13.07.2015 Views

Guidelines for the Use of RFID Technology in Transfusion Medicine

Guidelines for the Use of RFID Technology in Transfusion Medicine

Guidelines for the Use of RFID Technology in Transfusion Medicine

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Vox Sangu<strong>in</strong>isInternational Journal <strong>of</strong> Blood <strong>Transfusion</strong> Medic<strong>in</strong>eVolume 98, Supplement 2, April 2010<strong>Guidel<strong>in</strong>es</strong><strong>for</strong> <strong>the</strong> <strong>Use</strong> <strong>of</strong><strong>RFID</strong> <strong>Technology</strong> <strong>in</strong> <strong>Transfusion</strong> Medic<strong>in</strong>eApril 2010Version 1.0


This document has been developed by <strong>the</strong> Task Force on <strong>RFID</strong> <strong>of</strong> <strong>the</strong> Work<strong>in</strong>g Party on In<strong>for</strong>mation <strong>Technology</strong> by mandate<strong>of</strong> <strong>the</strong> International Society <strong>of</strong> Blood <strong>Transfusion</strong>.AuthorsKnels Ralf (Chairperson), GermanyDavis Rode<strong>in</strong>a (Vice-Chairperson), USAAsh<strong>for</strong>d Paul, USABidet Francois, FranceBöcker Wolfgang, GermanyBriggs Lynne, USABruce Pia, F<strong>in</strong>landCsöre Miklós, USADistler Pat, USAGutierrez Alfonso, USAHenderson Ian, UKHohberger Clive, USAHolcombe Jerry, USAHolmberg Jerry, USAHulleman Rik, The Ne<strong>the</strong>rlandsMarcel Brian, UKMessenger Paul, USAMun In, USARoberts Stanley, USASandler Gerald, USARaj Veeramani, USAWray Bruce, USACollaboratorsAmerican Red Cross, Reeve David, Roberts Stanley, USA.Ankara University, Önder Arslan, Turkey.Association <strong>for</strong> Automatic Identification and Mobility (AIM Global), Hohberger Clive, USA.Australian Red Cross Blood Service, Bolton Wayne, Australia.BarCode Systems, Marcel Brian, UK.Baxter Healthcare, Skach John R, USA.Blood <strong>Transfusion</strong> Service Massachusetts General Hospital, Dzik (Sunny) Walter, USA.Blood Systems Laboratories, Swann Delann, USA.BloodCenter <strong>of</strong> Wiscons<strong>in</strong>, Briggs Lynne, Davis Rode<strong>in</strong>a, Holcombe Jerry, USA.CaridianBCT (Gambro BCT), Messenger Paul, USA.Computype, Newton John, UK; Wray Bruce, USA.Department <strong>of</strong> Health & Human Services, Henry Richard, Holmberg Jerry, USA.European Health Industry Barcode Council (EHIBCC), Oehlmann Harald, Germany.Fenwal Blood Technologies, Meixelsperger Dale, USA.F<strong>in</strong>ish Red Cross, Bruce Pia, F<strong>in</strong>land.Fresenius, Böcker Wolfgang, Germany; Ferioli Claudio, Vogl<strong>in</strong>o Frederico, Italy.Georgetown University Wash<strong>in</strong>gton, Sandler Gerald. USA.German Red Cross - Blood <strong>Transfusion</strong> Service Baden-Württemberg – Hessen, Weiser Udo, Germany.German Red Cross - Blood <strong>Transfusion</strong> Service East, Knels Ralf, Germany.German Red Cross - Blood <strong>Transfusion</strong> Service NSTOB, Müller, Thomas, Germany.Haemonetics, Costello Tim, Sebak Ela<strong>in</strong>e, USA.Healthcare In<strong>for</strong>mation and Management Systems Society (HIMSS). Bianch<strong>in</strong> Louis, USA.Helmer, Rose Dan, USA.Hospital Corporation <strong>of</strong> America, Mun In, USA.ICCBBA, Ash<strong>for</strong>d Paul, Distler Pat, USA.Ingecom, Desjeux Oliver, Switzerland.Macopharma, Bidet Francois, Dussert Pascal, France.Mississippi Blood Services, Patel Gulam, USA.Pall Medical, Peterson Karen, Stripp Brian, USA.Red Cross <strong>Transfusion</strong> Center L<strong>in</strong>z, Gabriel Christian, Austria.Réseaumatique, Bruneval Jean-Pierre, France.


Sanqu<strong>in</strong>, Hulleman Rik, The Ne<strong>the</strong>rlands.Savant, Henderson Ian, UK.SysLogic, Inc., Chang T<strong>in</strong>a, Varilla Rhommer, USA.Tagsys, Ros Olivier, USA.Terumo, Hecht Nathan, USA.University <strong>of</strong> Wiscons<strong>in</strong>, Madison <strong>RFID</strong> Lab, Gutierrez Alfonso, Veeramani Raj, USA.Vienna University, Kurz Mart<strong>in</strong>, Austria.Wyndgate Technologies, Csöre Miklós, Larson Patty, USA.Zebra Technologies, Hohberger Clive, USA.Contactsr.knels@blutspende.de, rode<strong>in</strong>a.davis@bcw.eduConflicts <strong>of</strong> <strong>in</strong>terestBruce Wray is an employee <strong>of</strong> Computype, Inc., which is a provider <strong>of</strong> <strong>RFID</strong> and barcode products and services. Ian Hendersonworks <strong>for</strong> Savant Ltd who supply IT systems to blood services. Clive Hohberger holds less than 10,000 shares(< 0.0002%) <strong>of</strong> stock and stock options <strong>in</strong> Zebra Technologies Corporation, which manufactures and sells bar code pr<strong>in</strong>tersand <strong>RFID</strong> pr<strong>in</strong>ter encoders <strong>for</strong> use <strong>in</strong> blood bank<strong>in</strong>g, but it is improbable that he would accrue any material f<strong>in</strong>ancial ga<strong>in</strong> orloss. Jerry Holmberg is a Senior Advisor <strong>for</strong> Blood Policy <strong>for</strong> <strong>the</strong> Assistant Secretary <strong>for</strong> Health <strong>in</strong> <strong>the</strong> US. He also serves <strong>in</strong>an advisory capacity to <strong>the</strong> <strong>RFID</strong> Steer<strong>in</strong>g Committee <strong>of</strong> <strong>the</strong> BloodCenter <strong>of</strong> Wiscons<strong>in</strong>. This has been reviewed by <strong>the</strong> USGovernment ethics <strong>of</strong>ficer and found acceptable. There is no f<strong>in</strong>ancial relationship with <strong>the</strong> <strong>RFID</strong> Steer<strong>in</strong>g committee andBloodcenter <strong>of</strong> Wiscons<strong>in</strong>. All o<strong>the</strong>r authors have declared no conflicts <strong>of</strong> <strong>in</strong>terest.


Table <strong>of</strong> contentsPart I: General In<strong>for</strong>mation1. Background 11.1 Purpose 11.2 Scope 12. What is <strong>RFID</strong>? 12.1 <strong>RFID</strong> Overview 12.1.1 Transponder Tags 12.1.2 Readers 22.1.3 Frequencies 22.2 Automatic-Identification and Data Capture Methodologies 33. Advantages <strong>of</strong> <strong>RFID</strong> Solutions 33.1 <strong>RFID</strong> Solutions <strong>in</strong> General 33.2 <strong>RFID</strong> Solutions <strong>in</strong> Healthcare 33.3 <strong>RFID</strong> Solutions <strong>in</strong> <strong>Transfusion</strong> Medic<strong>in</strong>e 43.3.1 Donor Management 43.3.2 Blood Product Management 53.3.3 Patient Identification 73.3.4 <strong>Transfusion</strong> Management 73.3.5 Facility and Device Management 8Part II: Deployment In<strong>for</strong>mation4. Technical Recommendations 84.1 Standardization 84.2 Tag Capacity 84.3 Tag Functionality and Security 94.4 Method <strong>of</strong> Tag Attachment 94.5 Data Structure 94.6 Disposal 105. Technical Architecture Overview 116. Risk Analysis 136.1 General Risk Assessment 146.2 Risk <strong>of</strong> <strong>RFID</strong> on Biologics 147. Implementation Methodology 157.1 Four Phase Approach 157.1.1 Phase I – The Assess Phase 157.1.2 Phase II – The Prototype Phase 167.1.3 Phase III – The Pilot Phase 167.1.4 Phase IV – The Deploy Phase 167.2 Tips <strong>for</strong> Change Management, Validation and Qualification 177.2.1 Change Control 177.2.2 Qualification and Validation 177.2.3 Per<strong>for</strong>mance Qualification 178. Economic Justification and Return on Investment (ROI) 178.1 Blood Centers 178.2 Hospitals 199. Conclusion 1910. Publications 19Appendix A – Glossary <strong>of</strong> <strong>RFID</strong> Terms 22


GUIDELINEVox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2): 1–24ª 2010 The Author(s)Journal compilation ª 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>DOI: 10.1111/j.1423-0410.2010.01324.x<strong>Guidel<strong>in</strong>es</strong> <strong>for</strong> <strong>the</strong> <strong>Use</strong> <strong>of</strong> <strong>RFID</strong> <strong>Technology</strong> <strong>in</strong> <strong>Transfusion</strong>Medic<strong>in</strong>ePart I: General In<strong>for</strong>mation1. BackgroundThe first application <strong>of</strong> <strong>RFID</strong> (Radio Frequency IDentification)was <strong>in</strong> World War II by <strong>the</strong> United K<strong>in</strong>gdom’s RoyalAir Force to identify <strong>the</strong>ir airplanes. Today <strong>the</strong>re is renewed<strong>in</strong>terest <strong>in</strong> <strong>the</strong> technology as its reliability has improvedand its costs decreased. <strong>RFID</strong> technology is now reliableenough to support <strong>the</strong> optimization <strong>of</strong> production processes,health care services, and security control. Afterreview<strong>in</strong>g <strong>the</strong> results from <strong>in</strong>itial <strong>RFID</strong> trials, <strong>the</strong> InternationalSociety <strong>for</strong> Blood <strong>Transfusion</strong> Work<strong>in</strong>g Party onIn<strong>for</strong>mation <strong>Technology</strong> (ISBT WPIT) voted <strong>in</strong> 2006 to createa Task Force on <strong>RFID</strong> to review <strong>the</strong> current state <strong>of</strong> <strong>RFID</strong>development and recommend guidel<strong>in</strong>es <strong>for</strong> <strong>the</strong> use <strong>of</strong> <strong>RFID</strong><strong>in</strong> transfusion medic<strong>in</strong>e.1.1 PurposeImplementation <strong>of</strong> <strong>RFID</strong> <strong>in</strong> health care is primarily drivenby a desire to improve patient safety and enhance <strong>the</strong> efficiency<strong>of</strong> <strong>the</strong> supply cha<strong>in</strong>. This guidel<strong>in</strong>e, follow<strong>in</strong>g a shorttechnical overview and some examples from <strong>in</strong>dustry,assesses high level advantages and disadvantages <strong>of</strong> us<strong>in</strong>g<strong>RFID</strong> <strong>in</strong> transfusion medic<strong>in</strong>e and identifies specific areaswhere <strong>RFID</strong> solutions might beneficially apply. It <strong>the</strong>n providesrecommendations on standards that should be considered<strong>in</strong> future implementations to ensure consistencyand compatibility with<strong>in</strong> our <strong>in</strong>dustry.1.2 ScopeThe guidel<strong>in</strong>e is written <strong>for</strong> all those who are <strong>in</strong>terested <strong>in</strong>us<strong>in</strong>g <strong>RFID</strong> <strong>in</strong> transfusion medic<strong>in</strong>e. It covers <strong>the</strong> use <strong>of</strong><strong>RFID</strong> <strong>in</strong> <strong>the</strong> blood product supply cha<strong>in</strong> from bag manufactur<strong>in</strong>gto <strong>the</strong> donor and to <strong>the</strong> patient. The authors are opento all comments, ideas <strong>for</strong> improvement, and constructivecriticism <strong>of</strong> <strong>the</strong> first edition.2. What is <strong>RFID</strong>?2.1 <strong>RFID</strong> OverviewRadio Frequency IDentification (<strong>RFID</strong>) is a method <strong>of</strong>uniquely identify<strong>in</strong>g items that uses electromagnetic radiowaves (wireless air <strong>in</strong>terface) to <strong>in</strong>teract and exchange databetween tags and readers (Fig. 1). There are def<strong>in</strong>ed standards(see 10.3.2) to ensure <strong>the</strong> <strong>in</strong>teroperability <strong>of</strong> all components.ReaderAntennaFig. 1 Communication between reader and tag.RequestElectromagneticair <strong>in</strong>terfaceAnswerTag2.1.1 Transponder Tags<strong>RFID</strong> tags consist <strong>of</strong> a chip or small circuit board coupled toan antenna. They are available <strong>in</strong> many standard <strong>for</strong>ms,shapes and sizes, and special designs can be made <strong>for</strong> <strong>in</strong>dividualapplications (Fig. 2). Nearly all transponder chipshave a factory-programmed Unique Tag IdentificationNumber (UID). There are different types <strong>of</strong> tags dist<strong>in</strong>guishedby technical construction and memory function:Technical ConstructionPassive tags receive power from <strong>the</strong> reader that prompts<strong>the</strong>m to communicate with <strong>the</strong> reader. The distance atwhich a passive tag can receive sufficient power from <strong>the</strong>reader to power up <strong>the</strong> chip def<strong>in</strong>es its range. Passive tagsare <strong>the</strong> most widely used type <strong>of</strong> <strong>RFID</strong> tags.Semi-active or semi-passive tags conta<strong>in</strong> a th<strong>in</strong> battery topower <strong>the</strong> chip. Battery power can be used to <strong>in</strong>crease <strong>the</strong>tag’s read range <strong>of</strong> <strong>the</strong> <strong>RFID</strong> tag or, <strong>in</strong> <strong>the</strong> case <strong>of</strong> sensor tags,to enable measurement, analysis and storage <strong>of</strong> sensor data.Active tags use a battery to power both <strong>the</strong> receiver and atransmitter with<strong>in</strong> <strong>the</strong> tag. Battery power allows <strong>the</strong> tag toemit a signal without activation by <strong>the</strong> reader, support asensor and ⁄ or <strong>in</strong>crease <strong>the</strong> communication range betweenreader and tag. Beacon tags are used <strong>for</strong> real-time locationdetection <strong>of</strong> a tagged object such as a car, shipp<strong>in</strong>g conta<strong>in</strong>eror medical equipment. These battery-powered tagsemit a short message conta<strong>in</strong><strong>in</strong>g identification codes ando<strong>the</strong>r object attributes at regular <strong>in</strong>tervals enabl<strong>in</strong>g positiondetection through reader triangulation or o<strong>the</strong>r locat<strong>in</strong>gmethods.Memory FunctionRead-only: ‘‘write once tags’’. This <strong>in</strong>cludes both tags thatare pre-programmed at <strong>the</strong> factory and tags which may beprogrammed once only by <strong>the</strong> user.1


2 Guidel<strong>in</strong>eFig. 2 Different tag and reader designs: (a) Radio Frequency IDentification (<strong>RFID</strong>)-labels <strong>in</strong> different sizes, (b) tags <strong>in</strong>tegrated <strong>in</strong> plastic chips, keys, wristbands,glass bottles and laboratory tubes, (c) handheld with barcode and <strong>RFID</strong> reader, (d) PDA with <strong>RFID</strong> reader module, (e) gate reader.Read ⁄ write: <strong>in</strong>cludes a chip with designated memoryblocks that can save and update user-def<strong>in</strong>ed data at differentstages. Some read ⁄ write tags have permanently lockableor password-protected memory that preventsaccidental alteration <strong>of</strong> key data.Kill command: an <strong>RFID</strong> special command designed <strong>for</strong>permanently eras<strong>in</strong>g <strong>the</strong> memory and disabl<strong>in</strong>g <strong>the</strong> tag sothat it cannot be read by any reader.2.1.2 ReadersReaders have an antenna that sends and receives electromagneticwaves to exchange data with <strong>the</strong> tag. Power <strong>for</strong>operation comes from a ma<strong>in</strong> or battery power supplydepend<strong>in</strong>g on <strong>the</strong> reader type. Some readers are designed toread and show tag <strong>in</strong><strong>for</strong>mation only; o<strong>the</strong>rs <strong>in</strong>clude a processorto run s<strong>of</strong>tware on <strong>the</strong> reader. The received <strong>in</strong><strong>for</strong>mationcan be sent to servers directly through dock<strong>in</strong>gstations, or via wireless networks. There are many types <strong>of</strong>reader designs and functionalities that are optimized <strong>for</strong>use as handheld readers, stationary readers, reader gates,tunnels, and equipment-<strong>in</strong>tegrated readers (Fig. 2). Somehandheld readers are available with barcode read<strong>in</strong>g capability<strong>in</strong> addition to mixed data carrier usage. Gates andtunnels <strong>of</strong>ten allow <strong>the</strong> identification <strong>of</strong> <strong>in</strong>dividual tags <strong>in</strong> agroup. Very fast read<strong>in</strong>g <strong>of</strong> all UID <strong>in</strong> a group is called‘‘<strong>in</strong>ventory<strong>in</strong>g’’ or ‘‘bulk read<strong>in</strong>g.’’2.1.3 Frequencies<strong>RFID</strong> systems can work on different frequency bands(Fig. 3):Low Frequency (LF); unlicensed use is allowed <strong>in</strong> mostcountries but <strong>the</strong>re are, however, differences <strong>in</strong> practice.Typically, frequencies at 125 or 134 KHz are used.High Frequency (HF) at 13.56 MHz is available <strong>for</strong> unlicenseduse <strong>in</strong> nearly every country, because <strong>of</strong> <strong>the</strong>LF300 MHz2·45 GHz13·56 MHz 868-956 MHz 5·8 GHz0·1 1 10 100 1000 10,000Fig. 3 Allocated radio frequencies used <strong>for</strong> Radio Frequency IDentification(<strong>RFID</strong>) technology (LF, low frequency; HF, high frequency; UHF, ultrahigh frequency).MHzdevelopment and wide deployment <strong>of</strong> ISO-standardizedcontactless f<strong>in</strong>ancial smart cards and an <strong>in</strong>creas<strong>in</strong>g number<strong>of</strong> passports us<strong>in</strong>g <strong>RFID</strong> technology.Ultra High Frequency (UHF) covers <strong>the</strong> widest range <strong>of</strong>frequencies. Because <strong>of</strong> conflicts with assigned cellulartelephone frequency bands, UHF tags use different frequencies<strong>in</strong> Asia, Europe and <strong>the</strong> Americas. Most major countriesapprov<strong>in</strong>g unlicensed use have some spectrumallocated between 860 and 960 MHz. These tags have <strong>the</strong>longest range because <strong>of</strong> <strong>the</strong> power levels allowed. Allowedpower levels <strong>in</strong> radio regulations <strong>for</strong> unlicensed use <strong>of</strong>2455 MHz vary dramatically, largely because <strong>of</strong> health andsafety concerns <strong>in</strong> different countries (Note: this frequencyband is shared with o<strong>the</strong>r types <strong>of</strong> devices <strong>in</strong>clud<strong>in</strong>g wirelessLANs and microwave cook<strong>in</strong>g ovens).The physical and operational properties <strong>of</strong> <strong>RFID</strong> systemsand how <strong>the</strong>se are <strong>in</strong>fluenced by biological materials isdependent on <strong>the</strong> frequency and power levels used(Table 1). The read range is <strong>in</strong>fluenced by <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong>tag, type <strong>of</strong> reader, frequency used, and environment.Because <strong>the</strong> readers (and active or beacon tags) employactive radio transmitters, <strong>the</strong> use <strong>of</strong> <strong>RFID</strong> tags is subject togovernmental radio broadcast<strong>in</strong>g regulations.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 3Table 1 Characteristics <strong>of</strong> frequencies used and some usual applicationsFrequencyReadrangeCoupl<strong>in</strong>g method;Biological <strong>in</strong>fluenceApplicationsLow frequency 0.1–0.3 m Magnetic field coupled; low impact bywater and cellsHigh frequency 0.1–1.0 m Magnetic field coupled; weak impact bywater and cellsUltra high frequency 0.1–10.0 m Electromagnetic field coupled; rangestrongly affected by water and cellsPersonnel access control, storageadm<strong>in</strong>istration, animal identification<strong>Transfusion</strong> medic<strong>in</strong>e; medical andpharmaceutical items; ‘‘smart cards’’<strong>for</strong> identification and f<strong>in</strong>ancialtransactions; transit passes; logisticsand asset management; anti-<strong>the</strong>ftelectronic article surveillanceCase and pallet level supply cha<strong>in</strong>logistics; auto and sea conta<strong>in</strong>ertrack<strong>in</strong>g; automatic toll collection2.2 Automatic-Identification and Data CaptureMethodologiesAutomatic Identification (Auto-ID) encompasses a host <strong>of</strong>technologies that help mach<strong>in</strong>es identify objects or persons.It is <strong>of</strong>ten coupled with automated data capture and so <strong>the</strong>term Automatic Identification and Data Capture (AIDC) iscommonly used as a technology umbrella. AIDC systemsmay <strong>in</strong>clude barcodes, <strong>RFID</strong>, magnetic stripe cards, smartcards, optical character recognition (OCR) and biometricsamong o<strong>the</strong>rs. L<strong>in</strong>ear barcodes are ubiquitous <strong>in</strong> transfusionmedic<strong>in</strong>e today. There are def<strong>in</strong>ed standards <strong>for</strong> severalBarcode <strong>for</strong>mats (see 10.3.1).L<strong>in</strong>ear Barcode symbologies use parallel black l<strong>in</strong>es andwhite spaces <strong>of</strong> vary<strong>in</strong>g widths. A number <strong>of</strong> standardizedsymbologies are used such as Codabar, Code 128, Code 39,etc. The current standard l<strong>in</strong>ear barcode <strong>for</strong> use with<strong>in</strong>transfusion medic<strong>in</strong>e is Code 128, referred to <strong>in</strong> this contextas ISBT 128 [1].Multi-Row Barcodes exploit <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> l<strong>in</strong>ear barcodesymbols but feature multiple rows capable <strong>of</strong> conta<strong>in</strong><strong>in</strong>gup to over a thousand characters and <strong>in</strong> some cases canbe fur<strong>the</strong>r expanded <strong>for</strong> data capture functionality. Examples<strong>of</strong> symbologies used are Codablock and DataBar.Two-Dimensional Barcodes (2D) are complex pr<strong>in</strong>ted<strong>for</strong>ms with a high capacity <strong>of</strong> characters that support errordetection and correction so that even damaged symbols canbe read. These codes require image scanners to read <strong>the</strong>m.A s<strong>in</strong>gle 2D barcode can hold all <strong>the</strong> <strong>in</strong><strong>for</strong>mation currentlyheld <strong>in</strong> multiple l<strong>in</strong>ear barcodes. Symbologies used are DataMatrix, PDF 417 and MaxiCode. The current standard 2-Dsymbology <strong>for</strong> use with<strong>in</strong> transfusion medic<strong>in</strong>e is DataMatrix.<strong>RFID</strong> and barcode technologies have different characteristics(Tables 2, 3). The strengths and weaknesses <strong>of</strong> eachtechnology must be evaluated toge<strong>the</strong>r with <strong>the</strong> context <strong>of</strong><strong>the</strong> application and <strong>the</strong> implementation environment.3. Advantages <strong>of</strong> <strong>RFID</strong> Solutions3.1 <strong>RFID</strong> Solutions <strong>in</strong> GeneralAlthough <strong>RFID</strong> technology has existed s<strong>in</strong>ce World War II<strong>the</strong>re has only been a surge <strong>in</strong> development <strong>of</strong> commercialapplications with<strong>in</strong> <strong>the</strong> last 10–20 years. The primary reason<strong>for</strong> this is that <strong>the</strong> development <strong>of</strong> <strong>in</strong>tegrated circuittechnology has resulted <strong>in</strong> higher storage capacities,quicker data process<strong>in</strong>g and lower tag costs lead<strong>in</strong>g to newopportunities. Ano<strong>the</strong>r reason is <strong>the</strong> <strong>in</strong>crease <strong>in</strong> throughput<strong>of</strong> materials and goods because <strong>of</strong> improvements and <strong>in</strong>novations<strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g process.Pr<strong>in</strong>ted barcodes rema<strong>in</strong> <strong>the</strong> most widely used AIDC systemto identify materials <strong>in</strong> process<strong>in</strong>g systems. They arecheap and reliable, but with demand <strong>for</strong> <strong>in</strong>creased speedand higher throughput <strong>the</strong> read<strong>in</strong>g <strong>of</strong> <strong>the</strong>se codes canbecome a limit<strong>in</strong>g factor and <strong>the</strong>re<strong>for</strong>e new solutions maybe required. <strong>RFID</strong> provides a more rapid read<strong>in</strong>g technologythat does not require l<strong>in</strong>e-<strong>of</strong>-sight and can operate overlonger distances. In some <strong>in</strong>dustries, <strong>the</strong> benefits havealready been realized and commercial applications are <strong>in</strong>rout<strong>in</strong>e use (Fig. 4).3.2 <strong>RFID</strong> Solutions <strong>in</strong> HealthcareIn health care environments, <strong>the</strong> potential <strong>for</strong> improv<strong>in</strong>gsafety through better process surveillance and reduc<strong>in</strong>ghuman error, toge<strong>the</strong>r with <strong>the</strong> possibility <strong>of</strong> more efficienttreatment processes, has led to a number <strong>of</strong> trials <strong>of</strong> <strong>RFID</strong>applications.However, despite a recognized potential <strong>for</strong> improvement<strong>in</strong> patient safety, <strong>RFID</strong> technology deployment <strong>in</strong>health care is limited beyond generic supply cha<strong>in</strong> applications.It is only recently that significant specialized healthcare applications have emerged. It is likely that this isbecause <strong>of</strong> a number <strong>of</strong> factors, <strong>in</strong>clud<strong>in</strong>g:Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


4 Guidel<strong>in</strong>eTable 2 General capabilities and limitations <strong>of</strong> barcodes and Radio Frequency IDentification (<strong>RFID</strong>) technologyBarcodesLow costWidespread utilization2D barcodes with high capacity <strong>for</strong> datastorageStandards (e.g. ISBT 128) <strong>in</strong> place<strong>RFID</strong> (13.56 MHz)L<strong>in</strong>e-<strong>of</strong>-sight not requiredDifferent data storage capacity, <strong>for</strong>ms and functionsare possible, depend<strong>in</strong>g on tag designIn<strong>for</strong>mation can be modified on read ⁄ write tagsMultiple items can be read simultaneously withspecial tunnel readerSignals pass through opaque materialsReusableExist<strong>in</strong>g data structures (e.g. ISBT 128) can be usedSensor <strong>in</strong>tegrationData transmission is per<strong>for</strong>med optically,clear l<strong>in</strong>e-<strong>of</strong>-sight requiredAmount <strong>of</strong> data encoded is limited andcannot be changedOnly one barcode can be read at a timeRead capability can be affected by dirt,water, and scuff<strong>in</strong>gHigher costs <strong>of</strong> media and hardwareTag read<strong>in</strong>g dependent on some environmentalconditionsPotential <strong>for</strong> electromagnetic <strong>in</strong>terference must beconsidered <strong>in</strong> health care <strong>in</strong>stallationsF<strong>in</strong>al standards are under development today• Technical difficulties and capital costs <strong>for</strong> base <strong>in</strong>frastructurerequirements, especially <strong>in</strong> hospital environments;• Unrealistic expectations <strong>of</strong> <strong>the</strong> technology;• Difficult bus<strong>in</strong>ess justification, because <strong>of</strong> an uncerta<strong>in</strong>return on <strong>in</strong>vestment (ROI).For <strong>RFID</strong> to demonstrate cost-effective benefits andenhance exist<strong>in</strong>g barcode identification, significant technical<strong>in</strong>frastructure development with<strong>in</strong> <strong>the</strong> hospital environmentis required, which encompasses both appropriatehardware (reader, computer) and <strong>the</strong> application s<strong>of</strong>twareenabled to make use <strong>of</strong> <strong>the</strong> technology.However, <strong>the</strong> possible ga<strong>in</strong>s <strong>in</strong> transparency, patientsafety, and productivity appear to justify <strong>the</strong> developmentef<strong>for</strong>ts <strong>in</strong> <strong>RFID</strong>. The potential is provided <strong>for</strong> newapproaches to solv<strong>in</strong>g current problems <strong>in</strong> health care while<strong>the</strong> cost <strong>of</strong> <strong>the</strong> technology rapidly decl<strong>in</strong>es, driven by<strong>in</strong>creased usage <strong>in</strong> many <strong>in</strong>dustries.As with all data management solutions <strong>in</strong> general, and<strong>in</strong> health care specifically, <strong>RFID</strong> will only be successful if<strong>the</strong> processes to be supported by it are thoroughlyreviewed and appropriately adapted to exploit practically<strong>the</strong> different functionalities <strong>of</strong> <strong>the</strong> technology (Table 4)[2,3].3.3 <strong>RFID</strong> Solutions <strong>in</strong> <strong>Transfusion</strong> Medic<strong>in</strong>eIn transfusion medic<strong>in</strong>e, <strong>RFID</strong> has <strong>the</strong> potential tosupport quick and easy access to process data generated<strong>in</strong> <strong>the</strong> blood supply cha<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g collection,manufactur<strong>in</strong>g, test<strong>in</strong>g, release label<strong>in</strong>g, <strong>in</strong>ventory, anddistribution.This could facilitate and improve compliance withGood Manufactur<strong>in</strong>g Practice (GMP), which requiresvarious levels <strong>of</strong> process documentation at each step[4–6]. The supply cha<strong>in</strong> <strong>of</strong> transfusion medic<strong>in</strong>e <strong>of</strong>fers<strong>the</strong> possibility to implement <strong>RFID</strong> solutions <strong>in</strong> a smaller,circumscribed, and well-regulated area <strong>of</strong> medic<strong>in</strong>e withma<strong>in</strong>ly three products: red cells, plasma, and platelets.Results from several trials carried out highlight <strong>the</strong> differentbottlenecks <strong>in</strong> transfusion medic<strong>in</strong>e [7–10]. Similarto o<strong>the</strong>r implementations <strong>in</strong> o<strong>the</strong>r <strong>in</strong>dustries, an ROI<strong>in</strong> health care can only be generally realized if <strong>RFID</strong>technology results <strong>in</strong> improved, <strong>in</strong>tegrated work flowsolutions (adapted hardware and s<strong>of</strong>tware) with tangiblebenefits.The follow<strong>in</strong>g examples <strong>of</strong> application show potentialbenefits <strong>of</strong> <strong>RFID</strong> <strong>in</strong> <strong>the</strong> transfusion pathway:3.3.1 Donor ManagementDonor identification cards carry<strong>in</strong>g barcodes or magneticstrips are <strong>in</strong> use <strong>in</strong> many countries. Integrat<strong>in</strong>g an <strong>RFID</strong>chip <strong>in</strong>to such cards would allow <strong>for</strong> additional data storageand easy replacement <strong>of</strong> data, such as a donor photograph,donation history or address changes <strong>in</strong> <strong>the</strong> card.There is also <strong>the</strong> potential <strong>for</strong> process monitor<strong>in</strong>g,whereby an <strong>RFID</strong> reader <strong>in</strong> donor management systems andcollection devices (mix<strong>in</strong>g scale, apheresis device, etc.)could be used to identify <strong>the</strong> donor <strong>in</strong> <strong>the</strong> pre-donation andphlebotomy process [9,11].Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 5Table 3 Comparison <strong>of</strong> Radio Frequency IDentification (<strong>RFID</strong>) technology to l<strong>in</strong>ear and 2-D Barcodes <strong>in</strong> <strong>Transfusion</strong> Medic<strong>in</strong>ePhysical sizeData sizeLifespan<strong>RFID</strong> (13.56 MHz) L<strong>in</strong>ear barcode 2-D barcodeVarious; at 13.56 MHztypically 48 · 48 mmDepend on chip; read ⁄ writetags m<strong>in</strong>. 1–2 kBit (approx. 200alphanumeric characters)Passive = 10 + yearsSemi active = depends onbattery lifeDepends on amount<strong>of</strong> data encoded;more data needs longer symbolApproximately 9 symbolcharacters per l<strong>in</strong>eal <strong>in</strong>ch(2.82 mm ⁄ char)Years; depend<strong>in</strong>g on labelmaterialsApproximately15 mm · 15 mm2335 alphanumeric charactersYears; depend<strong>in</strong>g on label materialsL<strong>in</strong>e-<strong>of</strong>-Sight Not required Required RequiredRead characteristics High throughput;multiple items <strong>in</strong> one readalso <strong>in</strong> closedconta<strong>in</strong>ers with specialtunnel readers1–2 seconds per symbol,read<strong>in</strong>g one by one.Often require multiplesymbols1-2 seconds per read, s<strong>in</strong>gle symbol canconta<strong>in</strong> all required dataRead<strong>in</strong>g distanceVarious, typically 10–20 cm withhandheld readersVarious, typically 10–20 cm withhandheld readersRead capability Can be affected by fluids Can be affected by dirt,fluids, and scuff<strong>in</strong>gWrite capability Content can be updated Write once, updaterequires new labelWork<strong>in</strong>g Environment Harsh environments; depend<strong>in</strong>gCan be eng<strong>in</strong>eered <strong>for</strong>on construction susceptibleto x-ray, centrifugation, verylow temperatures and magneticharsh environments andlow temperatures; ice andirregular frozen surfacesVarious, typically 10–20 cm withhandheld readersCan be affected by dirt, fluids, andscuff<strong>in</strong>g, but 2D codes have a highdegree <strong>of</strong> data redundancy thatimproves <strong>the</strong>ir readability even whendamagedWrite once, updaterequires new labelCan be eng<strong>in</strong>eered <strong>for</strong>harsh environments andlow temperatures; ice andirregular frozen surfacesresonancemay affect ability to scanmay affect ability to scanEncryption Possible Limited PossibleDynamic Updates Yes No, data updateNo, data updaterequires new labelrequires new labelSensor capability Possible to <strong>in</strong>tegrate differentTemperature- and radiationsensitiveTemperature- and radiation-sensors <strong>in</strong>to <strong>the</strong> <strong>RFID</strong> tag andlabels available;sensitive labels available;to record <strong>the</strong> data historyno record<strong>in</strong>g <strong>of</strong> data historyno record<strong>in</strong>g <strong>of</strong> data historySmart storageAnti counterfeit<strong>in</strong>g ⁄Security protocolsStandardsRe-<strong>Use</strong>Possible <strong>in</strong> places equipped withantennaePossible with ISO14443ISO and ISBT 128 standards <strong>in</strong> placeMay be possible, depend<strong>in</strong>g onapplicationPossible <strong>in</strong> places equipped withbar-coded locations and uniquelynumbereditemsTamper-resistant and tamperevidentlabel stocks availableNot possiblePossible <strong>in</strong> places equipped withbar-coded locations and uniquelynumbereditemsTamper-resistant and tamperevidentlabel stocks availableNot possibleCosts and utilization Higher costs Lower costs, widespread utilization Lower costs, widespread utilizationInterferences Electromagnetic <strong>in</strong>terferences possible N ⁄ A N⁄ A3.3.2 Blood Product ManagementThe application <strong>of</strong> <strong>RFID</strong> tags <strong>in</strong> <strong>the</strong> blood product managementprocess is seen as an area <strong>of</strong>fer<strong>in</strong>g a great possibility<strong>for</strong> process improvement and could help to realizemajor improvements <strong>in</strong> storage and distribution <strong>of</strong> bloodproducts. If a tag is applied to <strong>the</strong> blood bag <strong>the</strong>re is <strong>the</strong>potential to facilitate <strong>the</strong> product identification dur<strong>in</strong>gcollection, process<strong>in</strong>g and distribution and to monitorstorage and distribution <strong>of</strong> f<strong>in</strong>ished goods as long as <strong>the</strong>serema<strong>in</strong> <strong>in</strong> <strong>the</strong> same conta<strong>in</strong>er. Thus, data transported on <strong>the</strong>Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


6 Guidel<strong>in</strong>eFig. 4 Milestones <strong>in</strong> <strong>the</strong> development <strong>of</strong> Radio Frequency IDentification(<strong>RFID</strong>) and barcode technology.blood bag allows <strong>for</strong> efficient shar<strong>in</strong>g <strong>of</strong> <strong>in</strong><strong>for</strong>mationamong <strong>the</strong> different stakeholders (depend<strong>in</strong>g on securitylevels) [3,7–12].ManufacturerFor blood bags, <strong>in</strong>tegrated <strong>RFID</strong> tags allow <strong>the</strong> manufacturerto use <strong>the</strong> UID <strong>for</strong> identification with<strong>in</strong> <strong>the</strong>ir ownprocesses, <strong>the</strong> assembly <strong>of</strong> <strong>the</strong> outer cartons, and <strong>the</strong>irrelated logistics processes and handl<strong>in</strong>g. Fur<strong>the</strong>r <strong>in</strong><strong>for</strong>mationsuch as lot number, expiration date and, <strong>in</strong> <strong>the</strong> future,possibly <strong>the</strong> s<strong>in</strong>gle unit tare could be stored on <strong>the</strong> tag andshared with <strong>the</strong> customers. Thus, customers can use <strong>the</strong>tags <strong>for</strong> <strong>the</strong>ir <strong>in</strong>com<strong>in</strong>g control management, <strong>the</strong> release <strong>of</strong><strong>the</strong> goods, and <strong>for</strong> fur<strong>the</strong>r processes. In <strong>in</strong>itial trials, onlyTable 4 Radio Frequency IDentification (<strong>RFID</strong>) functionality and <strong>the</strong> current status <strong>of</strong> possible adoption <strong>in</strong> health care (not all are <strong>in</strong> rout<strong>in</strong>e use today)[4, modified]Function Description Current statusAccess controlBulk read<strong>in</strong>gCounterfeit protectionData storage and transportIdentificationLocationObservation and controlsProcess managementSensory functions, monitor<strong>in</strong>g aMore acceptable than magnetic cards or p<strong>in</strong>-padsbecause <strong>the</strong> tag can be presented <strong>in</strong> many <strong>for</strong>mats(key fobs, lapel badges, etc.). Enables contactlessidentification <strong>in</strong> ‘‘sterile’’ environments andautomatic door operation. Can be tied with storedbiometrics <strong>for</strong> access security controlIncom<strong>in</strong>g, <strong>in</strong>-process, and distribution controls <strong>of</strong>hospital wear, pharmaceuticals, blood, surgical<strong>in</strong>struments, etc.Protection <strong>of</strong> pharmaceuticals, plasma products,<strong>in</strong>struments, and devicesMobile data collection and transport possible <strong>in</strong>environments without wireless solutions andserver connectivity or <strong>for</strong> quicker record<strong>in</strong>g.In future: data store and carrier <strong>for</strong> implantedbiochipsSafe identification <strong>of</strong>Patients dur<strong>in</strong>g hospitalization time;Laboratory samples by sampl<strong>in</strong>g and <strong>in</strong> lab;Therapeutic agents by assembly and application.Real Time Location System (RTLS) <strong>for</strong> location <strong>of</strong>mobile medical devices, blood, location <strong>of</strong>staff and patientsMentally confused patientsMa<strong>in</strong>tenance, clean<strong>in</strong>g ⁄ sterilization controlBlood bank<strong>in</strong>g supply cha<strong>in</strong>, Implants life cycle,Emergency care cha<strong>in</strong> (processes <strong>in</strong> time), patientguidance, conta<strong>in</strong>er guidance <strong>for</strong> food, wear,pharmaceuticals, lift, etc.Today: temperature monitor<strong>in</strong>gIn future: Implantable devices to monitor bloodpressure, blood sugar and different metabolicvalues, etc.<strong>Use</strong>d <strong>for</strong> access control sometimes <strong>in</strong> connectionwith time managementTrials with blood, pharmaceuticals, and medicaldevicesTrials with pharmaceuticalsSome larger trials with tags on blood bagsSome large trials with patient wrist bands andapplication <strong>of</strong> blood and drugsLimited deployment <strong>in</strong> US <strong>for</strong> critical care equipmentApplications <strong>in</strong> placeSome trials and first applicationsTrials with blood and sensitive pharmaceuticalsTheft protection Babies, devices, <strong>in</strong>struments, pharmaceuticals Some work<strong>in</strong>g applications and trialsTime registrationFlexible time management <strong>of</strong> staff, patient wait<strong>in</strong>g Some applicationstimea Needs semi-active or active <strong>RFID</strong> chips.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 7<strong>the</strong> red cell packs were fitted with tags, however <strong>for</strong> <strong>in</strong>tegratedtriple or quadruple systems <strong>the</strong> tag could be usedalso <strong>for</strong> <strong>the</strong> whole blood. Plasma bags were fitted with tagslater <strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g process to observe <strong>in</strong>activationsteps. A future comprehensive solution may need two <strong>RFID</strong>tags, one <strong>for</strong> <strong>the</strong> red cells and one <strong>for</strong> <strong>the</strong> plasma bag[3,8,11].DonationIf blood bag systems with <strong>in</strong>tegrated <strong>RFID</strong>-labels are notavailable, tags could be added at <strong>the</strong> collection site. Dur<strong>in</strong>g<strong>the</strong> donation process, <strong>the</strong> release <strong>of</strong> <strong>the</strong> collection bag set,<strong>the</strong> bag tare (comparison <strong>of</strong> <strong>the</strong> declared with <strong>the</strong> tare measuredat <strong>the</strong> donation site can detect loss <strong>of</strong> fluid) and expirationdate could be checked by <strong>the</strong> collection devices<strong>of</strong>tware. Relevant donation data such as user, time anddate, collection period, weight, and <strong>in</strong> <strong>the</strong> future, possibly,unique lab tube numbers, etc. could be written to <strong>the</strong> tag.[3,8,11].When <strong>the</strong> Donation Number label is applied to <strong>the</strong> bagset at <strong>the</strong> po<strong>in</strong>t <strong>of</strong> collection, a simple hand-held comb<strong>in</strong>edbarcode and <strong>RFID</strong> reader may be used to read <strong>the</strong> ISBT 128Donation Number barcode [1] and program it and o<strong>the</strong>r relevant<strong>in</strong><strong>for</strong>mation <strong>in</strong>to <strong>the</strong> <strong>RFID</strong> tag.Process<strong>in</strong>g<strong>RFID</strong> allows automatic identification <strong>of</strong> <strong>the</strong> bags with<strong>in</strong> <strong>the</strong>read range. Major improvements are possible, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>ability <strong>for</strong> bulk read<strong>in</strong>g and no need <strong>for</strong> l<strong>in</strong>e-<strong>of</strong>-sight <strong>for</strong>scann<strong>in</strong>g, which make it easy <strong>for</strong> employees to per<strong>for</strong>mconcurrent manual activities.Storage and distributionQuality and ⁄ or security checks, e.g. visual controls, specimens<strong>for</strong> content measur<strong>in</strong>g and so on are <strong>of</strong>ten registeredon paper sheets; <strong>the</strong>se could be monitored moreeasily and rules en<strong>for</strong>cement could be checked at severalpo<strong>in</strong>ts with<strong>in</strong> <strong>the</strong> distribution cha<strong>in</strong>. Similar applicationsare used today <strong>for</strong> security and ma<strong>in</strong>tenance by companies<strong>in</strong> o<strong>the</strong>r <strong>in</strong>dustries. The addition <strong>of</strong> laboratory datato <strong>the</strong> tag (e.g. cross-match<strong>in</strong>g, antibody screen<strong>in</strong>g) couldalso <strong>of</strong>fer some significant process control benefits[3,7,9–11,13].Product turnover could be more easily managed toreduce outdat<strong>in</strong>g, and units required to meet specificcl<strong>in</strong>ical requirements could be more rapidly located and ⁄ orre-allocated, ei<strong>the</strong>r with<strong>in</strong> <strong>the</strong> storage equipment or with amobile reader [3,8–11,13]. Such processes have been successfullyused <strong>in</strong> several libraries <strong>for</strong> <strong>the</strong> management <strong>of</strong><strong>the</strong>ir collections.Dur<strong>in</strong>g <strong>the</strong> distribution process, bulk packag<strong>in</strong>g could bechecked <strong>for</strong> completeness and <strong>the</strong> transmission <strong>of</strong> shipment<strong>in</strong><strong>for</strong>mation could be done rapidly us<strong>in</strong>g <strong>the</strong> <strong>RFID</strong> label.Receipt <strong>of</strong> bulk deliveries <strong>in</strong> <strong>the</strong> hospital cl<strong>in</strong>ic laboratoriescould be significantly improved, allow<strong>in</strong>g pro<strong>of</strong>-<strong>of</strong>-deliveryreconciliation, and also provid<strong>in</strong>g a rapid means <strong>for</strong> <strong>the</strong><strong>in</strong>com<strong>in</strong>g components to be scanned and relevant dataloaded <strong>in</strong>to hospital <strong>in</strong><strong>for</strong>mation systems [3,7–11].A far greater degree <strong>of</strong> automated monitor<strong>in</strong>g <strong>of</strong> productlocation may be possible with readers positioned <strong>in</strong> equipmentacross <strong>the</strong> cold distribution cha<strong>in</strong> where it is necessaryto know <strong>the</strong> storage temperature <strong>of</strong> <strong>the</strong> products.However, <strong>the</strong>re are difficulties relat<strong>in</strong>g to <strong>the</strong> small rangesand <strong>the</strong> different storage temperatures. Monitor<strong>in</strong>g <strong>of</strong> everyshipment <strong>of</strong> bags is currently possible but is <strong>in</strong>efficient andexpensive. The use <strong>of</strong> semi-active labels with temperaturemonitor<strong>in</strong>g <strong>in</strong> shipp<strong>in</strong>g cartons allows products to be monitoreddur<strong>in</strong>g transportation [11]. The same label could beused <strong>in</strong> facilities without central temperature monitor<strong>in</strong>gsystems to observe <strong>the</strong> storage temperatures <strong>of</strong> red cells andplatelets. The low storage temperature <strong>of</strong> plasma can affect<strong>the</strong> shelf life <strong>of</strong> <strong>the</strong> tag battery.3.3.3 Patient IdentificationPatient identification has relied upon direct <strong>in</strong>quiry <strong>of</strong> <strong>the</strong>patient; referr<strong>in</strong>g to notes attached to <strong>the</strong> patient wristbandor per<strong>for</strong>m<strong>in</strong>g a bedside test to control <strong>the</strong> patient’sblood group. Verbal statements given <strong>in</strong> difficult situationsare <strong>of</strong>ten ambiguous; handwritten or pr<strong>in</strong>ted wristbandsand bedside test-cards can be <strong>in</strong>correctly applied or<strong>in</strong>terpreted.The use <strong>of</strong> automated identification technologies onwristbands is grow<strong>in</strong>g with l<strong>in</strong>ear barcodes, 2D barcodesand <strong>RFID</strong> bands available. The first trials with <strong>RFID</strong> wristbandsshowed <strong>the</strong> feasibility <strong>of</strong> <strong>the</strong> technique [13–15], but<strong>the</strong>re are some technical issues with <strong>the</strong> use <strong>of</strong> <strong>RFID</strong> <strong>for</strong> thispurpose. For example, magnetic resonance imag<strong>in</strong>g techniquesand, <strong>for</strong> some k<strong>in</strong>d <strong>of</strong> <strong>RFID</strong> tags, x-ray irradiation,have been shown to destroy <strong>the</strong> <strong>in</strong><strong>for</strong>mation on <strong>RFID</strong> tags.It will be essential to overcome this limitation.O<strong>the</strong>r potential applications <strong>of</strong> patient identification with<strong>RFID</strong> <strong>in</strong>clude bill<strong>in</strong>g functions, such as bed side charges <strong>for</strong>medication, supplies or special care functions; cafeteria services,telephone calls, and pay per view television. Additionalpossible applications are <strong>the</strong> track<strong>in</strong>g and ⁄ orguidance <strong>of</strong> <strong>the</strong> patient through <strong>the</strong> hospital, <strong>in</strong>clud<strong>in</strong>gaccess control and queue management, and specializedapplications <strong>for</strong> patient monitor<strong>in</strong>g and security, such aspsychiatry, dementia care and neonatology [16].3.3.4 <strong>Transfusion</strong> ManagementFor <strong>the</strong> collection <strong>of</strong> pre-transfusion blood samples and<strong>the</strong> transfusion <strong>of</strong> <strong>the</strong> blood at <strong>the</strong> bedside, it is necessaryto use unique patient identification and tubes with prepr<strong>in</strong>tedunique sample numbers. With barcodes or <strong>RFID</strong>tags on <strong>the</strong> patient wristband, <strong>the</strong> sample tube, and <strong>the</strong>blood bag, it is possible to cross-check <strong>the</strong> collection <strong>of</strong>Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


8 Guidel<strong>in</strong>e<strong>the</strong> blood sample and later <strong>the</strong> transfusion process [3,8–11,13–15].The utilization <strong>of</strong> sample tubes with embedded or labeled<strong>RFID</strong> tags <strong>in</strong> lab management is at present difficult to costjustify.Currently sample tubes with an embedded <strong>RFID</strong> tagare primarily be<strong>in</strong>g used <strong>for</strong> long-term storage <strong>of</strong> geneticmaterial to support trac<strong>in</strong>g <strong>of</strong> <strong>the</strong> samples.3.3.5 Facility and Device ManagementStandard <strong>RFID</strong> solutions are available <strong>for</strong> access controland time management. Similar to <strong>in</strong>dustrial track and tracesolutions, <strong>RFID</strong> tags, sometimes with <strong>in</strong>tegrated temperaturemonitor<strong>in</strong>g, can be used <strong>for</strong> <strong>the</strong> logistics <strong>of</strong> bloodconta<strong>in</strong>er transport [7]. Fur<strong>the</strong>r applications are be<strong>in</strong>g evaluated<strong>for</strong> us<strong>in</strong>g <strong>RFID</strong> tags to identify medical equipmentand devices [17]. In <strong>the</strong> USA, <strong>the</strong>re have been extensive<strong>in</strong>vestigations to address <strong>the</strong>ft protection and misplacement<strong>of</strong> medical equipment through a special type <strong>of</strong> <strong>RFID</strong> technologycalled Real Time Location Systems (RTLS), whichallows <strong>for</strong> automatic identification, as well as locationtrack<strong>in</strong>g. The high cost <strong>of</strong> replac<strong>in</strong>g stolen equipment isdriv<strong>in</strong>g <strong>the</strong> search <strong>for</strong> a more effective solution, similar to<strong>the</strong> Electronic Article Surveillance <strong>the</strong>ft protection pr<strong>in</strong>cipleemployed <strong>in</strong> some retail stores.Ano<strong>the</strong>r application is <strong>the</strong> control and adm<strong>in</strong>istration <strong>of</strong>ma<strong>in</strong>tenance and <strong>the</strong> proper clean<strong>in</strong>g ⁄ sterilization <strong>of</strong> medicaldevices. The relevant ma<strong>in</strong>tenance work can be notedon <strong>the</strong> label or <strong>the</strong> UID can be registered <strong>in</strong> correspond<strong>in</strong>gcontrol systems when <strong>the</strong> work is carried out. There will<strong>the</strong>n be a record that <strong>the</strong> device was at <strong>the</strong> ma<strong>in</strong>tenancefacility and ⁄ or that <strong>the</strong> qualified employee serviced <strong>the</strong>device [16].Part II: Deployment In<strong>for</strong>mation4. Technical Recommendations(<strong>RFID</strong> standards see 10.3.2)The ISBT WPIT Task Force on <strong>RFID</strong> recommends <strong>the</strong> use<strong>of</strong> passive HF (13.56 MHz) technology <strong>in</strong> transfusion medic<strong>in</strong>ewhen applied to blood bags and storage conta<strong>in</strong>ers.The reasons <strong>in</strong>clude:• Existence <strong>of</strong> ISO 18000-3, which is a proven, maturestandard and technology;• Regulations around <strong>the</strong> world provide <strong>for</strong> standardizedaccess to HF;• Characteristics <strong>of</strong> HF support global deployment <strong>in</strong>blood banks and hospitals;• Lower cost tags and lowest cost reader hardware <strong>of</strong> <strong>the</strong>frequency options;• No published evidence <strong>of</strong> adverse effects on blood productsand transfusion safety;• Limited HF radio energy field m<strong>in</strong>imizes <strong>the</strong> risk <strong>of</strong> electromagnetic<strong>in</strong>terference with medical devices;• HF item tags are likely to be widely used <strong>in</strong> hospitalpharmacies.4.1 StandardizationThe use <strong>of</strong> passive HF (13.56 MHz) <strong>RFID</strong> technology is supportedwith global standards <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ISO 18000-3 tagstandard and <strong>the</strong> ISO 15961 and ISO 15962 data encod<strong>in</strong>grules. These standards are <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> GS1 EPC Globalproposed HF Gen 2 item tag standard <strong>for</strong> use <strong>in</strong> pharmaceuticalmanufactur<strong>in</strong>g, too [18]. ISO 18000-3 is <strong>the</strong> recommendedtag standard <strong>in</strong> blood bank<strong>in</strong>g.It is essential to use standardized data structures; <strong>the</strong>data structures def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> ISBT 128 Standard TechnicalSpecification are strongly recommended <strong>for</strong> transfusionmedic<strong>in</strong>e [1].4.2 Tag Capacity<strong>Transfusion</strong> medic<strong>in</strong>e requires several different tags: bloodbag tags, conta<strong>in</strong>er tags, location tags, tags <strong>for</strong> personalidentification, tube tags, etc. The follow<strong>in</strong>g design considerationsfocus on <strong>the</strong> blood bag tag.Two approaches can be adopted <strong>for</strong> <strong>the</strong> use <strong>of</strong> <strong>RFID</strong> onblood bags. The first is a ‘license plate’ approach where <strong>the</strong>unique tag identification code (UID) <strong>of</strong> <strong>the</strong> tag is associatedwith <strong>the</strong> unique donation number ⁄ product code <strong>in</strong> <strong>the</strong> hostcomputer system and is used <strong>for</strong> track<strong>in</strong>g and <strong>in</strong><strong>for</strong>mationga<strong>the</strong>r<strong>in</strong>g with<strong>in</strong> that system.The second approach is to use <strong>the</strong> tag as a data carrier toga<strong>the</strong>r <strong>in</strong><strong>for</strong>mation held on <strong>the</strong> label <strong>in</strong> barcoded and eyereadable<strong>for</strong>ms. The follow<strong>in</strong>g criteria should apply:• M<strong>in</strong>imum tag capacity is 2 kilobits (2kBit), ISO 18000-3compliant.• System redundancy: A tag should conta<strong>in</strong> sufficientdata regard<strong>in</strong>g <strong>the</strong> product to allow stand-alone identificationand process<strong>in</strong>g even when back-end systemsare not available. It should conta<strong>in</strong>, at a m<strong>in</strong>imum,<strong>the</strong> same data elements recorded <strong>in</strong> <strong>the</strong> ISBT 128 label[1].• System <strong>in</strong>teroperability:o A tag should communicate with readers us<strong>in</strong>g <strong>the</strong>ISO 18000-3 standard communications protocols.o Tags should provide data elements specific to <strong>the</strong>various stakeholders <strong>in</strong> <strong>the</strong> transfusion medic<strong>in</strong>e supplycha<strong>in</strong>, e.g. bag manufacturer, blood center andtransfusion service. If a required data element doesnot exist with<strong>in</strong> ISBT 128, users are encouraged tocontact ICCBBA to determ<strong>in</strong>e if <strong>the</strong> data element canbe developed [1].Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 94.3 Tag Functionality and SecurityThe <strong>RFID</strong> tag will carry critical blood product label<strong>in</strong>g<strong>in</strong><strong>for</strong>mation. It is <strong>the</strong>re<strong>for</strong>e essential to ensure <strong>the</strong> securityand <strong>in</strong>tegrity <strong>of</strong> this <strong>in</strong><strong>for</strong>mation through suitable design<strong>of</strong> <strong>the</strong> tag as well as <strong>the</strong> s<strong>of</strong>tware application that willbe handl<strong>in</strong>g <strong>the</strong> data. Key security features are listed asfollows:• Tags will have <strong>the</strong>ir own Application Function Identifier(AFI) as designated by ISO 7816. This AFI <strong>in</strong>dicates that<strong>the</strong> tag conta<strong>in</strong>s data structures assigned by ICCBBA <strong>for</strong>use by <strong>the</strong> blood <strong>in</strong> collection, process<strong>in</strong>g, distributionand transfusion.• The required tag data structures will be identical to thoseused <strong>for</strong> ISBT 128 barcode data [1].• Key data elements on <strong>the</strong> tag will be written and locked<strong>in</strong> pre-def<strong>in</strong>ed memory blocks, thus prevent<strong>in</strong>g updatesto <strong>the</strong>se key data elements (e.g. Donation Number;ABO ⁄ Rh) once <strong>the</strong>y are written.• Commands to deactivate ⁄ destroy damaged tags and tore-associate a new tag with a blood product will bedesigned <strong>in</strong>to <strong>the</strong> tag, readers, and application s<strong>of</strong>tware.• Tags may optionally carry <strong>in</strong>ternal process control<strong>in</strong><strong>for</strong>mation used <strong>in</strong> <strong>the</strong> blood center or transfusion siteprocess<strong>in</strong>g. Data shall be recorded <strong>in</strong> such a manner that<strong>the</strong>re will be no possibility <strong>of</strong> confusion with requiredISBT 128 data structures [1].The application design will provide <strong>the</strong> necessary data<strong>in</strong>tegrity and security checks between <strong>the</strong> Blood EstablishmentComputer System (BECS)-generated barcode and <strong>the</strong><strong>RFID</strong> tag at critical control po<strong>in</strong>ts along <strong>the</strong> supply cha<strong>in</strong>.4.4 Method <strong>of</strong> Tag Attachment<strong>RFID</strong> tags can be attached <strong>in</strong> different ways. <strong>RFID</strong> tags canbe <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> base label by <strong>the</strong> bag manufactureror <strong>the</strong>y can be affixed on <strong>the</strong> base label by <strong>the</strong> blood center,preferably as part <strong>of</strong> <strong>the</strong> donation identification number(DIN) label. In both cases, <strong>the</strong> tags should be affixed to <strong>the</strong>upper part <strong>of</strong> <strong>the</strong> base label to optimize readability withoutcover<strong>in</strong>g any <strong>of</strong> <strong>the</strong> manufacturer’s data.It is imperative that <strong>the</strong> <strong>RFID</strong> tag is embedded <strong>in</strong>to <strong>the</strong>bag or ‘sandwiched’ <strong>in</strong>to <strong>the</strong> DIN, ra<strong>the</strong>r than be<strong>in</strong>g appliedloosely to <strong>the</strong> blood bag itself. If <strong>the</strong> <strong>RFID</strong> tag is applied by<strong>the</strong> manufacturer <strong>of</strong> <strong>the</strong> blood bags, <strong>the</strong> adhesive should be<strong>the</strong> same as is used <strong>for</strong> <strong>the</strong> base label. The adhesive <strong>in</strong>layused <strong>in</strong> transfusion is safe <strong>for</strong> <strong>the</strong> blood components andwill not <strong>in</strong>terfere with <strong>the</strong> chip. This technique will protect<strong>the</strong> <strong>RFID</strong> tag throughout <strong>the</strong> preparation processes and willpreclude removal <strong>of</strong> <strong>the</strong> tag. If <strong>the</strong> <strong>RFID</strong> tag is appliedby <strong>the</strong> manufacturer, it should withstand sterilizationprocesses (vapor sterilization at more than 120°C, Betasterilization or Ethylene Oxide).The location <strong>of</strong> <strong>the</strong> <strong>RFID</strong> tag is also very important <strong>in</strong>order to avoid damage to <strong>the</strong> antenna. When <strong>the</strong> <strong>RFID</strong> tagis placed under or is <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> base label <strong>of</strong> anempty bag, <strong>the</strong> operator should take care not to fold <strong>the</strong>antenna dur<strong>in</strong>g <strong>the</strong> centrifugation step.The method <strong>of</strong> adhesion should be resistant to centrifugation(up to 5000 g <strong>for</strong> 22 m<strong>in</strong>utes), preparation processes(separation, filtration, blast and contact freez<strong>in</strong>g) and storage(+22 ± 2°C <strong>for</strong> platelets, +4 ± 2°C <strong>for</strong> red blood cells,down to )40°C <strong>for</strong> plasma).4.5 Data StructureIt has been assumed that <strong>the</strong> <strong>RFID</strong> tag will provide datathroughout <strong>the</strong> lifecycle <strong>of</strong> <strong>the</strong> blood bag. The lifecycle <strong>for</strong>each tag could commence at bag manufacture, cont<strong>in</strong>uethrough donation (but not always - e.g. split packs whichmay be <strong>the</strong> start po<strong>in</strong>t <strong>for</strong> a new tag), through componentproduction, issue to hospital, and f<strong>in</strong>ally transfusion topatient (or discard). In this lifecycle <strong>of</strong> <strong>the</strong> <strong>RFID</strong> tag, multiplecomputer systems at various po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong>are likely to be used to read, write and process <strong>the</strong> <strong>RFID</strong> tagdata.The <strong>RFID</strong> tag can act as an electronic data <strong>in</strong>terchange(EDI) carrier between IT systems, although adequate databackup is required to ensure that critical traceability data isnot lost if <strong>the</strong> tag is damaged or discarded. It will be necessaryto set out <strong>the</strong> data structures and method <strong>of</strong> use so thatdata can be added to <strong>the</strong> tag dur<strong>in</strong>g <strong>the</strong> lifecycle <strong>in</strong> a securemanner - <strong>in</strong> <strong>the</strong> same way currently used <strong>for</strong> labels andbarcodes at different stages <strong>in</strong> <strong>the</strong> process.This guidel<strong>in</strong>e assumes use <strong>of</strong> data elements provided byICCBBA <strong>in</strong> <strong>the</strong> ISBT 128 data structure [1]. There is flexibilitybuilt <strong>in</strong>to <strong>the</strong> data structure to allow <strong>for</strong> <strong>the</strong> use <strong>of</strong>non-standardized data elements outside <strong>the</strong> ISBT 128 datastructure, although without standard def<strong>in</strong>itions such datacould not be globally <strong>in</strong>terpreted. Provision should bema<strong>in</strong>ta<strong>in</strong>ed <strong>for</strong> four stakeholders to encode data on <strong>the</strong> tag:• <strong>RFID</strong> Tag Manufacturer• Blood Bag Manufacturer• Blood Center• Hospital <strong>Transfusion</strong> ServiceEach stakeholder will safeguard <strong>the</strong> <strong>in</strong>tegrity, security,and confidentiality <strong>of</strong> <strong>the</strong> data it writes to <strong>the</strong> tag. Thesystem should be sufficiently flexible to accommodate ahospital that collects its own blood. Position<strong>in</strong>g <strong>of</strong> dataelements may change to optimize <strong>the</strong> read ⁄ write cycle <strong>of</strong><strong>the</strong> tag.The structure must be able to comply with different scenarios.In some countries or regions, <strong>the</strong> stakeholders(Blood Center and Hospital <strong>Transfusion</strong> Service) may be<strong>the</strong> same organization. In some cases, <strong>the</strong> tag may beapplied by <strong>the</strong> blood service where a bag manufacturerÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


10 Guidel<strong>in</strong>edoes not supply <strong>RFID</strong> tags as part <strong>of</strong> <strong>the</strong> donation set. Insome organizations, it may not be possible to providepatient identity on <strong>the</strong> tag because <strong>of</strong> data security legislation.As each ISBT 128 data structure is uniquely identifiable[1], it may not be necessary to def<strong>in</strong>e an overall fixedtag memory structure but it would probably be more efficient,with respect to IT systems, if a standard structurewere <strong>in</strong> place.Tag Manufacturers<strong>RFID</strong> tag manufacturers encode <strong>the</strong> UID, which is designedto be unique globally, on <strong>the</strong> chip. Part <strong>of</strong> this code is anAFI and <strong>for</strong> transfusion medic<strong>in</strong>e <strong>the</strong> code ‘‘BBH’’ wasrequested from <strong>the</strong> ISO committee. The UID code is unique;<strong>the</strong>re<strong>for</strong>e, it may be <strong>the</strong> only data item on <strong>the</strong> tag that isbe<strong>in</strong>g read dur<strong>in</strong>g rout<strong>in</strong>e process<strong>in</strong>g.Blood Bag ManufacturersISBT128 provides data structures perta<strong>in</strong><strong>in</strong>g to manufacturers<strong>of</strong> blood bags, namely <strong>the</strong> ‘Conta<strong>in</strong>er Manufacturer andCatalogue Number’, <strong>the</strong> ‘Conta<strong>in</strong>er Lot Number’, and <strong>the</strong>‘Expiry Date’. The m<strong>in</strong>imum data elements needed are <strong>the</strong>Catalogue Number and Lot Number [1].It may be possible to go fur<strong>the</strong>r than <strong>the</strong>se standards. Forexample, <strong>the</strong> current lot number relates to a batch <strong>of</strong> manyunits <strong>the</strong>re<strong>for</strong>e, <strong>in</strong> <strong>the</strong> event <strong>of</strong> a recall, <strong>the</strong> number <strong>of</strong> packsimplicated can be high. However, if <strong>the</strong> UID is used <strong>in</strong> <strong>the</strong>manufactur<strong>in</strong>g process, considerable benefits should bega<strong>in</strong>ed <strong>for</strong> all parties as it may be possible to limit <strong>the</strong> scope<strong>of</strong> a recall.Bag manufacturer data should be locked on <strong>the</strong> tag aspart <strong>of</strong> <strong>the</strong> pack manufactur<strong>in</strong>g operation. It should not bepossible to amend this data once written; it should belocked irrevocably.Blood CentersISBT 128 def<strong>in</strong>es data structures <strong>for</strong> use by blood centers[1]. It will be necessary to align <strong>the</strong> data structures with <strong>the</strong>data blocks on <strong>the</strong> tag. Twelve data blocks are reserved <strong>for</strong>use by blood centers. Mandatory data <strong>in</strong>cludes donationnumber, product ID and expiration date ⁄ time, and ABO ⁄ Rh.Donation number should be encoded and locked at <strong>the</strong> earliestopportunity. This may be as soon as <strong>the</strong> donation iscollected and donation number label sets are applied to <strong>the</strong>bag set. Alternatively, this data may be encoded when <strong>the</strong>donor ⁄ donation l<strong>in</strong>k is made on an IT system. O<strong>the</strong>r collectiondata could be encoded and locked at <strong>the</strong> same time.The data blocks reserved <strong>for</strong> product code and expirationdate ⁄ time are rewritable to allow <strong>for</strong> remanufactur<strong>in</strong>g <strong>in</strong><strong>the</strong> same bag, such as irradiation. ABO ⁄ Rh is written onceand locked.Blood center data on <strong>the</strong> <strong>RFID</strong> tag will normally belocked as part <strong>of</strong> <strong>the</strong> shipp<strong>in</strong>g process. However,flexibility will be likely to be needed to allow product<strong>in</strong><strong>for</strong>mation lock<strong>in</strong>g at any time. For example, a bloodcenter could issue a unit <strong>of</strong> red cells subsequently irradiatedby a hospital. In this case, it would be necessary toallow <strong>the</strong> hospital to update <strong>the</strong> product <strong>in</strong><strong>for</strong>mation and,potentially, <strong>the</strong> expiration date. Alternatively, productdata could be locked by <strong>the</strong> blood center. The lock<strong>in</strong>gunder such scenarios is likely to require flexibility at anational level.Because <strong>of</strong> <strong>the</strong> limited tag capacity available, it may benecessary to use a Special Test<strong>in</strong>g data structure related to<strong>the</strong> product be<strong>in</strong>g issued. One <strong>of</strong> <strong>the</strong> limitations <strong>of</strong> currentl<strong>in</strong>ear barcode symbols is that it is difficult to fit specialtest<strong>in</strong>g data with<strong>in</strong> <strong>the</strong> available space. The higher memorycapacity <strong>in</strong> <strong>RFID</strong> tags will provide an alternative solution<strong>for</strong> a long-stand<strong>in</strong>g label space problem.HospitalsHospitals and transfusion services can add data to <strong>the</strong> tagregard<strong>in</strong>g <strong>the</strong> <strong>in</strong>tended recipient. Hemovigilance studiesshow that many serious adverse <strong>in</strong>cidents are because <strong>of</strong>errors that occur at <strong>the</strong> patient <strong>in</strong>terface. This is an areawhere <strong>RFID</strong> can make a significant difference.It must be recognized that application <strong>of</strong> patient data to<strong>the</strong> <strong>RFID</strong>-tag will be subject to national patient privacy anddata security legislation and may not be permissible.Where hospitals can add this <strong>in</strong><strong>for</strong>mation, it will be necessaryto determ<strong>in</strong>e what sort <strong>of</strong> <strong>in</strong><strong>for</strong>mation is required by<strong>the</strong> hospitals <strong>for</strong> positive patient identification. For <strong>the</strong> purposes<strong>of</strong> this guidel<strong>in</strong>e, it has been assumed that 96 byteswould be sufficient.Examples <strong>of</strong> tag structureThe follow<strong>in</strong>g three examples show how product-specificISBT128 data structures could be presented on a tag whileensur<strong>in</strong>g that <strong>the</strong> data is aligned with <strong>the</strong> four-bytelock<strong>in</strong>g blocks (Figs 5–7). With<strong>in</strong> each colored block, <strong>the</strong>symbols use <strong>the</strong> same <strong>for</strong>m as with<strong>in</strong> <strong>the</strong> ISBT 128 specification[1].4.6 DisposalThe destruction <strong>of</strong> passive <strong>RFID</strong> tags can follow standardbiohazard destruction protocols used <strong>for</strong> blood bags (medicalwaste <strong>in</strong>c<strong>in</strong>erators).If active <strong>RFID</strong> tags are used on conta<strong>in</strong>ers, recycl<strong>in</strong>gshould be addressed to con<strong>for</strong>m with exist<strong>in</strong>g recommendations<strong>for</strong> battery recycl<strong>in</strong>g.<strong>RFID</strong> tags do not fall with<strong>in</strong> <strong>the</strong> scope <strong>of</strong> <strong>the</strong> EU directive2002 ⁄ 96 ⁄ EC on Waste Electrical and Electronic Equipment(WEEE) if <strong>the</strong> tag is not attached to o<strong>the</strong>r electronic equipmentwhich falls with<strong>in</strong> <strong>the</strong> scope <strong>of</strong> <strong>the</strong> WEEE directive[19].Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 11Fig. 5 Red Cell Unit. Data Structure 012 is relevant to red cell or whole blood products.Platelet Unit1 2 3 4 5 6 7 8 9 101112131415161718192021222324= ) b q q w w w w w w w & ) x x x x x x x x x x Pack Manufacturers In<strong>for</strong>mation/Extended Audit data? ? ? ? ? ? ? ? = α p p p p y y n n n n n n f f Pack Manufacturers Extended Info/Donation No= % g g r e = < a o o o o t d s & > c y y j Blood Groups/Product Code and Expiration Date/Timej j h h m m & ( z z z z z & { A A A A B B Expiration/Special Test<strong>in</strong>g : General/Platelet HLA and Platelet-Specific AntigensB B C C C C C C C C D DPlatelet HLA and Platelet-Specific Antigens& * c y y j j j h h m m = ? ? ? Collection Date and Time/Fit <strong>for</strong> issue/transfusion marker& # a a | | x x x x x x x x x x x x x x x x x x Patient Identification Number? ? z z z z z z z z z z z z z z z z z z z z z z Patient Name and Genderz z z z z z z z z z z z = # a a y y y y m m d d Patient Date <strong>of</strong> BirthData structure 014 is relevant to platelet products.Fig. 6 Platelet Unit. Data structure 014 is relevant to platelet products.Cellular Therapy Product1 2 3 4 5 6 7 8 9 101112131415161718192021222324= ) b q q w w w w w w w & ) x x x x x x x x x x Pack Manufacturers In<strong>for</strong>mation/Extended Audit data? ? ? ? ? ? ? ? = α p p p p y y n n n n n n f f Pack Manufacturers Extended Info/Donation No= % g g r e = < a o o o o t d s & > c y y j Blood Groups/Product Code and Expiration Date/Timej j h h m m & ( z z z z z = [ E E E E F F Expiration/Special Test<strong>in</strong>g : General/Special Test<strong>in</strong>g: Genomically-Determ<strong>in</strong>ed HLA-F F G G G G H H H H L M = " I I I I J J J J M M Special Test<strong>in</strong>g: Genomically-Determ<strong>in</strong>ed HLA-A and -B AllelesM M M M M M M M & * c y y j j j h h m m = ? ? ? Special Test<strong>in</strong>g: Genomically-Determ<strong>in</strong>ed HLA-A and -B Alleles/Collection Date and& # a a | | x x x x x x x x x x x x x x x x x x Patient Identification Number? ? z z z z z z z z z z z z z z z z z z z z z z Patient Name and Genderz z z z z z z z z z z z = # a a y y y y m m d d Patient Date <strong>of</strong> BirthData structure 015 is relevant to cellular <strong>the</strong>rapy products.Fig. 7 Cellular Therapy Product. Data structure 015 is relevant to cellular <strong>the</strong>rapy products.5. Technical Architecture OverviewThe <strong>RFID</strong>-enabled technology <strong>for</strong> transfusion medic<strong>in</strong>e canbe categorized <strong>in</strong> five high-level layers (doma<strong>in</strong>s):• Bus<strong>in</strong>ess processes• <strong>RFID</strong> devices• <strong>RFID</strong> middleware• Enterprise plat<strong>for</strong>m• Enterprise Application IntegrationThese layers and an overall system representation areshown <strong>in</strong> Fig. 8.The Bus<strong>in</strong>ess Process Doma<strong>in</strong>In <strong>the</strong> real world physical items move and processes areexecuted by both mach<strong>in</strong>es and people. This <strong>the</strong>re<strong>for</strong>e creates<strong>the</strong> demand <strong>for</strong> <strong>in</strong><strong>for</strong>mation systems to support andoptimize processes. Data that is generated and capturedrequires <strong>in</strong><strong>for</strong>mation systems to turn it <strong>in</strong>to useful transactional<strong>in</strong><strong>for</strong>mation <strong>for</strong> <strong>the</strong> execution <strong>of</strong> those processes; it isaggregated <strong>for</strong> analysis <strong>of</strong> trends and process optimization.In order to fully support this doma<strong>in</strong>, additional customs<strong>of</strong>tware components (i.e. database schema, user <strong>in</strong>terface,<strong>in</strong>tegration between process applications) are needed.<strong>RFID</strong> Device Doma<strong>in</strong>The <strong>RFID</strong> Device Doma<strong>in</strong> refers to <strong>the</strong> technical <strong>in</strong>frastructure<strong>of</strong> tags, readers and pr<strong>in</strong>ters. It also <strong>in</strong>cludes hand-held<strong>RFID</strong>-enabled equipment and desktop ⁄ laptop computerswith user <strong>in</strong>terfaces. It is usually located on <strong>the</strong> ‘edges’ <strong>of</strong><strong>the</strong> technical solution <strong>in</strong>teract<strong>in</strong>g with real world items <strong>in</strong><strong>the</strong> Bus<strong>in</strong>ess Process doma<strong>in</strong>.Tags are affixed to physical items <strong>in</strong> <strong>the</strong> bus<strong>in</strong>ess processdoma<strong>in</strong>. In <strong>the</strong> transfusion medic<strong>in</strong>e context, <strong>the</strong>se areblood product items and conta<strong>in</strong>ers. It is conceivable thatÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


12 Guidel<strong>in</strong>eFig. 8 Radio Frequency IDentification (<strong>RFID</strong>) blood product track<strong>in</strong>g (BPT) system architecture.Fig. 9 Radio Frequency IDentification (<strong>RFID</strong>) device doma<strong>in</strong>.<strong>the</strong>se tags will eventually be associated with people, <strong>in</strong>clud<strong>in</strong>gpatients or technicians, along <strong>the</strong> supply cha<strong>in</strong>. For<strong>in</strong>stance, hav<strong>in</strong>g blood center technicians auto-identifiedby <strong>RFID</strong>-tags may alleviate <strong>the</strong> need <strong>for</strong> <strong>the</strong>m to manuallyenter <strong>the</strong>ir credentials <strong>in</strong>to particular applications whileoperat<strong>in</strong>g with<strong>in</strong> one <strong>of</strong> <strong>the</strong> bus<strong>in</strong>ess processes.The <strong>RFID</strong> device doma<strong>in</strong> (Fig. 9) shows <strong>the</strong> basic <strong>in</strong>teractionsper<strong>for</strong>med by common devices <strong>in</strong> <strong>the</strong> <strong>RFID</strong> devicelayer <strong>of</strong> <strong>the</strong> architecture.Tags used <strong>in</strong> this environment must have both ‘‘readfrom’’ and ‘‘write to’’ capabilities and a user <strong>in</strong>terface tomanage <strong>the</strong> workflow and handle exception situations. The<strong>in</strong>terface may be implemented on a mobile device that has<strong>the</strong> appropriate application plat<strong>for</strong>m or through more traditionalhardware such as laptops, personal computers (PCs)and tablet PCs.<strong>RFID</strong> Middleware Doma<strong>in</strong>The <strong>RFID</strong> middleware doma<strong>in</strong> has <strong>the</strong> primary responsibility<strong>of</strong> <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> raw ‘<strong>RFID</strong> event’ streams <strong>in</strong> <strong>the</strong> <strong>RFID</strong>device layer. It also <strong>in</strong>cludes functionality to configure andmanage <strong>the</strong> <strong>RFID</strong> device network.An <strong>RFID</strong> event is simply <strong>the</strong> read<strong>in</strong>g <strong>of</strong> a tag <strong>in</strong> <strong>the</strong> electromagneticfield <strong>of</strong> an antenna. The <strong>RFID</strong> tag may haveentered <strong>the</strong> field <strong>of</strong> an antenna that is actively scann<strong>in</strong>g <strong>for</strong>tags, or one that is respond<strong>in</strong>g to a command to read tagsÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 13(i.e. conduct<strong>in</strong>g a ‘locate’ or <strong>in</strong>ventory function). These<strong>RFID</strong> events reflect actual activities <strong>in</strong> <strong>the</strong> bus<strong>in</strong>ess processdoma<strong>in</strong>.Typical functionalities <strong>in</strong> this doma<strong>in</strong> <strong>in</strong>clude:• Object Nam<strong>in</strong>g Service• Electronic Product Code Discovery Service (EPCDS)• Electronic Product Code In<strong>for</strong>mation Service (EPCIS)• Data filter<strong>in</strong>g and aggregation• Messag<strong>in</strong>gSome <strong>of</strong> <strong>the</strong>se services will be <strong>in</strong>terpreted as an applicationevent, whereby <strong>the</strong> identification <strong>of</strong> <strong>the</strong> tag and o<strong>the</strong>rnecessary pieces <strong>of</strong> data are collected by <strong>the</strong> system andpassed along to o<strong>the</strong>r layers <strong>of</strong> technology such as ordermanagement or <strong>in</strong>ventory management applications thatare able to <strong>in</strong>terpret <strong>the</strong>m. This layer will probably need tohave <strong>in</strong>teroperability with devices made by several differentmanufacturers.Enterprise Plat<strong>for</strong>mThe Enterprise Plat<strong>for</strong>m generically refers to technical solutionsresponsible <strong>for</strong> <strong>the</strong> enterprise as a whole, l<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>essapplications, and <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> data. An enterpriseapplication <strong>in</strong>tegration layer accumulates messages thatpass data from system to system. Enterprise packages andbus<strong>in</strong>ess applications can publish and subscribe to messages,and subsequently act with a transactional command.Figure 10 illustrates how data flows from bus<strong>in</strong>ess processto <strong>the</strong> enterprise plat<strong>for</strong>m.Enterprise Application Integration (EAI)The EAI layer is responsible <strong>for</strong> accept<strong>in</strong>g <strong>in</strong>terapplicationmessages and publish<strong>in</strong>g to <strong>the</strong> appropriate subscribers.Consider this example:• A blood bag passes from manufactur<strong>in</strong>g to <strong>in</strong>ventory;• The correspond<strong>in</strong>g <strong>RFID</strong> tag moves from one antennafield to ano<strong>the</strong>r, <strong>the</strong>reby creat<strong>in</strong>g an <strong>RFID</strong> event that iscaptured <strong>in</strong> <strong>the</strong> <strong>RFID</strong> middleware;• The <strong>RFID</strong> event is <strong>the</strong>n configured as an event that <strong>the</strong>system should recognize as an application event. Additionaldata may be transmitted to <strong>the</strong> user via user <strong>in</strong>terface.The <strong>RFID</strong> middleware passes along a message to<strong>the</strong> EAI layer conta<strong>in</strong><strong>in</strong>g <strong>the</strong> relevant tag and process<strong>in</strong><strong>for</strong>mation;• The message is categorized and accumulated <strong>in</strong> a repository<strong>of</strong> messages;• Subscribers to certa<strong>in</strong> types <strong>of</strong> message categories getnotified <strong>of</strong> <strong>the</strong> message.An enterprise solution or L<strong>in</strong>e <strong>of</strong> Bus<strong>in</strong>ess (LOB) application<strong>in</strong>terprets <strong>the</strong> message and executes <strong>the</strong> appropriatetransaction or functionality.Bus<strong>in</strong>ess ApplicationsBus<strong>in</strong>ess applications focus on tactical execution <strong>of</strong>bus<strong>in</strong>ess functionality. They usually align with bus<strong>in</strong>essprocesses. For example, systems <strong>for</strong> manag<strong>in</strong>g Test<strong>in</strong>g,Manufactur<strong>in</strong>g, or Inventory are bus<strong>in</strong>ess applications.They are typically stand-alone systems, but may have <strong>in</strong>tegrationcapability such as an application programm<strong>in</strong>g<strong>in</strong>terface (API), messag<strong>in</strong>g layer, or direct database access.Enhancements may be required <strong>for</strong> a bus<strong>in</strong>ess applicationto subscribe to enterprise messages.6. Risk AnalysisThere are two categories <strong>of</strong> risks to consider: <strong>the</strong> generalrisk assessment and <strong>the</strong> particular risk <strong>of</strong> <strong>the</strong> <strong>in</strong>fluence <strong>of</strong>RF energy on biologicals.Fig. 10 Basic flow <strong>of</strong> events and data.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


14 Guidel<strong>in</strong>e6.1 General Risk AssessmentThe follow<strong>in</strong>g risk analysis focuses on generic use <strong>of</strong> <strong>the</strong><strong>RFID</strong> tags ra<strong>the</strong>r than risks <strong>for</strong> specific application use(Table 5, 6). It not <strong>in</strong>tended to be a full-risk analysis, buthighlights potential risks and possible ways to mitigate orovercome <strong>the</strong>m.Table 5 Def<strong>in</strong>ition <strong>of</strong> potential risksTermPotentialHazardConcernPossible ControlsDef<strong>in</strong>itionRepresents potential risks. The list <strong>of</strong>potential hazards is meant to beillustrative and not meant to be acomprehensive listUndesirable outcomes result<strong>in</strong>g from <strong>the</strong>hazardList <strong>of</strong> possible controls to mitigate <strong>the</strong> risk.These ideas are examples; <strong>the</strong>re are anumber <strong>of</strong> different ways to mitigate risk.Risk can be mitigated with <strong>the</strong> tag or <strong>the</strong>s<strong>of</strong>tware that processes <strong>the</strong> dataPrivacy and security risks are also concerns with <strong>RFID</strong> aswell as with any o<strong>the</strong>r wireless technology. Those risksmust be addressed <strong>in</strong> transfusion medic<strong>in</strong>e by safeguard<strong>in</strong>gsensitive <strong>in</strong><strong>for</strong>mation and protect<strong>in</strong>g <strong>in</strong>dividual privacy. Inaddition to us<strong>in</strong>g <strong>the</strong> special AFI <strong>for</strong> blood and adher<strong>in</strong>g to<strong>the</strong> security standards already implicit <strong>in</strong> <strong>the</strong> ISBT 128 dataset, <strong>the</strong> follow<strong>in</strong>g must be considered:• Firewalls that separate and protect <strong>RFID</strong> databases;• Encryption <strong>of</strong> radio frequency signals when feasible;• Au<strong>the</strong>ntication <strong>of</strong> approved users <strong>of</strong> <strong>RFID</strong> systems;• Shield<strong>in</strong>g <strong>RFID</strong> tags or tag read<strong>in</strong>g areas with metalscreens or films to prevent unauthorized access;• Audit procedures, logg<strong>in</strong>g, and time stamp<strong>in</strong>g to help <strong>in</strong>detect<strong>in</strong>g security breaches;• Tag disposal and recycl<strong>in</strong>g procedures that permanentlydisable or destroy sensitive data.6.2 Risk <strong>of</strong> <strong>RFID</strong> on BiologicsIn 2007 <strong>the</strong> US Food and Drug Adm<strong>in</strong>istration (FDA)requested that <strong>the</strong> <strong>RFID</strong> consortium headed by BloodCenter<strong>of</strong> Wiscons<strong>in</strong> (BCW) subject blood products toradio energy under a worst-case scenario to determ<strong>in</strong>ewhe<strong>the</strong>r <strong>the</strong>re was any adverse <strong>in</strong> vitro impact. As it is notpossible to test every different <strong>RFID</strong> configuration, <strong>the</strong>FDA guidance was to do worst case ‘‘limit test<strong>in</strong>g’’ with<strong>the</strong> assumption that as long as normal <strong>RFID</strong> operationsnever approached <strong>the</strong> tested limits, any impact <strong>of</strong> <strong>the</strong>RF reader field exposure on blood safety and efficacycould also be assumed to be acceptable. Limit test<strong>in</strong>g<strong>in</strong>cluded test<strong>in</strong>g <strong>for</strong> product heat<strong>in</strong>g and key biochemicalchange outcomes from exposure to an <strong>in</strong>tense RF magneticfield <strong>for</strong> far longer (23–25 consecutive hours) than wouldbe expected dur<strong>in</strong>g normal blood bank<strong>in</strong>g operations(21 non-consecutive m<strong>in</strong>utes maximum) and at magneticfield strengths (5 A ⁄ m = 134 dB lA ⁄ m) much greater thanTable 6 Risk analysis <strong>for</strong> implementation <strong>of</strong> Radio Frequency IDentification (<strong>RFID</strong>) technology <strong>in</strong> general and <strong>in</strong> health care environments [20–22]Potential Hazard Concern Possible ControlsTag data lost Incomplete <strong>in</strong><strong>for</strong>mation Barcodes on <strong>the</strong> blood bag and ⁄ or Unique Identification(UID) on <strong>the</strong> <strong>RFID</strong> tag allow restoration <strong>of</strong> <strong>in</strong><strong>for</strong>mationfrom <strong>the</strong> application and creation <strong>of</strong> a new tagData transmission errorbetween tag and readerInaccurate dataTag communication protocols use Cyclic Redundancy Check16 (CRC-16) to detect transmission errorsData <strong>in</strong>tegrity on <strong>the</strong> tag Inaccurate data Us<strong>in</strong>g CRC-16 protocol to verify proper encod<strong>in</strong>g <strong>of</strong> <strong>the</strong><strong>RFID</strong> tagData verification aga<strong>in</strong>st barcode and ISBT 128 standardUnauthorized data change Inaccurate data Password protection <strong>of</strong> <strong>the</strong> tagEncrypt data on <strong>the</strong> tagUs<strong>in</strong>g CRC-16 protocol to verify proper encod<strong>in</strong>g <strong>of</strong> <strong>the</strong><strong>RFID</strong> tag<strong>Use</strong> write lock to protect dataUnwanted dataViruses, Trojans, Wormson <strong>the</strong> serverCheck<strong>in</strong>g <strong>the</strong> data with <strong>the</strong> same protection policy as o<strong>the</strong>rexternal devices (CD, Disk, USB flash memory stick)Antivirus s<strong>of</strong>tware and data firewallsElectromagnetic <strong>in</strong>terference Medical device malfunction Site specific test<strong>in</strong>g prior to deployment as required <strong>in</strong>exist<strong>in</strong>g guidel<strong>in</strong>es on <strong>the</strong> deployment <strong>of</strong> wirelesscommunication systems <strong>in</strong> health care environmentsIf <strong>in</strong>terference occurs <strong>in</strong>crease distance between equipmentand <strong>RFID</strong> device or use Barcodes.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 15<strong>the</strong> allowed (126 lA ⁄ m = 42 dBlA ⁄ m) from an FCC-compliantreader.The <strong>RFID</strong> Consortium conducted test<strong>in</strong>g on red cell andplatelet products <strong>in</strong>itially, with similar test<strong>in</strong>g <strong>for</strong> plasmaproducts planned <strong>for</strong> <strong>the</strong> future. The test<strong>in</strong>g followed twoFDA-approved protocols to assess:• temperature <strong>in</strong>crease because <strong>of</strong> RF exposure and• cellular and ⁄ or prote<strong>in</strong> degradation result<strong>in</strong>g from RFexposure.Acceptance criteria established <strong>for</strong> <strong>the</strong> test<strong>in</strong>g <strong>in</strong>cluded:• For red blood cells, <strong>the</strong> mean hemolysis <strong>of</strong> both <strong>the</strong> testand control groups would be £1% follow<strong>in</strong>g 23–25 hours <strong>of</strong> very high RF exposure (5 A ⁄ m 2 ).• For platelets, <strong>the</strong> mean pH <strong>of</strong> both <strong>the</strong> test and controlgroups should be ‡6.2 follow<strong>in</strong>g 23–25 hours <strong>of</strong> RFexposure.• The maximum temperature <strong>in</strong>crease <strong>of</strong> <strong>the</strong> TESTunit relative to <strong>the</strong> CONTROL should not exceed 1.5°C atany period with<strong>in</strong> 23–25 hours <strong>of</strong> cont<strong>in</strong>uous RFexposure.Cellular/Prote<strong>in</strong> Test<strong>in</strong>g ResultsFor red blood cells, <strong>the</strong> mean hemolysis <strong>of</strong> both <strong>the</strong> TESTand CONTROL groups was £1% follow<strong>in</strong>g 23–25 hours <strong>of</strong>(very high) RF exposure (5 A ⁄ m). For platelets, <strong>the</strong> meanpH <strong>of</strong> both <strong>the</strong> TEST and CONTROL groups was ‡6.2follow<strong>in</strong>g 23–25 hours <strong>of</strong> (very high) RF exposure(5 A ⁄ m).Temperature Test<strong>in</strong>g ResultsThe maximum temperature <strong>in</strong>crease <strong>of</strong> <strong>the</strong> TEST unitrelative to <strong>the</strong> CONTROL because <strong>of</strong> Joule heat<strong>in</strong>g did notexceed 1.5°C at any period with<strong>in</strong> 23–25 hours <strong>of</strong> cont<strong>in</strong>uousRF exposure.Test ConclusionThe a<strong>for</strong>ementioned study concluded that exposure to<strong>in</strong>tense RF energy <strong>for</strong> extended periods has no adverseeffect on <strong>in</strong>-vitro cellular <strong>in</strong>tegrity <strong>of</strong> red cells or pooledplatelets, nor does it adversely impact <strong>the</strong> temperature <strong>of</strong>those products. The scope <strong>of</strong> <strong>the</strong> study was limited and didnot specifically address impact on aged products near<strong>in</strong>gexpiration. The FDA took no exception to <strong>the</strong>se conclusionsand granted permission to proceed with an operational pilotus<strong>in</strong>g transfusible blood products.Table 7 List <strong>of</strong> supply cha<strong>in</strong> processes to be researchedBlood bank oriented processes7.1 Four Phase ApproachHospital oriented processesBlood DonationPatient AdmissionDonation Transportation<strong>Transfusion</strong> Order<strong>in</strong>gDonation Receiv<strong>in</strong>gSample CollectionDonation Test<strong>in</strong>gPatient Sample Test<strong>in</strong>gProduct Manufactur<strong>in</strong>g ⁄ Put Away Cross match<strong>in</strong>gInventory ControlIssue and ReleaseHospital Order Process<strong>in</strong>g <strong>Transfusion</strong>Order Allocation ⁄ Shipp<strong>in</strong>g Product Order<strong>in</strong>gHospital ReturnsRetest Product ABO ⁄ RhBlood DisposalAssign Product to Available InventoryReturn Product to Blood BankProduct DisposalReturn Product to Blood CenterInventory ManagementA four-phase approach <strong>for</strong> evaluation, development, anddeployment <strong>of</strong> <strong>RFID</strong> systems is suggested as depicted <strong>in</strong>Fig. 11. This four-phase approach is based on research <strong>of</strong>best practices <strong>for</strong> systems design and implementation, andhas been successfully applied <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>RFID</strong> applications<strong>in</strong> several <strong>in</strong>dustries, <strong>in</strong>clud<strong>in</strong>g retail, manufactur<strong>in</strong>g,and transportation.7.1.1 Phase I–The Assess PhaseThe primary objective <strong>of</strong> Phase I is to assess <strong>the</strong> technicalfeasibility and impact <strong>of</strong> us<strong>in</strong>g <strong>RFID</strong> <strong>for</strong> automatic identificationand track<strong>in</strong>g <strong>of</strong> blood products throughout <strong>the</strong> transfusionmedic<strong>in</strong>e supply cha<strong>in</strong>. To achieve this objective, <strong>the</strong>project team should conduct research from both a workflow⁄ process-oriented perspective as well as a technologicalsystems perspective.Method <strong>for</strong> Workflow ⁄ Process-oriented AnalysisBlood Center and transfusion service processes should beanalysed primarily from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> <strong>RFID</strong>’s capabilities<strong>for</strong> automatic identification, data capture, andtrack<strong>in</strong>g <strong>of</strong> blood products and how <strong>the</strong> use <strong>of</strong> this technologycan enable redesigned processes that have superiorsafety, quality and productivity.7. Implementation MethodologyThis guidel<strong>in</strong>e recommends <strong>the</strong> Four Phase approach <strong>for</strong>implement<strong>in</strong>g <strong>RFID</strong> solutions <strong>in</strong> blood banks. Fur<strong>the</strong>r, achange control process <strong>in</strong>clud<strong>in</strong>g validation and qualificationis needed <strong>for</strong> a safe implementation <strong>in</strong> health careenvironments [7].Phase I Phase II Phase III Phase IVFig. 11 Four-stage methodology <strong>for</strong> Radio Frequency IDentification(<strong>RFID</strong>) system design and implementation. Source: University <strong>of</strong> Wiscons<strong>in</strong><strong>RFID</strong> Lab.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


16 Guidel<strong>in</strong>eQuality AssuranceDesign TechnicalSpecificationsDesign FunctionalSpecificationsSelectVendors<strong>for</strong>PrototypeInstallPrototypeRunPrototype XandCollectDataPer<strong>for</strong>mImpactAnalysisDocumentLessonsLearnedVerify XExitCriteriaConduct XPilot SiteSurveyCreate XPilot PlanProject ManagementCommunication PlanFig. 12 Overview <strong>of</strong> <strong>the</strong> prototype phase.Quality AssuranceDesign TechnicalSpecificationsDesign FunctionalSpecificationsSelectVendors<strong>for</strong>PilotInstallPilotSystemRunPilot XandCollectDataProject ManagementCommunication PlanPer<strong>for</strong>mImpactAnalysisDocumentLessonsLearnedVerify XExitCriteriaConduct XDeploymentSite SurveysCreate XDeploymentPlanFig. 13 Overview <strong>of</strong> <strong>the</strong> Pilot Phase.Quality AssurancePlan <strong>for</strong>DeploymentPrepareToGo LiveGoLiveOperateEn<strong>for</strong>ce System StandardsMonitor SystemMeasure ResultsIdentify Successes and Areas <strong>for</strong> ImprovementProject ManagementCommunication PlanFig. 14 Overview <strong>of</strong> <strong>the</strong> Deploy Phase.This can be accomplished by mapp<strong>in</strong>g exist<strong>in</strong>g processes,identify<strong>in</strong>g challenges associated with <strong>the</strong>m, analys<strong>in</strong>ghow <strong>RFID</strong> can enable improvements, anddevelop<strong>in</strong>g redesigned <strong>RFID</strong>-enabled processes. Processesthat might be analysed are listed <strong>in</strong> Table 7. As a result <strong>of</strong>this workflow ⁄ process-oriented analysis, a set <strong>of</strong> systemrequirements to support those improvements should becompiled.7.1.2 Phase II – The Prototype PhaseThe second phase <strong>of</strong> <strong>the</strong> project roadmap is outl<strong>in</strong>ed <strong>in</strong>Fig. 12. The objective <strong>of</strong> <strong>the</strong> prototype is to demonstrate <strong>the</strong>functionality and test <strong>the</strong> limits <strong>of</strong> <strong>the</strong> <strong>RFID</strong> solution <strong>in</strong> arealistic, yet safe and secure environment that emulates <strong>the</strong>targeted processes. Per<strong>for</strong>mance metrics and necessarycheck po<strong>in</strong>ts are identified to evaluate <strong>the</strong> <strong>RFID</strong>-enabledprocesses. Process results are compared and analysed toconfirm per<strong>for</strong>mance expectations and to discover potentialflaws and limitations <strong>in</strong> <strong>the</strong> new system.7.1.3 Phase III – The Pilot PhaseThe third phase <strong>of</strong> <strong>the</strong> project roadmap is outl<strong>in</strong>ed <strong>in</strong>Fig. 13. The pilot phase <strong>in</strong>volves real processes <strong>in</strong> limitedsites with basic <strong>in</strong>tegration to back-end productionsystems. The pilot phase is methodologically similar to<strong>the</strong> prototype phase. However, <strong>the</strong> pilot phase has anexpanded scope <strong>in</strong> terms <strong>of</strong> processes and back-end<strong>in</strong>tegration. All processes <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> new system areplaced <strong>in</strong> actual production <strong>in</strong> this phase, but <strong>for</strong> alimited set <strong>of</strong> sites and products. In terms <strong>of</strong> systems<strong>in</strong>tegration, this phase could <strong>in</strong>corporate all ma<strong>in</strong>l<strong>in</strong>e<strong>in</strong>tegration with core back-end systems. The pilot phasecould also <strong>in</strong>clude collection <strong>of</strong> per<strong>for</strong>mance metrics <strong>in</strong>order to verify and estimate <strong>the</strong> anticipated benefits from<strong>RFID</strong> implementation.7.1.4 Phase IV – The Deploy PhaseThe f<strong>in</strong>al phase <strong>of</strong> <strong>the</strong> project <strong>in</strong>volves full scale deployment<strong>of</strong> <strong>the</strong> systems and processes and is outl<strong>in</strong>ed <strong>in</strong>Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 17Fig. 14. This phase requires rigorous methods <strong>for</strong> operat<strong>in</strong>gand manag<strong>in</strong>g <strong>the</strong> system dur<strong>in</strong>g and after deployment.7.2 Tips <strong>for</strong> Change Management, Validation andQualification<strong>RFID</strong> systems can be used to improve and automate processesand to complement o<strong>the</strong>r data management systems.The adoption <strong>of</strong> an <strong>RFID</strong> system is a complex process thatrequires change control documentation, process validation,and qualification <strong>of</strong> system components to facilitate safeimplementation. Today, different templates to guide changemanagement, validation and qualification are readily available.The ISBT WPIT Validation Task Force published <strong>in</strong> 2010<strong>the</strong> second version <strong>of</strong> <strong>the</strong> ‘‘ISBT <strong>Guidel<strong>in</strong>es</strong> <strong>for</strong> Validation<strong>of</strong> Automated Systems <strong>in</strong> Blood Establishments’’ [23]. Itspurpose was to supplement exist<strong>in</strong>g validation referencematerial <strong>for</strong> GMP regulatory compliance, which was morerelevant to <strong>the</strong> field <strong>of</strong> pharmaceutical manufactur<strong>in</strong>g, andto provide guidance <strong>for</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> validationprocess <strong>for</strong> automated systems <strong>in</strong> blood bank<strong>in</strong>g, i.e. systemsthat have some degree <strong>of</strong> computer control. The comprehensivere-write <strong>of</strong> <strong>the</strong> guidel<strong>in</strong>es has expanded upon<strong>the</strong> scope <strong>of</strong> validation activities covered and considered<strong>the</strong> follow<strong>in</strong>g developments (see 10.3.3):• GAMP5 Ò : In 2008 Version 5 replaced Version 4 <strong>of</strong> <strong>the</strong>Good Automated Manufactur<strong>in</strong>g Practice <strong>Guidel<strong>in</strong>es</strong>(GAMP ⁄ ISPE)• ASTM E2500: The ‘‘Standard <strong>for</strong> Specification, Design &Verification <strong>of</strong> Pharmaceutical & BiopharmaceuticalManufactur<strong>in</strong>g Systems & Equipment’’• ICH Q8, ICH Q9, ICH Q10: The purpose <strong>of</strong> <strong>the</strong> InternationalConference on Harmonisation (ICH) <strong>of</strong> TechnicalRequirements <strong>for</strong> Registration <strong>of</strong> Pharmaceuticals <strong>for</strong>Human <strong>Use</strong>7.2.1 Change ControlThe change control section <strong>of</strong> ‘‘ISBT <strong>Guidel<strong>in</strong>es</strong> <strong>for</strong> Validation<strong>of</strong> Automated Systems <strong>in</strong> Blood Establishments’’describes <strong>the</strong> procedures used to ensure that changes are<strong>in</strong>troduced <strong>in</strong> a controlled, co-ord<strong>in</strong>ated manner and areapproved by management be<strong>for</strong>e implementation [23].As <strong>the</strong> first step, <strong>the</strong> aim <strong>of</strong> <strong>the</strong> implementation has to bedef<strong>in</strong>ed. The reasons <strong>for</strong> implement<strong>in</strong>g <strong>RFID</strong> and <strong>the</strong> possibletechnical solutions may vary as described <strong>in</strong> Chapter 3.Depend<strong>in</strong>g on <strong>the</strong>se reasons, <strong>the</strong> follow<strong>in</strong>g questions <strong>in</strong> <strong>the</strong>change control document must be answered:1. What will be improved, e.g. methods and ⁄ or devices(workflow, identification process, patient safety)?2. What are <strong>the</strong> possible alternatives from <strong>the</strong> technical,safety, and f<strong>in</strong>ancial po<strong>in</strong>ts <strong>of</strong> view?3. What are <strong>the</strong> affected process steps?4. Which responsible persons are to be <strong>in</strong><strong>for</strong>med and mustagree (bus<strong>in</strong>ess and quality management, Qualified Person<strong>in</strong> EU countries)?5. Are a project plan, risk analysis, validation and ⁄ or qualificationnecessary?6. Are key documents, e.g. SOPs, to be changed?7. Will implementation <strong>of</strong> <strong>RFID</strong> result <strong>in</strong> changes to <strong>the</strong>regulatory status and ⁄ or <strong>the</strong> manufactur<strong>in</strong>g or test<strong>in</strong>gprocess <strong>of</strong> drugs, and must <strong>the</strong>se changes be reported to<strong>the</strong> authorities?8. What k<strong>in</strong>d <strong>of</strong> tra<strong>in</strong><strong>in</strong>g is necessary <strong>for</strong> <strong>the</strong> staff<strong>in</strong>volved?Implementation <strong>of</strong> <strong>RFID</strong> systems <strong>of</strong>ten requires both validation<strong>of</strong> new processes and qualification <strong>of</strong> technicalcomponents. The risk <strong>of</strong> any change dur<strong>in</strong>g validation andqualification, as well as <strong>the</strong> entire life cycle, must be evaluated,documented, and controlled.7.2.2 Qualification and ValidationQualification and validation processes should be used dur<strong>in</strong>g<strong>the</strong> full lifecycle <strong>of</strong> <strong>the</strong> <strong>RFID</strong> application throughdesign, development, <strong>in</strong>stallation, and operational phases.7.2.3 Per<strong>for</strong>mance QualificationThe objective <strong>of</strong> per<strong>for</strong>mance qualification is to demonstratethat <strong>the</strong> computerized process will consistentlyproduce acceptable output under normal operat<strong>in</strong>g conditions.This task evaluates whe<strong>the</strong>r <strong>the</strong> aims <strong>of</strong> <strong>the</strong> <strong>in</strong>stallationare reached, e.g. a reduction <strong>in</strong> <strong>the</strong> rate <strong>of</strong> <strong>in</strong>correct transfusionsor easier identification <strong>of</strong> blood products <strong>in</strong> a process.Ano<strong>the</strong>r objective <strong>of</strong> this task is <strong>the</strong> collection and evaluation<strong>of</strong> problems and failures such as hardware breakdowns,<strong>RFID</strong> tag malfunctions, or reader problems. As aresult <strong>of</strong> <strong>the</strong> analysis, a change <strong>in</strong> <strong>the</strong> system or its componentsmay be necessary. This type <strong>of</strong> change, depend<strong>in</strong>g on<strong>the</strong> complexity and <strong>the</strong> validation ⁄ qualification model chosen,could be documented as part <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance qualificationor <strong>in</strong> separate change management documentation.Because <strong>of</strong> <strong>the</strong> usual extended timeframe <strong>of</strong> <strong>the</strong> whole lifecycle,certification <strong>of</strong> completion <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance qualificationby responsible persons can be difficult and <strong>of</strong>tenmay require <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> direct head <strong>of</strong> <strong>the</strong> departmentor person <strong>in</strong> charge.8. Economic Justification and Return onInvestment (ROI)8.1 Blood CentersA study was done <strong>in</strong> <strong>the</strong> USA to assess applicability <strong>of</strong> <strong>RFID</strong><strong>in</strong> transfusion medic<strong>in</strong>e. Three blood centers <strong>in</strong> <strong>the</strong> USA(BloodCenter <strong>of</strong> Wiscons<strong>in</strong>, Milwaukee, WI; CarterÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


18 Guidel<strong>in</strong>eBloodCare, Dallas, TX; and Mississippi Blood Services,Jackson, MS), <strong>in</strong> conjunction with <strong>the</strong> University <strong>of</strong> Wiscons<strong>in</strong>Madison <strong>RFID</strong> Lab, developed a model to determ<strong>in</strong>eimpact and return on <strong>in</strong>vestment <strong>for</strong> small, medium, andlarge blood centers. The model helps assess cost and benefitcomponents <strong>in</strong>volved <strong>in</strong> implement<strong>in</strong>g <strong>RFID</strong>-enabled processesand technologies on <strong>the</strong> blood center end <strong>of</strong> <strong>the</strong>transfusion medic<strong>in</strong>e supply cha<strong>in</strong>.Impact AnalysisThe impact analysis study associated with <strong>the</strong> ROI modelwas designed to estimate <strong>the</strong> impact that <strong>RFID</strong> will have onblood center operations <strong>in</strong> terms <strong>of</strong> productivity, quality,and safety. The Impact Analysis consists <strong>of</strong> three ma<strong>in</strong> sections:Bus<strong>in</strong>ess Pr<strong>of</strong>ile, <strong>RFID</strong>-Enabled Process Analysis, andOrganizational Impact Analysis.The Bus<strong>in</strong>ess Pr<strong>of</strong>ile gives <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> size, operationalvolumes, resource availability, and f<strong>in</strong>ancial parameters<strong>of</strong> <strong>the</strong> organization, provid<strong>in</strong>g basel<strong>in</strong>es <strong>for</strong>quantification <strong>of</strong> both cost and benefits.The <strong>RFID</strong>-Enabled Process Analysis provides a snapshot<strong>of</strong> a blood center’s current pa<strong>in</strong> po<strong>in</strong>ts by process, type <strong>of</strong>event, and <strong>the</strong> frequency <strong>of</strong> occurrence. Three types <strong>of</strong>bus<strong>in</strong>ess metrics are measured: process efficiency, quality,and patient safety. Each organization should develop anestimate <strong>of</strong> <strong>RFID</strong> impact on <strong>the</strong>se three dimensions (metrics)noted earlier along with a description <strong>of</strong> <strong>the</strong> pa<strong>in</strong> po<strong>in</strong>ts.The Organizational Impact Analysis quantifies <strong>the</strong>impact <strong>of</strong> implement<strong>in</strong>g <strong>RFID</strong> on an organization’s personnel.It gives <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> ef<strong>for</strong>t and resources required toprepare operations staff <strong>for</strong> <strong>RFID</strong> implementation <strong>in</strong> terms<strong>of</strong> tra<strong>in</strong><strong>in</strong>g, communication, and operational impact <strong>of</strong>implement<strong>in</strong>g new <strong>RFID</strong>-enabled processes. The tra<strong>in</strong><strong>in</strong>gef<strong>for</strong>t on <strong>the</strong> new processes will be estimated to <strong>the</strong> po<strong>in</strong>t <strong>of</strong>staff competency and will <strong>in</strong>clude a list<strong>in</strong>g <strong>of</strong> required skillsets. In order to achieve participants’ alignment with <strong>the</strong>new processes, <strong>the</strong> organization as a whole will require agood understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> reasons <strong>for</strong> <strong>the</strong> change and <strong>the</strong>bus<strong>in</strong>ess <strong>in</strong>tent <strong>of</strong> <strong>the</strong> technology implementation.Cost/Benefit MethodologyAn Excel-based model has been developed to estimatecosts, benefits, net present value, and payback period. Thema<strong>in</strong> cost categories <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> model are <strong>RFID</strong> tags,<strong>RFID</strong> hardware, IT <strong>in</strong>frastructure, s<strong>of</strong>tware, <strong>in</strong>tegration, andimplementation. The ma<strong>in</strong> benefit categories are productivity,quality, and patient safety. Input parameters arecollected by survey<strong>in</strong>g processes and technology owners,as well as bus<strong>in</strong>ess systems. Basel<strong>in</strong>e results are calculated<strong>for</strong> an average medium-to-large-sized blood center(200 000–250 000 collections per year).Cost AnalysisIn deploy<strong>in</strong>g <strong>RFID</strong> to all operations, <strong>the</strong> average mediumto-large-sizedblood center will experience <strong>the</strong> follow<strong>in</strong>gareas <strong>of</strong> cost over <strong>the</strong> 5 year plann<strong>in</strong>g horizon.• Start-up costs (Mostly fixed cost - hardware, s<strong>of</strong>tware,implementation, etc.)• Recurr<strong>in</strong>g costs: Variable (direct cost associated with<strong>RFID</strong> – usually <strong>the</strong> largest component and <strong>in</strong>direct cost).Benefit AnalysisIn deploy<strong>in</strong>g <strong>RFID</strong> to all operations, <strong>the</strong> average mediumto-large-sizedblood center will realize benefits <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g areas:• Productivity ga<strong>in</strong>s• Reductions <strong>in</strong> unnecessary discarded product (improvedquality <strong>of</strong> operation)• Improvement <strong>in</strong> manufactur<strong>in</strong>g mix.The model weighs <strong>in</strong>frastructure and implementationcosts, costs over time along with materials, and quantifiesbenefits from <strong>the</strong> user <strong>of</strong> <strong>RFID</strong> based on <strong>the</strong> number <strong>of</strong>blood units collected annually. With <strong>the</strong> given model<strong>in</strong>gassumptions, it is possible to project <strong>for</strong> a medium-tolarge-sizedblood center <strong>the</strong> net present value (benefitsm<strong>in</strong>us cost) realizable over a 5 -year plann<strong>in</strong>g horizon. Themodel considers <strong>the</strong> rate <strong>of</strong> adoption by estimat<strong>in</strong>g <strong>the</strong>number <strong>of</strong> <strong>RFID</strong>-enabled blood products added each year to<strong>the</strong> supply cha<strong>in</strong>. The basic assumption is a gradual rollout<strong>of</strong> <strong>the</strong> technology across products and participants. Theestimated payback period (years to recover <strong>the</strong> <strong>in</strong>vestment)is <strong>the</strong>n calculated. For a medium-to-large blood center(200 000–250 000 collections per year), <strong>the</strong> model predictsa return on <strong>in</strong>vestment <strong>in</strong> 3.9 years. The ROI modelreflects results from a broader impact analysis; <strong>the</strong> ROI <strong>for</strong>larger blood centers will be achieved sooner and will takelonger <strong>for</strong> smaller blood centers. The models are availablefrom BloodCenter <strong>of</strong> Wiscons<strong>in</strong>, In<strong>for</strong>mation ServicesDepartment, PO Box 2178, Milwaukee, WI 53201, USA.Additional BenefitsBeyond <strong>the</strong> benefits that can be f<strong>in</strong>ancially quantified <strong>in</strong><strong>the</strong> cost ⁄ benefit model, stakeholders <strong>in</strong> <strong>the</strong> transfusionmedic<strong>in</strong>e supply cha<strong>in</strong> can expect additional benefits from<strong>RFID</strong> enablement. Most notably, an <strong>RFID</strong>-enabled systemwill enable an <strong>in</strong>frastructure <strong>for</strong> improv<strong>in</strong>g patient safetyon <strong>the</strong> hospital side by add<strong>in</strong>g a safety layer aga<strong>in</strong>stblood ⁄ patient mismatches, and potential improvements <strong>in</strong>process control and efficiency <strong>in</strong> <strong>the</strong> Blood Services.Sensitivity AnalysisBecause <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> assessment process and accuracy<strong>of</strong> basel<strong>in</strong>e data use <strong>for</strong> projections, it is advisable toper<strong>for</strong>m a Sensitivity Analysis <strong>for</strong> projections calculated byÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 19<strong>the</strong> model. This type <strong>of</strong> analysis is helpful <strong>in</strong> understand<strong>in</strong>g<strong>the</strong> effects that variations <strong>of</strong> data <strong>in</strong>put (positive or negative)<strong>in</strong>to <strong>the</strong> model <strong>in</strong>put data would have on estimatedresults. There are many techniques <strong>for</strong> per<strong>for</strong>m<strong>in</strong>g a sensitivityanalysis. We suggest beg<strong>in</strong>n<strong>in</strong>g with <strong>the</strong> one-waysensitivity technique because <strong>of</strong> its simplicity. In <strong>the</strong> case<strong>of</strong> <strong>the</strong> model be<strong>in</strong>g described here, current costs wereadjusted up and down by 50%. By far, <strong>the</strong> most sensitivecost area was <strong>the</strong> cost <strong>of</strong> <strong>RFID</strong> tags. Tag cost, if predictionsare correct, should decl<strong>in</strong>e significantly as <strong>RFID</strong> usebecomes more widespread.8.2 HospitalsThere are some notable examples <strong>of</strong> hospitals demonstrat<strong>in</strong>ga positive ROI on some <strong>RFID</strong> projects, such as <strong>the</strong> InselspitalBern (Switzerland) where a solution <strong>for</strong> improv<strong>in</strong>gbed management and clean<strong>in</strong>g demonstrated paybackwith<strong>in</strong> 2 years.9. ConclusionThis guidel<strong>in</strong>e has focused on <strong>RFID</strong> solution componentsand a number <strong>of</strong> technical recommendations <strong>in</strong>clud<strong>in</strong>gchoice <strong>of</strong> <strong>the</strong> radio frequency to be applied, tag capacity,functionality, and data structure to be considered whendeploy<strong>in</strong>g <strong>RFID</strong> technology <strong>for</strong> transfusion medic<strong>in</strong>e. Toensure m<strong>in</strong>imal impact on blood center and transfusion servicesoperations, this guidel<strong>in</strong>e recommends <strong>the</strong> use <strong>of</strong> passiveHF (13.56 MHz) blood bag tags operat<strong>in</strong>g on a globalstandard frequency us<strong>in</strong>g an ISO-compliant communicationprotocol. The m<strong>in</strong>imum suggested memory capacity <strong>of</strong>2 Kbits allows use <strong>of</strong> exist<strong>in</strong>g ISBT 128 data structure andmessag<strong>in</strong>g. Advice on cost ⁄ benefit analysis, risk assessmenthas been provided. It is recommended that when implement<strong>in</strong>g<strong>RFID</strong> solutions, a four-phase implementationmethodology is used that <strong>in</strong>cludes assessment, prototype,pilot, and deployment phases.<strong>RFID</strong> adds ano<strong>the</strong>r layer <strong>of</strong> safety to <strong>the</strong> safeguards <strong>of</strong>current label<strong>in</strong>g systems. The tag will not substitute,replace, or <strong>in</strong>terfere with any required barcode or label<strong>in</strong>g<strong>in</strong><strong>for</strong>mation, and <strong>RFID</strong> s<strong>of</strong>tware will augment exist<strong>in</strong>gblood bank and transfusion systems and not replace <strong>the</strong>m.The tag will be applied on <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> base label,i.e. under <strong>the</strong> unit number or ABO label or will be providedby <strong>the</strong> bag manufacturer on <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> base label.The data structure <strong>of</strong> <strong>the</strong> blood bag tag accommodates<strong>the</strong> needs <strong>of</strong> all stakeholders <strong>in</strong> <strong>the</strong> transfusion medic<strong>in</strong>esupply cha<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g: <strong>RFID</strong> tag manufacturers, bag manufactures,blood centers, and hospital transfusion services.A special AFI <strong>for</strong> <strong>the</strong> transfusion medic<strong>in</strong>e <strong>in</strong>dustry hasbeen requested from EPCglobal to identify our tags as bloodproduct tags.The use <strong>of</strong> <strong>RFID</strong> <strong>in</strong> transfusion medic<strong>in</strong>e may streaml<strong>in</strong>esupply cha<strong>in</strong> processes by:• enabl<strong>in</strong>g better track<strong>in</strong>g and reconciliation <strong>of</strong> products;• <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> precision <strong>of</strong> product locations;• mak<strong>in</strong>g it possible to read multiple products simultaneously,and without l<strong>in</strong>e-<strong>of</strong>-sight. This will significantlyimprove efficiency, <strong>in</strong>crease productivity, andreduce operational costs.<strong>RFID</strong> may also <strong>in</strong>crease accuracy <strong>of</strong> track<strong>in</strong>g time andtemperature and reduce product waste, thus <strong>in</strong>creas<strong>in</strong>gquality and availability <strong>of</strong> blood products <strong>for</strong> patients.And most <strong>of</strong> all, <strong>the</strong>re is evidence from a number <strong>of</strong><strong>in</strong>dependent and unrelated studies with<strong>in</strong> transfusionmedic<strong>in</strong>e that <strong>RFID</strong> technology can help ensure appropriatetransfusion <strong>of</strong> <strong>the</strong> right blood to <strong>the</strong> right patient, thusreduc<strong>in</strong>g errors at <strong>the</strong> bedside and <strong>in</strong>creas<strong>in</strong>g patient safety.10. Publications10.1 ReferencesThe authors and collaborators cover different areas <strong>of</strong><strong>Transfusion</strong> Medic<strong>in</strong>e, Blood Bag and S<strong>of</strong>tware Vendors,medical and <strong>RFID</strong> organization, and authorities. A lot <strong>of</strong>personal knowledge and <strong>in</strong><strong>for</strong>mation as well as <strong>in</strong><strong>for</strong>mationfrom congresses, conferences and different journals<strong>in</strong>fluenced <strong>the</strong> preparation <strong>of</strong> <strong>the</strong> guidel<strong>in</strong>e. To cover all<strong>the</strong>se knowledge with scientific publications <strong>in</strong> a rapidlydevelop<strong>in</strong>g <strong>RFID</strong> environment is difficult, because manytrials, experiences and future opportunities are not yetpublished <strong>in</strong> scientific newspapers. On <strong>the</strong> o<strong>the</strong>r hand, allco-workers wanted to publish an ‘‘up to date’’ guidel<strong>in</strong>e on<strong>RFID</strong>-technology and transfusion medic<strong>in</strong>e, with a previewabout possible future developments to facilitate <strong>the</strong> <strong>RFID</strong>newcomerswork and to <strong>in</strong>spire current users with newideas. F<strong>in</strong>ally, most references were chosen to give an overviewabout <strong>the</strong> actual developments and future opportunities.However some topics are expla<strong>in</strong>ed based on personalknowledge <strong>of</strong> <strong>the</strong> authors.1 ISBT 128 Standard - Technical Specification 3.6.0. (Editor: DistlerP) Published by ICCBBA, PO Box 11309, San Bernard<strong>in</strong>o,CA 92423-1309 USA. ISBN: 978-1-933243-12-22 Kumar S, Swanson E, Tran T: <strong>RFID</strong> <strong>in</strong> <strong>the</strong> healthcare supplycha<strong>in</strong>: usage and application. Int J Health Care Qual Assur2009; 22 (1):67–813 Knels R: Improv<strong>in</strong>g patient care with <strong>RFID</strong> technology. IDWorld 2008; June: 16–194 21 CFR Part 820: Quality system regulation (cGMP). Department<strong>of</strong> Health and Human Services - Food and Drug Adm<strong>in</strong>istration;2009 Apr 1st; http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=820&showFR=15 EudraLex: The Rules Govern<strong>in</strong>g Medic<strong>in</strong>al Products <strong>in</strong> <strong>the</strong>European Union; Volume 4. EU <strong>Guidel<strong>in</strong>es</strong> to GoodÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


20 Guidel<strong>in</strong>eManufactur<strong>in</strong>g Practice Medic<strong>in</strong>al Products <strong>for</strong> Human andVeter<strong>in</strong>ary <strong>Use</strong>; Part I Chapter 1 Quality Management(GMP); 2008 Feb 14th; http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-4/pdfs-en/2008_02_14_gmp-part1-chapter1_q9_en.pdf6 ISO 9001: Quality management systems – Requirements; 20087 Davis R, Geiger B, Gutierrez A, Heaser J, Veeramani D: Track<strong>in</strong>gblood products <strong>in</strong> blood centers us<strong>in</strong>g <strong>RFID</strong>: A comprehensiveassessment. Vox Sang 2009; 97:50–608 Knels R: Die gläserne Blutkonserve; <strong>in</strong> Hompel ten M, Lange V(ed): Radio Frequenz IDentifikation – Logistiktrends für Industrieund Handel. Dortmund, Verlag Praxiswissen, 20049 Sandler SG, DeBandi L, Langeberg A, Gibble J, Wilson C,Feldman CL: A barcode and radio frequency identificationsystem <strong>for</strong> transfusion safety. Ch<strong>in</strong>ese J Blood <strong>Transfusion</strong>2006; 19:5–710 Sandler SG, Langeberg A, DeBandi L, Gibble J, Wilson C,Feldman CL: Radio frequency identification technology canstandardize and document blood collections and transfusions.<strong>Transfusion</strong> 2007; 47:763–77011 Knels R: Radio frequency identification (<strong>RFID</strong>): An experience<strong>in</strong> transfusion medic<strong>in</strong>e. ISBT Science 2006; 1:238–24112 Ingeholm ML, Mun IK, Mun SK: <strong>RFID</strong> <strong>in</strong> healthcare – <strong>the</strong> applications,and obstacles, are many. Journal <strong>of</strong> AHIMA 2006;77 ⁄ 8:56–6313 Dzik WH: <strong>Technology</strong> <strong>for</strong> enhanced transfusion safety. HematologyAm Soc Hematol Educ Program 2005; 476–48214 Dzik WH: New technology <strong>for</strong> transfusion safety. Br J Haematol2007; 136 (2):181–19015 Sandler SG, Langeberg A, Carty K, Dohnalek LJ: Barcode andRadio-Frequency Technologies can <strong>in</strong>crease safety and efficiency<strong>of</strong> blood transfusions. LabMedic<strong>in</strong>e 2006; 37:436–43916 Gassner K, Koch O, Weigel<strong>in</strong> L, Deiters W, Ritz A, Kaltenborn R(ed): Vorstellung von <strong>RFID</strong>-Lösungen <strong>in</strong> der Praxis <strong>in</strong> E<strong>in</strong>satzbereicheund Potenzial der <strong>RFID</strong>-Technologie im DeutschenGesundheitswesen. Dortmund, Fraunh<strong>of</strong>er IRB Verlag, 200617 Wyld DC: The implant solution. ID World 2008; 06:12–1518 GS1 EPC Global: EPC TM Radio-Frequency Identity ProtocolsClass-1 Generation-2 UHF <strong>RFID</strong> Protocol <strong>for</strong> Communicationsat 860 MHz – 960 MHz. http://www.epcglobal<strong>in</strong>c.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf.Oct200819 DIRECTIVE 2002 ⁄ 96 ⁄ EC <strong>of</strong> <strong>the</strong> European Parliament and <strong>of</strong> <strong>the</strong>Council <strong>of</strong> 27 January 2003 on waste electrical and electronicequipment (WEEE)20 Phillips T, Karygiannis T, Kuhn R: Security standards <strong>for</strong> <strong>the</strong><strong>RFID</strong> market. IEEE Security and Privacy 2005; Nov. ⁄ Dec.,85–8921 van der Togt R, van Lieshout EJ, Hensbroek R, Be<strong>in</strong>at E, B<strong>in</strong>nekadeJM, Bakker PJM: Electromagnetic Interference from RadioFrequency Identification <strong>in</strong>duc<strong>in</strong>g potentially hazardous <strong>in</strong>cidents<strong>in</strong> Critical Care medical equipment. JAMA 2008; 299(24):2884–289022 Berwick DM: Tam<strong>in</strong>g <strong>the</strong> <strong>Technology</strong> Beast. JAMA 2008; 299(24):2898–289923 ISBT <strong>Guidel<strong>in</strong>es</strong> <strong>for</strong> Validation <strong>of</strong> Automated Systems <strong>in</strong> BloodEstablishments. Vox Sang 2010; 98 (Suppl 1): 1–1910.2 Secondary Literature(Fur<strong>the</strong>r references <strong>of</strong> task members were used <strong>for</strong> <strong>the</strong> technicalpart <strong>of</strong> <strong>the</strong> guidel<strong>in</strong>e, literature available by <strong>the</strong>authors)Davis R, Gottschall J, Gutierrez A: Temperature Impact <strong>of</strong> High RFEnergy on Blood Products. Report to <strong>the</strong> FDA, 2008Davis R, Gottschall J, Gutierrez A: Cellular and Prote<strong>in</strong> Impact<strong>of</strong> RF Energy on Red Cells and Platelets. Report to <strong>the</strong> FDA,2008Davis R, Geiger B, Gutierrez A, Veeramani D: A Return-on-Investmentmodel <strong>for</strong> radio frequency identification application <strong>in</strong>blood centers. Technical Report, 2008Davis R, Gutierrez A, Kopetsky M, Veeramani D: A Return-on-Investment model <strong>for</strong> radio frequency identification application<strong>in</strong> blood transfusion processes <strong>in</strong> hospitals. Technical Report,2008Davis R, Geiger B, Gutierrez A, Veeramani D: <strong>RFID</strong> application <strong>in</strong>transfusion medic<strong>in</strong>e supply cha<strong>in</strong>: <strong>RFID</strong> technology per<strong>for</strong>mancetest<strong>in</strong>g report. Technical Report, 2007Henderson Ian: Radio frequency identification labels. Pulse TechnicalPaper, Savant Enterprises, 2000Hohberger C, Tsirl<strong>in</strong>e B: Design <strong>of</strong> a segmented 13.56 MHz HelmholtzCoil <strong>for</strong> RF exposure test<strong>in</strong>g <strong>of</strong> biologics to simulated <strong>RFID</strong>readers. Intern J Radio Frequency Identification <strong>Technology</strong> andApplications 2009; 2, (Nos. 1 ⁄ 2):65–92Hohberger C, Gottschall J: Joule heat<strong>in</strong>g <strong>of</strong> blood products by<strong>in</strong>tense RF magnetic fields. Report to <strong>the</strong> FDA, 2008Knels R: F<strong>in</strong>al report <strong>for</strong> SAB-project (Saxony Develop<strong>in</strong>g Bank):Intelligent electronic label with display and data transfer. GermanRed Cross Blood <strong>Transfusion</strong> Service East, 200710.3 Standards10.3.1 Barcode Standards- ISO ⁄ IEC 15416: Bar code pr<strong>in</strong>t quality test specification. L<strong>in</strong>earsymbols- ISO ⁄ IEC 15415: Bar code pr<strong>in</strong>t quality test specification – Twodimensionalsymbols- ISO ⁄ IEC 15426-x: Bar code verifier con<strong>for</strong>mance specification- ISO ⁄ IEC 16022: International symbology specification – DataMatrix- ISO ⁄ IEC 15438: PDF417 bar code symbology specification- ISO ⁄ IEC 16388: Code 39 bar code symbology specification- ISO ⁄ IEC 16390: Interleaved 2 <strong>of</strong> 5 bar code symbology specification- ISO ⁄ IEC 15417: Code 128 bar code symbology specification10.3.2 <strong>RFID</strong> StandardsIn recent years several <strong>RFID</strong> standards <strong>in</strong>clud<strong>in</strong>g technicaldocuments from <strong>the</strong> ISO ⁄ IEC 18000 series, data standardsfrom ISO ⁄ IEC 1569n and EPC Global UHF Generation2have been def<strong>in</strong>ed. These standards are necessary <strong>in</strong> orderto create <strong>in</strong>teroperable systems.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 21- ANSI ⁄ INCITS 256: ,,Radio Frequency Identification (<strong>RFID</strong>)’’,NCITS 256 def<strong>in</strong>es a standard <strong>for</strong> Radio Frequency Identification(<strong>RFID</strong>) <strong>for</strong> use <strong>in</strong> item management- ANSI ⁄ INCITS 371: ,,In<strong>for</strong>mation <strong>Technology</strong> – Real Time Locat<strong>in</strong>gSystems (RTLS)’’- ANSI ⁄ MH 10.8.4: ,,<strong>RFID</strong> <strong>for</strong> Returnable Conta<strong>in</strong>ers’’- AWWA IMT61457: ,,The <strong>Use</strong> <strong>of</strong> Mobile and <strong>RFID</strong> Data and FieldForce Integration <strong>in</strong> a Major Water Utility’’- CEPT T ⁄ R 60-01: ,,Low-power radiolocation equipment <strong>for</strong>detect<strong>in</strong>g movement and <strong>for</strong> alert’’ (EAS). Technical Recommendation- ISO ⁄ IEC 6346: ,,Freight conta<strong>in</strong>ers – Cod<strong>in</strong>g, identification andmark<strong>in</strong>g’’- ISO ⁄ IEC 7810: ,,Identification cards – Physical characteristics’’- ISO ⁄ IEC 7816: ,,Identification cards – Integrated circuit(s) cardswith contacts’’- ISO ⁄ IEC 8824-x: ,,In<strong>for</strong>mation technology – Abstract SyntaxNotation One (ASN.1) – Specification <strong>of</strong> basic notation’’- ISO ⁄ IEC 8825-x: ,,In<strong>for</strong>mation technology – ASN.1 encod<strong>in</strong>grules – Specification <strong>of</strong> Basic Encod<strong>in</strong>g Rules (BER), CanonicalEncod<strong>in</strong>g Rules (CER) and Dist<strong>in</strong>guished Encod<strong>in</strong>g Rules (DER)- ISO ⁄ IEC 9798: ,,In<strong>for</strong>mation technology – Security techniques –Entity au<strong>the</strong>ntication’’- ISO ⁄ IEC 9834-x: 1993 ⁄ Amd.2: 1988 ,,In<strong>for</strong>mation technology –Open Systems Interconnection – Procedures <strong>for</strong> <strong>the</strong> operation <strong>of</strong>OSI Registration Authorities: General Procedures’’- ISO ⁄ IEC 10373: ,,Identification Cards – Test methods’’- ISO ⁄ IEC 10374: ,,Freight conta<strong>in</strong>ers – Automatic identification’’- ISO ⁄ IEC 10536: ,,Identification cards – Contactless <strong>in</strong>tegratedcircuit(s) cards’’- ISO ⁄ IEC 14443: ,,Identification cards – Proximity <strong>in</strong>tegrated circuit(s)cards’’:- ISO ⁄ IEC 15459-x: ,,In<strong>for</strong>mation technology – Automatic identificationand data capture techniques – Unique identifiers <strong>for</strong>item management’’- ISO ⁄ IEC 15693: ,,Identification cards – contactless <strong>in</strong>tegratedcircuit(s) cards – Vic<strong>in</strong>ity Cards’’- ISO ⁄ IEC 15961: ,,In<strong>for</strong>mation technology – <strong>RFID</strong> <strong>for</strong> ItemManagement – Data protocol: application <strong>in</strong>terface’’- ISO ⁄ IEC 15962: ,,In<strong>for</strong>mation technology – <strong>RFID</strong> <strong>for</strong> ItemManagement – Data protocol: data encod<strong>in</strong>g rules and logicalmemory functions’’- ISO ⁄ IEC 15963-x: ,,Unique Identification <strong>of</strong> RF tag and RegistrationAuthority to manage <strong>the</strong> uniqueness’’- ISO ⁄ IEC 17358: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Applicationrequirements’’- ISO ⁄ IEC 17363: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Freightconta<strong>in</strong>ers’’- ISO ⁄ IEC 17364: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Transportunits’’- ISO ⁄ IEC 17365: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Returnabletransport items’’,- ISO ⁄ IEC 17366: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Productpackag<strong>in</strong>g’’- ISO ⁄ IEC 17367: ,,Supply cha<strong>in</strong> application <strong>for</strong> <strong>RFID</strong> – Producttagg<strong>in</strong>g’’- ISO ⁄ IEC 18000-x: ,,<strong>RFID</strong> <strong>for</strong> Item Management: Air Interface’’- ISO ⁄ IEC 18001: ,,In<strong>for</strong>mation technology – Radio frequencyidentification <strong>for</strong> item management – Application requirementspr<strong>of</strong>iles’’- ISO ⁄ IEC 18046: ,,<strong>RFID</strong> Tag and Interrogator Per<strong>for</strong>mance TestMethods’’- ISO ⁄ IEC 18047-x: ,,In<strong>for</strong>mation technology – Radio frequencyidentification device con<strong>for</strong>mance test methods’’ <strong>for</strong> ISO ⁄ IEC18000- ISO ⁄ IEC 18092: ,,Near Field Communication (NFC) Interface andProtocol-1 (NFCIP-1)’’- ISO ⁄ IEC 18185: ,,Freight conta<strong>in</strong>ers – Radio frequency communicationprotocol <strong>for</strong> electronic seal’’- ISO ⁄ IEC 19762-x: ,,In<strong>for</strong>mation technology AIDC techniques –Harmonized vocabulary’’- ISO ⁄ IEC 21007: ,,Gas Cyl<strong>in</strong>ders – Identification and Mark<strong>in</strong>gUs<strong>in</strong>g Radio Frequency Identification <strong>Technology</strong>’’- ISO ⁄ IEC 21481: ,,Near Field Communication (NFC) Interface andProtocol-2 (NFCIP-2)’’- ISO ⁄ IEC 22536: ,,Near Field Communication (NFC) Interface andProtocol-1 (NFCIP-1); RF Interface Test Methods’’- ISO ⁄ IEC 23389: ,,Freight conta<strong>in</strong>ers – read write radio frequencyidentification (<strong>RFID</strong>)’’- ISO ⁄ IEC 23917: ,,Near Field Communication (NFC) Interface andProtocol-2 (NFCIP-2); Protocol Test Methods <strong>for</strong> NFC’’- ISO ⁄ IEC 24710: ,,In<strong>for</strong>mation technology AIDC techniques –<strong>RFID</strong> <strong>for</strong> Item Management – ISO ⁄ IEC 18000 Air Interface Communications– Elementary Tag license-plate functionality <strong>for</strong>ISO ⁄ IEC 18000 air <strong>in</strong>terface def<strong>in</strong>itions’’- ISO ⁄ IEC 24729-x: ,,In<strong>for</strong>mation technology – Radio frequencyidentification <strong>for</strong> item management – Implementation guidel<strong>in</strong>es’’10.3.3 Validation Standards- GAMP Ò 5: A Risk-based Approach to Compliant GxP ComputerizedSystems. ISPE. 2008. ISBN 1-931879-61-3- ASTM Standard E2500, 2007, ‘‘Standard Guide <strong>for</strong> Specification,Design, and Verification <strong>of</strong> Pharmaceutical and BiopharmaceuticalManufactur<strong>in</strong>g Systems and Equipment,’’ ASTM International,West Conshohocken, PA, 2003, DOI: 10.1520/E2500-07,http://www.astm.org- Guidance <strong>for</strong> Industry ICH Q8 Pharmaceutical Development. U.S.Department <strong>of</strong> Health and Human Services Food and DrugAdm<strong>in</strong>istration. http://www.fda.gov/downloads/RegulatoryIn<strong>for</strong>mation/Guidances/ucm128029.pdf.May 2006- Guidance <strong>for</strong> Industry ICH Q9 Quality Risk Management. U.S.Department <strong>of</strong> Health and Human Services Food and DrugAdm<strong>in</strong>istration. http://www.fda.gov/downloads/RegulatoryIn<strong>for</strong>mation/Guidances/ucm128053.pdf.Jun 2006- Guidance <strong>for</strong> Industry ICH Q10 Pharmaceutical Quality System.U.S. Department <strong>of</strong> Health and Human Services Food and DrugAdm<strong>in</strong>istration. http://www.fda.gov/downloads/RegulatoryIn<strong>for</strong>mation/Guidances/ucm128031.pdf.May 2007Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


22 Guidel<strong>in</strong>eAppendix A – Glossary <strong>of</strong> <strong>RFID</strong> Terms[List based on a courtesy <strong>of</strong> Robert W. Baird & Co.][Fur<strong>the</strong>r def<strong>in</strong>itions: http://www.rfidjournal.com/article/glossary/]Active <strong>RFID</strong> Tag – The tag has an <strong>in</strong>ternal power source (i.e. a battery or external power), which allows <strong>for</strong> significantlylonger read ranges or ⁄ and work sensors. It is primarily used to track large, high-value assets such as <strong>in</strong>termodal shipp<strong>in</strong>gconta<strong>in</strong>ers, but <strong>the</strong>re are solutions to work sensors too such as temperature control <strong>of</strong> pharmaceuticals. Active tags are significantlylarger <strong>in</strong> size and more expensive than passive tags.Air Interface – The wireless communication protocol between <strong>the</strong> tag and reader is called air <strong>in</strong>terface. Generation 1protocols <strong>in</strong>clude Class 0 and Class 1. O<strong>the</strong>r proprietary air <strong>in</strong>terface protocols also exist. Generation 2 created a standard air<strong>in</strong>terface protocol.Antenna – Conductive elements designed to radiate ⁄ or receive radio frequency (electromagnetic) energy. As part <strong>of</strong> an <strong>RFID</strong>system, it is attached to chips on tags and an <strong>in</strong>tegral part <strong>of</strong> a reader.Anti-Collision – A protocol that prevents tag data from multiple tags <strong>in</strong> <strong>the</strong> read area from <strong>in</strong>terfer<strong>in</strong>g (collid<strong>in</strong>g) with eacho<strong>the</strong>r. Also prevents multiple readers <strong>in</strong> close proximity from <strong>in</strong>terfer<strong>in</strong>g with each o<strong>the</strong>r. It is a key component to <strong>the</strong> Generation2 standard.Auto-ID - Automatic Identification is a broad term given to a host <strong>of</strong> technologies that are used to help mach<strong>in</strong>es identifyobjects or persons. It is <strong>of</strong>ten coupled with AIDC; e.g. Barcode, Smart labels, Voice Recognition, OCR, <strong>RFID</strong>.Barcode - A type <strong>of</strong> automatic identification technology (see Auto-ID).Class 0 – Class 0 refers to a proprietary air <strong>in</strong>terface protocol <strong>for</strong> passive UHF tags. Class 0 is read only, while a subsequentprotocol, Class 0 Plus, <strong>of</strong>fers read ⁄ write capability. Wal-Mart and <strong>the</strong> Department <strong>of</strong> Defense (DoD) approved <strong>the</strong> use <strong>of</strong> Class0 <strong>for</strong> <strong>the</strong>ir supplier mandate requirements. Class 0 is not <strong>in</strong>teroperable with Class 1.Class 1 - Class 1 refers to a proprietary air <strong>in</strong>terface protocol <strong>for</strong> passive UHF tags. Class 1 <strong>of</strong>fers read ⁄ write capability. Wal-Mart and <strong>the</strong> DoD approved <strong>the</strong> use <strong>of</strong> Class 1 <strong>for</strong> <strong>the</strong>ir supplier mandate requirements. Class 1 is not <strong>in</strong>teroperable with Class0.Dual Di-Pole – A tag that essentially has two antennas, reduc<strong>in</strong>g <strong>the</strong> sensitivity to orientation and <strong>in</strong>creas<strong>in</strong>g read capability.Electronic Product Codes (EPC) – The code that resides on an <strong>RFID</strong> tag that is unique to each product. The code conta<strong>in</strong>smanufacturer and product <strong>in</strong><strong>for</strong>mation as well as an <strong>in</strong>dividualized serial number.Electro-magnetic compatibility (EMC) – EU directive 2004 ⁄ 108 ⁄ EC regulate everyth<strong>in</strong>g to do with <strong>in</strong>terference to o<strong>the</strong>requipment [http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:390:0024:0037:EN:PDF].Encoder – Device that transmits and writes data on an <strong>RFID</strong> tag. <strong>Use</strong>d extensively <strong>in</strong> pr<strong>in</strong>ters and label applicators <strong>for</strong>product shipments. It is also a reader component.Environmental Factors – Typically discussed with respect to UHF products, which can be affected by many factors <strong>in</strong>clud<strong>in</strong>g<strong>the</strong> presence <strong>of</strong> metal, liquids, significant reader activity, o<strong>the</strong>r RF ‘‘noise’’, etc. These factors require strict process controls<strong>in</strong> terms <strong>of</strong> tag and reader placement.EPC Global – EPC (Electronic Product Code) Global is an <strong>in</strong>dustry-driven association responsible <strong>for</strong> sett<strong>in</strong>g <strong>RFID</strong> standardscreation; <strong>for</strong>med orig<strong>in</strong>ally as a jo<strong>in</strong>t venture between <strong>the</strong> Uni<strong>for</strong>m Code Council (UCC) and <strong>the</strong> Electronic Article Number<strong>in</strong>gÓ 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


Guidel<strong>in</strong>e 23Association (EAN). EPC Global is responsible <strong>for</strong> <strong>the</strong> Generation 2 standard (hardware air <strong>in</strong>terface), Application LevelEvents (middleware standard) and <strong>the</strong> EPC Network (as yet to be employed open network <strong>for</strong> track<strong>in</strong>g).EPC (Electronic Product Code) Network – Developed by <strong>the</strong> Auto-ID center, this Internet-based system allows supply cha<strong>in</strong>participants to retrieve data associated with an EPC. It is adm<strong>in</strong>istered by EPC Global.Frequency - The number <strong>of</strong> repetitions <strong>of</strong> a complete wave with<strong>in</strong> 1-second. For example, 1Hz equals one complete wave<strong>for</strong>m<strong>in</strong> 1-second; 1KHz equals 1000 waves <strong>in</strong> a second. <strong>RFID</strong> tags use low, high, and ultra-high and microwave frequencies.All frequencies have <strong>the</strong>ir own advantages and disadvantages that make <strong>the</strong>m more suitable <strong>for</strong> some applications ra<strong>the</strong>rthan <strong>for</strong> o<strong>the</strong>rs.Generation 2 (Gen 2) – The <strong>RFID</strong> air <strong>in</strong>terface standard <strong>for</strong> supply cha<strong>in</strong> shipments.High-Frequency (HF) <strong>RFID</strong> – <strong>RFID</strong> products that use <strong>the</strong> 13.56 MHz band, which is not regulated by any government. Thisfrequency generally allows read-ranges <strong>of</strong> 4–8 feet and is not affected by environmental factors such as liquid. It is typicallyused <strong>in</strong> item track<strong>in</strong>g applications (pharma and garment).Hybrid (semi-active) <strong>RFID</strong> Tag – A tag that <strong>in</strong>corporates a smaller <strong>in</strong>ternal power supply, which is triggered by readeraction. After <strong>in</strong>terrogation, <strong>the</strong> tag resumes a passive stance.Identifier – A number or some o<strong>the</strong>r <strong>for</strong>m <strong>of</strong> assign<strong>in</strong>g identity to an item. Us<strong>in</strong>g <strong>in</strong> conjunction with a data carrier.ISO – International Organization <strong>for</strong> Standardization is a network <strong>of</strong> <strong>the</strong> national standards <strong>in</strong>stitutes <strong>of</strong> 148 countries,on <strong>the</strong> basis <strong>of</strong> one member per country, with a Central Secretariat <strong>in</strong> Geneva, Switzerland, that coord<strong>in</strong>ates <strong>the</strong> system.ISO is not government affiliated. EPC Global is an ISO member and is seek<strong>in</strong>g ISO approval <strong>for</strong> <strong>the</strong> Generation 2standard.Low-Frequency (LF) <strong>RFID</strong> - <strong>RFID</strong> products that use <strong>the</strong> 125 KHz band. Products that use this frequency are generally smallerand cheaper as read ranges are short, typically less than 12 <strong>in</strong>ches. Security access and control are typical applications.Middleware – A specific class <strong>of</strong> s<strong>of</strong>tware that <strong>of</strong>fers several levels <strong>of</strong> functionality. Middleware acts as a data filter, elim<strong>in</strong>at<strong>in</strong>gduplicate reads so that <strong>the</strong> host system ma<strong>in</strong>ta<strong>in</strong>s accurate records and is not <strong>in</strong>undated with excessive data. Middlewarealso ensures that <strong>the</strong> <strong>RFID</strong> data <strong>for</strong>matt<strong>in</strong>g ‘‘maps up’’ with <strong>the</strong> host system data structure. EPC Global recently adopted<strong>the</strong> Middleware standard, Application Level Events.Optical Character Recognition (OCR) – Data is <strong>in</strong> human readable <strong>for</strong>m. Systems are capable <strong>of</strong> high speed, accurate recognition,handl<strong>in</strong>g multiple fonts and distorted characters.Optional <strong>Use</strong>r Memory – Additional bits memory available on a tag that can be used by any member <strong>of</strong> <strong>the</strong> supply cha<strong>in</strong> as<strong>the</strong>y see fit (i.e. rout<strong>in</strong>g <strong>in</strong><strong>for</strong>mation). It is <strong>in</strong>tended to allow <strong>for</strong> <strong>in</strong>creased track<strong>in</strong>g efficiency.Passive <strong>RFID</strong> Tag – A type <strong>of</strong> tag that receives its power supply from <strong>the</strong> reader upon <strong>in</strong>terrogation. <strong>Use</strong>d primarily <strong>in</strong> supplycha<strong>in</strong> applications, <strong>the</strong>se tags tend to be small <strong>in</strong> size and relatively <strong>in</strong>expensive compared to active tags.Pilots – Test<strong>in</strong>g per<strong>for</strong>med by companies seek<strong>in</strong>g <strong>RFID</strong> solutions, primarily <strong>for</strong> supply cha<strong>in</strong> applications. Consumer productcompanies under mandate requirements are seek<strong>in</strong>g ways to <strong>in</strong>crease <strong>the</strong> value add to <strong>the</strong>mselves <strong>in</strong> addition to meet<strong>in</strong>gmandate compliance, which requires evaluation <strong>of</strong> equipment and <strong>in</strong>ternal bus<strong>in</strong>ess processes.PJM <strong>RFID</strong> technology -Phase Jitter Modulation (PJM). Pr<strong>in</strong>ciple is only used with <strong>RFID</strong> standard ISO 18000-3 Mode 2 (PJM)at 13.56 MHz. Identifies up to 1000 tags per second. Writes reliably is 128 bit data to tags at 50 tags per second. Couldreaches communication speeds <strong>of</strong> 424 ⁄ 848 kbit per second.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24


24 Guidel<strong>in</strong>ePJM StackTag Ò , Magellan <strong>Technology</strong> Pty Ltd, Sydney, Australia1. Is an <strong>RFID</strong> tag that can be operated <strong>in</strong> stacks <strong>of</strong> many hundred <strong>RFID</strong> tags without separation2. Is unique and does not depend on tuned <strong>RFID</strong> tags to operate3. Chips and <strong>in</strong>lets use a unique method to operate on low field strength4. Inlets are not designed <strong>for</strong> resonance frequency (most tags have a self-resonance frequency between 14 and 70 MHz)5. StackTag <strong>in</strong>lets do not detune by o<strong>the</strong>r <strong>RFID</strong> tags or materials and will operate even on metal or under water6. Inlets are designed ei<strong>the</strong>r <strong>for</strong> range or <strong>for</strong> maximum stackability7. Inlet design is easy and as tags are robust to any detun<strong>in</strong>g exist<strong>in</strong>g <strong>in</strong>let <strong>for</strong>m factors can be used <strong>for</strong> easy pilot project<strong>in</strong>stallationPortal – A door or o<strong>the</strong>r po<strong>in</strong>t <strong>in</strong> a facility surrounded by fixed <strong>RFID</strong> readers to identify and track <strong>the</strong> flow <strong>of</strong> product. Load<strong>in</strong>gdock doors are a typical example.Reader – Also known as an <strong>in</strong>terrogator. Typically a network-based device and antenna configuration, which reads <strong>the</strong><strong>in</strong><strong>for</strong>mation conta<strong>in</strong>ed on an <strong>RFID</strong> tag. In passive operations, <strong>the</strong> reader supplies <strong>the</strong> tag with power. Readers can be fixedposition <strong>for</strong> load<strong>in</strong>g dock door or o<strong>the</strong>r portal applications, or embedded <strong>in</strong>to mobile devices <strong>for</strong> <strong>in</strong> store or exception report<strong>in</strong>grequirements.Rollout – When pilots provide sufficient evidence <strong>of</strong> a strong return on <strong>in</strong>vestment, companies are expected to deploy (rollout)<strong>the</strong> technology <strong>in</strong>to greater parts <strong>of</strong> <strong>the</strong>ir supply cha<strong>in</strong>. This process is expected to result <strong>in</strong> significant growth <strong>for</strong> <strong>the</strong><strong>RFID</strong> <strong>in</strong>dustry.Smart Storage – In this context <strong>the</strong> authors mean smart solutions <strong>in</strong> storages, which allow <strong>the</strong> quick and easy f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> adef<strong>in</strong>ite unit <strong>in</strong> storage rooms or cab<strong>in</strong>ets.Tag – Also referred to as transponder or transponder tag, which is typically affixed to an item <strong>for</strong> track<strong>in</strong>g purposes. Composed<strong>of</strong> a semi-conductor chip and antenna held toge<strong>the</strong>r <strong>in</strong> a substrate. Each tag has a manufacturer <strong>in</strong>stalled unique identificationnumber as well as additional few bits to many kilobits <strong>of</strong> <strong>in</strong>cremental memory. Passive tags receive energy from<strong>the</strong> reader, while active tags have an <strong>in</strong>ternal power supply.Track and Trace - Involves controll<strong>in</strong>g <strong>the</strong> shipp<strong>in</strong>g and receiv<strong>in</strong>g process <strong>for</strong> medical devices, as well as manag<strong>in</strong>g assetsand <strong>in</strong>ventories with<strong>in</strong> healthcare facilities.UID – Unique Identification is a US DoD-based number<strong>in</strong>g scheme to identify a broad range <strong>of</strong> high-value assets.UHF (Ultra High Frequency) <strong>RFID</strong> – <strong>RFID</strong> products that use <strong>the</strong> 868–950 MHz frequency band, which is regulated by governments.This frequency allows read ranges <strong>of</strong> 8–30 feet (2–4 times that <strong>of</strong> HF), but can be heavily affected by environmentalfactors, <strong>in</strong>clud<strong>in</strong>g liquids and metals, mandated by Wal-Mart and <strong>the</strong> US DoD <strong>for</strong> supply cha<strong>in</strong> applications.Write Once Read Many (WORM) – <strong>Use</strong>d to describe an <strong>RFID</strong> tag that allows only one set <strong>of</strong> data to be written on to it. It istypically used <strong>in</strong> applications where security is a concern.Ó 2010 The Author(s)Journal compilation Ó 2010 International Society <strong>of</strong> Blood <strong>Transfusion</strong>, Vox Sangu<strong>in</strong>is (2010) 98 (Suppl. 2), 1–24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!