0 -25%74 HAMILTON 3238 5314 19997 20739 0 5%74 MILL RD 4996 5316 12797 8945 0 -29%74 HALL RD 5469 6149 40051 57998 0 45%74 KENN 3207 3681 7596 9400 0 27%74 STATE ROUTE 4 5476 5933 38896 56426 0 42%75 BLUE ROCK 5181 10367 4392 5316 0 20%75 COLERAIN 5296 7869 33495 36735 0 10%75 STRUBLE RD 4615 4616 7095 5654 0 -22%76 VINE ST 5436 5438 11051 12346 0 11%76 I-75 9207 9392 72850 76715 0 6%76 I-75 10993 9206 72850 72120 0 -1%76 PADDOCK 5722 5723 17297 26528 0 52%76 READING 5670 5719 23850 12521 0 -48%76 RHODE ISLAND AVE 5671 5715 4394 2444 0 -44%76 STATE ROUTE 561 5672 5714 12450 14320 0 16%77 REED HARTMAN 5497 6159 16897 17510 0 2%77 I-71 9402 9196 38594 48244 0 25%77 I-71 9197 9403 38594 47491 0 24%77 US 22 5515 5960 19697 19440 0 -2%78 CENTER HILL DR 5402 10401 11893 19720 0 66%78 NORTH BEND 5443 10416 9691 10912 0 14%78 CROSS CO HWY 8884 8883 7551 10135 0 35%78 CROSS CO HWY 8880 8886 7551 11545 0 52%78 GALBRAITH 5458 5944 12497 4333 0 -65%78 COMPTON 5461 10420 8896 10842 0 24%79 GALBRAITH 5588 5589 13097 15046 0 15%79 CROSS CO HWY 9030 10879 24051 24699 0 2%79 CROSS CO HWY 10878 9027 24051 25169 0 5%79 COOPER 5560 10443 7051 6788 0 -2%79 SR 126 5546 5547 17797 14291 0 -21%80 SR 562 9297 9296 30051 35974 0 20%80 SR 562 9216 9298 27250 30055 0 10%Assignment and Validation - Appendix C 41


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error80 ROSS AVE 5712 5728 6792 6087 0 -10%80 SR 561 5712 5713 11994 19436 0 63%80 LANGDON FARM 5673 10481 8791 7567 0 -15%80 LOSANTIVILLE 5665 10480 6051 2002 0 -67%80 SECTION 5623 5625 6551 4108 0 -38%81 NEWTOWN 5650 6612 21296 20879 0 -2%81 BEECHMONT LEVEE 5047 6621 39794 49726 0 25%81 KELLOGG 5045 7344 19450 17981 0 -8%82 LOVELAND 5538 8370 11397 10842 0 -5%82 HOPEWELL 5540 8361 10196 9872 0 -7%82 I-275 8950 9170 43551 42799 0 -1%82 I-275 9171 8951 43551 43068 0 -1%82 SR 126 5568 8335 5097 3033 0 -41%82 SR 126 6579 9921 6292 1821 0 -71%82 CAMARGO 5573 5947 4797 3046 0 -36%82 US 50 5648 8322 15097 24015 0 58%83 STUBBS MILL 7104 7332 3192 152 0 -95%83 STATE ROUTE 48 7081 7368 10850 9686 0 -10%83 US 22 7088 10764 11850 12564 0 4%84 OREGONIA 6881 7243 1551 603 0 -58%84 WILMINGTON 6320 10540 2251 139 0 -94%84 I-71 9441 11017 17597 18971 0 8%84 I-71 11020 9440 17597 18573 0 5%84 STATE ROUTE 350 4935 10306 2197 4558 0 104%84 STATE ROUTE 123 7109 10773 1950 4705 0 145%85 NORTH STREET 6876 6874 2692 0 0 -100%85 STATE ROUTE 73 6875 10736 6750 7823 0 16%86 US 42 6994 7075 5450 4966 0 -9%86 STATE ROUTE 48 6316 7076 18397 24340 0 32%86 I-71 9438 11014 17097 19638 0 15%86 I-71 11013 9439 17097 20097 0 18%86 US 22 7103 7104 8197 7057 0 -14%87 STATE ROUTE 28 6553 6562 13050 12486 0 -5%87 WOODVILLE PK 3507 7848 3897 2871 0 -28%87 STATE ROUTE 131 6558 8423 6650 6149 0 -7%88 OLD SR 32 6652 10660 4192 1241 0 -69%88 STATE ROUTE 32 4123 4141 17250 16678 0 -4%88 STATE ROUTE 32 4140 6375 17250 16520 0 -4%88 STATE ROUTE 276 3508 10119 2997 3853 0 30%88 US 50 6590 6600 10297 8420 0 -17%89 US 52 6679 6683 15997 10993 0 -32%89 STATE ROUTE 125 6367 10553 19550 19623 0 0%89 SR 749 6681 7853 6396 7163 0 10%90 US 52 6678 10673 10597 15705 0 48%90 STATE ROUTE 749 6677 6707 2697 2855 0 7%90 STATE ROUTE 125 6669 6675 30650 35571 0 17%90 CLOUGH PIKE 4086 6670 11795 1273 0 -89%91 US 50 6730 10714 9551 7614 0 -20%91 OLD STATE ROUTE 4092 10280 8592 6711 0 -23%91 STATE ROUTE 32 6509 5847 22197 22376 0 1%91 STATE ROUTE 32 4116 6648 22197 21440 0 -3%92 STATE ROUTE 131 4050 6585 11950 11350 0 -5%92 STATE ROUTE 28 4051 6728 20194 27472 0 36%92 BRANCE HILL GUINEA 6575 10634 11993 4193 0 -65%92 STATE ROUTE 48 6563 10627 5597 7431 0 29%Assignment and Validation - Appendix C 42


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error93 BUTLER-WARREN RD 8040 8041 4096 4654 0 14%93 SNIDER RD 8042 8059 3551 1305 0 -64%93 MASON MTGMRY 6773 8149 10796 11753 0 8%93 I-71 9531 11035 35051 35073 0 0%93 I-71 11001 9530 35051 35491 0 1%93 COLUMBIA RD 4949 7172 8494 10087 0 20%93 US 22 7100 11803 10399 10793 0 4%93 STATE ROUTE 48 7090 7100 5297 6377 0 19%94 STATE ROUTE 123 6917 6921 4994 5807 0 15%94 BUNNELL HILL RD 6889 6890 8999 11139 0 24%94 US-42 4943 6902 6997 8523 0 19%94 OREGONIA RD 4938 4939 3151 166 0 -95%94 I-71 8940 9444 16297 18374 0 13%94 I-71 9445 8940 16297 18589 0 15%94 WILMINGTON RD 7105 10768 594 671 0 13%94 US 22 & SR-350 7112 7244 1697 1960 0 16%95 DAYTON OXFORD RD 6838 10732 5551 3309 0 -40%95 STATE ROUTE 73 3242 10101 12597 14008 0 12%95 CIN-DAY RD 3417 6935 10051 8773 0 -13%95 UNION RD 3416 7026 551 1221 0 108%95 I-75 9455 9423 37297 41636 0 11%95 I-75 9422 9456 37297 40912 0 10%95 STATE ROUTE 123 4994 6923 7096 4126 0 -43%96 STATE ROUTE 741 6921 6927 3051 3518 0 15%96 UNION RD 7094 7180 2492 137 0 -94%96 I-75 9417 11006 36797 46224 0 26%96 I-75 11007 9416 36797 45512 0 24%96 CIN-DAY RD 6941 7285 12051 9371 0 -23%96 YANKEE RD 6947 6948 4594 3350 0 -27%96 STATE ROUTE 4 6953 6954 19699 28480 0 45%97 STATE ROUTE 747 7042 7043 12696 9355 0 -26%97 YANKEE RD 7056 7355 3897 3530 0 -11%97 CIN-DAY RD 7057 7163 5897 3637 0 -39%97 I-75 10788 9415 36550 47270 0 29%97 I-75 9414 11004 36550 46207 0 26%98 STATE ROUTE 747 6768 7563 29750 31759 0 7%98 ALLEN RD 7273 7837 3297 913 0 -73%98 I-75 11003 9481 49696 52822 0 6%98 I-75 9482 11021 49696 54437 0 9%98 CIN-DAY RD 7565 7800 15597 17417 0 13%98 US-42 6771 7579 22792 19480 0 -15%99 SR 4 BYPASS 6786 7661 16850 18258 0 5%99 STATE ROUTE 4 4968 7209 42450 42471 0 0%99 GILMORE 4876 4878 14691 26898 0 81%99 WINTON 7034 7035 13796 7466 0 -43%99 US 127 7028 7029 21097 19621 0 -6%99 RIVER RD 4963 10310 3790 2428 0 -34%99 STATE ROUTE 128 7022 10753 11250 10548 0 -5%100 STATE ROUTE 123 6847 6848 16451 23938 0 46%100 STATE ROUTE 4 3487 6837 17596 13972 0 -21%100 STATE ROUTE 122 3611 7325 13296 10076 0 -24%100 STATE ROUTE 73 6886 6998 16596 18848 0 13%101 LIBERTY-FAIRFIELD 6997 7039 10697 3239 0 -69%101 US 127 3633 6973 9650 16229 0 68%102 STATE ROUTE 4 7205 7656 20696 20636 0 -1%Assignment and Validation - Appendix C 43


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error102 STATE ROUTE 129 7206 7657 11096 3862 0 -64%102 GRAND AVE 3484 7750 4497 3252 0 -27%102 TYLERSVILLE 7207 7778 6696 16631 0 137%102 SYMMES 7659 7660 13495 4682 0 -65%103 BLACK ST 3653 7628 13596 9012 0 -34%103 SR 129 HIGH ST 3656 7674 32997 36457 0 10%103 SR 128 COLUMBIA 7639 7731 29850 27822 0 -7%104 STATE ROUTE 63 3425 6955 19695 15841 0 -19%104 KYLES STATION 7160 7161 1797 570 0 -67%104 STATE ROUTE 129 7124 7829 4697 1751 0 -62%104 HANILTON MASON RD 7825 7826 6197 1124 0 -83%104 TYLERSVILLE 7054 7827 14497 15656 0 10%104 BECKETT RD 7069 7404 2551 3130 0 19%104 RIALTO RD 7047 7052 5793 4359 0 -24%104 MUHLHAUSER 7451 7563 4897 11224 0 134%105 GREENTREE 6926 6927 2498 1776 0 -27%105 STATE ROUTE 63 6930 6931 9892 8901 0 -9%105 HAMILTON RD 6206 7164 1298 524 0 -59%105 BETHANY 3253 7167 2297 4415 0 91%105 TYLERSVILLE 3248 7070 20396 17481 0 -15%106 STATE ROUTE 73 6857 6860 30999 21792 0 -30%106 STATE ROUTE 123 6313 6923 14997 9772 0 -35%106 MANCHESTER 4994 11355 698 233 0 -69%106 STATE ROUTE 122 6925 7180 11197 7958 0 -30%107 JACKSONBURG 3421 6965 1296 1967 0 46%107 US 127 6968 7798 5096 6718 0 32%107 EATON 6974 6975 4697 2677 0 -43%107 STATE ROUTE 177 6978 6979 5696 6320 0 10%107 STATE ROUTE 130 6980 7194 5496 8243 0 51%107 US 27 6981 7196 6196 9963 0 59%107 REILY MILLVILLE 6988 11258 992 799 0 -21%107 STATE ROUTE 129 6989 7000 2192 2488 0 16%108 EIGHT MILE RD 6615 6644 7097 2178 0 -70%108 MT CARMEL-TOBASCO 6672 6714 16592 9886 0 -40%108 I-275 8903 10806 36397 31421 0 -13%108 I-275 10809 8902 36397 32379 0 -11%108 GLENESTE-WTHMSVILLE 6525 7851 10051 13249 0 33%109 MT CARMEL RD 3219 6611 4897 5107 0 4%109 BEECHWOOD RD 3219 10093 3292 5619 0 71%109 I-275 10846 8901 36997 30991 0 -16%109 I-275 8900 10800 36997 31540 0 -14%109 TEALTOWN RD 3914 10239 5297 1563 0 -71%110 I-275 8956 10836 38051 40287 0 6%110 I-275 10835 8957 38051 39332 0 4%110 STATE ROUTE 28 6178 6199 38051 44807 0 18%110 STATE ROUTE 131 3877 6719 13750 12985 0 -6%111 CLOUGH PK 3222 6672 11096 7181 0 -35%111 STATE ROUTE 125 3223 6738 35597 31113 0 -13%111 I-275 8907 8909 28297 26114 0 -8%111 I-275 8908 8906 28297 25776 0 -8%112 US-42 3960 10175 3293 3085 0 -6%112 I-71 11097 9500 12398 12867 0 4%112 I-71 9501 11023 12398 13036 0 5%112 SR 16 & SR 491 3842 3961 1696 1644 0 -3%113 I-75 11040 9740 22796 18148 0 -20%Assignment and Validation - Appendix C 44


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error113 I-75 9740 11096 22796 19229 0 -16%113 US 25 3856 3963 3997 3482 0 -13%113 SR 17 3964 10214 1497 1623 0 8%113 SR 177 3910 3965 696 635 0 -9%114 US 27 10230 10231 6797 7467 0 10%114 SR 154 3988 10235 1198 1021 0 -15%114 SR 1121 3990 10268 199 6621 0 3228%114 SR 8 3969 10261 798 6 0 -99%114 IVOR RD 4167 4169 499 644 0 29%114 AA HWY / SR 10 4166 4167 4251 1396 0 -67%115 US 52 6690 10681 2297 2787 0 21%115 SR 756 & SR 774 6684 10679 997 1092 0 9%115 SR 125 & SPRING GROVE 6682 10666 6396 6548 0 2%115 STARLING RD 6661 6665 1796 1548 0 -14%115 OLD SR 32 6369 6653 3296 3196 0 -3%115 SR 32 6373 6381 8096 10678 0 32%115 SR 32 6381 4158 8096 10145 0 25%115 US 50 6604 10637 4296 3665 0 -15%115 SR 131 6561 6586 3196 2581 0 -19%116 SR 133 3217 6572 3194 2416 0 -24%116 SR 28 3216 6779 5997 5073 0 -16%116 SR 132 4948 7114 897 634 0 -29%116 SR 123 6779 10301 1996 2156 0 8%116 US 22 & SR-350 7112 7244 1697 1960 0 16%116 WILMINGTON RD 7105 10768 594 671 0 13%116 I-71 8940 9444 16297 18374 0 13%116 I-71 9445 8940 16297 18589 0 15%116 SR 73 7107 11432 5550 6834 0 24%117 US 42 10114 10115 4297 3663 0 -14%117 LYTLE 6870 16491 1754 6321 0 261%117 SR 48 16487 16488 6620 6251 0 -5%117 SR 741 4947 16446 18890 7994 0 -58%117 I-75 9429 14698 39973 40554 0 2%117 I-75 14697 9428 39973 38598 0 -3%117 CLEARCREEK & FRANKLIN 4946 13429 3326 1383 0 -60%117 DIXIE HWY 4945 6844 5551 5027 0 -9%117 DAYTON OXFORD RD 16250 16254 3410 1899 0 -46%117 NORTHERN RD 7189 16248 886 2625 0 191%117 SR 123 16220 16221 4130 6216 0 51%118 SR 4 16218 16226 5960 9460 0 58%118 MIDDLETOWN-GERMANTOWN 16227 16217 994 1266 0 30%118 W. ALEX. & ELKCREEK 6829 6868 1094 830 0 -24%118 SR 122 6826 6827 3796 3065 0 -19%118 JACKSONBURG 6824 6826 692 813 0 17%118 SR 503 6816 6825 2050 2846 0 40%118 WAYNE TRACE RD 6815 6823 951 433 0 -54%118 SR 744 6812 6822 2096 1431 0 -32%118 US 127 6811 6818 3694 3900 0 6%118 SR 177 6810 6977 1650 1200 0 -27%118 SR 732 6882 11831 2450 2322 0 -5%118 US 27 6984 7191 3896 5323 0 37%119 FAIFIELD & CONTRERAS 6801 6990 1697 1352 0 -20%119 BROOKVILLE RD 6802 7001 897 753 0 -16%119 PEORIA REILY & SPR. 7002 11433 1051 366 0 -65%119 SR 126 6750 6752 1096 872 0 -21%Assignment and Validation - Appendix C 45


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Cutline Street Name A Node B Node Observed Estimated No Count % Error120 US 52 6349 6403 5297 5614 0 6%120 SR 1 3962 6401 2794 2297 0 -18%120 PETERS RD 6351 6400 751 951 0 26%120 I-74 10850 8996 9296 10108 0 9%120 I-74 8996 10870 9296 10506 0 13%120 SR 46 6352 6400 2051 3045 0 48%120 N DEARBORN RD 6353 6411 792 1299 0 64%120 SR 48 6354 6412 2197 1875 0 -15%120 SR 350 6355 6435 4597 4520 0 -2%120 OLD SR 350 6356 6436 551 712 0 29%120 US 50 6357 6399 5093 6438 0 26%120 SR 62 6358 10544 897 549 0 -39%121 MILTON BEAR BRIDGE 6359 6447 0 0 1 n/a121 SR 56 6360 6450 0 0 1 n/a121 SR 156 6452 6453 0 0 1 n/aAssignment and Validation - Appendix C 46


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-2 Montgomery and Greene Counties Screenline Validation StatisticsScreenlineStreetNameA Node B Node Observed Estimated No Count % Error1 14922 14993 1334 2491 0 83%1 14930 14934 6100 5780 0 -5%1 14938 14971 1076 1113 0 8%2 13274 13277 10200 4628 0 -55%2 13283 13284 14500 6610 0 -55%2 13285 13286 9500 2752 0 -71%2 13361 13363 26000 28165 0 9%2 13362 13360 26000 28154 0 8%3 13219 14539 19770 23220 0 17%3 13249 13437 11000 9526 0 -16%3 13250 14228 3202 5627 0 76%3 13438 13671 4900 12412 0 158%3 14232 14238 4104 5971 0 47%3 14234 14238 30500 19276 0 -37%3 14236 14237 4500 4187 0 -6%3 14547 14545 43635 32210 0 -26%3 14552 14548 43635 33363 0 -23%4 13167 13704 22560 23316 0 4%4 13169 13170 5182 7105 0 39%4 13169 13704 5356 5020 0 -7%4 13170 13188 7432 4719 0 -36%5 13694 17437 8924 12193 0 33%5 13704 13705 23310 26890 0 16%5 13707 13708 8472 7798 0 -7%5 13718 13719 13956 3782 0 -72%5 13723 13726 21922 24174 0 10%7 13190 14224 6816 7163 0 5%7 13438 14177 3500 1036 0 -69%7 13439 13440 2800 65 0 -98%7 14093 14117 7052 3500 0 -50%7 14111 14112 18570 5484 0 -71%7 14226 14227 11000 8306 0 -25%7 14552 14548 43635 33363 0 -23%7 14547 14110 8486 12222 0 44%7 14109 14548 8000 13496 0 69%8 14240 14268 29542 31198 0 5%8 14244 14249 11740 13644 0 16%8 14246 14247 12280 14475 0 18%8 14270 14271 7050 17071 0 140%8 14278 15846 6014 8065 0 33%8 14391 14392 16710 15127 0 -10%8 14451 14453 13200 17735 0 33%8 14456 14454 13200 20472 0 55%9 13695 14256 10940 15812 0 43%9 14213 14215 14804 14812 0 0%9 14255 14258 12250 14112 0 16%9 14265 14270 9568 5042 0 -47%9 14270 14272 31274 33323 0 7%10 14275 14276 32000 26511 0 -17%10 14401 15847 12645 18557 0 46%10 14446 14399 12645 19302 0 53%Assignment and Validation - Appendix C 47


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error11 14301 14307 25760 22770 0 -11%11 14379 14631 17700 12168 0 -31%11 14394 14395 9000 3993 0 -57%11 14620 14626 14581 9567 0 -35%11 14625 14619 14581 11951 0 -19%12 14129 14119 14341 14735 0 6%12 14844 14848 14341 9468 0 -34%12 14845 14849 11622 9582 0 -16%12 14865 14866 5248 6739 0 20%12 14873 17816 11700 10546 0 -10%13 14488 14490 55100 51800 0 -6%13 14489 14487 52800 51018 0 -4%13 16754 17182 4000 2748 0 -38%13 16756 17182 22900 35784 0 58%13 16762 16763 19814 20239 0 1%13 17035 17036 8500 16876 0 106%13 17188 17047 17770 32555 0 86%14 13972 17343 12574 19805 0 58%14 13986 17340 34250 25805 0 -24%14 14500 15780 37000 41593 0 11%14 14501 14499 60400 50170 0 -18%14 14731 17169 4898 9471 0 96%15 16909 16932 16700 18210 0 17%15 16913 16911 7200 11405 0 53%15 16915 16916 17800 24994 0 42%15 16988 17301 14000 20651 0 44%16 14585 14591 33800 24166 0 -28%16 14594 16979 8224 3906 0 -54%16 14595 14586 0 24234 1 n/a16 16973 16974 13000 6401 0 -52%16 16976 16977 27500 35259 0 27%16 16994 16995 11500 10535 0 -9%16 16996 16997 18600 20901 0 10%17 14284 14285 6778 7643 0 13%17 14291 14297 10800 12516 0 15%17 14293 14294 3000 2487 0 -20%17 14314 14315 5500 10105 0 81%17 14324 14325 6000 2806 0 -53%17 14341 14342 14100 16997 0 20%17 14427 14612 33850 29228 0 -13%17 14613 14428 33850 33523 0 -1%17 15467 15478 10900 4272 0 -61%17 15468 15471 5400 6028 0 13%18 13625 15708 4420 7529 0 68%18 14368 17661 11146 10019 0 -12%18 14380 14884 6638 3574 0 -47%18 14634 14636 27610 24649 0 -10%18 14635 14633 27610 23863 0 -13%18 15744 15745 14606 13581 0 -7%18 15758 13248 20601 21292 0 3%18 16125 15759 20601 18371 0 -11%19 13855 14430 26200 8652 0 -67%19 13861 13862 3500 4517 0 25%19 13865 13870 13000 16653 0 28%19 13868 13869 3644 5469 0 47%Assignment and Validation - Appendix C 48


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error19 13970 17321 9000 11579 0 28%19 13988 13989 2100 1601 0 -29%19 13990 13991 6412 5987 0 15%19 13995 14555 2500 985 0 -66%20 13824 13825 9000 2898 0 -67%20 13844 13846 8900 13873 0 52%20 13858 13859 8800 3857 0 -56%20 13881 13882 4000 3393 0 -19%20 13906 13910 22600 20335 0 -11%20 13908 13909 5500 4520 0 -16%20 15214 15215 4600 806 0 -84%20 15217 15218 10100 17382 0 71%20 15267 15268 8200 3863 0 -53%21 13533 13534 2444 1484 0 -42%21 13528 13529 878 131 0 -87%21 15115 15116 10784 11812 0 8%22 15341 15345 19924 23992 0 20%22 15394 15395 22900 26911 0 16%22 15401 15402 4000 3822 0 29%22 15425 15426 18168 22006 0 15%22 15432 17775 6500 6395 0 4%23 15434 15505 27000 37913 0 42%23 15492 15521 19800 27518 0 38%23 15493 15513 17000 10915 0 -36%23 15504 15509 2500 2137 0 -22%24 13392 15698 14724 16191 0 10%24 15044 16361 28820 27432 0 -4%24 15698 15734 9338 15279 0 63%24 16360 15045 28820 27941 0 -2%26 15578 15579 28000 23091 0 -17%26 13815 15585 6700 5604 0 -16%26 14537 15597 22200 18258 0 -19%26 15617 17980 4800 6155 0 30%26 15621 17576 9480 7320 0 -22%26 15627 15629 13170 12978 0 -2%27 14794 15368 31310 26944 0 -17%27 15282 15283 1800 1539 0 5%27 15342 17793 1200 7990 0 580%27 15358 15359 10300 3788 0 -55%27 15771 17555 47000 39460 0 -17%27 15380 15382 13166 11356 0 -14%27 15381 15379 13677 11601 0 -16%27 17554 15770 47000 39404 0 -16%28 13624 15357 5300 5089 0 92%28 13624 15372 26528 24715 0 -18%28 15284 15357 11000 14670 0 39%28 15322 15354 31000 28648 0 -11%28 15352 17582 10256 5780 0 -44%29 13425 14782 22502 25657 0 15%29 15304 17972 22500 14674 0 -34%29 15320 15321 19908 22822 0 9%29 15325 16464 10892 11567 0 6%29 15327 15333 8160 7935 0 -2%29 15437 16526 41490 36772 0 -11%29 15621 15626 30470 28743 0 -4%Assignment and Validation - Appendix C 49


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error29 15624 15625 8742 11175 0 27%29 16525 15769 41490 34462 0 -14%30 13434 16510 19662 15266 0 -21%30 14738 14739 6376 6812 0 8%30 16514 16515 5840 2162 0 -64%30 16519 17826 12834 6795 0 -47%31 16410 16413 0 853 1 n/a31 16425 17955 2200 748 0 -67%31 16426 17537 4800 3659 0 -24%31 16431 16532 20708 10292 0 -50%31 16529 16530 3700 156 0 -96%33 13404 15910 3434 4784 0 43%33 15871 16118 20570 20615 0 0%33 16105 17627 6118 8872 0 46%34 13687 14708 4793 4117 0 -13%34 13691 13686 4793 5005 0 5%34 15808 16641 9044 7827 0 -12%34 15965 16640 2050 3632 0 77%34 16072 16663 602 53 0 -90%35 14389 16017 1584 695 0 -58%35 14402 16021 9396 4961 0 -48%35 16021 16033 1190 3868 0 231%35 16042 16043 1004 1076 0 7%35 16040 16042 8616 7477 0 -12%38 13631 15991 2700 179 0 -93%38 15987 15989 14558 15265 0 4%38 15998 15999 5854 7120 0 22%39 15927 16935 21800 5626 0 -76%39 15930 16884 15980 22772 0 44%39 15950 15819 4100 1454 0 -67%39 16846 15949 5680 5858 0 3%40 13578 13580 9646 10604 0 11%40 13746 13747 4978 6361 0 26%40 13750 13763 14608 19651 0 37%40 13753 13755 6258 754 0 -90%40 14074 14075 21058 27213 0 30%40 14075 14077 11920 13223 0 5%40 14078 14079 18880 11187 0 -44%41 13245 13252 5932 13474 0 128%41 13226 20338 2900 2540 0 -12%41 13238 13239 6090 4041 0 -33%41 13365 13369 28000 36509 0 30%41 13368 13366 28000 37454 0 34%41 14216 14218 10386 8657 0 -17%41 14225 17465 26346 23647 0 -10%42 13696 13697 5500 3039 0 -49%42 14208 14209 15286 20001 0 30%42 14255 14258 12250 14112 0 16%42 14261 14262 9600 8719 0 -10%42 14283 14284 12300 9397 0 -24%42 14457 14459 15546 15336 0 -1%42 14460 14458 16025 22414 0 39%43 14300 14301 10700 16959 0 58%43 14309 14310 13020 7068 0 -47%43 14349 14350 13100 11448 0 -12%Assignment and Validation - Appendix C 50


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error43 14421 14427 32240 25780 0 -19%43 14422 14420 32240 35540 0 11%43 15709 15729 12004 12200 0 4%43 15715 15725 4800 2575 0 -48%44 13402 15607 21320 23087 0 7%44 15015 15624 5890 2494 0 -58%44 15607 15608 19900 26585 0 34%44 15611 15612 13058 6278 0 -52%44 15629 15630 11004 5844 0 -47%44 15674 15675 26308 17846 0 -32%44 15706 15707 12600 9341 0 -26%45 14736 14741 25545 23113 0 -9%45 14737 14742 25545 23688 0 -7%45 14739 16519 16692 20616 0 24%45 15938 16484 9786 6262 0 -36%45 16477 16478 14288 6832 0 -52%45 16487 16489 2436 3429 0 40%51 16762 16763 19814 20239 0 1%51 16772 17182 19326 37569 0 95%51 16778 16780 11600 11167 0 -5%51 16781 16789 3556 1601 0 -52%51 16787 16789 16001 15730 0 -6%51 16805 17023 9258 10354 0 12%51 16823 16825 9660 9700 0 3%51 16835 16836 16800 12391 0 -28%51 16855 17005 17900 28099 0 53%51 16857 17004 6200 10805 0 76%51 16873 16872 5600 5297 0 -20%51 16875 16876 4030 1643 0 -52%51 16875 16877 5176 6150 0 23%51 16897 16898 7500 4790 0 -38%51 16898 16899 9181 13013 0 32%51 16901 16902 17600 20947 0 25%51 16908 16909 16692 20401 0 28%51 16908 16989 8144 8017 0 6%51 16911 16912 7235 9221 0 27%51 17007 16807 3697 4383 0 33%51 17025 16763 16270 12234 0 -25%52 13135 14613 31350 30624 0 -2%52 13137 13138 0 944 1 n/a52 13406 15428 23000 29962 0 31%52 13935 17223 12150 18528 0 50%52 13946 13947 3000 2211 0 -34%52 13953 17215 20526 24159 0 16%52 13991 13993 9896 3953 0 -61%52 14001 14002 2646 5258 0 87%52 14005 14006 2650 3231 0 126%52 14006 14007 36900 40161 0 4%52 14029 14030 20062 23476 0 17%52 14033 14038 7932 2015 0 -75%52 14035 14038 26540 30170 0 15%52 14036 14037 6400 9125 0 47%52 14174 14175 3300 9256 0 167%52 14176 14179 13700 17734 0 35%52 14185 14186 11500 8741 0 -22%Assignment and Validation - Appendix C 51


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error52 14189 16992 12396 11572 0 -5%52 14459 14461 20866 22064 0 7%52 14466 14464 20866 23983 0 14%52 14509 14513 47000 40882 0 -14%52 14516 14514 45700 48933 0 8%52 14597 14595 26800 24234 0 -7%52 13942 14735 15325 13657 0 -11%52 14733 13938 15325 13876 0 -8%52 15235 15237 4700 5558 0 15%52 15239 15240 1700 1163 0 -34%52 15240 15259 6000 11268 0 84%52 15245 15246 4700 3746 0 -21%52 15306 17059 11500 5298 0 -54%52 15408 15420 21800 26266 0 22%52 15409 15419 10600 9820 0 -10%52 15444 15445 15200 16690 0 4%52 15445 15449 11700 9768 0 -16%52 15455 16974 21500 33990 0 58%52 15779 15781 48600 53893 0 10%52 15780 15778 52000 53071 0 2%52 16975 17118 9000 4572 0 -53%52 17049 17050 2000 2405 0 5%52 17057 17071 3400 8375 0 151%52 17071 17074 11500 9294 0 -21%52 17073 17082 5000 10847 0 118%52 17084 17252 4918 5668 0 19%52 17094 17097 3300 1880 0 -44%52 17095 17096 6600 7411 0 12%52 17114 17116 7646 2853 0 -65%53 13547 13548 4300 4908 0 13%53 13548 13551 5800 8140 0 39%53 13548 14105 6180 4569 0 -28%53 13587 13588 6850 8560 0 25%53 13589 13590 2580 6086 0 136%54 13538 13541 4500 4394 0 -4%54 13546 13547 4100 4039 0 -3%54 13552 17570 6186 7756 0 25%54 13572 13584 14972 9453 0 -36%54 13582 13583 10402 7198 0 -31%54 13592 13594 9880 5066 0 -49%54 13771 17439 7104 6617 0 -6%55 13419 17545 8400 4704 0 -45%55 16259 16261 2000 3784 0 94%55 16268 16269 4900 12799 0 157%55 16271 16273 7184 6339 0 -13%55 16282 16308 14008 14943 0 8%55 16285 16286 12500 8626 0 -29%55 16290 16302 14100 12623 0 -9%56 14809 14810 9100 14658 0 59%56 14812 14814 10704 5487 0 -49%56 14812 16598 17144 11620 0 -33%56 14814 15002 4500 3344 0 -44%56 14815 14825 15000 5142 0 -68%56 14816 15005 4200 2933 0 -31%56 14817 14818 4094 8572 0 111%Assignment and Validation - Appendix C 52


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0ScreenlineStreetNameA Node B Node Observed Estimated No Count % Error56 15001 15002 9900 4963 0 -58%58 13449 16156 4326 3740 0 -14%58 15054 16153 2340 942 0 -60%58 16152 16154 5950 3308 0 -45%58 16155 16156 3774 2780 0 -27%59 14686 16164 9250 7930 0 -13%59 16164 16701 3800 1205 0 -67%59 16166 16719 3248 2581 0 -20%59 16167 16168 7020 7003 0 0%59 16170 16171 3130 2376 0 -25%60 15930 15931 15410 22772 0 50%60 13442 16007 16188 9638 0 -40%60 15922 15923 4558 3577 0 -23%60 15948 15949 9100 5858 0 -35%60 15951 15952 4240 6760 0 61%60 15968 15969 5502 8493 0 56%60 15969 15978 8288 3977 0 -52%60 14410 15983 2100 5125 0 142%60 15987 16027 9462 10010 0 6%60 15999 16001 3500 6694 0 92%60 16000 16026 6900 8680 0 24%60 16965 17209 9200 5536 0 -41%Assignment and Validation - Appendix C 53


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 8-3 Miami County Screenline Validation StatisticsScreenline Street Name A Node B Node Observed Estimated No Count % Error1 20261 20279 25140 31963 0 27%1 20269 20274 2100 1420 0 -35%1 20280 20412 15290 6771 0 -56%1 20282 20310 4900 2791 0 -44%1 20286 20265 25140 31512 0 25%1 20291 20336 1136 0 0 -100%1 20295 20771 27945 32954 0 18%1 20304 20305 2400 1683 0 -31%1 20332 20294 27945 32395 0 16%1 20403 20404 4800 3066 0 -36%2 20277 20698 7716 2618 0 -67%2 20299 20779 1300 2073 0 59%2 20300 20738 1300 1965 0 52%2 20416 20739 1376 2168 0 53%4 20153 20157 6900 1105 0 -84%4 20154 20165 22510 13592 0 -40%4 20155 20156 9300 8802 0 -5%4 20155 20604 17700 7287 0 -59%4 20157 20781 3300 4575 0 38%4 20168 20609 3900 1973 0 -49%5 20126 20137 10352 8452 0 -19%5 20137 20382 1884 0 0 -100%5 20153 20564 1542 361 0 -77%5 20173 20392 1800 642 0 -63%5 20195 20395 3600 1306 0 -63%5 20197 20198 13900 12246 0 -13%5 20216 20219 10200 9762 0 -5%5 20225 20653 6100 3435 0 -44%5 20378 20384 2000 250 0 -88%5 20384 20562 5500 5685 0 3%5 20390 20612 7540 4428 0 -40%5 20392 20608 6300 3074 0 -51%5 20394 20396 6990 7824 0 14%5 20594 20598 4200 4777 0 13%5 20605 20606 19424 7467 0 -62%6 20063 20791 4000 3301 0 -16%6 20051 20062 11000 1154 0 -89%6 20052 20059 15000 15397 0 2%6 20068 20789 1100 3844 0 246%7 20004 20787 1000 605 0 -40%7 20018 20439 2900 1809 0 -38%7 20037 20471 16850 11219 0 -34%7 20049 20475 2000 1457 0 -26%7 20082 20101 2000 4158 0 109%7 20106 20542 9890 10333 0 4%7 20108 20373 4100 4549 0 11%7 20352 20505 2000 2533 0 26%7 20355 20788 5920 4512 0 -24%7 20369 20520 6700 8838 0 32%7 20433 20448 11500 14970 0 30%7 20513 20515 1974 415 0 -81%Assignment and Validation - Appendix C 54


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Screenline Street Name A Node B Node Observed Estimated No Count % Error8 20369 20535 6560 10075 0 53%8 20377 20541 6400 7535 0 18%8 20536 20540 2600 606 0 -76%9 20031 20471 16640 10565 0 -37%9 20082 20101 2000 4158 0 109%9 20101 20106 1800 1993 0 7%9 20105 20106 12202 11733 0 -4%9 20123 20127 1400 2000 0 43%9 20140 20141 31600 21470 0 -32%9 20173 20392 1800 642 0 -63%9 20195 20395 3600 1306 0 -63%9 20207 20212 2000 1670 0 -17%9 20207 20213 9100 13004 0 43%9 20225 20659 3044 5512 0 80%9 20235 20242 4000 1883 0 -53%9 20263 20266 6598 7548 0 15%9 20280 20412 15290 6771 0 -56%9 20302 20735 1700 2311 0 36%9 20319 20751 1700 361 0 -78%9 20352 20505 2000 2533 0 26%9 20433 20448 11500 14970 0 30%9 20513 20515 1974 415 0 -81%10 13001 13009 206 64 0 -65%10 13005 13006 1360 304 0 -78%10 17324 17325 454 477 0 8%10 13045 17556 8680 10603 0 23%10 13041 13042 2190 826 0 -61%10 13052 13053 1600 582 0 -67%10 13100 13101 7490 10705 0 42%10 13108 13109 3742 2891 0 -23%10 13149 13150 3840 807 0 -78%10 13216 13218 10128 4963 0 -51%10 13377 13379 27945 32954 0 18%10 13378 13376 27945 32395 0 16%10 13230 13511 4100 950 0 -76%10 20338 20347 500 736 0 49%10 20345 20346 4370 4826 0 13%10 20340 20344 5332 8365 0 56%10 20341 20343 1702 494 0 -69%Assignment and Validation - Appendix C 55


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationPart 7 – Truck <strong>Model</strong>


Table of Contents1. Introduction................................................................................................................................. 11.1 Overview of Truck <strong>Model</strong> Development and Structure.......................................................... 12. Base-Year Truck <strong>Model</strong> Development ............................................................................................. 42.1 Database Development..................................................................................................... 42.1.1 Freight analysis zones................................................................................................... 62.1.2 Truck network development .......................................................................................... 62.1.3 Vehicle classification ..................................................................................................... 82.1.4 Truck counts.............................................................................................................. 102.2 External Trips ................................................................................................................ 122.3 Seed Matrix Development ............................................................................................... 142.3.1 Truck trip generation .................................................................................................. 142.3.2 Truck trip distribution ................................................................................................. 162.4 Synthetic Matrix Estimation ............................................................................................. 202.4.1 Description of single-path matrix estimation algorithm................................................... 202.4.2 Multi-stage implementation of synthetic matrix estimation ............................................. 232.5 Post-Processing.............................................................................................................. 242.5.1 Conversion to TAZ–to-TAZ flows.................................................................................. 252.5.2 Distribution to daily time periods ................................................................................. 263. Base-Year Truck <strong>Model</strong> Results.................................................................................................... 293.1 Truck County-to-County Movements ................................................................................ 293.2 Truck Trip End Summaries .............................................................................................. 323.3 Truck Percentages of Assigned Volume ............................................................................ 393.4 Truck Trip-Length Profiles ............................................................................................... 393.5 Validation to Truck Count Data ........................................................................................ 424. Truck Trip Table Forecasting Procedures ......................................................................................454.1 Description .................................................................................................................... 454.1.1 Forecast zonal employment by industry type................................................................. 464.1.2 Develop industry-specific productivity deflation factors .................................................. 474.1.3 Calculate growth factors and forecast total zonal trip ends............................................. 494.1.4 Apply two-dimensional matrix balancing ....................................................................... 504.1.5 Allocate the forecast daily truck trips to analysis time periods......................................... 504.2 Summary of Forecast Results .......................................................................................... 50ii


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01. IntroductionThis report describes the truck trip modeling component of the consolidated travel demand modelingsystem for the Miami Valley Regional Planning Commission (MVRPC) and the Ohio-Kentucky-IndianaCouncil of Governments (<strong>OKI</strong>). The consolidated regional travel model was developed for the North-South Transportation Initiative (NSTI), a major investment study focusing on the Interstate-75 corridor.The development of a truck model recognizes the substantial impact of commercial vehicle traffic on theregional transportation system as well as important behavioral differences between travel for the purposeof hauling freight and travel for the purpose of meeting personal and household needs. Compared withperson vehicle traffic, the underlying behavior of commercial truck traffic is not as well understood, norhas there been adequate data collected for detailed study of this behavior. Commercial truck trafficexhibits spatial and temporal distribution patterns that are markedly different from passenger traffic.From a modeling perspective, land uses generate truck trips at different rates than passenger traffic.Truck trips have different average trip-length distributions, tend to be less sensitive to congested traveltimes and do not exhibit the same diurnal peaking characteristics as person traffic. Moreover, multipledecision makers are typically involved in freight movements, accounting for production supply chainrelationships, inter-modal transfers between rail/water/air and truck, and the transport of goods totransshipment facilities for redistribution to the marketplace.The truck model developed for the consolidated travel model and described in this document is a set ofprocedures that produces truck trip tables for use in a multi-class traffic assignment. The methodology isnot behaviorally-based, however, due to the non-availability of survey data for commercial vehiclemovements. In the absence of such data from which to calibrate truck trip generation and distributionmodels, synthetic matrix estimation is used to produce trip tables for the base year. The resulting triptables represent commercial truck origin-destination (O-D) flows that reflect likely truck trip productionsand attractions and are consistent with observed truck counts for the regional highway network. Inaddition, a set of forecasting procedures was developed to generate truck trip tables for use inalternatives analysis, accounting for growth in employment and households as well as expected changesin industrial output.The remainder of this document describes the modeling system structure, development of a database tosupport model development, methods used to create base-year trip tables, base-year model results,forecasting procedures and baseline forecast-year results.1.1 Overview of Truck <strong>Model</strong> Development and StructureThe truck model developed for the consolidated regional model (CRM) system produces truck trip tablesfor two types of commercial vehicles: single-unit (six-tire trucks) and multi-unit (three-plus axlecombination trucks). The structure of the truck modeling process is illustrated in Figure 1-1, below.The generation of daily truck trips for each vehicle type assumes that businesses of different types have apropensity to produce and attract single-unit (SU) and multi-unit (MU) truck trips at rates proportional tothe amount of commercial activity being generated by the business. It is further assumed, in theabsence of revenue data, that employment totals are good indicators of the amount of commercialactivity being generated by businesses. Likewise, households generate some amount of commercialvehicle traffic for the pick up and delivery of goods and provision of services. These assumptions areimplemented in the CRM at an aggregate level by applying truck trip generation equations to the zonaltotals for households and employees, by industry grouping, to estimate SU and MU truck trip ends.Truck <strong>Model</strong> - Introduction 1


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Truck Count DataNetwork & ZonalDataGrowth ForecastTruck TripGeneration& DistributionSeedMatrixMatrixUpdateMatrixSynthesisTruck O-D TablesTruck O-D TablesTrafficAssignmentTrafficAssignmentEvaluation& ValidationEvaluation &AlternativesAnalysisBase YearForecast YearFigure 1-1. Truck model development and applicationTruck <strong>Model</strong> - Introduction 2


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0<strong>Model</strong>ing the flow of truck trips between various origins and destinations is complicated by therelationships mentioned above, namely supply chains, inter-modal transfers and transshipment facilities.One method of getting at these relationships is to tie regional truck movements to a commodity flowsdatabase and, ultimately, to relate the production and use of commodities by different industries toemployment. Commodity flow data is commonly used for modeling freight movements at the state andnational level. A proprietary database of commodity flows was acquired for this project from a leadingcommercial vendor, Reebie Associates. The data were expressed in terms of annual truck shipments bycommodity type between counties in the study region as well as truck trips passing through the region.Subsequent investigation revealed that important county-to-county movements were missing from thedata and apparently unavailable. Another version of the Reebie Transearch database, expressed inannual tons of commodity shipments, was furnished by the Ohio Department of Transportation (ODOT);however, this too was found to lack some county-to-county flow information and had otherinconsistencies. In general, commodity flow data is not currently developed to account for intra-urbantruck movements, particularly short-haul goods distribution to retail stores and trips by smaller trucks (SUtrucks), such as in package delivery, construction and garbage hauling. These findings led to theelimination of the work program task to develop a commodity flows database.In lieu of modeling truck trips by commodity flow relationships, a “gravity” model, similar to those used inmodeling person trips, can be used to approximate commercial vehicle movements between zones. Thisapproach has been implemented in the truck model developed for the CRM.Lacking commercial vehicle survey data for calibration, the trip generation equations and gravity modelimpedance functions use modified versions of parameters published in the Quick Response FreightManual (USDOT 1996) to produce initial estimates of SU and MU truck trip tables. The truck model isthen calibrated using a synthetic matrix estimation (SME) method. SME uses the initial trip table estimateas a “seed matrix,” which is then adjusted such that assignment of the table to the highway networkresults in truck trip flows that come close to matching observed truck traffic counts, through successiveiterations. SME adjusts not only the flow pattern, but also the number of trips produced, effectivelycalibrating both trip generation and distribution stages simultaneously.Development of the truck model using SME methods required the development of a database of trucktraffic counts for use in calibration and validation. In addition, the mathematics involved in the SMEprocedure necessitated the use of a coarser zone system than that used by the passenger-vehicle model.An auxiliary freight analysis zone (FAZ) system was formed from groups of the transportation analysiszone (TAZ) system of the combined regional model. An auxiliary version of the CRM network wascreated to link to the FAZ system and to use in SME.The truck model was not developed using the Tranplan modeling environment of the passenger model.Instead, the TransCAD transportation modeling program was used, owing largely to its geographicinformation system (GIS) capabilities and built-in synthetic matrix estimation procedure. The daily SUand MU truck trip tables produced in TransCAD are post-processed in a separate program to convert FAZflows to TAZ flows and to allocate these daily trips to the four assignment periods. The resulting triptables then become static inputs in the Tranplan model stream of the CRM and can be used in planninganalysis.The truck model forecasting procedure uses a growth factor matrix adjustment method to generatefuture-year daily truck trip tables based on forecast growth in zonal employment and households. Basedon time series data, the procedure assumes that SU and MU truck trip generation rates per employee willincrease over time because of forecasted improvements in productivity, varying by industry sector. Thisassumption is reflected in the development of productivity deflation factors, which are then applied in thegrowth factor calculations. As with the base-year truck trip tables, the forecast-year truck trip tables areallocated to assignment periods and implemented as static inputs in the Tranplan model stream.Truck <strong>Model</strong> - Introduction 3


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02. Base-Year Truck <strong>Model</strong> DevelopmentIn Task A.4.7.1 (Establish Truck <strong>Model</strong> Structure), synthetic matrix estimation (SME) was identified as themost promising method for this effort, taking into consideration the infeasibility of an alternative,behavioral modeling approach.SME can be thought of as “network assignment in reverse” and is described in more detail in Section 2.3of this report. A version of this method, developed by Nielsen (1993), has been implemented in theTransCAD software (Caliper Corporation 2001) that was used for this project. In essence, it begins withcounts on the network links and a “seed matrix,” which is a first-cut attempt at an O-D matrix. Thealgorithm iteratively combines network assignment and matrix balancing methods to produce a final O-Dmatrix that is proportionally related to the seed matrix, but which results in flows that closely matchtraffic counts along the optimal path between each O-D pair.The implementation of this approach is illustrated in Figure 2-1, below. Employment and household dataare used to generate productions and attractions for each FAZ. The productions and attractions are thendistributed among internal O-D pairs, using a gravity model, to create seed matrix estimates for singleunitand multi-unit truck vehicle classes. The seed matrices are adjusted in the SME procedure toproduce a set of calibrated truck tables, representing internal-internal truck trips. Estimates of externaltruck trip ends are derived from an expansion of the 1995 ODOT External Station Survey and are thenadded to the internal-internal trip tables to the form the complete daily trip tables for SU and MU trucktypes.The remainder of this section describes the five major work components of the base-year truck modeldevelopment:• Database development• Expansion of external station data• Development of a seed matrix• Synthetic matrix estimation• Post-processing.2.1 Database DevelopmentSME depends heavily on good traffic count data at a numerous locations throughout the study area.Common sense dictates that counts should be most prevalent on the roadways that are most importantto the study, as the algorithm will constrain flows to match the counts along those network links. Ideally,the counts should also be located on links that are likely to be part of the shortest path between zones.The minimum number and location of count sites are difficult to determine because of the complexity ofthe algorithm and the unique properties of the regional network. It is known, however, that there mustbe more count locations than zones under consideration, with experience suggesting at least twice asmany count locations as zones to avoid estimation problems.These data requirements necessitated the development of a coarser zone system than the 2425-zonesystem used for modeling person travel and the development of a complementary truck network. Thefreight analysis zone (FAZ) system was formed from homogenous groupings of the consolidated TAZsystem and is thus complementary to the person-travel modeling process. The truck network, a subsetof the larger person-vehicle network, was selected from the principal highways and arterials in the studyregion to support the FAZ system, eliminating those local roads that are unlikely to carry large volumes oftruck traffic and portions of U.S. and state routes with truck prohibitions.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 4


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Employment Data(2-digit SIC)Household TotalsDaily PassengerVehicles TablesAllocation toFAZsTruck Counts(SU, MU)Daily Congested <strong>Travel</strong>Times (BPR)SU, MU TripGenerationTruck NetworkSU, MU InternalTrip Ends (P/A)Gravity <strong>Model</strong>Seed Matrices(Int-Int Trips)Synthetic MatrixEstimationExpanded ODOTExternal StationSurveyEE, IE, EIEstimatesDaily SU, MUTruck TripTablesFAZ-to-FAZFigure 2-1. Data and processes used to daily create base truck modelTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 5


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.1.1 Freight analysis zonesA system consisting of 161 FAZs was constructed from relatively homogenous groupings of the original2,425 internal zones of the consolidated TAZ system. Contiguous TAZs with similar employment densitiesand general land use types (office/retail, industrial, residential, agricultural) were grouped together.Some special generators such as Dayton International Airport, Greater Cincinnati Northern-KentuckyInternational Airport, Wright-Patterson Air Force Base and Paramount Kings Island Amusement Park wereisolated in single FAZs. A greater number of smaller FAZs were created close to I-75 to facilitate analysis,with fewer FAZs created in rural areas farther away from the Interstate highway system. An additionalconsideration was that no FAZ could straddle a county boundary.A target range of 90-150 FAZs was originally set, based on an initial estimate of the number of truckcount locations in hand; however, the process of forming logical groupings of TAZs and recommendationsfrom the MVRPC staff resulted in the final tally of 161 FAZs. Subsequent testing of this zone system withthe SME procedure and the network and truck count data revealed that this number would not present aproblem.A map of the final FAZ system is shown in Figures 2-2, below.2.1.2 Truck network developmentThe consolidated travel model network developed for the person-vehicle model was imported from itsoriginal Tranplan format into TransCAD for the purpose of developing the truck model. It was necessaryto prune this highly detailed network to support the analysis of truck flows between the coarser FAZs andto reflect the classes of roadways that carry significant truck traffic. The data field indicating theconsolidated administrative classification, represented by numerals 1-6, was used to guide selection oflinks for the truck network. Initially, only the higher-level Classes 1-4 were selected, which includedfreeways, expressways, ramps and major roads, typically U.S. and state roadways. Class 5 links, minorroads, and Class 6 links, centroid connectors, were not included.In many places, however, it was necessary to add links with Class 5 designations in order to preserve theconnectivity of the network. In some cases, Class 5-link roadways were selected in order to includeknown truck count locations. In a few other locations, links designated as Class 4, major arterial,appeared as isolated segments in an otherwise Class 5 roadway and, if not critical to networkconnectivity, were excluded from the network. In a few places, roads with U.S. and state highwaydesignations are subject to local truck prohibitions and were therefore excluded from the truck network.This specifically affected Columbia Parkway (US 50), east of Downtown Cincinnati, and Central Parkway(US 42, US 27, US 52 and SR127) on the north side of the Cincinnati central business district (CBD).All 106 external stations found in the passenger-vehicle network for the consolidated MVRPC-<strong>OKI</strong> networkwere also included in the truck network.Consistent with the passenger-vehicle network, links were added to represent the portion of I-71 thatpasses through Clinton County, Ohio, between Greene and Warren Counties, as well as connectionsbetween I-71 and US 68, SR 73 and SR 380. Similarly, links were added to represent SR 503 as it passesthrough Preble County, between Butler County and I-70. Neither Clinton County or Preble County arepart of either the MVRPC or the <strong>OKI</strong> region; however, these particular links were identified as necessaryadditions to avoid mischaracterizing trips that pass through this area as external when in fact they haveboth trip ends within the consolidated study region.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 6


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-2. Freight analysis zone system for consolidated modelTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 7


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The FAZ system was overlaid upon this truck network and new FAZ centroid nodes and connector linkswere created. The larger size of the FAZs meant that, in many cases, highways or other roads passedthrough a zone rather than paralleling its border as in the consolidated TAZ system. This was not viewedas a problem, since the purpose of the network was to aid in the creation of truck trip tables that willeventually be assigned to the same full network and consolidated TAZ system as the passenger vehicles.A map of the final truck network is shown in Figure 2-3, below. External stations are represented bysquares. FAZ centroids and centroid connectors are not shown.2.1.3 Vehicle classificationMuch of the literature on commercial vehicle freight movement classifies trucks into three broadcategories: four-tire trucks (e.g., pick-up trucks, sport-utility vehicles and vans); single-unit trucks (e.g.,bread and other local delivery trucks, garbage trucks, package delivery trucks such as UPS and FedEx);and articulated/combination trucks (e.g., tractor semi-trailers, tankers, flatbed trailers). These are usefulgroupings for modeling purposes because trucks within these categories tend to have similar travelpatterns.It was decided that the truck model would focus on the single-unit and combination (hereafter multi-unit)truck classifications. Single-unit (SU) and multi-unit (MU) trucks can be identified with reasonableaccuracy by automatic traffic recorders, based on the number of axles and distance between them.Generally, SU trucks have six or more tires and are thus differentiated from smaller commercial vehicles,so-called light trucks such as pickups, vans and mini-vans. In terms of behavioral characteristics, SUtruck trips are generated at greater rates than MU truck trips; however, MU trucks tend to havesubstantially greater average trip lengths because they dominate the long-haul trucking market.Four-tire trucks were excluded from the truck model because, unlike SU and MU trucks, they are rarelyused for hauling freight, are nearly impossible to validate from traffic count information, and,theoretically, should be accounted for in the home interview survey as non-home-based work trips.During the model development process, some concern was expressed over the decision to excludecommercial four-tire trucks from the truck model. The principal concern was that many non-home basedtrips, especially for work, go unreported in travel diaries. The following explanations were offered for thisdecision:• The percentage of four-tire trucks used primarily for freight transportation is not known, but shouldnot be large. Most four-tire trucks used for freight are likely to operate only short distances andthus would not be expected to constitute a large share of the trucks operating in the NSTI studyarea.• To include four-tire trucks in the truck model could lead to substantial double counting with thepassenger-vehicle model, particularly for non-home-based trips. The majority of four-tire trucks areregistered as personal vehicles. According to the 1997 Vehicle Inventory and Use Survey (U.S.Bureau of the Census), 73 percent of all trucks registered in Ohio were for personal use (68 percentin Kentucky and 71 percent in Indiana). The remainder include commercial, exempt (primarilyagriculture), and government registrations. The conventional wisdom, however, is that most fourtiretrucks are used for transporting persons or for service trade. A plumber, for example, might usegoods carried on his truck in the performance of a service call, but transporting these items is notthe primary purpose of the trip. This is an important distinction because these trips are alreadyincluded in the person-vehicle model. Moreover, many commercial vehicle drivers, particularly insmall businesses, use these vehicles for both work and personal travel.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 8


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Figure 2-3. Truck model network for consolidated modelTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 9


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• For model calibration and validation purposes, commercial four-tire trucks trips cannot beseparated from non-commercial autos and four-tire trucks. All of the traffic count surveysavailable for this study classify four-tire trucks in the same category as passenger cars, based ontheir lengths and number of axles. Automatic traffic recorders cannot distinguish betweencommercial and non-commercial pickup trucks, sport utility vehicles and vans.2.1.4 Truck countsTruck classification counts are essential to the SME calibration procedure. There are no standard tests bywhich to measure the validity or certainty of trip matrices resulting from the synthetic matrix estimation.Correctly applied to robust count data, the process will result in close fits with observed countsirrespective of the number of counts. The more counts included, the more constraints imposed on theprocess and the narrower the range of candidate solutions.ODOT, MVRPC, <strong>OKI</strong> and the Kentucky Transportation Cabinet contributed available truck traffic counts,which were geo-coded to the links of the travel model network that was imported into TransCAD. Intotal, 890 unique count locations were input to the truck model GIS database. Table 2-1 summarizescount locations by county and network link functional classification.Table 2.1. Truck Traffic Count Locations by County and Network Link Functional ClassCoded Functional ClassCounty, State InterstatesMajorArterialsMinorArterialsMajorCollectorsMinorCollectors Ramps Xways TotalBoone, KY 16 11 10 37Butler, OH 8 27 10 17 8 70Campbell, KY 7 5 1 6 2 21Clermont, OH 7 7 11 21 5 51Dearborn, IN 0Greene, OH 9 22 21 5 21 6 84Hamilton, OH 92 60 13 3 98 6 272Kenton, KY 13 9 10 1 33Miami, OH 9 4 20 16 1 4 54Montgomery, OH 34 54 43 5 32 19 187Warren, OH 15 15 16 19 16 81Total 210 203 156 103 1 179 38 890For SME calibration, bi-directional average daily traffic (ADT) counts were split evenly between “AB” and“BA” link travel directions, which resulted in 1039 links with counts information. Of these, 841 links withcount information were used in the calibration process.Since the SME procedure adjusts the seed matrix based on the differences between assigned andcounted traffic on the shortest path between origins and destinations, counts should be located along theshortest paths between O-D pairs. Counts on network links which are traversed by many shortest pathsand which also carry higher volumes of truck traffic provide the most information to the estimationprocess. For example, an analysis of free-flow shortest paths on the truck network revealed thatapproximately one-sixth of the 25,905 shortest paths that connect the 161 FAZs use the network linksthat represent I-75 near the Warren-Montgomery County line, links which also carry a relatively highvolume of truck traffic. For comparison, I-70 also carries a high volume of truck traffic, but due to theshape of the study area and the zone system far fewer O-D interchanges use the I-70 link as a shortestpath.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 10


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0<strong>OKI</strong> contributed a critical set of directional counts along the I-75 mainline between 23 interchangelocations, ranging from the Ohio River (US 50) to as far north as SR73 in northern Warren County, anadditional six locations on I-275, I-74 and US 50, as well as numerous ramp counts along these stretchesof freeway. These counts were taken in 1999 and due to their importance to the NSTI study and thesynthetic estimation procedure, it was decided that a “late-1990s” truck model calibration provided thebest chance of producing a working model from a relatively contemporaneous set of counts across thestudy region, despite of the designation of 1995 as the base year. Moreover, <strong>OKI</strong> and MVRPC staffexpressed concern over several geographic areas being under-represented in the calibration procedure, ifcounts were restricted to just a few years. For these reasons, counts taken from 1994 to 2000 were usedto estimate the base-year truck model. The counts summarized by county and year are shown in Table2-2.Table 2.2. Truck Traffic Count Locations by County and Year of CountYearCounty, State 1994 1995 1996 1997 1998 1999 2000 TotalBoone, KY 1 8 4 7 8 9 37Butler, OH 53 1 16 70Campbell, KY 1 11 5 4 21Clermont, OH 51 51Dearborn, IN 0Greene, OH 78 2 4 84Hamilton, OH 137 135 272Kenton, KY 4 3 7 14 5 33Miami, OH 54 54Montgomery, OH 129 14 44 187Warren, OH 57 24 81Total 266 1 66 194 25 218 120 890For SME calibration, the ideal truck count should cover a period of 24 hours, with separate hourly totalsfor each direction and broken down by vehicle classification. Few of the counts were provided in exactlythis form; therefore, link counts were adjusted as necessary to form daily, directional counts by SU andMU truck classifications. To do this, the following rules were applied:• Where the count was expressed as a bi-directional volume, this number was split evenly between“AB” and “BA” link directions. This affected a number of counts that were provided in the form ofADT summaries.• Where only the total number of trucks was provided or trucks as a percentage of total vehicles,judgment was made as to the functional class of the roadway and the proportions shown in Table 2-3were applied to derive SU and MU splits. This affected ODOT ADT counts and some of the countsprovided by the Kentucky Transportation Cabinet. In addition, these percentages were used toclassify truck types from the 1995 ODOT External Station Survey.Table 2-3. Expected Proportions of Multi-Unit Truck TypesFunctional ClassMU / (MU + SU)RuralUrbanInterstate 0.81Other Principal Arterials 0.60Minor Arterial, Collector, Local 0.42Interstate 0.71Other Freeways and Expressways 0.57Other Principal Arterials 0.56Minor Arterials 0.47Collectors 0.45Local 0.30Source: derived from Table 4.2 “Percent Distribution of Traffic by Vehicle,” QuickResponse Freight Manual, USDOT, 1996, p. 4-13.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 11


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0• Where 12-hour (6 a.m. to 6 p.m.) counts were provided, expansion factors were derived andapplied to create 24-hour equivalents. This affected the manual counts provided by <strong>OKI</strong> alongthe mainline of I-75, I-275 and I-74 as well as manual counts at on and off ramps along thesesame highways within Hamilton County.For 12-hour mainline counts, the diurnal distributions found in the Quick Response FreightManual (QRFM) were used to approximate the percentages of SU and MU trucks on the roadwaysduring the 6 a.m. to 6 p.m. period of the day. These percentages are 82.8 percent for SU trucksand 69.4 percent for MU trucks. The QRFM rates were used because of a lack of available hourlycounts on the freeway mainlines. These rates are judged to be appropriate for urban areas.Lower percentages of trucks during the 6 a.m. to 6 p.m. period are likely in rural and moresparsely developed portions of the study area, while higher percentages would be found in CBDsand densely developed commercial and industrial corridors.Interstate freeways, which carry most of the traffic passing through the region, typically exhibit alarger proportion of truck traffic at night and in the early morning hours than non-interstatehighways and local roads. The percentage of truck counts during the business hours of the day(6 a.m. to 6 p.m.) is greater at freeway ramps than on the mainline because the ramps reflecttrucks entering and exiting the freeway to make local pickups and deliveries, or to depart from orreturn to a local base of operation.<strong>OKI</strong> provided a set of hourly machine ramp counts along I-75 in Hamilton, Butler and WarrenCounties that included a full 24-hour span, broken down by SU and MU truck classes. Thesedata showed that 81.7 percent of SU trucks and 75.4 percent of MU trucks were counted duringthe 6 a.m. to 6 p.m. portion of the day, averaged across 82 ramp counters.These proportions were inverted to form the final 24-hour expansion factors:12-hour I-75, I-74, I-275 mainline counts (<strong>OKI</strong>)• SU Trucks 1.208• MU Trucks 1.44112-hour I-75, I-74, I-275 manual ramp counts (<strong>OKI</strong>)• SU Trucks 1.224• MU Trucks 1.3262.2 External TripsTo produce estimates of truck flows with external trip ends, the ODOT 1995 External Station Survey wasexpanded and tabulated, resulting in a set of external-external (EE), internal-external (IE) and externalinternal(EI) truck trip tables.The 1995 ODOT External Station Survey was expanded and corrected for errors following the guidelinesin the February 2000 report prepared for MVRPC by ODOT, “Technical Memorandum: Processing ofCordon Line OD Survey Data.” The raw survey totals for trucks were expanded using the hourly, daily,seasonal and opposite direction expansion factors developed by ODOT. ODOT’s adjustment factor toaccount for re-geocoding of certain records and a “truck flip” factor to correct for other (unspecified)survey deficiencies were also applied.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 12


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Bias factors to account for the omission of unidentified TAZ or external station trip ends were recalculatedby Parsons Brinckerhoff after the MVRPC and <strong>OKI</strong> model networks were consolidated. These new biasfactors were applied to each record.External station correction factors were developed to account for trips that were originally coded asexternal, but were found to actually be trips between the <strong>OKI</strong> region and the MVRPC region thattemporarily left the study area through one external station and re-entered through another. This wasparticularly a problem for trips between some Butler and Montgomery County stations and between someWarren and Greene County stations. The multiplicative factors were calculated as the expanded numberof actual external truck trips divided by the expanded count total of external truck trips. This reduced thenumber of actual EE and IE trips at certain stations. For trucks, the correction factors applied during theexpansion process are shown in Table 2-4.Table 2-4. External Station Correction FactorsRoute TAZ Station ODOT Station EE factor IE factorSR 503 N 2449 1044 1.000 0.893SR 725 W 2511 872 0.922 0.720US 35 W 2512 873 0.968 1.000Route TAZ Station ODOT Station EE factor IE factorI 71 N 2446 1024 0.997 0.988SR 73 E 2447 1025 1.000 0.987SR 72 S 2508 856 0.861 1.000US 68 S 2509 857 0.873 0.903SR 380 S 2510 858 0.886 0.556The ODOT Surveys were conducted in only one direction at each external station, mostly in the outbounddirection, except at four stations in Miami County where the surveys were taken in the inbound direction.To use these data to form trip tables, the technical memo recommends an assumption of symmetry; thatis, an i-to-j trip in the survey direction implies a j-to-i trip in the non-survey direction. To implement this,EE trips were multiplied times one-half, so as not to double count, because they are theoreticallysurveyed at two external stations. For IE trips at outbound survey stations, the opposite direction factorwas used to derive the number of EI trips between the same external-station-TAZ pair. The equivalentsteps were taken for the four stations at which surveys were taken in the inbound direction. The ODOTopposite direction factor is the total number of trucks counted by the automatic traffic recorder in bothdirections, divided by the total number of trucks counted in the survey direction. For example, if theopposite direction factor for a particular station’s survey records is 1.95 and 20 expanded trips were to bemade in the survey direction, i-j, then the opposite direction factor implies that 19 trips would be made inthe non-survey direction, j-i.The ODOT technical memo noted that only one truck was surveyed at Station 842 (Consolidated TAZ No.2494), I-70 east of I-675 interchange. To remedy this, the technical memo suggested using the trip endssurveyed at other stations that named Station 842 as the trip origin as an indicator of EE trips for Station842, resulting in 7,777.99 EE trips. For IE and EI trips, the memo recommended using the tripinterchanges found in the surveys of passenger vehicles and expanding these interchanges to theproportion of total vehicle traffic that the automatic traffic recorder counted as trucks. This produced asynthesized total of 13,308.46 IE plus EI truck trips. An additional correction factor of 0.615606 wasTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 13


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0applied to the IE/EI trip records for this station to preserve its two-way total of 15,970.76 external trucktripends. ODOT also determined that the automatic traffic recorders at this station had counted asuspiciously low number of vehicles in the survey direction; therefore, the memo recommended using thetotals for the non-survey direction as the counts for both directions. These corrective measures wereimplemented to create EE, IE and EI truck trip tables.As a final step, the expanded data were classified into SU and MU categories by applying the proportionsshown in Table 2-3 (Section 2.1.4) based on the average distribution of SU versus MU trucks forroadways of certain functional classes. The final expanded data were aggregated across origindestinationpairs to produce EE, IE and EI estimates for separate SU and MU vehicle classes.2.3 Seed Matrix DevelopmentThe seed matrix is an initial estimate of the FAZ-to-FAZ truck O-D tables. The SME process modifies theseed matrix interchange values by factoring them up or down, such that when the table is assigned tothe truck network the flows come as close as possible to the truck counts on the network links. The seedmatrix thus plays the important role of establishing a general spatial flow pattern for the region.The seed matrix was constructed by applying standard trip generation and distribution techniques. First,the expected numbers of SU and MU truck productions and attractions were generated for each FAZbased on employment and household totals. Next, a gravity model was used to distribute theseproductions and attractions from FAZ to FAZ. Congested travel time skims were used to calculate frictionfactors in the gravity model. Both of these steps are described in detail below.2.3.1 Truck trip generationDaily truck trip generation equations were applied to 1995 employment and household totals to generateSU and MU truck trip productions and attractions for each FAZ. The coefficients shown in Table 2-5,below, are based on a Phoenix, Arizona, study and were recommended for use as default values in theQuick Response Freight Manual (QRFM) because they provide an internally consistent set of rates, asopposed to combining rates from different studies with potentially misleading or unclear definitions(USDOT 1996, pp. 4-3 to 4-4). The QRFM rates are assumed to apply to either productions orattractions. There is a coefficient for households and four employment-based coefficients for groupingsof industries with similar truck trip generation characteristics.It was noted in the QRFM that these rates were increased to account for under-reporting and for trips notsurveyed because one end lay outside the study region (USDOT 1996, p. 4-4). The rates for MU truckwere increased disproportionately, because they are used for inter-city shipments to a much higherdegree than SU trucks. The expanded ODOT external station survey was to be used for the externaltruck trip ends; therefore, it was necessary to adjust the trip generation coefficients to reflect ratesappropriate for the generation of internal-internal trips only.To correct for potential over-prediction bias, correction factors were calculated as follows:CorrectionQRFMFactor =TripEnds − External StationQRFM Trip EndsIE,EITripEndsTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 14


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 2-5. Daily Truck Trip Generation Rates (origins or destinations per unit)Employment CategorySingle-UnitTrucksMulti-UnitTrucksAgriculture, Mining and Construction (SIC 1-19) 0.289 0.174Manufacturing, Transportation, Communications, Utilities andWholesale Trade (SIC 20-51)0.242 0.104Retail Trade (SIC 52-59) 0.253 0.065Offices and Service (SIC 60-88) 0.068 0.009Households 0.099 0.038Source: Quick Response Freight Manual, USDOT, 1996, p. 4-4Correction factors were calculated differentially by SU and MU truck types, such that:SUCFMUCF= 0.952= 0.683Application of these correction factors effectively reduces the daily truck trip end generation rates torepresent the proportion of truck trip ends that are internal-internal. Conversely, these factors imply thatapproximately 5 percent of SU and 22 percent of MU truck productions and attractions have an externaltrip end (are IE/EI trips). Table 2-6, below, shows the adjusted rates.It is important to remember that the absolute numbers produced by the synthetic matrix estimationprocedure are factored to match actual traffic counts on the network, with the seed matrix values simplyserving as a starting point. Any remaining bias, upward or downward, would be mitigated to someextent by fitting the seed matrix flows to the link counts, provided the count data is robust.Table 2-6. Adjusted Daily Truck Trip Generation Rates (origins or destinations per unit)Employment CategorySingle-UnitTrucksMulti-Unit TrucksAgriculture, Mining and Construction (SIC 1-19) 0.275 0.119Manufacturing, Transportation, Communications, Utilities and WholesaleTrade (SIC 20-51)0.230 0.071Retail Trade (SIC 52-59) 0.241 0.044Offices and Service (SIC 60-88) 0.065 0.006Households 0.094 0.026Rates based on Quick Response Freight Manual, USDOT, 1996, p. 4-4, multiplied by factors of 0.952 for single-unit trucks and0.683 for multi-unit trucks.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 15


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0At the outset of the study it was not clear what set of truck trip generation rates would be used andwhether the employment data maintained by MVRPC and <strong>OKI</strong> could be broken down by two-digitstandard industrial classifications (SIC) and regrouped to match the trip generation categories for eachFAZ. Consequently, a data set was acquired from a marketing research data provider, Claritas, Inc. Thedata came in two-digit standard industrial classification (SIC) totals (83 categories) for each census tractin study region for 2000. The employment data were allocated to the FAZs using a procedure inTransCAD software to allocate polygon attribute data when overlaying two different map layers, in thiscase, FAZs and census tracts. The allocation is based on the proportion of each base polygon (censustract) that is covered by each target polygon (FAZ). For example, if 78 percent of Census Tract “A” iscovered by FAZ “B”, then 78 percent of the retail employment in Census Tract “A” will be allocated to FAZ“B.”Subsequent analysis by the staff of MVRPC revealed inconsistencies at the aggregate level between thedata obtained from Claritas and MVRPC’s in-house employment data. In addition, representatives of bothMVRPC and <strong>OKI</strong> expressed concern about using 2000 employment data for a 1995 base-year model.Accordingly, 1995 household and employment totals were provided by both <strong>OKI</strong> and MVRPC. The waysin which the two agencies grouped their employment data differed from the QRFM trip-rate groupings.MVRPC staff regrouped their employment data at the FAZ level according to the categories in Tables 2-5and 2-6. (Government sector employment was included in the Offices and Service category.) For <strong>OKI</strong>, itwas agreed that <strong>OKI</strong>'s in-house estimates of total 1995 employment for each FAZ would be used, butdistributed across employment categories according to the proportions found in the 2000 Claritas dataset.The 1995 household and employment FAZ totals were multiplied by the truck trip end generation ratesshown in Table 2-6 to produce expected numbers of productions and attractions for each FAZ.Summaries of these trip ends are presented in Section 3, below.2.3.2 Truck trip distributionThe model formulation used to distribute the internal-internal truck trips in the seed matrix is a doublyconstrained gravity model. The gravity model is so named because its formulation is similar to themeasure of physical attraction between two objects. The measure of attraction between two objects isproportional to the product of their masses, with attractiveness decaying as the distance between themincreases.In the parlance of travel forecasting, the traffic flow between any two zones (e.g., FAZs) is proportionallyrelated to the product of their expected productions and attractions. The distance-decay relationship isexpressed in terms of friction factors, which are derived either empirically from observed data orcalculated from an impedance function that represents an expected trip-length distribution.The gravity model can be constrained to match the marginal (zonal) totals for (a) productions, (b)attractions, or (c) both—doubly constrained.A production-constrained gravity model can be formulated asTij= P ∗iA∑jj′∈Zones∗Afj′ ∗( dij)f ( d )An attraction-constrained gravity model can be formulated asij′Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 16


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Tij=Aj∗P ∗ fi∑ Pi′ ∗i′∈Zones( dij)f ( d )ij′whereT ij is the predicted flow produced by Zone i and attracted to Zone jP i is the predicted number of trips produced by Zone i from trip generationA j is the predicted number of trips attracted by Zone j from trip generationd ij is the impedance (distance, travel time/cost) between Zone i and Zone jf(d ij ) is the friction factor between Zone i and Zone j.The truck model employs a doubly constrained approach that alternatively balances the productions byapplying the first equation and then balances the attractions by applying the second equation. Thiscontinues until a convergence criterion is met.The role of the friction factor is simply to adjust the relative attractiveness of a potential destination zoneas a function of its distance, travel time or cost from the origin zone. Observed truck trip lengths werenot available for this study; therefore, it was not possible to derive a table of friction factors or tocalibrate impedance function parameters.In the absence of such data, the QRFM (USDOT 1996, p. 4-19) recommends an exponential friction factorfunction:f− ∗tij( t ij) = eαwhere:t ij is the travel time (skim) between Zone i and Zone jα is an impedance parameter.The values of α recommended in the QRFM are 0.10 for single-unit trucks and 0.03 for multi-unit trucks.Mathematically, these parameters imply a mean trip length of 10 minutes for SU trucks and 33 minutesfor MU trucks. The chart in Figure 2-4, below, depicts these relationships graphically. The relationship isone in which destination zones become less attractive as one travels further from the origin. This curveis steeper for SU trucks, which are used primarily for local hauls, and less steep for MU trucks, which aremore often used for inter-city and other longer distance hauls. Use of these friction factors implies thatSU truck trips will be primarily local in range, with few expected to go beyond 60 minutes in length. Incontrast, MU trucks will carry the bulk of inter-city freight, with trips beyond two-hours in length fairlycommon.The problem with using this exponential function is that, in reality, very short distance truck trips areoften less attractive because of the costs of loading and operating a truck. This is particularly true of thelarger MU trucks and to a lesser extent for SU trucks. MU trucks include tractor-trailer combinations:standard box shape trailers, flatbed trailers, large tankers and the two-tiered trailers used to haulautomobiles. Even in heavily industrialized zones, freight movements within the zone would be moreefficiently carried out with smaller single-unit (SU) trucks. If trip-length distribution data were available,it would likely result in a curve that takes on a lognormal shape, or some similar functional form thatproduces low-value friction factors close to the origin, rising sharply as travel time increases, peaking anddecreasing gradually over longer distances.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 17


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01.20001.0000Friction Factor0.80000.60000.40000.20000.00000 10 20 30 40 50 60 70 80 90 100 110 120 130<strong>Travel</strong> Time in MinutesSU ExponentialMU ExponentialFigure 2-4. Synthesized exponential SU and MU truck friction factorsIntra-zonal trips were of particular concern because they are not loaded onto the network in the syntheticO-D matrix estimation procedure and therefore not fitted to count data. The problem with simplyeliminating intra-zonal MU trips altogether is that there are a few plausible scenarios in which intra-zonalMU truck trips might be made, such as food distributors that make consecutive stops at stores within thesame zone.An alternative approach is to use a functional form that would make very short truck trips less attractive,but not prohibit them. In the absence of data to calibrate such a function, a variation on the QRFM wasused, resulting in the following mixed distribution:ff− ∗tij( t ij) e−α∗tij( t ij) = − e= α if t ij ≥~ t minutes1 if t ij < ~ t minuteswhere:t ij is the travel time (skim) between Zone i and Zone j~α is an impedance parameter, equal to 0.03 for MU trucks and 0.10 for SU truckst is the value of travel time where −α∗t ij −α∗te = 1 − eij.For MU trucks, this is represented in Figure 2-5, below, by the curve that first rises, then falls, with aninflection point at about 23 minutes. This type of mixed friction factor distribution is more realistic thanthe pure exponential form suggested by the QRFM and is closer in shape to empirically derived curvesfrom freight movement studies in other regions. For the sake of visual comparison, this curve has beeninflated to match the area under the curve of the original exponential curve. The inflation factor cancelsout in the gravity model equations.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 18


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.01.20001.0000Friction Factor0.80000.60000.40000.20000.00000 10 20 30 40 50 60 70 80 90 100 110 120 130<strong>Travel</strong> Time in MinutesMU ExponentialMU MixedFigure 2-5. Synthesized MU truck friction factors using mixed distributionSimilarly, the same mixed distributional form was applied to calculate friction factors for SU truck trips.For SU trucks this distribution looks like the sharply peaked curve shown in Figure 2-6, with an inflectionpoint at around seven minutes.1.20001.0000Friction Factor0.80000.60000.40000.20000.00000 10 20 30 40 50 60 70 80 90 100 110 120 130<strong>Travel</strong> Time in MinutesSU ExponentialSU MixedFigure 2-6. Synthesized SU truck friction factors using mixed distributionTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 19


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The implications of these “mixed distribution” curves are somewhat longer average trip-lengths in theseed matrix, compared with the exponential formulations. The synthetic trip matrix estimation processwill adjust the seed matrix flows to match the truck counts on certain network links, changing the shapeof the distribution to some degree. The exceptions are intra-zonal (FAZ) flows, because they are neverloaded on the network during the SME process. The final intra-zonal flows will be the same as in theseed matrix.The travel time skims used in the gravity model were based on an assignment of daily passenger-vehicletrip tables to the full CRM network, imported into TransCAD. The volume-delay function used was theBureau of Public Roads (BPR) function used in the user-equilibrium assignment of the passenger-vehiclesand is formulated asT = T +cV β[ 1 α ( ) ]0 Cwhere T c is the calculated congested travel time resulting from the volume-delay function and T 0 is thefree-flow travel time. Hourly capacities and the values of the α and β parameters in the function areconsistent with those developed by <strong>OKI</strong> for specific link functional class and area types.Since the SME procedure is set up to calibrate the truck model according to daily traffic count data,consistency dictates that the distribution of SU and MU truck trips in creating the seed matrix be basedon an average daily travel condition, rather than separate peak and off-peak travel time skims. This isfurther supported by the diurnal patterns of truck trips, shown in Section 2.5, which are spread moreevenly throughout the day than passenger vehicle trips. Accordingly, diurnal vehicle trip data wereobtained from <strong>OKI</strong> and used to develop a daily link capacity factor to convert hourly capacities to dailyequivalents, which resulted in the multiplication of hourly capacities by a factor of 13.03. A userequilibriumassignment of the daily passenger vehicle table was performed and the travel times skimmedfrom the loaded network.FAZ centroid connectors were assigned a speed of 25 miles-per-hour, with total travel time based on linklength, to reflect intra-zonal travel conditions. External station connectors were assigned a nominal traveltime of five minutes.Using the expected productions and attractions from the truck trip generation phase along with thesenetwork skim times, the gravity model was run to produce internal-internal flow estimates for both SUand MU truck types. These internal-internal flow estimates constitute the seed matrix for each trucktype. These initial estimates of SU and MU truck trip flows are then calibrated using SME.2.4 Synthetic Matrix EstimationThe SME calibration step of the truck model utilizes the single-path matrix estimation algorithmimplemented in TransCAD. SU and MU truck trip tables are calibrated separately. In order to preservethe EE/EI flows in the ODOT external station survey, a multi-stage SME implementation was developed.2.4.1 Description of single-path matrix estimation algorithmA TransCAD implementation of the single-path matrix estimation (SPME) algorithm (Nielsen 1993) wasused for this project. The algorithm differs from other synthetic matrix estimation algorithms in that ittreats traffic counts on the network links as stochastic variables. In doing so, it minimizes the differenceTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 20


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0between counted traffic on the links that comprise the optimal path between O-D zone pairs and theexpected traffic that would result from an assignment of the O-D matrix to the network. In this case, theoptimal (least cost or shortest travel time) path is that which would result from an all-or-nothingassignment to the network.Figure 2-7, below, shows the steps in the algorithm. As described in Nielsen’s (1993) research paper, it isa bi-level algorithm that begins with an assignment of the seed matrix to the network. 1 At the first level,the algorithm attempts to minimize the difference (squared error) between the counted traffic and thepredicted traffic assigned to the network through a trial-and-error method of adjusting networkassignment parameters. This is described by Nielsen as a “possible” step, one that seems to have beenleft out of the TransCAD 4.0 implementation.At the second level, matrix estimation, the ratio of counted-to-predicted traffic (resulting from the firstlevel) is calculated for each link with a count. This ratio is multiplied times the previous zone-to-zoneflows that use that link as a shortest path to calculate an expected traffic flow between each zone pairusing that link. Next, for each O-D pair, the sum of the expected traffic flows from each link on theshortest path between i and j is used to calculate a mean expected traffic flow for that O-D pair. Thismean expected i-j flows for each O-D pair become the new predicted trip matrix. This new matrix isassigned to the network and, again, the squared error between counted and predicted traffic flows forlinks with counts is calculated.At this point, the algorithm returns to the first level to adjust network assignment parameters, a stepwhich, again, is not implemented in TransCAD 4.0. If the error is within an acceptable tolerance range orreaches the maximum number of iterations, the algorithm terminates. Otherwise, the algorithm returnsto the second level and another matrix is estimated as before. This continues until either an acceptablemaximum error measure is computed, or until a maximum number of iterations reached. The procedureallows estimation of only one vehicle class at a time, requiring SU and MU truck trip tables to becalibrated separately.The user equilibrium method of assignment was used for this work, based on a daily assignment of theseed matrix to the auxiliary truck network, described above in Section 2.1.2. The assignment processuses pre-loaded daily passenger-vehicle flows as background traffic, including them in the volume-delaycalculations to simulate congested travel conditions, as shown in the following equation:Tc= TVpreload. pass.veh.+ Vtrucksβ[ 1+α () ]0 CThe pre-loaded auto volumes were created during the process of generating travel time skims in the tripdistribution step of the seed matrix development, described above in Section 2.2.2. As with thegeneration of travel time skims, the BPR volume-delay function was used with α and β parameters valuesdeveloped by <strong>OKI</strong> for specific link functional class and area types.During development it was found that running the procedure until an acceptable tolerance of 0.1 wasreached tended to produce a final matrix that differed substantially from the seed matrix. To produce asynthetic matrix that is closer to the original matrix, while still fitting the matrix flows to the counts,Nielsen (1993, p. 14) recommends using five to ten iterations. For consistency, all of the truck trip tableswere produced using eight iterations, which proved to provide a good fit to the counts while preservingthe general distribution of interchange values found in the seed matrix.1 Nielsen, O. A., 1993. “A New Method for Estimating Trip Matrices from Traffic Counts. Paper 1993-3,Technical University of Denmark.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 21


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Traffic assignmentof seed matrixCalculate errorbetween countedand estimatedtrafficPossible estimation ofnetwork assignmentparametersEstimation ofelements in ODmatrixAssignment ofestimated ODmatrixNoError tolerance met?Max. iterations met?Possibleestimation ofnetworkassignmentparametersCalculate errorbetween countedand estimatedtrafficYesEnd EstimationSource: Nielsen, O. A., 1993. “A New Method for Estimating Trip Matrices from Traffic Counts. Paper1993-3, Technical University of Denmark.Figure 2-7. Single-path matrix estimation algorithmTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 22


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.4.2 Multi-stage implementation of synthetic matrix estimationSynthetic matrix estimation procedures attempt to adjust the interchange values in a trip table throughan iterative process of assigning the table to the network, calculating deviations from coded trafficcounts, and using this information to re-factor the trip table. Since the traffic counts coded to thenetwork represent daily link flows that include both trips with both internal and external origins anddestinations, the seed matrix used to initiate the process should also include both internal and externalorigins and destinations.Initial development of the truck model using the SME procedure in TransCAD was based on a seed matrixin which the internal-internal trip tables generated through the Quick Response truck trip generation anddistribution processes were combined with the EE/EI truck trip tables that were formed from the ODOTexternal station survey. A thorough analysis of changes between these initial trip table estimates and theoutput of the SME procedure revealed that some significant changes were being made to the EE/EI flowpatterns. Despite excellent matches to the count data, it was decided that the EE/EI trip flow patternsformed from the expanded ODOT external station survey should be preserved to the extent possible. Toremedy the situation, a multi-stage approach to SME was developed whereby only the internal-internalseed matrix tables would be calibrated and the external station tables left intact. The steps in this multistageSME procedure are as follows:1. Perform a preliminary assignment of the internal-internal seed matrix and save the resultingflows in a new data field.2. Perform a preliminary assignment of the EE/IE truck trip tables and save the resulting flowsin a new data field.3. For each link, calculate the ratio of saved internal-internal truck volume to total saved truckvolumes (internal-internal plus EE/EI).4. For links with daily traffic counts, multiply these ratio times the traffic count totals toapproximate the proportion of count volume that represents internal O-D demand and savethis in a new field as a new calibration count target value.5. Add the saved EE/IE truck trips to the pre-loaded auto volumes for each link, creating a newfield for pre-loaded vehicle volumes.6. Apply the SME procedure to the internal-internal O-D seed matrix, using the new calibrationcount values and the new pre-loaded vehicle volumes.7. Combine the adjusted internal-internal truck trip O-D matrix with the EE/EI truck trip tablesfrom the ODOT external station survey to form the final trip table.Despite the loss of information from using partial count data for calibration, this multi-stage approachresulted in a good fit to the full count data, while producing reasonable zonal trip ends and interchangeflow values.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 23


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.5 Post-ProcessingTo produce truck trip tables for assignment to the network of the consolidated modeling system requiredthe re-allocation of FAZ-to-FAZ flows to TAZ-to-TAZ flows and the distribution of these flows across thefour time periods of interest. Figure 2-9 illustrates these processes, which are described in this section.SU, MU TripGenerationby TAZEmployment Data(2-digit SIC)Household TotalsDaily SU, MUTruck Trip TablesFAZ-to-FAZSU, MU Production-Attraction WeightsWeighted Allocation ofFAZ-to-FAZ flows toTAZ-to-TAZ flowsDiurnalDistributionFactors (QRFM)Daily SU, MUTruck Trip TablesTAZ-to-TAZAllocation to FourTime PeriodsSU, MU Truck TripTables TAZ-to-TAZby Time Period ofDaySU, MU PCE TripTables TAZ-to-TAZby Time Period ofDayFigure 2-8. Steps followed to distribute daily FAZ-to-FAZ truck flows to TAZ-to-TAZ flows by timeperiodTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 24


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02.5.1 Conversion to TAZ–to-TAZ flowsThe method developed to convert the internal FAZ-to-FAZ truck trip flows to TAZ-to-TAZ truck trip flowsuses the fact that every FAZ was constructed from one or more whole TAZs. Figure 2-9 illustrates howflows are allocated from the FAZ pairs to TAZ pairs.FAZ mFAZ ni = 2j = 1j = 2i = 1j = 3 j = 4Figure 2-9. Allocation of FAZ flow m-n to TAZ flows i-jFor each FAZ-to-FAZ pair, m-n, there are multiple constituent pairs of TAZ-to-TAZ pairs, i-j.Production/attraction weights, W i were calculated for each TAZ, using linear combinations of 1995 totalemployment and households. The share of the m-n flow allocated to each i-j pair, was calculated as theproduct of the TAZ production/attraction weights for each i-j pair, divided by the sum of the products ofthe production/attraction weights for all of the i-j pairs belonging to the single FAZ pair m-n. Formally,this can be expressed as⎛ ⎞⎜ W ⎟iWjFmn , ij= Fmn∗⎜⎟⎜ ∑WiW,j ⎟⎝ ij∈mn ⎠where F mn is the flow between FAZs m and n produced by the synthetic matrix estimation of truck triptables, and F mn,ij is the flow allocated to TAZ pair i-j belonging to FAZ pair m-n. For intra-zonal FAZ flows,the constituent TAZ flows were calculated in the same way.MVRPC and <strong>OKI</strong> provided 1995 employment and household totals for each TAZ. The truck tripgeneration coefficients from Table 2-6, above, were used to calculate production/attraction weights, W i .At the TAZ level, employment was not categorized according to the four trip generation coefficients;therefore, a new trip generation coefficient for total employment was calculated as the weighted averageof the QRFM coefficients. This resulted in a separate “total employment” weight coefficient for each FAZ,which was then applied to all TAZs belonging to the FAZ.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 25


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Formally, the production/attraction weights for SU and MU truck trips were calculated as follows:WSUi= βSUm∗ ETOTAL 95i'+ 099TOTAL '950.∗ HiWMUi= βMUm∗ ETOTAL 95i'+ 038TOTAL'950.∗ HiSUWiMUWi,where andrespectively; β andTOTAL' 95m;iSUmare the production/attraction weights for TAZ i for SU and MU truck types,MUβmare the new total employment coefficients to be applied to all TAZs in FAZTOTAL' 95E and Hiare the 1995 employment and household totals, respectively, for TAZ i. Thehousehold coefficients 0.099 and 0.038 for SU and MU trucks, respectively, are from Table 2-5.The formulas used to calculate the new total employment weight coefficients for each FAZ m wereβSUm0.289 ∗ E=AMC'95m+ 0.242 ∗ EMFG'95mE+ 0.253∗ETOTAL '95mRET '95m+ 0.068∗EOFF '95mβMUm0.174 ∗ E=AMC'95m+ 0.104 ∗ EMFG'95mE+ 0.065∗ETOTAL '95mRET '95m+ 0.009 ∗ EOFF '95min whichEAMC'95m, EMFG'95m, ERET '95mandEOFF '95mare the FAZ employment figures for the four QRFMcategories: agriculture, mining and construction (AMC); manufacturing, transportation, utilities andwholesale (MFG); retail (RET); and office and service (OFF) employment. The corresponding numericalTOTAL' 95coefficients are from Table 2-5. represents total employment in the FAZ.Em2.5.2 Distribution to daily time periodsHourly truck trip tables can be constructed from the daily truck trip tables by calculating the percentageof daily SU and MU truck counts that take place in each time period of interest. For the NSTI study, itwas determined that traffic would be modeled for four time periods:• AM Peak—6:00 AM to 8:30 PM• Midday—8:30 AM to 3:00 PM• PM Peak—3:00 PM to 5:30 PM• Night—5:30 PM to 6:00 AM.The diurnal distribution of SU and MU truck traffic counts can be derived empirically from a sample ofexisting traffic counts. One problem with this approach is that the diurnal distribution of traffic onroadways can be expected to vary considerably, depending upon urban area type (urban, suburban,rural) and facility type (interstate freeway, principal arterials, local roads, freeway ramps). Moreover, thediurnal distribution factors need to be applied directly to the daily truck tables in which a trip between agiven origin and destination might pass through multiple urban area types and use multiple facility types.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 26


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Thus deriving a single factor to apply to the entire SU trip table and a single factor to apply to the entireMU trip table is a precarious exercise.An easier and perhaps safer approach would be to use the percentages from the QRFM (Quick ResponseFreight Manual, USDOT 1996, p. 4-38). These values are for urban areas, without regard to roadwayfunctional class; therefore, they are likely to be more appropriate for post-processing a daily trip tablethat reflects a wide range of flows within and between various urban area types as well as trips thatutilize multiple functional classes of roadway. This distribution is shown in Figure 2-10.0.090Proportion of Daily Traffic0.0800.0700.0600.0500.0400.0300.0200.010SU trucksMU trucks0.0001357911131517192123Hour of the DayFigure 2-10. Diurnal distribution of truck trafficIn contrast to the dual peak periods typically observed for passenger vehicles, diurnal distributions fortrucks are characterized by a single, broader concentration of traffic during the middle portion of the day.SU trucks are apt to travel during business hours, primarily serving local pickups and deliveries. Bycomparison, MU trucks tend to have a more dispersed diurnal distribution, often traveling late at nightand during the early morning hours. Based on these distributions, Table 2-7 shows the diurnal factorsthat were calculated for SU and MU trucks.Table 2-7. Proportion of Truck Traffic by Time Period<strong>Model</strong> PeriodCommercial TrucksFrom To SU MUAM Peak 6:00 8:30 0.159 0.129Mid-day 8:30 15:00 0.475 0.422PM Peak 15:00 18:30 0.212 0.164Night 18:30 6:00 0.156 0.286Total 1.000 1.000Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 27


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Eight truck trip tables were created (SU and MU vehicle types by four time periods, AM-peak, Mid-day,PM-peak and Night). The final truck trip table totals are shown in Table 2-8.Table 2-8. Truck Trip Table TotalsSU TrucksMU TrucksAM Peak 22,849 15,742Mid-day 68,260 51,499PM Peak 30,465 20,013Night 22,131 34,780Daily Total 143,705 122,034The eight resulting tables, two truck types by four time periods, were expressed in terms of floating pointnumbers (fractional values), as produced by TransCAD. To produce integer values as required for inputinto the Tranplan modeling environment, a commonly used procedure known as “bucket rounding” wasused. Bucket rounding proceeds interchange-by-interchange, rounding down to the nearest wholenumber but accumulating the residual fractional values and adding an integer value of one to theinterchange in which the accumulated fractions “tip the bucket” (i.e., cross a threshold of 0.5), then,starting over with the next interchange, accumulating more fractional values until the bucket is onceagain tipped. This procedure was important to use in translating the floating-point number trip tablesproduced by the TransCAD program into the integer-value tables needed by Tranplan because the vastmajority of cell interchanges contained very small fractional values that could have been lost altogetherwithout this step.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Development 28


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03. Base-Year Truck <strong>Model</strong> ResultsThe base-year truck model results presented in this section included summaries of county-to-county truckflows, summaries of trip ends by FAZ, link truck volume percentages, trip-length distribution profiles, andcount validations statistics. Together, these statistics portray a truck trip model that produces verycredible truck flow patterns. In addition, the validation statistics indicate that the assigned truck triptables provide an acceptable fit to observed traffic count data.3.1 Truck County-to-County MovementsThe estimated daily truck flows for the 1995 base-year model are shown in Tables 3.1, 3.2 and 3.3,below, summarized by county-to-county and external station movements. In terms of total trucks, theexternal stations and the more urbanized counties produce and attract the most trips. While asubstantial portion of truck movements takes place between Hamilton and Montgomery Counties(Cincinnati and Dayton), it is also apparent that the less-urbanized counties exhibit prevailing flowpatterns that suggest a trade linkage to a primary market area in either Cincinnati or Dayton. Forexample, Warren County’s heaviest flows are to and from Butler and Hamilton Counties. A similarrelationship appears to exist between Miami and Montgomery Counties.The SU truck movements shown in Table 3.2 are characterized by heavier SU flows between O-D pairs inclose proximity, including many intra-county flows. In contrast, SU flows between distant, predominantlyrural counties such as between Dearborn and Miami Counties are non-existent. These patterns areconsistent with the predominant use of SU trucks for local pick up and delivery and short-haul drayageassignments.MU truck movements are dominated by heavy flows between external stations and between FAZs andexternal stations, as shown in Table 3.3. The predominant use of MU trucks for longer-haul, largerfreight shipments is reflected in greater frequencies of trips between distant O-D pairs, even between theless-developed counties at opposite ends of the study area. Intra-county MU truck flows are also shownto be much less frequent, compared with intra-county SU truck movements.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 29


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.1. Estimated 1995 County-to-County Daily Total Truck FlowsDestination CountyCampbell Clermont DearbornGreene Hamilton Kenton Miami Montgomery WarrenOrigin County Boone KY Butler OH KY OH IN External OH OH KY OH OH OH Grand TotalBoone, KY 4,835 239 777 426 333 2,087 42 2,443 2,370 30 158 80 13,820Butler, OH 300 12,266 45 369 137 2,323 156 6,320 279 168 1,534 2,119 26,016Campbell, KY 703 108 1,030 187 147 920 18 1,097 2,017 11 74 52 6,364Clermont, OH 362 419 181 4,062 69 1,399 88 2,773 357 23 263 204 10,200Dearborn, IN 517 139 150 70 1,043 1,212 4 1,148 567 7 52 20 4,929External 2,368 2,395 813 1,425 1,298 22,276 2,056 7,298 792 1,288 4,602 1,287 47,898Greene, OH 36 174 16 107 9 2,314 3,420 524 45 290 4,160 320 11,415Hamilton, OH 2,380 6,654 1,169 2,781 1,114 6,937 465 35,909 2,938 352 2,364 2,257 65,320Kenton, KY 2,113 221 2,313 293 486 778 30 2,940 2,757 29 182 110 12,252Miami, OH 30 170 2 34 5 1,355 276 353 38 3,066 2,757 101 8,187Montgomery, OH 201 1,309 18 230 56 5,448 4,020 2,220 201 3,002 31,553 1,335 49,593Warren, OH 67 2,285 45 238 26 1,173 510 2,219 111 101 1,279 1,691 9,745Grand Total 13,912 26,379 6,559 10,222 4,723 48,222 11,085 65,244 12,472 8,367 48,978 9,576 265,739Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 30


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.2. Estimated 1995 County-to-County Daily Single-Unit Truck FlowsDestination CountyOrigin County Boone KY Butler OHCampbellKYClermontOHDearbornIN ExternalGreeneOHHamiltonOHKentonKYMiamiOHMontgomeryOHWarrenOH Grand TotalBoone, KY 4,254 82 465 150 158 545 3 1,118 1,892 - 17 21 8,705Butler, OH 103 9,882 36 110 48 718 39 3,326 102 32 732 1,181 16,309Campbell, KY 384 54 889 75 41 346 2 701 1,621 2 7 19 4,141Clermont, OH 116 121 67 3,633 7 521 18 1,335 124 2 35 103 6,082Dearborn, IN 211 47 29 16 1,031 500 2 489 106 - 4 3 2,438External 581 729 314 534 548 4,795 707 1,844 233 433 1,400 364 12,482Greene, OH 4 50 2 22 1 839 2,509 154 4 162 2,353 153 6,253Hamilton, OH 1,150 3,337 776 1,309 445 1,774 150 27,055 1,685 23 519 1,197 39,420Kenton, KY 1,520 103 1,816 128 149 228 2 1,899 2,454 1 20 36 8,356Miami, OH 3 33 - - - 422 142 18 3 2,596 1,348 35 4,600Montgomery, OH 27 619 10 34 3 1,638 2,236 477 37 1,410 22,177 806 29,474Warren, OH 26 1,266 15 106 5 336 229 1,186 35 33 762 1,446 5,445Grand Total 8,379 16,323 4,419 6,117 2,436 12,662 6,039 39,602 8,296 4,694 29,374 5,364 143,705Table 3.3. Estimated 1995 County-to-County Daily Multi-Unit Truck FlowsDestination CountyOrigin CountyBooneKY Butler OHCampbellKYClermontOHDearbornIN ExternalGreeneOHHamiltonOHKentonKYMiamiOHMontgomeryOHWarrenOH Grand TotalBoone, KY 581 157 312 276 175 1,542 39 1,325 478 30 141 59 5,115Butler, OH 197 2,384 9 259 89 1,605 117 2,994 177 136 802 938 9,707Campbell, KY 319 54 141 112 106 574 16 396 396 9 67 33 2,223Clermont, OH 246 298 114 429 62 878 70 1,438 233 21 228 101 4,118Dearborn, IN 306 92 121 54 12 712 2 659 461 7 48 17 2,491External 1,787 1,666 499 891 750 17,481 1,349 5,454 559 855 3,202 923 35,416Greene, OH 32 124 14 85 8 1,475 911 370 41 128 1,807 167 5,162Hamilton, OH 1,230 3,317 393 1,472 669 5,163 315 8,854 1,253 329 1,845 1,060 25,900Kenton, KY 593 118 497 165 337 550 28 1,041 303 28 162 74 3,896Miami, OH 27 137 2 34 5 933 134 335 35 470 1,409 66 3,587Montgomery, OH 174 690 8 196 53 3,810 1,784 1,743 164 1,592 9,376 529 20,119Warren, OH 41 1,019 30 132 21 837 281 1,033 76 68 517 245 4,300Grand Total 5,533 10,056 2,140 4,105 2,287 35,560 5,046 25,642 4,176 3,673 19,604 4,212 122,034Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 31


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03.2 Truck Trip End SummariesTable 3.4, below shows the base-year generation of FAZ SU and MU truck trip ends for the seed matrixand the final adjust trip tables. In addition, the table includes total base-year employment and householdtotals and identifies the FAZ place names for some of the larger generators of truck trips. In general, thistable shows that FAZs with larger employment totals and households will generate more trips, with anumber of significant truck trip generators throughout the region. Zones with large concentrations ofretail and service employment, such those representing the Cincinnati and Dayton CBDs, generate largenumbers of SU truck trips. In contrast, zones with major trucking facilities, such as Sharonville, or a highconcentration of manufacturing employment, such as Moraine, generate large numbers of MU truck trips.Differences between the trip ends initial estimated in forming the seed matrix and the trip ends ultimatelyproduced through SME calibration are apparent for some FAZs. In aggregate, the number of base-yeartrip ends for SU truck trip ends is more than halved, while the number of MU trip ends is reduced byabout eight percent. A local commercial vehicle survey would be needed to determine the meaning ofthese differences. The SME tables have the advantage of having been calibrated to produce O-D flowsthat provide a better fit to the observed count data and are thus more likely reflect local trip patterns.Also, the trip rates use to produce seed matrix productions and attractions are average rates that werederived in another region of the country and may not accurately reflect the truck trip generatingcharacteristics of a particular zone in the Cincinnati-Dayton region.Table 3.5, below, shows the SU and MU truck trip ends at external stations, as derived from theexpanded ODOT external station survey. Stations are identified by their FAZ and Consolidated TAZnumbers, and some of the larger-truck volume facilities are labeled with route designations. These tripends were formed, following the ODOT technical memorandum for survey expansion, as described inSection 2.2 of this document. They were not changed by the SME procedure; however, the use of thebucket rounding procedure to convert floating point trip tables to truck tables with integer values,resulted in some stations gaining or losing a small portion of daily truck trips.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 32


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0DearboButler County Kenton County Campbell County Boone CountyrnTable 3.4. Freight Analysis Zone (FAZ) Daily Truck Trip Ends (1 of 4)Base Year "Seed Matrix"Base Year Estimated Truck TableTotal Total Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit TrucksFAZ Households Employment Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn.19 3,611 1,475 668 682 440 507 927 898 473 60148 4,478 1,605 709 709 270 279 613 660 267 33352 3,594 6,105 1,438 1,455 401 445 1,012 1,065 583 1,03353 3,493 6,931 1,567 1,568 464 485 1,018 859 234 23261 1,203 12,474 2,376 2,372 677 692 1,640 966 1,121 1,10162 - 10,659 2,170 2,152 731 718 684 730 475 61166 1,865 2,482 765 778 449 512 635 700 598 70767 5,957 16,249 3,570 3,576 1,322 1,397 2,176 2,501 1,364 91526 4,868 1,476 859 838 412 380 763 850 682 52533 4,195 2,439 853 841 322 306 762 811 395 39857 11,682 5,895 1,861 1,859 494 497 742 671 255 22258 4,761 5,274 1,222 1,225 371 388 758 636 369 35668 3,148 5,501 1,055 1,052 271 271 318 366 225 18688 4,956 5,815 1,395 1,391 351 352 798 1,085 297 45318 10,508 1,966 1,423 1,428 534 546 1,285 1,189 694 65359 13,191 12,564 3,195 3,172 871 854 1,805 1,463 839 74560 9,989 10,422 2,494 2,489 668 681 626 889 303 38763 6,180 4,254 1,197 1,193 327 329 976 909 527 53665 13,214 19,583 4,268 4,264 1,171 1,196 2,093 2,456 1,206 1,55589 3,743 13,341 2,109 2,110 532 547 1,571 1,390 327 30016 2,921 892 484 478 221 216 354 319 233 21220 4,806 2,175 1,115 1,158 622 669 952 1,002 935 91649 7,972 9,093 2,101 2,104 646 670 1,132 1,115 1,323 1,15921 4,142 1,198 642 638 205 206 413 437 232 23122 9,073 3,971 1,670 1,673 646 654 931 944 724 69427 10,195 5,557 1,688 1,686 436 440 934 625 556 53828 4,246 821 533 532 161 161 399 400 193 24629 4,426 1,268 601 600 176 178 325 328 251 26430 4,590 7,636 1,885 1,887 633 645 1,208 1,251 649 69531 6,498 10,119 2,435 2,441 906 939 914 898 691 69834 7,378 6,904 1,652 1,649 420 421 653 709 465 37135 1,547 15,025 2,603 2,602 773 790 1,098 1,391 666 80036 7,647 3,377 1,344 1,341 376 375 706 743 415 53037 8,584 6,644 2,018 2,015 625 627 756 744 642 69997 90 11,708 2,379 2,381 843 874 1,224 1,811 1,381 1,371100 11,706 12,431 2,739 2,737 739 739 1,606 1,636 462 459101 10,242 7,454 2,097 2,096 547 553 1,293 1,193 780 778102 3,136 1,870 550 548 154 152 182 216 168 156103 10,555 20,277 3,712 3,708 899 907 2,542 1,929 972 1,117128 12,397 9,450 2,429 2,435 635 644 1,125 1,068 460 409FAZ KEYNo.Ky. Cincinnati-N.KY Airport 62Hebron 53Florence 52, 61, 67Covington CBD 65S. Covington 59Newport CBD 88Erlanger, Edgewood, Crestview, Taylor Mill 65Dearborn Co. Lawrenceburg 49Butler Co. Hamilton 101, 103Fairfield 27, 34, 35Middletown 31, 128Monroe 30Oxford 100Crescentville 97Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 33


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Hamilton CountyTable 3.4. Freight Analysis Zone (FAZ) Daily Truck Trip Ends (2 of 4)Base Year "Seed Matrix"Base Year Estimated Truck TableTotal Total Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit TrucksFAZ Households Employment Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn.39 8,587 6,449 1,897 1,891 508 509 481 720 519 34840 5,218 28,851 5,298 5,290 1,593 1,611 1,716 1,682 1,191 1,08241 5,357 7,724 1,909 1,904 528 527 580 830 438 42642 14,922 11,877 3,205 3,198 810 814 723 723 489 55743 3,727 19,931 4,223 4,239 1,921 2,007 1,557 1,438 1,600 1,65044 6,361 1,304 838 837 250 251 287 249 146 10945 8,456 11,924 2,651 2,646 661 666 708 690 388 38246 13,058 10,480 3,008 3,004 911 923 1,119 1,234 702 1,05047 3,642 11,906 2,654 2,649 898 909 693 719 615 62750 2,795 1,447 590 596 250 277 298 291 322 38851 1,816 4,991 887 887 320 326 487 459 366 40654 16,265 9,133 3,001 2,993 831 834 1,819 1,986 902 97855 8,013 6,136 1,785 1,780 486 487 743 773 549 61856 9,321 4,100 1,437 1,433 379 378 424 418 248 19864 4,879 6,753 1,998 1,991 768 777 851 896 622 66369 10,595 6,117 1,924 1,919 490 491 571 656 374 34470 4,516 4,016 1,197 1,196 368 375 449 583 238 28471 9,548 5,226 1,435 1,432 358 361 746 651 530 25072 12,074 5,861 1,995 1,990 523 520 388 442 280 36273 8,827 6,668 1,867 1,863 503 503 748 670 446 37974 2,178 24,857 4,792 4,774 1,747 1,776 1,313 1,706 753 88675 5,050 15,678 3,538 3,535 1,158 1,179 847 887 559 53376 4,423 5,580 1,389 1,388 450 465 502 517 451 53077 5,280 14,143 2,740 2,738 821 842 709 671 567 46978 11,900 5,240 1,936 1,931 534 536 722 786 342 52679 14,528 14,169 3,495 3,486 809 812 1,259 1,329 369 43680 11,410 2,633 1,480 1,476 396 396 556 615 173 21181 11,761 10,811 2,970 2,964 737 741 803 750 408 37982 6,698 5,558 1,550 1,547 453 455 611 449 356 36683 3,377 6,953 1,302 1,300 341 346 667 450 270 22384 10,512 7,269 1,921 1,918 580 585 732 831 558 44785 6,872 9,093 2,110 2,107 574 584 572 513 543 45586 8,085 9,456 1,830 1,825 429 430 425 476 239 26987 10,368 17,531 3,077 3,070 762 769 1,060 1,205 462 45090 6,688 25,711 4,123 4,114 1,046 1,062 1,478 1,103 500 85791 924 66,261 9,175 9,151 2,230 2,241 2,104 1,792 1,202 91192 159 2,622 340 341 173 185 115 77 146 14993 12,951 42,562 4,690 4,677 854 858 1,557 1,733 500 47694 11,998 8,838 2,316 2,311 574 577 835 767 508 48195 2,077 6,109 1,313 1,315 449 471 835 787 644 68296 4,391 25,474 5,220 5,223 1,623 1,676 1,423 1,642 1,584 1,56898 4,434 5,772 1,376 1,377 484 499 700 315 446 26399 1,412 11,638 2,345 2,339 674 675 1,059 863 552 361108 8,514 8,369 1,989 1,983 455 456 480 439 456 362109 6,442 4,516 1,350 1,348 369 375 462 486 444 433111 4,023 2,346 700 698 189 189 248 253 187 152112 5,165 4,226 1,045 1,041 252 253 326 409 251 326113 4,967 5,921 1,649 1,645 570 574 509 541 603 559114 4,356 16,236 2,252 2,248 499 501 640 577 459 426115 2,277 7,204 1,409 1,410 460 471 483 523 403 355Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 34


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Miami CountyGreene CountyWarren County Clermont CountyTable 3.4. Freight Analysis Zone (FAZ) Daily Truck Trip Ends (3 of 4)Base Year "Seed Matrix"Base Year Estimated Truck TableTotal Total Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit TrucksFAZ Households Employment Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn.17 9,412 4,449 1,613 1,631 519 561 1,214 1,272 547 596104 13,348 3,337 1,898 1,896 637 639 958 852 641 435105 3,242 7,109 1,600 1,571 561 549 1,012 840 636 525106 10,958 11,862 3,118 3,109 903 904 1,091 1,216 879 906107 11,771 8,601 2,517 2,514 694 705 769 814 525 595110 10,121 13,082 3,144 3,134 913 910 1,038 1,123 890 1,04825 5,694 2,295 1,037 1,047 390 409 637 731 456 54532 6,312 9,068 1,777 1,773 503 501 506 471 398 35938 6,751 12,423 2,605 2,605 777 790 1,220 1,142 728 750116 8,567 8,131 2,294 2,304 724 748 897 869 585 552117 4,551 1,633 736 749 252 273 451 419 447 451118 6,175 7,925 2,035 2,043 607 623 461 611 411 469122 5,217 6,641 1,480 1,483 428 435 597 609 621 539126 706 1,184 257 258 97 102 332 279 233 213127 1,386 1,880 368 368 112 115 344 233 421 3341 3,856 5,020 1,149 1,139 356 338 489 666 541 9552 2,991 1,944 606 610 203 207 456 442 349 3733 980 505 222 230 98 109 247 310 279 3294 3,231 955 536 536 196 193 289 276 324 3105 9,732 11,748 2,537 2,551 695 697 842 839 418 3828 1,769 16,197 1,996 1,969 631 590 512 451 510 4869 9,999 5,285 1,897 1,884 671 651 732 491 878 474146 11,831 12,832 3,466 3,470 1,046 1,030 1,385 1,323 868 791147 5,119 1,482 837 836 236 230 437 438 269 259148 1,632 14,458 1,557 1,556 475 464 864 803 726 687149 4,312 1,274 656 661 218 218 191 183 147 149150 3,726 2,715 853 853 304 294 286 276 212 188151 8,017 9,288 2,485 2,495 787 770 1,124 1,188 600 609152 1,722 2,125 613 620 225 235 312 331 274 242153 2,138 1,604 535 551 183 189 229 319 237 270154 9,058 12,793 2,859 2,882 924 913 741 701 498 510155 3,389 3,185 969 978 273 275 339 290 284 293158 1,514 1,467 453 456 183 171 289 339 266 299160 1,020 4,995 1,209 1,214 433 418 440 463 266 285161 986 5,433 1,222 1,224 408 397 649 604 803 828FAZ KEYHamilton Co. Cincinnati CBD 91, 90Cincinnati RiverfrontQueensgate-Camp Washington 74N. Downtown (Liberty to McMillan St.) 87Clifton 93Elmwood Pl-St Bernard 75Evendale 99Blue Ash 40Kenwood 46Sharonville 43Springdale 96Western Hills-Delhi 79, 54Clermont Co. Eastgate-Batavia 106Williamsburg 105Milford 110Warren Co. Franklin-Springboro 116Lebanon 122Mason 38Greene Co. Fairborn-WPAFB 8, 9, 148Beavercreek 146Xenia 5Miami Co. Tipp City 155, 158Troy 154, 160Piqua 151 161Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 35


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Montgomery CountyTable 3.4. Freight Analysis Zone (FAZ) Daily Truck Trip Ends (4 of 4)Base Year "Seed Matrix"Base Year Estimated Truck TableTotal Total Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit TrucksFAZ Households Employment Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn.6 5,781 3,617 1,203 1,210 385 381 799 635 277 2397 4,768 3,609 1,250 1,251 422 414 487 512 580 58010 7,886 5,106 1,635 1,644 418 416 802 732 507 39011 10,368 5,050 1,763 1,767 597 579 646 572 543 45312 10,478 8,200 2,217 2,225 603 586 485 425 272 26313 3,721 1,400 593 598 198 200 406 866 253 70214 1,759 13,305 3,045 3,054 1,058 1,030 1,598 1,602 1,105 1,11615 2,167 1,799 529 524 219 191 315 330 246 30123 4,122 1,662 637 637 182 183 214 187 179 15024 6,509 2,244 940 939 275 266 447 414 233 193119 2,478 7,613 1,619 1,618 529 502 502 461 493 372120 13,652 6,646 2,422 2,438 723 726 1,180 1,122 722 729121 12,927 12,710 3,099 3,108 883 881 931 946 560 532123 14,234 5,505 2,005 2,010 567 560 822 761 500 334124 9,575 10,931 3,098 3,108 947 943 1,250 1,402 716 832125 17,168 14,161 4,006 4,020 1,098 1,089 1,876 1,786 1,220 1,321129 5,194 9,896 2,203 2,212 633 631 1,003 1,022 432 436130 2,297 2,075 557 558 171 168 283 210 233 143131 7,799 7,358 1,774 1,775 549 525 645 655 585 610132 10,936 4,779 1,762 1,770 501 502 818 723 615 519133 8,323 7,775 2,290 2,293 668 660 1,241 1,176 766 603134 3,982 27,028 5,751 5,752 1,813 1,752 1,994 2,139 1,499 1,542135 3,819 5,015 797 801 186 186 544 525 340 282136 1,623 12,439 2,136 2,145 444 446 756 728 329 310137 10,391 5,180 1,734 1,737 515 503 612 632 390 408138 4,591 6,152 1,636 1,638 507 498 725 603 574 336139 15,015 13,830 2,980 2,988 759 742 719 718 382 335140 3,149 8,945 2,080 2,085 714 698 904 983 582 583141 2,552 10,668 2,511 2,511 937 886 1,454 1,262 1,323 1,185142 3,252 15,378 3,076 3,086 941 927 778 732 591 728143 439 9,827 1,092 1,094 263 256 482 539 237 268144 5,249 10,380 1,480 1,488 338 338 701 869 235 350145 796 21,357 2,220 2,229 555 546 854 935 765 628156 1,531 4,112 997 997 350 326 407 388 354 329157 6,209 4,665 1,427 1,432 445 442 508 604 491 548159 4,306 10,811 2,505 2,513 862 838 1,286 1,178 990 954RegionalTotals1,018,263 1,364,203 313,298 313,337 93,705 94,240 131,223 131,043 86,618 86,474FAZ KEYMontgomery Co. Dayton CBD 145E. Downtown Dayton (Wyandot St to Stanley Ave) 142N. Dayton (between SR4 & Stanley Ave) 141Dayton Northridge Area 140E. Dayton-Overlook (US 35 to Springfield St) 120Dixie Hts-Johnson Station 14Dayton Airport-Vandalia 159Trotwood-Consumer Sq. 10Moraine 134Kettering 124, 125,Centerville 121Miamisburg-W. Carrollton 129, 133Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 36


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.5. External Station Daily Truck Trip Ends (1 of 3)Base Year "Seed Matrix"Base Year Estimated Truck Table Route &Identifier Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit Trucks OutboundTAZ FAZ Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Direction2426 519 34 35 52 58 35 32 53 52 US52 E2427 586 15 15 11 11 15 13 10 132428 575 15 9 22 14 14 6 21 112429 518 99 45 151 69 100 41 156 75 OH125 E2430 588 14 12 10 8 12 9 6 42431 570 20 21 14 16 20 23 14 162432 517 39 81 28 62 39 81 29 702433 516 435 419 666 706 435 460 667 764 OH32 E2434 568 17 26 12 19 16 25 11 122435 585 16 13 12 10 16 13 12 122436 515 69 83 106 139 70 63 106 124 US50 E2437 561 48 43 35 31 48 48 35 272438 578 13 11 10 8 14 10 9 92439 577 10 18 15 24 9 14 15 192440 513 147 94 225 161 149 110 228 178 OH28 E2441 576 11 14 16 23 8 9 13 212442 590 12 14 8 10 12 9 8 32443 514 35 35 54 62 35 34 56 652444 605 5 5 4 4 5 5 2 12445 604 3 8 3 5 4 9 2 52446 512 901 928 3,792 3,901 903 980 3,801 4,093 IR71 N2447 508 168 118 257 225 167 119 251 210 OH73 E2448 546 47 64 72 98 47 80 70 101 OH122 N2449 564 22 22 33 33 20 18 34 332450 601 6 10 5 7 7 15 5 72451 573 19 16 14 12 21 13 13 92452 545 190 179 291 286 188 160 292 281 US127 N2453 580 10 10 16 15 10 9 14 112454 579 16 17 11 12 15 19 11 112455 544 86 86 132 150 88 74 133 145 US27 N2456 581 15 16 11 12 14 16 10 112457 569 24 17 18 13 23 20 17 92458 582 7 10 5 7 7 4 5 52459 600 6 8 5 5 7 3 5 52460 543 43 36 31 26 43 33 31 312461 599 4 13 3 9 5 14 3 102462 571 21 15 15 11 21 14 16 92463 541 108 128 166 253 110 143 167 271 US52 W2464 556 63 73 97 199 62 79 97 204 IN1 N2465 540 19 - 14 - 19 - 14 -2466 539 699 632 2,943 2,572 700 639 2,945 2,661 IR74 W2467 538 57 87 88 120 59 92 87 132 IN46 W2468 537 20 20 15 14 17 18 13 122469 536 54 25 39 18 55 29 41 212470 535 117 108 84 78 124 112 84 83 IN350 w2472 534 270 274 413 450 266 287 419 461 US50 W2473 574 15 9 22 14 12 7 16 112474 533 7 2 5 1 6 - 4 -2475 532 106 126 163 199 106 123 165 208 IN56 S2476 531 68 23 104 38 69 21 104 35 US42-127 S2477 530 945 985 3,975 4,057 944 980 3,974 4,125 IR71 S2480 528 1,229 1,048 5,171 4,288 1,228 1,038 5,173 4,350 IR75 S2481 527 51 96 79 150 51 110 77 173 US25 S2482 526 54 55 39 44 54 48 36 412483 525 24 6 17 4 24 5 17 3Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 37


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.5. External Station Daily Truck Trip Ends (2 of 3)Base Year "Seed Matrix"Base Year Estimated Truck Table Route &Identifier Single-Unit Trucks Multi-Unit Trucks Single-Unit Trucks Multi-Unit Trucks OutboundTAZ FAZ Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Prodn. Attrn. Direction2484 524 233 310 357 493 239 329 362 510 US27 S2485 523 6 2 4 2 2 - 2 -2486 522 13 3 9 2 10 1 6 12487 520 307 313 223 238 313 345 229 261 KY8 S2488 521 3 18 4 54 - 15 1 512489 550 130 144 200 235 127 143 198 247 OH49 N2490 510 37 26 56 39 38 37 56 332491 598 7 8 6 6 6 6 5 82492 553 98 152 150 233 99 156 151 249 OH235 N2493 555 36 95 31 85 36 89 31 902494 504 1,977 1,977 6,008 6,008 1,979 2,124 6,011 6,224 IR70 E2495 557 42 76 37 67 39 74 34 542496 591 8 15 6 13 7 11 6 122497 560 48 44 40 37 50 40 41 312498 597 6 13 5 11 5 15 5 112499 554 52 67 67 87 53 61 68 702500 596 3 17 2 13 1 9 - 52501 603 2 1 2 1 4 4 2 -2502 511 75 129 115 205 74 140 116 209 US68 N2503 559 56 45 87 70 57 52 86 622504 505 23 16 36 30 24 11 37 232505 602 6 6 4 4 5 8 4 32506 587 16 13 11 9 16 8 11 72507 506 268 193 411 418 270 184 413 414 US35 E2508 558 38 31 59 48 37 29 58 432509 507 130 93 199 159 131 89 197 162 US68 S2510 567 30 14 22 10 30 11 22 52511 566 35 52 26 40 35 46 25 402512 547 32 54 49 93 33 58 50 79 US35 W2513 589 17 8 12 6 15 13 11 32514 548 787 954 3,312 3,740 788 959 3,315 3,780 IR70 W2515 549 26 20 40 32 26 12 38 272516 595 12 10 9 7 11 7 8 62517 563 41 30 30 22 43 36 31 222518 551 76 79 116 133 75 82 117 121 US36 W2519 565 35 33 25 31 35 27 25 252520 552 66 61 101 93 64 56 100 87 OH48 N2521 509 41 49 30 40 43 50 30 442522 501 866 808 3,643 3,021 866 811 3,647 3,023 IR75 N2523 584 14 21 10 16 12 22 8 122524 583 5 5 3 5 6 2 4 52525 502 97 82 148 177 98 72 147 172 US36 E2526 592 2 2 1 1 - 1 - -2527 572 20 16 15 11 20 16 14 62528 503 30 13 46 25 31 5 46 202529 562 49 39 35 40 48 38 36 392530 593 7 14 5 9 8 18 6 112531 594 23 7 10 4 25 4 9 -External TotalExternal + FAZ12,478 12,439 35,416 34,881 12,482 12,662 35,416 35,560325,776 325,776 129,121 129,121 143,705 143,705 122,034 122,034Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 38


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03.3 Truck Percentages of Assigned VolumeTruck percentages of total assigned daily volumes for the base-year model are shown in Table 3.6,grouped by link functional classes. System-wide, trucks constitute 7.4 percent of traffic in motion,ranging from a high of 14.2 percent of interstates freeway flows to a low of 4.2 percent on local roads.On major and minor arterials and major collectors, trucks comprise less than 5 percent of traffic volume.On ramps, expressways and minor collectors, trucks represent between 6 and 7 percent of assignedvolume. These truck percentages are typical of the respective roadway classes.Table 3.6. Truck Percentage of Daily Assigned Traffic by Link ClassDaily VolumesNumber ofFunctional Class Total Trucks Total Vehicles Observations Percent Trucks1. Interstates 5,970,097 42,152,545 1,149 14.2%2. Major Arterials 1,783,371 39,031,977 3,994 4.6%3. Minor Arterials 1,576,040 31,859,952 5,084 4.9%4. Major Collectors 1,040,130 23,480,029 8,237 4.4%5. Minor Collectors 57,205 822,542 962 7.0%6. Local Roads 146,266 3,480,645 3,001 4.2%8. Ramps 599,131 8,938,937 1,422 6.7%9. Expressways 254,102 4,162,588 275 6.1%Total Observations 11,426,342 153,929,215 24,124 7.4%3.4 Truck Trip-Length ProfilesThe distribution of SU and MU truck trip lengths for the peak period assignment of the base-year CRM areshown in Figures 3-1 and 3-2, below. The graphs show patterns very similar to those used to create theseed matrix, with the distribution of SU truck trips peaking around the 10-minute mark and a mean triplength of 20.3 minutes for internal-internal trips. The distribution of MU internal-internal trips peaksaround the 15-minute mark with a mean trip length of 35.7 minutes. Intra-zonal (TAZ) trips were notincluded.For comparison, trip distribution profiles are shown that include all internal and external trips. Absoluterather than proportional trip frequencies were use to show the increment in the number of trips thatexternal stations contribute to total SU and MU trips. The “spikes” on the graphs are produced by trafficcrossing the study area between external stations. For example, the very large spike around the 31-minute mark of the MU trips graph most likely includes a large component of EE flows along I-70 throughnorthern Montgomery County. Including EE and EI trips in the calculation of mean trip lengths onlyprovides a lower bound on the average amount of time that truck trips spend on the network. Since oneor both ends of EE/EI trips are not observed, actual trip lengths are censored.Figures 3-3 and 3-4, below, show the trip-length profiles for SU and MU truck trips during the off-peakassignment periods. The shapes of the distribution curves are similar to those of the peak period;however, mean trip lengths are noticeably shorter. The mean trip lengths for internal-internal off-peaktrips are 16 minutes for SU trucks and 27.6 minute for MU trucks.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 39


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.02500Mean Trip Lengths in MinutesInternal-Internal Trips: 20.32000All Assigned Trips: 23.3+(intrazonal trips not included)150010005000Figure 3-1. Peak period single-unit truck trip lengths180016001400Mean Trip Lengths in MinutesInternal-Internal Trips: 35.7All Assigned Trips: 41.1+(intrazonal trips not included)1200100080060040020001611162126313641465156616671768186919610110611111612112613113614114615115616116617117616111621263136414651566166717681869196101106111116121126131136141146151156161166171176FrequencyMinutesSU Peak All TripsSU Peak Internal-Internal TripsFrequencyMinutesMU Peak All TripsMU Peak Internal-Internal TripsFigure 3-2. Peak period multi-unit truck trip lengthsTruck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 40


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.05000450040003500Mean Trip Lengths in MinutesInternal-Internal Trips: 16.0All Assigned Trips: 18.8+(intrazonal trips not included)3000Frequency2500200015001000500015913172125293337414549535761SU Off-peak All Trips6569737781858993MinutesSU Off-peak Internal-Internal TripsFigure 3-3. Off-peak period single-unit truck trip lengths971011051091131171211255000450040003500Mean Trip Lengths in MinutesInternal-Internal Trips: 27.6All Assigned Trips: 33.2+(intrazonal trips not included)3000Frequency2500200015001000159131721252933374145495357616569737781858993975000MU Off-peak All TripsMinutesMU Off-peak Internal-Internal TripsFigure 3-4. Off-peak period multi-unit truck trip lengths101105109113117121125Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 41


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.03.5 Validation to Truck Count DataA total of 890 truck traffic counts were available for comparison with assigned daily truck volumes.Comparisons were made for total two-way truck volumes, rather than by SU and MU truck types. ADTcounts that were split between pairs of one-way freeway links were matched and comparisons made onthe basis of the sum of the truck volumes loaded on the pair of links.Figure 3-5 shows a scatter plot of estimated and observed daily truck flows for these 890 count locations.The r 2 static of 0.91 is very good, and the dispersion of data points is relatively tight, with few outlierseven for higher-volume count locations.30000Estimated Daily Truck Flows250002000015000100005000y = 1.0354xR 2 = 0.913900 5000 10000 15000 20000 25000 30000Observed Daily Truck FlowsDaily Truck FlowsLinear (Daily Truck Flows)Figure 3.5. Comparison of estimated and observed daily truck flows for 890 dailycount locations.A comparison of observed and estimated daily truck volumes by link functional class is shown in Table3.7. The root mean squared error (RMSE) measurements for these facilities reflect the size of theaverage link-flow error, while the percent root mean squared error (PRMSE) expresses this error relativeto the average truck count volume for the classification. The PRMSE statistics for Interstates, in general,and I-75, in particular, are very good. The link-flow error measurements on other facilities are not quiteas good; however, daily truck flows on arterials, collectors and ramps represent a relatively smallproportion of total daily vehicle flows. The ratios of estimated to observed traffic indicate that theassigned truck volumes tend to be on the high side for interstates and arterials and on the low side formajor collectors, ramps and expressways.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 42


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.7. Estimated vs. Observed Daily Truck Volumes by Functional ClassDaily Truck Volume Number of Root Mean PercentFunctional Class Estimated Observed Observations Squared Error RMSE Est./Obs.1. Interstates 1,799,116 1,656,772 210 2,250 28.52 1.09I-75 Mainline 1,126,287 1,031,196 94 2,911 26.53 1.092. Major Arterials 192,787 155,172 203 557 72.86 1.243. Minor Arterials 141,456 121,721 156 628 80.54 1.164. Major Collectors 37,951 41,202 103 346 86.49 0.925. Minor Collectors 56 18 1 3.118. Ramps 93,931 123,975 179 524 75.63 0.769. Expressways 68,794 86,236 38 1,279 56.37 0.80Total Observations 2,334,091 2,185,096 890 1,211 49.32 1.07* Root mean squared error is not calculable for just one observation.A comparison of link counts by urban area type shows is shown in Table 3.8. While there are somedifferences, link-flow error measures are similar between area types. Links in CBD areas have the bestoverall PRMSE, while links in areas surrounding the CBD, designated as Urban, appear to be overpredicted.In terms of estimated to observed truck volumes, links in the Suburban area type comesclosest to a ratio of one.Table 3.8. Estimated vs. Observed Daily Truck Volumes by Coded Area TypesDaily Truck Volume Number of Root Mean PercentCoded Area Type Estimated Observed Observations Squared Error RMSE Est./Obs.1. CBD 49,491 47,007 25 573 30.48 1.052. Urban 1,007,571 877,980 403 1,263 57.96 1.153. Suburban 1,110,981 1,100,360 351 1,294 41.27 1.014. Rural 166,048 159,749 111 790 54.91 1.04Total Observations 2,334,091 2,185,096 890 1,211 49.32 1.07A comparison of estimated and observed truck volumes by county is shown in Table 3.9. As with areatype, the link-flow error measurements are similar across the region. Links in Boone and WarrenCounties show very good PRMSE and near-perfect estimated-to-observed ratios. Hamilton andMontgomery Counties also showed relatively good statistics.The two places where link-flow error measurements are of some concern are Miami and Kenton Counties.In Miami County, the estimated to observed ratio is a low 0.69; however, this should be viewed in light ofthe fact that all of the 54 counts used in Miami County were taken in 2000, whereas the majority ofcounts in neighboring Montgomery County were taken in 1994 and the external station survey was donein 1995 (see Table 2-2). Since the SME process will attempt to fit O-D flows to all counts, it should beexpected that the estimated truck volumes in Miami County would fall below the counted 2000-yearvolumes. From this perspective, the estimated-to-observed ratio of 0.69 is actually a more positivemeasure, given that the base-year model is supposed to represent 1995 conditions.In Kenton County, the problem is one of over-prediction, as evident by the estimated-to-observed ratio of1.28. This is also attributable to inconsistencies between count sources. The links contributing thelargest amount of flow error are along I-75. I-75 links to the north, in Cincinnati, and to the south inBoone, County, have relatively low link-flow errors. Although they are of similar count years, thedifference between the Kentucky ADT counts and the 12-hour-expanded counts used to calibrate themodel along I-75 in Cincinnati contributed to this discrepancy.Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 43


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 3.9. Estimated vs. Observed Daily Truck Volumes by CountyDaily Truck Volume Number of Root Mean PercentCounty, State Estimated Observed Observations Square Error RMSE Est./Obs.Boone, KY 230,285 224,974 37 1,865 30.68 1.02Butler, OH 142,357 128,767 70 764 41.54 1.11Campbell, KY 40,251 46,424 21 824 37.29 0.87Clermont, OH 66,611 70,594 51 830 59.99 0.94Greene, OH 82,643 74,179 84 460 52.14 1.11Hamilton, OH 767,923 675,660 272 1,154 46.48 1.14Kenton, KY 196,926 154,130 33 2,726 58.37 1.28Miami, OH 100,462 146,510 54 2,010 74.10 0.69Montgomery, OH 528,640 485,859 187 1,067 41.07 1.09Warren, OH 177,993 177,999 81 766 34.87 1.00Total Observations 2,334,091 2,185,096 890 1,211 49.32 1.07Truck <strong>Model</strong> - Base-Year Truck <strong>Model</strong> Results 44


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04. Truck Trip Table Forecasting Procedures4.1 DescriptionThe procedure used to forecast 2030 truck trips for the NSTI study involves factoring the 1995 base yeardaily trip table estimates, accounting for growth in zonal employment and households as well as expectedincreases in industrial productivity. Five principal steps are included in this process:• Forecasting zonal employment by industry grouping;• Calculation of industry-sector productivity deflation factors;• Calculation of TAZ truck trip growth factors and trip ends;• Two-dimensional matrix balancing;• Allocation to time periods.These steps, also shown in Figure 4.1, are described in detail below. A summary of the key resultscomprises the second half of this chapter.Forecast ZonalEmployment byIndustry GroupingCalculate IndustryProductivity DeflationFactorsCalculate TAZ TruckTrip Growth Factorsand Trip EndsMatrix BalancingAllocation toTime PeriodsFigure 4.1. Steps in the truck trip table forecasting processTruck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 45


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.1.1 Forecast zonal employment by industry typeThe 2030 projections made by <strong>OKI</strong> and MVRPC for the high-, medium- and low-trip generatingcategories, used in modeling person travel, were reclassified into the four industry-sector employmentcategories needed to estimate truck trip generation, as derived for the base year from the QuickResponse Freight Manual (QRFM).Details: The employment categories needed for the truck model are:• agriculture, mining and construction;• manufacturing, wholesale trade, transportation and utilities;• retail trade;• finance, insurance, real estate and service.For lack of better forecast data, a cross-classification table was developed to be consistent with themethods used to reallocate 1995 employment at the FAZ level in the base-year model. For zones in the<strong>OKI</strong> region, the translation of 1995 employment data was based on the distribution of 2000 employmentby two-digit industry classification found in a commercial data set purchased from Claritas, Inc. Forzones in the Miami Valley region, an MVRPC staff member reallocated 1995 employment using internalinformation sources. Based on these separate translations of the 1995 employment data, crossclassificationproportions were derived separately for each FAZ. These proportions were applied directlyto the 2030 TAZ forecasts for high-, medium- and low-trip generating categories to produce 2030forecasts for the four industry-oriented categories. This procedure assumes that the FAZ-levelproportions apply to the TAZs within each FAZ and that reclassification proportions are consistent from1995 to 2030. Table 4.1 is a summary of these results, aggregated by county and for the region.Table 4.1 Summary of 2030 Employment Forecasts Used to Forecast Truck Trips<strong>OKI</strong>-MVRPC ClassificationEstimated Industry Group ClassificationAgric.MiningConstruct.Manufg.WholesaleTransportUtilitiesFinanceInsuranceReal Est.ServicesCounty High Medium Low2030 TotalEmploymentRetailBoone 38% 36% 25% 102,030 3% 35% 34% 27%Butler 42% 36% 21% 182,780 5% 24% 28% 43%Campbell 23% 46% 31% 34,390 6% 13% 31% 50%Clermont 26% 40% 34% 77,090 8% 18% 34% 40%Dearborn 29% 38% 32% 19,110 5% 18% 25% 51%Greene 29% 30% 42% 91,543 3% 13% 32% 52%Hamilton 28% 48% 23% 591,560 4% 25% 23% 48%Kenton 27% 49% 24% 80,610 7% 16% 26% 50%Miami 37% 30% 33% 52,670 5% 40% 26% 29%Montgomery 23% 42% 35% 338,783 4% 29% 23% 43%Warren 35% 42% 23% 89,330 5% 22% 29% 44%RegionalTotals 30% 43% 28% 1,659,896 5% 25% 26% 44%Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 46


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.04.1.2 Develop industry-specific productivity deflation factorsThe purpose of this step is to reflect greater output (more truck trips) per employee over time.Experience in forecasting freight flows from employment data has shown that failure to account forchanges in productivity over time can result in a substantial under-prediction of truck traffic.Details: The productivity deflation factors for the NSTI project were developed from industrial outputdata produced for the Michigan Department of Transportation statewide freight model. Use of these dataspared the expense of obtaining equivalent data for the Cincinnati-Dayton region. They are appropriatefor the NSTI study because industries in Michigan have similar productivity characteristics to industries inOhio, Kentucky and Indiana.The data were expressed in terms of millions of chained dollars of output per employee by ten industryclassifications, representing the years 1995 to 2025, with five-year increments after 2000. Projectedindustry outputs per employee use constant (1992) dollars and reflect increased production rates, whichmay be attributed to the expected adoption of new technologies and improvements in operatingefficiency. Thus, the change in millions of dollars of output per employee between the base year and theforecast year is assumed to result in a proportional growth in truck trips per employee. For the NSTIstudy, the average annual growth rates in productivity from 1995 to 2025 were used to produce 2030productivity rates, as shown in Figure 4.2.0.500Millions of 1992 dollars per worker0.4500.4000.3500.3000.2500.2000.1500.1000.050Durable Manufg.Non-durable Manufg.MiningConstructionTransp, Comm., Util.FIRERetailWholesaleServicesAgric., Fish., Forest.0.0001995 2000 2005 2010 2015 2020 2025 2030YearFigure 4.2. Expected growth in industrial productivity, 1995 to 2030Table 4.2, below, shows the forecasted deflation factors corresponding to productivity growth over the35-year planning horizon, calculated as the ratio of 2030 output per worker to 1995 output per worker,by industry category. Very large productivity growth ratios are predicted for the manufacturing andwholesale trade sectors, while the agriculture, fishing and forestry sector is expected to show no changein productivity.Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 47


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.2. Industry sector deflation, 1995 to 2030Industry SectorRatio: 2030 / 1995output per workerDurable Manufacturing 2.650Non-durable Manufacturing 1.900Wholesale Trade 1.806Finance, Insurance & Real Estate (FIRE) 1.593Mining 1.472Transportation, Communications & Utilities 1.421Services 1.215Retail Trade 1.203Construction 1.176Agriculture, Fishing & Forestry 1.000To form deflation factors for the four QRFM truck trip generation categories, weighted averages of theten industry categories shown in Table 4.2 were calculated for each FAZ, based on the distributions ofsector employment found in the 2000 employment obtained from Claritas, Inc. The deflation factorcalculations for a single FAZ i would beDAMCi1.000* E=AgricultureiAgricultureEi+ 1.472* E+ EMiningiMiningi++ 1.176* EEConstructioniConstructioniwhereDAMCiis the deflation factor corresponding to the QRFM truck trip generation coefficient for“agriculture, mining and construction” employment in FAZ i.sector;EMiningiis employment in the mining sector; andAgricultureEiis employment in the agriculturalConstructionEiis employment in the constructionsector. The numerical values beside each employment variable are the industry-sector deflation factorsfrom Table 4.2.The deflation factor calculations for other QRFM trip generation categories were calculated asDMTUWiRetailDi2.650* E+ 1.900* E+ 1.421* EDurableMfgNondurableMfgTransp&Utilitiesiii=DurableMfg NondurableMfg Transp&Utilities WholesaleEi+ Ei+ Ei+ Ei= 1.203+ 1.806* EWholesaleiTruck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 48


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0DService&FIREi1.215* E=EServiceiServicei+ 1.593* E+ EFIREiFIREiwhere MTUW refers to the QRFM trip generation category for “manufacturing, transportation, utilities andwholesale trade.” It should be noted that the productivity deflation factors were calculated at the FAZlevel, because employment by the ten industry sectors was not available at the TAZ level. Therefore, thesame productivity deflation factors were applied to all TAZs within a given FAZ.4.1.3 Calculate growth factors and forecast total zonal trip endsGrowth factors and total zonal trip ends were produced for both single-unit (SU) and multi-unit (MU)trucks, using the employment and household forecasts, the calculated productivity deflators, and theQRFM trip generation coefficients.Details: In order to compute growth factors to apply to the base-year trip tables, which were formedthrough synthetic matrix estimation, it was necessary to compute an expected growth ratio for each TAZ.This was accomplished by multiplying the QRFM trip generation factors (one household and fouremployment coefficients) by the forecast-year and base-year estimates of employment and households,to obtain preliminary values for SU and MU truck trip ends for each year. For the forecast year, the trucktrip generation coefficients pertaining to the four employment groupings were also multiplied by thecorresponding productivity deflators for 2030, discussed above, which effectively increased the nominalrate of truck trip generation per employee.The calculation of preliminary truck trips ends for each TAZ i was as follows:TTSUiMUi=+=+AMC AMC AMC MTUW MTUW MTUW Retail Retail Retail( Ei× βSU× Di) + ( Ei× βSU× Di) + ( Ei× βSU× Di)Service&FIRE Service&FIRE Service&FIREHH( Ei× βSU× Di) + ( HHi× βSU)AMC AMC AMC MTUW MTUW MTUW Retail Retail Retail( Ei× βMU× Di) + ( Ei× βMU× Di) + ( Ei× βMU× Di)Service&FIRE Service&FIRE Service&FIREHH( E × β × D ) + ( HH × β )iMUiiMUSUTiMUTiwhere and are the preliminary trip ends for single-unit and multi-unit trucks, respectively. TheHHβ’s are the QRFM trip generation coefficients. The terms HHi× βSU / MUrepresent the truck trip endsgenerated by households, which are not subject to productivity deflation. These same calculations weremade for both the base year and the forecast year, although for the base year the productivity deflationfactors are set to 1.0.The truck trip-end growth factors for each TAZ were then calculated as the ratio of future-to-base-yearpreliminary trip ends, computed separately for SU and MU trucks. For external stations, the total changein preliminary trip ends was used, summing across all TAZs. This resulted in external station growthfactors of 1.71 for SU trucks and 1.77 for MU trucks at external stations, applied to both productions andattractions. These results imply a region-wide growth in daily SU and MU truck trips of 71 and 77percent, respectively, for the period 1995 to 2030. For comparison, if productivity deflators were left outof the equation, the growth would be 25 percent for both types of trucks over the 35-year period.Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 49


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0The growth factors for each TAZ were then multiplied times the row and column totals of the daily baseyear truck tables to obtain expected row and column totals for the future year, as follows:2030 ForecastedP/As=Base-YearEstimated P/As×2030 PreliminaryTrip Ends1995 PreliminaryTrip EndsIt is important to remember that the row and column totals of the base-year truck tables that wereproduced through the synthetic matrix estimation process are substantially different than what theproductions and attractions would be by simply applying the coefficients. In the cases of five TAZs thathad no population or employment in the base year but were projected to have employment andhouseholds in 2030, the trip generation rates were used directly to project future trip ends, becausegrowth factors could not be applied.4.1.4 Apply two-dimensional matrix balancingA two-dimensional matrix balancing procedure (also known as the Fratar or “growth factor” method) wasused to estimate forecast-year truck trip table interchange values.Details: The method uses the base-year trip table as a starting point, a “seed matrix” and the 2030forecasted productions and attractions as row and column target values. The two-dimensional balancingmethod is an iterative procedure of re-factoring the rows and columns of the base table, until aconvergence is reached in which the target values for row and column totals are met. This is doneseparately for SU and MU trucks.The base year tables used were the TAZ-level daily truck trips, as produced by the TransCAD program.For the fives zones that had zero truck trips in the base year, the corresponding rows and columns in thebase-year table were seeded with values of 0.00001. This seeding was necessary in order for thebalancing process to allocate trips to these zones.4.1.5 Allocate the forecast daily truck trips to analysis time periodsThe time-of-day factors developed to allocate SU and MU trucks in the base year model were also appliedto the 2030 daily truck trip tables to allocate trips to each of the four assignment periods and convertedto integer format for input into Tranplan. These procedures are described in detail in Section 2.5.2,above.4.2 Summary of Forecast ResultsThe forecasted growth in daily truck trips for 1995 and 2030 are shown in Table 4.3, below, expressed ascounty-to-county flows. In total, 480,000 daily truck trips are forecast for 2030 in the combined <strong>OKI</strong>-MVRPC region, including substantial growth at the external stations. This translates to a region-wideincrease of 81 percent over the 35-year period, an average annual growth rate of 2.3 percent per year.Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 50


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Hamilton and Montgomery Counties are each forecast to produce an additional 33,000 daily truck trips,increases of 51 and 66 percent, respectively. Boone County, Kentucky, home to Greater CincinnatiAirport and several inter-modal shipping facilities is forecast to experience the largest percentage growth,176 percent, for an additional 25,000 daily trips. The other Northern Kentucky counties, Campbell andKenton are forecast for slower growth, 71 and 62 percent, respectively. Meanwhile, fast-growing WarrenCounty is expected to add more than 15,000 daily truck trip productions by 2030, a 161 percent increase,and Butler County is projected to produce an additional 29,000 daily truck trips, a 111% increase.Although small in terms of absolute changes, Miami, Clermont and Dearborn Counties are expected todouble in terms of truck trip productions, while Greene County is forecast to produce 72 percent moretruck trips in 2030. Growth at external stations is projected to result in an additional 36,000 daily trucktrips entering or passing through the region.The region-wide growth in truck trips is composed of a 78 percent increase in SU truck trips and an 84percent increase in MU truck trips. The greater growth in MU truck trips reflects more substantial gainsin productivity for industry sectors, particularly manufacturing and wholesale trade, that use a greaterproportion of MU trucks to haul freight. Despite this trend, Boone, Dearborn, Greene and WarrenCounties are forecasted to have slightly greater percentages of growth in SU truck trips, a reflection ofthe large percentage growth in retail employment being forecast for those counties.Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 51


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.3. Estimated Daily Single-Unit and Multi-Unit Truck Trips, 1995 and 2030 (1 of 4)Single-Unit Trucks Multi-Unit Trucks Total TrucksOrigin County Destination County 1995 2030 1995 2030 1995 2030Boone, KY Boone, KY 4,254 14,027 581 1,918 4,835 15,945Boone, KY Butler, OH 82 282 157 481 239 763Boone, KY Campbell, KY 465 1,217 312 822 777 2,039Boone, KY Clermont, OH 150 370 276 860 426 1,230Boone, KY Dearborn, IN 158 410 175 544 333 954Boone, KY External 545 1,208 1,542 4,342 2,087 5,550Boone, KY Greene, OH 3 5 39 72 42 77Boone, KY Hamilton, OH 1,118 2,398 1,325 3,130 2,443 5,528Boone, KY Kenton, KY 1,892 4,074 478 1,163 2,370 5,237Boone, KY Miami, OH - 1 30 62 30 63Boone, KY Montgomery, OH 17 35 141 360 158 395Boone, KY Warren, OH 21 89 59 246 80 335Boone, KY Origin Totals 8,705 24,116 5,115 14,000 13,820 38,116Boone, KY Origin % Growth 177% 174% 176%Butler, OH Boone, KY 103 247 197 605 300 852Butler, OH Butler, OH 9,882 20,860 2,384 6,737 12,266 27,597Butler, OH Campbell, KY 36 64 9 27 45 91Butler, OH Clermont, OH 110 258 259 641 369 899Butler, OH Dearborn, IN 48 163 89 206 137 369Butler, OH External 718 1,281 1,605 2,844 2,323 4,125Butler, OH Greene, OH 39 139 117 291 156 430Butler, OH Hamilton, OH 3,326 5,438 2,994 4,920 6,320 10,358Butler, OH Kenton, KY 102 177 177 307 279 484Butler, OH Miami, OH 32 73 136 287 168 360Butler, OH Montgomery, OH 732 1,300 802 1,448 1,534 2,748Butler, OH Warren, OH 1,181 3,528 938 2,930 2,119 6,458Butler, OH Origin Totals 16,309 33,528 9,707 21,243 26,016 54,771Butler, OH Origin % Growth 106% 119% 111%Campbell, KY Boone, KY 384 1,005 319 884 703 1,889Campbell, KY Butler, OH 54 114 54 110 108 224Campbell, KY Campbell, KY 889 1,389 141 147 1,030 1,536Campbell, KY Clermont, OH 75 143 112 222 187 365Campbell, KY Dearborn, IN 41 85 106 222 147 307Campbell, KY External 346 560 574 849 920 1,409Campbell, KY Greene, OH 2 2 16 18 18 20Campbell, KY Hamilton, OH 701 1,085 396 577 1,097 1,662Campbell, KY Kenton, KY 1,621 2,577 396 639 2,017 3,216Campbell, KY Miami, OH 2 3 9 25 11 28Campbell, KY Montgomery, OH 7 16 67 103 74 119Campbell, KY Warren, OH 19 32 33 64 52 96Campbell, KY Origin Totals 4,141 7,011 2,223 3,860 6,364 10,871Campbell, KY Origin % Growth 69% 74% 71%Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 52


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.3. Estimated Daily Single-Unit and Multi-Unit Truck Trips, 1995 and 2030 (2 of 4)Single-Unit Trucks Multi-Unit Trucks Total TrucksOrigin County Destination County 1995 2030 1995 2030 1995 2030Clermont, OH Boone, KY 116 285 246 795 362 1,080Clermont, OH Butler, OH 121 328 298 710 419 1,038Clermont, OH Campbell, KY 67 114 114 237 181 351Clermont, OH Clermont, OH 3,633 7,435 429 941 4,062 8,376Clermont, OH Dearborn, IN 7 42 62 157 69 199Clermont, OH External 521 952 878 1,726 1,399 2,678Clermont, OH Greene, OH 18 34 70 103 88 137Clermont, OH Hamilton, OH 1,335 2,302 1,438 2,506 2,773 4,808Clermont, OH Kenton, KY 124 188 233 468 357 656Clermont, OH Miami, OH 2 4 21 91 23 95Clermont, OH Montgomery, OH 35 54 228 457 263 511Clermont, OH Warren, OH 103 299 101 368 204 667Clermont, OH Origin Totals 6,082 12,037 4,118 8,559 10,200 20,596Clermont, OH Origin % Growth 98% 108% 102%Dearborn, IN Boone, KY 211 528 306 970 517 1,498Dearborn, IN Butler, OH 47 186 92 200 139 386Dearborn, IN Campbell, KY 29 74 121 227 150 301Dearborn, IN Clermont, OH 16 39 54 122 70 161Dearborn, IN Dearborn, IN 1,031 1,986 12 39 1,043 2,025Dearborn, IN External 500 871 712 1,278 1,212 2,149Dearborn, IN Greene, OH 2 13 2 18 4 31Dearborn, IN Hamilton, OH 489 930 659 1,005 1,148 1,935Dearborn, IN Kenton, KY 106 165 461 795 567 960Dearborn, IN Miami, OH - 7 7 12 7 19Dearborn, IN Montgomery, OH 4 34 48 87 52 121Dearborn, IN Warren, OH 3 40 17 57 20 97Dearborn, IN Origin Totals 2,438 4,873 2,491 4,810 4,929 9,683Dearborn, IN Origin % Growth 100% 93% 96%External Boone, KY 581 1,200 1,787 5,001 2,368 6,201External Butler, OH 729 1,314 1,666 2,971 2,395 4,285External Campbell, KY 314 500 499 782 813 1,282External Clermont, OH 534 953 891 1,747 1,425 2,700External Dearborn, IN 548 946 750 1,371 1,298 2,317External External 4,795 7,925 17,481 29,279 22,276 37,204External Greene, OH 707 1,186 1,349 2,230 2,056 3,416External Hamilton, OH 1,844 3,038 5,454 8,952 7,298 11,990External Kenton, KY 233 353 559 860 792 1,213External Miami, OH 433 768 855 1,723 1,288 2,491External Montgomery, OH 1,400 2,368 3,202 5,629 4,602 7,997External Warren, OH 364 746 923 2,053 1,287 2,799External Origin Totals 12,482 21,297 35,416 62,598 47,898 83,895External Origin % Growth 71% 77% 75%Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 53


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.3. Estimated Daily Single-Unit and Multi-Unit Truck Trips, 1995 and 2030 (3 of 4)Single-Unit Trucks Multi-Unit Trucks Total TrucksOrigin County Destination County 1995 2030 1995 2030 1995 2030Greene, OH Boone, KY 4 6 32 79 36 85Greene, OH Butler, OH 50 112 124 248 174 360Greene, OH Campbell, KY 2 1 14 14 16 15Greene, OH Clermont, OH 22 27 85 153 107 180Greene, OH Dearborn, IN 1 17 8 15 9 32Greene, OH External 839 1,347 1,475 2,402 2,314 3,749Greene, OH Greene, OH 2,509 4,637 911 1,719 3,420 6,356Greene, OH Hamilton, OH 154 221 370 537 524 758Greene, OH Kenton, KY 4 4 41 44 45 48Greene, OH Miami, OH 162 286 128 242 290 528Greene, OH Montgomery, OH 2,353 3,801 1,807 3,030 4,160 6,831Greene, OH Warren, OH 153 341 167 336 320 677Greene, OH Origin Totals 6,253 10,800 5,162 8,819 11,415 19,619Greene, OH Origin % Growth 73% 71% 72%Hamilton, OH Boone, KY 1,150 2,148 1,230 3,000 2,380 5,148Hamilton, OH Butler, OH 3,337 6,150 3,317 5,681 6,654 11,831Hamilton, OH Campbell, KY 776 1,198 393 613 1,169 1,811Hamilton, OH Clermont, OH 1,309 2,256 1,472 2,631 2,781 4,887Hamilton, OH Dearborn, IN 445 832 669 1,092 1,114 1,924Hamilton, OH External 1,774 2,933 5,163 8,335 6,937 11,268Hamilton, OH Greene, OH 150 248 315 551 465 799Hamilton, OH Hamilton, OH 27,055 36,277 8,854 11,555 35,909 47,832Hamilton, OH Kenton, KY 1,685 2,418 1,253 1,676 2,938 4,094Hamilton, OH Miami, OH 23 29 329 557 352 586Hamilton, OH Montgomery, OH 519 780 1,845 2,652 2,364 3,432Hamilton, OH Warren, OH 1,197 2,738 1,060 2,334 2,257 5,072Hamilton, OH Origin Totals 39,420 58,007 25,900 40,677 65,320 98,684Hamilton, OH Origin % Growth 47% 57% 51%Kenton, KY Boone, KY 1,520 3,412 593 1,371 2,113 4,783Kenton, KY Butler, OH 103 216 118 207 221 423Kenton, KY Campbell, KY 1,816 2,918 497 724 2,313 3,642Kenton, KY Clermont, OH 128 235 165 345 293 580Kenton, KY Dearborn, IN 149 185 337 578 486 763Kenton, KY External 228 351 550 851 778 1,202Kenton, KY Greene, OH 2 3 28 41 30 44Kenton, KY Hamilton, OH 1,899 2,642 1,041 1,391 2,940 4,033Kenton, KY Kenton, KY 2,454 3,454 303 459 2,757 3,913Kenton, KY Miami, OH 1 1 28 41 29 42Kenton, KY Montgomery, OH 20 38 162 224 182 262Kenton, KY Warren, OH 36 62 74 142 110 204Kenton, KY Origin Totals 8,356 13,517 3,896 6,374 12,252 19,891Kenton, KY Origin % Growth 62% 64% 62%Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 54


<strong>OKI</strong>/MVRPC <strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong> – Version 6.0Table 4.3. Estimated Daily Single-Unit and Multi-Unit Truck Trips, 1995 and 2030 (4 of 4)Single-Unit Trucks Multi-Unit Trucks Total TrucksOrigin County Destination County 1995 2030 1995 2030 1995 2030Miami, OH Boone, KY 3 3 27 71 30 74Miami, OH Butler, OH 33 64 137 309 170 373Miami, OH Campbell, KY - - 2 3 2 3Miami, OH Clermont, OH - 4 34 86 34 90Miami, OH Dearborn, IN - 8 5 23 5 31Miami, OH External 422 756 933 1,870 1,355 2,626Miami, OH Greene, OH 142 227 134 237 276 464Miami, OH Hamilton, OH 18 44 335 560 353 604Miami, OH Kenton, KY 3 4 35 42 38 46Miami, OH Miami, OH 2,596 4,790 470 1,039 3,066 5,829Miami, OH Montgomery, OH 1,348 2,959 1,409 3,184 2,757 6,143Miami, OH Warren, OH 35 65 66 162 101 227Miami, OH Origin Totals 4,600 8,924 3,587 7,586 8,187 16,510Miami, OH Origin % Growth 94% 111% 102%Montgomery, OH Boone, KY 27 49 174 443 201 492Montgomery, OH Butler, OH 619 1,192 690 1,409 1,309 2,601Montgomery, OH Campbell, KY 10 10 8 20 18 30Montgomery, OH Clermont, OH 34 57 196 431 230 488Montgomery, OH Dearborn, IN 3 39 53 93 56 132Montgomery, OH External 1,638 2,739 3,810 6,497 5,448 9,236Montgomery, OH Greene, OH 2,236 3,815 1,784 3,244 4,020 7,059Montgomery, OH Hamilton, OH 477 762 1,743 2,672 2,220 3,434Montgomery, OH Kenton, KY 37 32 164 241 201 273Montgomery, OH Miami, OH 1,410 3,158 1,592 3,567 3,002 6,725Montgomery, OH Montgomery, OH 22,177 34,783 9,376 14,623 31,553 49,406Montgomery, OH Warren, OH 806 1,503 529 1,087 1,335 2,590Montgomery, OH Origin Totals 29,474 48,139 20,119 34,327 49,593 82,466Montgomery, OH Origin % Growth 63% 71% 66%Warren, OH Boone, KY 26 55 41 181 67 236Warren, OH Butler, OH 1,266 4,011 1,019 3,475 2,285 7,486Warren, OH Campbell, KY 15 41 30 61 45 102Warren, OH Clermont, OH 106 256 132 342 238 598Warren, OH Dearborn, IN 5 47 21 68 26 115Warren, OH External 336 640 837 1,837 1,173 2,477Warren, OH Greene, OH 229 414 281 471 510 885Warren, OH Hamilton, OH 1,186 2,638 1,033 2,255 2,219 4,893Warren, OH Kenton, KY 35 65 76 159 111 224Warren, OH Miami, OH 33 54 68 163 101 217Warren, OH Montgomery, OH 762 1,535 517 1,252 1,279 2,787Warren, OH Warren, OH 1,446 4,476 245 935 1,691 5,411Warren, OH Origin Totals 5,445 14,232 4,300 11,199 9,745 25,431Warren, OH Origin % Growth 161% 160% 161%Regional Totals 143,705 256,481 122,034 224,052 265,739 480,533Regional % Growth 78% 84% 81%Truck <strong>Model</strong> - Truck Trip Table Forecasting Procedures 55


Appendix F<strong>Travel</strong> <strong>Demand</strong> <strong>Model</strong>ingTechnical DocumentationSurveys & Data SetsData Dictionary


This document was prepared as part of the North South Transportation Initiative. The Initiativeis a cooperative undertaking of the Ohio-Kentucky-Indiana Regional Council of Governments(<strong>OKI</strong>) and the Miami Valley Regional Planning Commission (MVRPC).Ohio-Kentucky-Indiana RegionalCouncil of Governments801-B West Eight Street, Suite 400Cincinnati, OH 45402Miami Valley Regional PlanningCommission40 West Fourth Street, Suite 400Dayton, OH 45203Assisting the Initiative in the preparation of this document:Parsons Brinckerhoff Ohio, Inc.312 Elm Street, Suite 2500Cincinnati, OH 45202AndParsons Brinckerhoff Quade and Douglas303 Second Street, Suite 700 NorthSan Francisco, CA 94107&5801 Osuna Road, Suite 200Albuquerque, NM 871092


Table of Contents1. Introduction..................................................................................................................... 12. Surveys and Other Datasets .............................................................................................. 22.1 <strong>OKI</strong> Home Interview Survey..................................................................................... 22.2 SORTA/TANK On-Board Survey ................................................................................ 92.3 External Station Survey – Consolidated External ...................................................... 122.4 External Cordon Survey – Consolidated Internals ..................................................... 142.5 External-External Trip Table from Cordon Survey – M0007 ....................................... 162.6 Internal-External Trip Table from Cordon Survey – EITAB.CON ................................. 162.7 Internal-External Trip <strong>Model</strong> Estimation Database .................................................... 162.8 Observed <strong>OKI</strong> HBW Peak Trip Table – HBWOBSPK.CON ........................................... 162.9 Observed <strong>OKI</strong> HBW Off-Peak Trip Table – HBWOBSOP.CON ..................................... 162.10 Observed <strong>OKI</strong> HBO Peak Trip Table – HBOOBSPK.CON ......................................... 162.11 Observed <strong>OKI</strong> HBO Off-Peak Trip Table – HBOOBSOP.CON ................................... 172.12 Observed <strong>OKI</strong> NHB Peak Trip Table – NHBOBSPK.CON.......................................... 172.13 Observed <strong>OKI</strong> NHB Off-Peak Trip Table – NHBOBSOP.CON.................................... 172.14 HBW Mode Choice Estimation File – HBW.DAT ..................................................... 172.15 HBO Mode Choice Estimation File – HBO.DAT....................................................... 172.16 NHB Mode Choice Estimation File – NHB.DAT....................................................... 172.17 <strong>OKI</strong> Mode Choice Calibration Targets – CalibrationTargets_<strong>OKI</strong>_Final.XLS............... 172.18 MVRPC Mode Choice Calibration Targets – CalibrationTargets_MV_Final.XLS........... 172.19 Combined Mode Choice Calibration Targets – CalibrationTargets_all_Final.XLS........ 172.20 Screenline Shape File – Screenlines.SHP/SHX/DBF................................................ 183. Programs....................................................................................................................... 193


1. IntroductionThis report documents various surveys and datasets used in the course of developing the<strong>OKI</strong>/MVRPC travel demand mode, version 6.0. It also includes a listing of various applicationswritten to summarize and analyze model output as well as these data. This report is intended asa companion to the <strong>Model</strong> Development Report.This report is part of a series of working papers that document the development of aconsolidated travel demand model for the Ohio-Kentucky-Indiana Council of Governments andthe Miami Valley Regional Transportation Commission (<strong>OKI</strong> and MVRPC respectively). This modeldevelopment is undertaken under the framework of the North-South Transportation Initiative, aMajor Investment Study focusing on the Interstate 75 corridor.1


2. Surveys and Other Datasets2.1 <strong>OKI</strong> Home Interview SurveyThe processed <strong>OKI</strong> home interview survey is the original survey file obtained from the <strong>OKI</strong>Regional Council. The post-processed survey includes some data cleaning, additional variables,and other checks required for use in the NSTI model development effort. Please see the surveyprocessing file (Process<strong>OKI</strong>Survey.SAS) for details.Table 2-1 <strong>OKI</strong> Home Interview Survey FilenamesSurvey Contents Filename FormatPre-processed <strong>OKI</strong> home interview survey <strong>OKI</strong>DATB.DBF DBASEPre-processed <strong>OKI</strong> home interview survey <strong>OKI</strong>DATB.SD2 SAS v8Post-processed <strong>OKI</strong> home interview survey <strong>OKI</strong>TRIPS.SD2 SAS v8Post-processed <strong>OKI</strong> home interview survey <strong>OKI</strong>TRIPS.DBF DBASETable 2-2 <strong>OKI</strong> Home Interview Survey Data Dictionarysurveyvariableorig. surveyvariabledescriptionvalueshhid QNOID household identification codepersonid P1_SPLIT person identification codeathome Q18 activity in-home or out-of home 1 in home2 out of home3 no more activities8 don't know9 refusedpurpose Q19 activity type 1 household activities2 paid work (in-home)3 paid work4 errands5 recreation6 meals7 chauffering8 shopping, general9 shopping, major10 cruising for travel's sake11 school related96 other98 don't know99 refusedq21_time Q21_TIME end time of activity hour of dayq21_tim1 Q21_TIM1 end time of activityminute of thehourq21_ampm Q21_AMPM end time of activity 1 am2 pm8 don’t know2


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvalueslocation Q22 activity location 1 home2 work3 other residence4 store5 school6 neighborhood7 office8 hospital9 shopping mall96 other98 don't know99 refusedq27 Q27 already at this location 1 yes2 no8 refusedloctaz ZONE1003 taz of activity in 1003 zone systempattern PATTERN trip type 1 home to work2 work to home3 work trips (not from home or to home)4 otherstrtimem STRTIMEM acitivity start time in military formatq31m1 Q31M1 trip duration (number of hours) 1-60 number of hours97 zero98 don't knowq31m2 Q31M2 trip duration (number of minutes) 1-60 number of minutes97 zero98 don't knowprtysize Q33 trip party size 1-20 valid answers98 don't knowbridge Q30BM1 first bridge used to cross the ohio river 1 Brent Spence Bridge2 Clay Wade Baily Bridge3 Suspension Bridge4 L&N Bridge5 Daniel Carter Beard Bridge6 I-275 Western Bridge7 I-275 Eastern Bridge997 none998 don't know999 refused/no answerq30bm2 Q30BM2 second bridge used to cross the ohio river 1 Brent Spence Bridge2 Clay Wade Baily Bridge3 Suspension Bridge4 L&N Bridge5 Daniel Carter Beard Bridge6 I-275 Western Bridge7 I-275 Eastern Bridge997 none998 don't know999 refused/no answer3


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvaluesmode Q29 mode of trip to activity 1 car, van, truck, motorcycle, or moped2 taxi3 regular bus4 train5 school bus6 walked, jogged7 bicycle8 airplane96 other98 don't know99 don't knowdriver Q35 respondent was either driver or passenger 1 driver3 passenger8 don't know9 refused / no answervehocc Q36 number of people in the vehicle 1-20 valid answers98 don't know99 refused / no answerq37 Q37 parking costs for the trip to the activity 1 yes2 no8 don't know9 refusedq38_doll Q38_DOLL parking costs -- dollar portion 997 zero1-900 valid998 don't know999 refused / no answerq38_cent Q38_CENT parking costs - cents portion 97 zero1-96 valid98 don't know99 refused / no answerq38_per Q38_PER parking costs - per? 1 per hour2 per day3 per month4 per year8 don't know9 refused / no answerq38b Q38B parking costs -- who paid? 1 self (person)2 employer3 other driver4 other8 don't know9 refused / no answerq39 Q39 where did you park? 1 surface lot (legal)2 on street metered3 on street not metered4 structure or parking garage5 did not park as part of this trip8 don't know9 refused / no answerq39b Q39B time in minutes to find a parking space 1-59 valid answers97 zero98 don't know99 refused / no answer4


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvaluesq39cQ39Ctime in minutes from parking space to yourdestination97 zero1-96 valid98 don't know99 refused / no answerq40_doll Q40_DOLLAR taxi fare - dollar portion 1-900 valid answers997 zero998 don't know999 refused / no answerq40_cent Q40_CENTS taxi fare - cents portion 1-96 valid answers97 zero98 don't know99 refused / no answerq40_per Q40_PER taxi fare - per? 1 per trip2 per day3 per week4 per month5 per year8 don't know9 refused / no answerq41 Q41 did an employer pay for the taxi fare? 1 yes2 no8 don't know9 refused / no answerq41b Q41B percent of cab fare employer paid 1-100 valid answers998 don't know999 don't knowaccmode Q42 access mode to first bus, train, or plane 1 walked2 drove3 taxi4 rode bike5 was dropped off6 another bus / train8 don’t know9 refused / no answeracctime Q42B transit access time (in minutes) 1-59 valid answers97 zero98 don't know99 refused / no answertransfer Q42C transferred involved in the trip 1 yes2 no8 don’t know9 refused / no answeregrmode Q43 egress mode from last bus, train, plane 1 walked2 drove3 taxi4 rode bike5 was dropped off6 another bus / train8 don’t know9 refused / no answeregrtime Q43B transit egress travel time (in minutes) 1-59 valid answers97 zero98 don't know99 refused / no answer5


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvaluesq45_doll Q45_DOLL transit fare (dollar portion) 1-900 valid answers997 zero998 don't know999 refused / no answerq45_cent Q45_CENT transit fare (cents portion) 1-96 valid answers97 zero98 don't know99 refused / no answerq46 Q46 did an employer pay for the transit fare? 1 yes2 no8 don't know9 refused / no answerq46b Q46B percent of transit fare employer paid 1-100 valid answers998 don't know999 don't knownmottime Q48travel time in school bus or non-motorizedmode (minutes)1-500 valid answers997 zero998 don't know999 refused / no answerq20_time Q20_TIME start time of first activity (hours portion) 1-60' valid answers97 zero98 don't knowq20_tim1 Q20_TIM1 start time of first activity (minutes portion) 1-60' valid answers97 zero98 don't knowq20_ampm Q20_AMPM start time of first activity (am or pm time) 1 am2 pm8 don't knowactendnoneactivity end time (in hours and fractions ofhours)acstartnoneactivity start time (in hours and fractions ofhours)actnononeactivity number (sequential from 1 for first dayactivity)dpurp none activity type at destination end same as "purpose"dloc none activity location at destination end same as "location"dzone95 none destination tazopurp none activity type at origin end same as "purpose"oloc none activity location at origin end same as "location"ozone95 none origin tazjourney none number of home-based journeysmisslast none flag for trips in the last journey of the day 1 journey did not end at homeblank/zero journey ends at homesyntrip flag that identifies "synthetic" trips 1 trip is synthetic (was added in)blank/zero trip was recorded in surveytstarttrip start time (in hours and fractions of hours)6


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)linkedsurvey orig. surveyvariable variabledescriptionflag to identify trips to link out 1valuesorigin & destination purpose is hhactivities2 origin & destination location is homeorig purp=hh activity; dest purp=work3at home4orig purp=work at home; destpurp=hh activity5 origin purpose is chaufferingdestination purpose is chaufferingorigin & destination purpose ischaufferingtripdurtrip length (in minutes)hhsizenumber of people that in live householdhometaztaz where household is locatedweinum WEINUMweighted number used for weighting factor((weinum*0.01) * 232.49)vehs Q9A vehicles owned by hh 1 one2 two3 three4 four5 five or more7 none8 don't know9 refused / no answermotos Q9B motorcylces or mopeds owned by hh 1 one2 two3 three4 four or more7 none8 don't know9 refused / no answerhhincome Q11 household income 1 below $10,0002 $10,000 to below $20,0003 $20,000 to below $30,0004 $30,000 to below $40,0005 $40,000 to below $50,0006 $50,000 to below $60,0007 $60,000 to below $70,0008 $70,000 to below $80,0009 $80,000 to below $100,00010 $100,000 to below $125,00011 $125,000 to below $150,00012 $150,000 or more98 don't know99 refused / no answerautosnonetotal motorized vehicles owned by thehouseholdweight1 nonesurvey expansion factor(weinum*0.01*232.49)hhwrkers none number of employed people in the householdage Q12 age of trip-maker 1-120 valid answers997 zero999 refused / no answer7


Table 2-1 <strong>OKI</strong> Home Interview Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvalueslicdrive Q13 trip-maker is a licensed driver 1 yes2 no8 don't know9 refused / no answergender Q14 Sex of trip-maker 1 male2 female8 don't know9 refused / no answeremployed Q15 Trip-maker works outside the home 1 yes2 no8 don't knowlagstart none lagged trip start time 9 refused / no answerlagdur none lagged trip length (minutes)lagozone none lagged trip origin zonelagopurp none lagged trip origin purpose same as "purpose"lagoloc none lagged trip origin location same as "location"keeplnkflag to override link-out variable (when linkingresults in home-home trip)1 keep tripblank/zeroignore overridetpurp trip purpose 1 hbw2 hbo3 hbu4 hbsch5 nhb6 drop off / pick up7 home-homeflipflag to identify trips "flip" to convert to PAflip trip (i.e, destination is production1formatend)blank/zerodo not flip trippzoneproduction tazazoneattraction tazaccess transit access mode same as "accmode"egress transit egress mode same as "egrmode"8


2.2 SORTA/TANK On-Board SurveyTable 2-3 On-Board Survey FilenamesSurvey Filename FormatOn-Board Survey BUSORG.DBF DBASEOn-Board Survey BUSORG.DAT TEXTOn-Board Survey (KPMG) ATWBUSRT.DBF DBASEOn-Board Survey (KPMG) ATWBUSRT.DAT TEXTPost-processed On-Board Survey <strong>OKI</strong>ONBRD.SAS7BDAT SASPost-processed On-Board Survey <strong>OKI</strong>ONBRD.CSV Comma-Separated-VariablesTable 2-4 On-Board Survey Data Dictionarysurveyvariableorig. surveyvariabledescriptionvaluessystem transit company & garage 1 SORTA Bond Hill garage2 SORTA Quensgate garage3 TANKrouteno Q3 transit route numberfare Q4A how much did you pay for this trip? (in dollars)paymode Q4B how much did you pay for this trip? 1 transfer2 pass3 student fareopurp Q5 where did you begin this bus trip? 1 at your home2 at your work3 shopping at a store, not ina mall4 shopping at a mall5attending classes at aschool/college/university6 visit/appointment at a hospital7 other place8 at the home of friend/relative9 medical appointment not at a hospital10 office, bank or other businessschname Q5B school nameotime Q7 what time did you leave to get this bus?accmode Q9 1 walkedhow did you get to the bus stop for this trip?2 rode a bike3 other4 drove yourself5 took another bus6 dropped off by family/friendtrnsfid Q10A n noon this one-way trip do you have to transfer?yyestrnsfno Q10B number of transfers (if any) 1 one2 two3 three4 fouregrmode Q11 when you get off this bus, how will you get to1 walkyour final destination?2 take another bus3 other4 drive yourself5 ride with someone9


Table 1-4 On-Board Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionvaluesdpurp Q13 what is your final destination? 1 at your home2 at your work3 shopping at a store, not in a mall4 shopping at a mall5attending classes at aschool/college/university6 visit/appointment at a hospital7 other place8 at the home of friend/relative9 medical appointment not at a hospital10 office, bank or other businesshhsize Q15 how many people currently live in your1 onehousehold?2 two3 three4 four5 five6 six or morehhwrkers Q16 how many people in your household are0 noneemployed outside the home?1 one2 two3 three4 four5 five6 six or moreautos Q17 how many cars, vans, trucks or motorcyles are0 noneavailable for use by your household?1 one2 two3 three4 four5 five6 six or morehhincome Q19 household's total annual income 1 under $10,0002 $10,000 to $14,9993 $15,000 to $19,9994 $20,000 to $29,9995 $30,000 to $39,9996 $40,000 to $49,9997 $50,000 to $59,9998 $60,000 to $69,9999 $70,000 and overqnrnum QNRNUM questionnaire numberozone Q6_TAZ trip origin TAZq8_taz Q8_TAZ TAZ of trip origin bus stopq12_taz Q12_TAZ TAZ of trip destination bus stopdzone Q14_TAZ trip destination TAZweight WEIGHT original survey weigth factortpurp none trip purpose 1 home based work2 home based other3 home based university4 home based school5 non home based10


Table 1-4 On-Board Survey Data Dictionary (cont.)surveyvariableorig. surveyvariabledescriptionflip none Flag to convert from OD to PA format 1flip trip (i.e., destination is productionend)blank/zerodo not flip tripaccess none transit access mode 1 walk2 park and ride5 kiss and ridehbwmk none home-based work market segment 0 no workers1 zero auto households2 less cars than workers3 equal cars and workers4 more cars than workershbomk none home-based other market segment 1 zero auto households2 one auto households3 two auto households4 three or more auto householdspzone none production zone TAZazone none attraction zone TAZacczone none access bus stop TAZroute ROUTE route number from KPMG datasettpid TPID trip id from KPMG datasetadj_wei ADJ_WEI weight factor from KPMG datasettype TYPE trip purpose from KPMG datasetperiod PERIOD trip time period from KPMG dataset 1 am peak2 pm peak3 off peakremove none flag to identify records with missing data 0 no missing data1 some data item missingexpress none local/express bus flag 0 local bus trip1 express bus tripnsvys none number of surveys per routepercent none surveys per route, as a fraction of total surveysvaluesboardngs none boardings per route, from ridership countsexpfact none re-estimated survey weight factorlinked none flag to indicate if trip is linked out 0 do not link out1 link out (i.e., trip is a transfer)11


2.3 External Station Survey – Consolidated ExternalThis file contains cordon survey data for all stations that represent an external zone in theconsolidated zone system (also referred to as the 2000 zone system). Fields identified as createdby ODOT are the original cordon survey data. These fields identify stations, TAZs and ESNsusing the original (i.e., pre-consolidated) zone sytem, as indicated in the ODOT Cordon Surveydocumentation (also referred as the 1995 zone system). Fields identified as created by PB wereadded in the process of re-geocoding the TAZ and ESN data to the consolidated zone system.Please see Part III, Trip Generation, of the <strong>Model</strong> Development Report for information on the regeocodingprocess. Please see the ODOT Cordon Survey documentation (ODOT Office ofTechnical Services, attn. Greg Giaimo) for information on the original cordon survey.Table 2-5 Cordon Survey, Consolidated Externals FilenamesSurvey Filename FormatCordon Survey, ConsolidatedConsolidated_Externals.SAS7BDAT SASExternalsCordon Survey, ConsolidatedExternalsConsolidated_Externals.CSV Comma-separatedTable 2-6 External Cordon Survey - Consolidated Externals Data Dictionarysurvey createdvariable bydescriptionvaluesd_rPBuniqueid PB Region+Station+Serial_Nregion PB Planning region 1 <strong>OKI</strong>2 Mon/Gre Co.3 Miami Co.survdir PB Survey direction ??? inbound??? outboundserial_n ODOT Individual serial number (unique within survey location)station ODOT Station number (ODOT numbering system)time ODOT Hour survey was conducted (in military time)taz ODOT Traffic analysis zone geocoded for IE trips (1995 zone system)esn ODOT External station geocoded for EE trips (1995 zone system)hfac ODOT Hourly expansion factordfac ODOT Daily expansion factorofac ODOT Opposite direction expansion factorbfac ODOT Through/local bias factorafac ODOT Seasonal expansion factorocc ODOT Vehicle occupancytype ODOT Vehicle type 1 car2 truckpurp ODOT Trip Purpose 1 work2 school3 shop4 social/rec5 othercomm ODOT Commodity carried by trucks12


Table 1-6 External Cordon Survey - Consolidated Externals Data Dictionary (cont.)surveyvariablecreatedbydescriptionvaluesonum ODOT Origin street address numberostr ODOT Origin street nameocit ODOT Origin cityosta ODOT Origin stateozip ODOT Origin zip codeox ODOT Origin closest cross streetoland ODOT Origin nearest landmarkoin ODOT Origin in study area?oent ODOT Origin study area entering routednum ODOT Destination street address numberdstr ODOT Destination street namedcit ODOT Destination citydsta ODOT Destination statedzip ODOT Destination zip codedx ODOT Destination closest cross streetdland ODOT Destination nearest landmarkdin ODOT Destination in study area?dext ODOT Destination study area exiting route?hwyrep ODOT What highway needs repair?dirontp ODOT Direction traveled on turnpikeexitgate ODOT Turnpike exiting gategdtlat ODOT latitude of geocoded trip end (if found)gdtlong ODOT longitude of geocoded trip end (if found)enter_r ODOT (junk)code ODOT Type of survey N direct interviewelse postcard by typetfac ODOT Truck flip factor for truck survey locationsfile ODOT Indicates where in process record was geocodednewtaz PB Origin TAZ, 2000 zone system (IE trips)newesn PB Origin ESN, 2000 zone system (EE trips)status PB Flag for which geocoding filters were usedreason PB Indicates how TAZ/ESN was assignedspc_x PB latitude of geocoded trip origin (state plane OH South)spc_y PB longitude of geocoded trip origin (state plane OH South)stat_reaodotexpPBPBconcatenation of status & reasonODOT expansion factor:hfac*dfac*ofac*bfac*afac*tfacadj98 PB Re-geocode volume adjustment factoree PB external trip flag 0 trip is ei1 trip is eenbfac PB bias factor, recalculated for consolidated regionnexpfct PB Expansion factor, consolidated zone system:hfac*dfac*ofac*nbfac*afac*tfac*adj98constat PB Station number (2000 zone system)13


2.4 External Cordon Survey – Consolidated InternalsThis file contains cordon survey data for all stations located in the boundary between the <strong>OKI</strong>region and Montgomery County, and between Miami and Montgomery Counties. In theconsolidated zone system (also referred to as the 2000 zone system), these stations are“internal” locations to the consolidated region. Trips surveyed at these stations may be internalinternaltrips, internal-external trips, or external-external trips. Fields identified as created byODOT are the original cordon survey data. These fields identify stations, TAZs and ESNs usingthe original (i.e., pre-consolidated) zone system, as indicated in the ODOT Cordon Surveydocumentation (also referred as the 1995 zone system). Fields identified as created by PB wereadded in the process of re-geocoding the trip end data to the consolidated zone system. Pleasesee Part III, Trip Generation, of the <strong>Model</strong> Development Report for information on the regeocodingprocess. Please see the ODOT Cordon Survey documentation (ODOT Office ofTechnical Services, attn. Greg Giaimo) for information on the original cordon survey.Table 2-7 External Cordon Survey, Consolidated Internal Stations FilenamesSurvey Filename FormatCordon Survey, Consolidated Internals NotCons_Fixed.DAT TEXTTable 2-8 External Cordon Survey, Consolidated Internal Stations Data Dictionarysurvey createdvariable bydescriptionvaluesd_rPBuniqueid PB Region+Station+Serial_Nregion PB Planning region 1 <strong>OKI</strong>2 Mon/Gre Co.3 Miami Co.survdir PB Survey direction inboundoutboundspc_xinternal trip end latitude (wrt 1995 zone system)spc_yinternal trip end longitude (wrt 1995 zone system)serial_n ODOT Individual serial number (unique within survey location)station ODOT Station number (ODOT numbering system)time ODOT Hour survey was conducted (in military time)taz ODOT Traffic analysis zone geocoded for IE trips (1995 zone system)esn ODOT External station geocoded for EE trips (1995 zone system)hfac ODOT Hourly expansion factordfac ODOT Daily expansion factorofac ODOT Opposite direction expansion factorbfac ODOT Through/local bias factorafac ODOT Seasonal expansion factorocc ODOT Vehicle occupancytype ODOT Vehicle type 1 car2 truckpurp ODOT Trip Purpose 1 work2 school3 shop4 social/rec5 othercomm ODOT Commodity carried by trucks14


Table 1-8 External Cordon Survey, Consolidated Internal Stations Data Dictionary(cont.)surveyvariablecreatedbydescriptionvaluesonum ODOT Origin street address numberostr ODOT Origin street nameocit ODOT Origin cityosta ODOT Origin stateozip ODOT Origin zip codeox ODOT Origin closest cross streetoland ODOT Origin nearest landmarkoin ODOT Origin in study area?oent ODOT Origin study area entering routednum ODOT Destination street address numberdstr ODOT Destination street namedcit ODOT Destination citydsta ODOT Destination statedzip ODOT Destination zip codedx ODOT Destination closest cross streetdland ODOT Destination nearest landmarkdin ODOT Destination in study area?dext ODOT Destination study area exiting route?hwyrep ODOT What highway needs repair?dirontp ODOT Direction traveled on turnpikeexitgate ODOT Turnpike exiting gategdtlat ODOT latitude of geocoded trip end (if found)gdtlong ODOT longitude of geocoded trip end (if found)enter_r ODOT (junk)code ODOT Type of survey N direct interviewelse postcard by typetfac ODOT Truck flip factor for truck survey locationsfile ODOT Indicates where in process record was geocodednewtaz PB Origin TAZ, 2000 zone system (IE trips)newesn PB Origin ESN, 2000 zone system (EE trips)status PB flag for where in process trip end was geocodedreason PB indicates how was trip end geocodedstat_rea PB concatenation of status & reasonorig_spc PB trip origin latitude (Ohio south state plane)v54 PB trip origin longitude (Ohio south state plane)orig_taz PB trip origin TAZorig_esn PB trip origin ESNdest_spc PB trip destination latitude (Ohio south state plane)v58 PB trip destination longitude (Ohio south state plane)dest_taz PB trip destination TAZdest_esn PB trip destination ESN15


2.5 External-External Trip Table from Cordon Survey – M0007This file is in Tranplan binary matrix format, and it is integral part of the model setup. It wascreated using the Consolidated_Externals database and the program OutputTripTable.SAS.2.6 Internal-External Trip Table from Cordon Survey – EITAB.CONThis file is in Tranplan binary matrix format. It was created using the Consolidated_Externalsdatabase and the program OutputEITrips.SAS.2.7 Internal-External Trip <strong>Model</strong> Estimation DatabaseThis database includes all data used to estimate regression equations for the internal-externaltrip models. It contains all observations, including those that were excluded from the finalanalysis. The program used to estimate the equations is EstimateIEeqs.SAS.Table 2-9 Internal-External Trip Database FilenamesDatabase Filename FormatInternal-External Trip <strong>Model</strong> EITRIPS.SAS7BDAT SASInternal-External Trip <strong>Model</strong> EITRIPS.CSV Comma-Separated-VariablesTable 2-10 Internal-External Trip Database Data DictionaryFieldnameNewtazPopulat2EmploymtTripsclocDescriptionInternal trip end TAZTAZ populationTAZ employmentNumber of IE trips that start/end at TAZTAZ cordon location code2.8 Observed <strong>OKI</strong> HBW Peak Trip Table – HBWOBSPK.CONThis file is in Tranplan binary matrix format.2.9 Observed <strong>OKI</strong> HBW Off-Peak Trip Table – HBWOBSOP.CONThis file is in Tranplan binary matrix format.2.10 Observed <strong>OKI</strong> HBO Peak Trip Table – HBOOBSPK.CONThis file is in Tranplan binary matrix format.16


2.11 Observed <strong>OKI</strong> HBO Off-Peak Trip Table – HBOOBSOP.CONThis file is in Tranplan binary matrix format.2.12 Observed <strong>OKI</strong> NHB Peak Trip Table – NHBOBSPK.CONThis file is in Tranplan binary matrix format.2.13 Observed <strong>OKI</strong> NHB Off-Peak Trip Table – NHBOBSOP.CONThis file is in Tranplan binary matrix format.2.14 HBW Mode Choice Estimation File – HBW.DATPlease see Part V (Mode Choice), Table 3.1 for a description of this file.2.15 HBO Mode Choice Estimation File – HBO.DATPlease see Part V (Mode Choice), Table 3.1 for a description of this file.2.16 NHB Mode Choice Estimation File – NHB.DATPlease see Part V (Mode Choice), Table 3.1 of the <strong>Model</strong> Development Report for a description ofthis file.2.17 <strong>OKI</strong> Mode Choice Calibration Targets – CalibrationTargets_<strong>OKI</strong>_Final.XLSPlease see Part V (Mode Choice), Section 7 of the <strong>Model</strong> Development Report for a description ofthe process to calculate calibration target values. This file is a Excel spreadsheet.2.18 MVRPC Mode Choice Calibration Targets – CalibrationTargets_MV_Final.XLSPlease see Part V (Mode Choice), Section 7 of the <strong>Model</strong> Development Report for a description ofthe process to calculate calibration target values. This file is a Excel spreadsheet.2.19 Combined Mode Choice Calibration Targets – CalibrationTargets_all_Final.XLSPlease see Part V (Mode Choice), Section 7 of the <strong>Model</strong> Development Report for a description ofthe process to calculate calibration target values. This file is a Excel spreadsheet.17


2.20 Screenline Shape File – Screenlines.SHP/SHX/DBFThese files are in ArcView format.18


3. ProgramsThe applications listed below were developed to analyze and summarize the various surveys usedin the course of the model development effort. They were originally intended for internal PB useonly. For this reason, the applications are being released “as-is”; Parsons Brinckerhoff assumesno responsibility for documentation and/or maintenance.• <strong>OKI</strong> Home Survey Processing Program (SAS)o Process<strong>OKI</strong>Survey.SAS• On-Board Survey Processing Program (SAS)o OnBoard.SAS• Cordon Station Processing Programs (SAS)o OuputEITrips.SASo OutputTripTables.SASo EstimateEIEqs.SASo ProcessBorderStat.SAS• Trip Length Frequency Distribution Program (TP+)o PeakFrequency.JOB (sample)• Calibration Target Values Program (SAS)o ComputeCalTar.SAS• Highway Validation Programs (TP+)o HEVAL_VMT.JOBo HEVEL_RMSE.JOB• Screenline Validation Program (TP+)o SCREENLINES.JOBo Mg_sline.prn, mia_sline.prn, oki_sline.prn, oki_cutlines.prn• Transit Validation Program (Excel)o TransitAssignEvaluation_Release0726.XLS19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!