13.07.2015 Views

Electrical conduction and Joule effect in one-dimensional chains of ...

Electrical conduction and Joule effect in one-dimensional chains of ...

Electrical conduction and Joule effect in one-dimensional chains of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> cha<strong>in</strong>s <strong>of</strong> beadsFig. 6 Variation <strong>of</strong> voltage U as a function <strong>of</strong> current I . Cha<strong>in</strong> <strong>of</strong> 5sta<strong>in</strong>less beads (diameter 11 mm). Comparison between experimentaldata (×) <strong>and</strong> analytical model (−) with the adjusted parameters (Eq. 6).Decreas<strong>in</strong>g current: α ↓ =+1.1×10 −3 <strong>and</strong> β ↓ = −6.9×10 −4 ;<strong>in</strong>creas<strong>in</strong>gcurrent α ↑ =+2.1 × 10 −3 <strong>and</strong> β ↑ =+7.0 × 10 −4<strong>of</strong> beads has a slightly higher resistance to the flow <strong>of</strong> electriccharge R lc↑ ≃ 2.1 (part DE, Figs. 2 <strong>and</strong> 6) thanforthe weak decreas<strong>in</strong>g currents R lc↓ ≃ 2.0 (part CD, Fig. 6).This difference is ma<strong>in</strong>ly due to the thermal delays associatedto the relatively fast evolution <strong>of</strong> the electric current. Indeed,for a given small current <strong>in</strong> the decreas<strong>in</strong>g phase (part CD),the bulk <strong>of</strong> the beads presents a lower temperature <strong>and</strong> thus alower measured voltage compared to those <strong>of</strong> the <strong>in</strong>creas<strong>in</strong>gphase <strong>of</strong> current (part DE). Thus the cha<strong>in</strong> <strong>of</strong> beads has anelectromechanical behavior <strong>of</strong> hysteretic type for which thevoltage–current characteristics present a loop (Fig. 6). Thelarger is the loop, the greater is the thermal energy released<strong>in</strong> the cha<strong>in</strong> <strong>and</strong> consequently the more the beads warm up.These phenomena are more pronounced for cycles <strong>of</strong> higherelectric currents, as shown later <strong>in</strong> Fig. 7.4 Model<strong>in</strong>g <strong>of</strong> the hysteretic behavior CD-DEIn the follow<strong>in</strong>g, the measured hysteretic current–voltagecharacteristics (parts CD <strong>and</strong> DE) are compared with thoseresult<strong>in</strong>g from an analytical model [7,8,12–14,24].The two beads <strong>in</strong> contact are considered as two homogeneous<strong>and</strong> isotropic metal conductors with large dimensionscompared to the contact radius. The electric currentgoes <strong>in</strong>to <strong>and</strong> leaves by surface ends S 1 <strong>and</strong> S 2 (Fig. 3).The heat flux only runs out through these same surfaces.For side surfaces, the losses by <strong>conduction</strong>, convection orradiation are neglected. It should be noted that the thermalconductivities <strong>of</strong> the air (λ air ≃ 0.026 W m −1 K −1 )<strong>and</strong>thePVC tubes (λ PVC ≃ 0.16 W m −1 K −1 )aremuchsmallerthan thermal conductivity with<strong>in</strong> the sta<strong>in</strong>less steel (λ steel ≃15 W m −1 K −1 ).Equipotential surfaces <strong>in</strong> the whole bead are also isothermalsurfaces. The two networks <strong>of</strong> equipotential <strong>and</strong>Fig. 7 Voltage U,currentI <strong>and</strong> power P = UI for a cha<strong>in</strong> <strong>of</strong> 3 sta<strong>in</strong>lessbeads (diameter 11 mm) submitted to four successive cycles <strong>of</strong>current. ↗ <strong>and</strong> ↖:<strong>in</strong>creas<strong>in</strong>gcurrents;↙ <strong>and</strong> ↘:decreas<strong>in</strong>gcurrentsisotherm present values that depend on the boundary conditionsimposed on the potential <strong>and</strong> the temperature. Moreover,the equipotential network is <strong>in</strong>dependent <strong>of</strong> the heatflux. Tak<strong>in</strong>g <strong>in</strong>to account the previous considerations, phenomenaare considered <strong>in</strong> a steady-state, <strong>and</strong> the equation<strong>of</strong> energy balance leads to the Kohlrausch relation. It providesthe follow<strong>in</strong>g expression for the potential difference ubetween the contact surface <strong>and</strong> the surface at temperatureT :u 2 (T, T c ) = 2∫ T cTρ(θ)λ(θ) dθ, (3)where T c , λ <strong>and</strong> ρ are respectively the temperature <strong>of</strong> thecontact surface, the thermal conductivity <strong>and</strong> the electricalresistivity.The conservation equation <strong>of</strong> the charged particle flow1 −−→ρ(T 0 ) grad[vlc (T 0 )]=ρ(T 1 −−→) grad[u(T )] allows to obta<strong>in</strong> thepotential difference v lc (between the contact surface <strong>and</strong> surfaceS 0 )forweakelectricalcurrentswithnoheatflux:∫ T cλ(θ)v lc (T 0 , T c ) = ρ(T 0 ) dθ. (4)U(θ)T 0The dependencies <strong>of</strong> the electrical resistivity <strong>and</strong> thermalconductivity on the temperature are considered l<strong>in</strong>ear <strong>and</strong>respectively <strong>of</strong> the form:ρ(T ) = ρ r {1 + α(T − T r )}[ m],λ(T ) = λ r {1 + β(T − T r )} [Wm −1 K −1 ], (5)where ρ r ≃ 0.810 −6 m<strong>and</strong>λ r ≃ 15 W m −1 K −1 arereference values <strong>of</strong> the electrical resistivity <strong>and</strong> thermal conductivityat temperature T r ≃ 293 K [22,25]. The values <strong>of</strong>coefficients α <strong>and</strong> β can be obta<strong>in</strong>ed by m<strong>in</strong>imization <strong>of</strong> thedifference between the voltage–current (U −I ) model (Eq. 6)<strong>and</strong> the experimental data. It is necessary because <strong>of</strong> the lack123


P. Béqu<strong>in</strong>, V. Tournat<strong>of</strong> exist<strong>in</strong>g data on the dependence <strong>of</strong> electrical resistivity<strong>and</strong> thermal conductivity on temperature for sta<strong>in</strong>less steels[22,25,26], <strong>and</strong> <strong>in</strong> particular for AISI 440C (code used bythe American Iron <strong>and</strong> Steel Institute) or 1.4125 (Europeanmaterial number).For small electric currents, the voltage V lc (between surfacesS 1 <strong>and</strong> S 2 )<strong>and</strong>thecurrentI are observed to be l<strong>in</strong>earlydependent such as V lc = R lc I ,whereR lc is determ<strong>in</strong>ed bythe slope <strong>of</strong> the U–I plot at low current (Fig. 2).The substitution <strong>of</strong> the first two terms <strong>of</strong> the Taylor expansion<strong>of</strong> ρλ ≃ ρ r λ r {1 + (α + β)(T − T r )} <strong>in</strong>to Eqs. 3 <strong>and</strong> 4,leads to the potential difference between electrodes given byHolm [7]:V lc (T 0 ) = R lc I = ρ 0 2(n + 1) √ ρ r λ rρ r (α + β) 3 2{ []W(T 0 )× α arctan1 + (α + β)(T 0 − T r )}+ β W(T 0 )√where W(T 0 ) = α+β U(T0 )2(n+1) √ <strong>and</strong> ρρ r λ 0 = ρ r {1 + α(T 0 − T r )}.rBy <strong>in</strong>troduc<strong>in</strong>g the maximum values <strong>of</strong> the electric currentI MAX <strong>and</strong> <strong>of</strong> the voltage U MAX ,Eq.6 can be rewritten as[]W(Tα arctan0 )1+(α+β)(T 0 −T r )+ β W(T 0 )I = I MAX [] , (7)α arctan+ β W MAXW MAX1+(α+β)(T 0 −T r )√ α+β UMAX2(n+1) √ ρ r λ r.where W MAX =Equations 6 <strong>and</strong> 7 give the relation between the current I<strong>and</strong> the potential difference U between n beads, with α <strong>and</strong> βtwo parameters to be adjusted. For weak currents I <strong>in</strong> Eq. 6,the l<strong>in</strong>ear dependence between current <strong>and</strong> voltage is foundby impos<strong>in</strong>g |β| ≪ α. Forhighercurrents,thefollow<strong>in</strong>gsimplifications can be used:– the temperature T r associated to the reference variablesis equal to the temperature <strong>of</strong> the beads T 0 when theycarry a weak current I ;– the material at the contact follows the Wiedemann–Franz’s law which states that the product <strong>of</strong> the thermalconductivity by the electrical resistivity <strong>of</strong> a metalis proportional to the temperature: ρ r λ r = LT 0 ,whereL = 2.45 × 10 −8 V 2 /K 2 is the Lorenz number;– consequence <strong>of</strong> the preced<strong>in</strong>g assumption, the quantityα + β must be close to 1/T 0 .Under these assumptions, the relation between the current I<strong>and</strong> the voltage U can be written <strong>in</strong> the simplified form [7,8]:I = V lc(T 0 )= 2(n + 1)T √0 LR lc R lc× {αT 0 arctan [U(T 0 )] + (1 − αT 0 ) U(T 0 )} . (8)(6)where U(T 0 ) = U(T 0)2(n+1)T 0√L.4.1 DiscussionTo identify the limitations <strong>of</strong> the previous models (Eqs. 6 <strong>and</strong>8), experimental data (U, I ) obta<strong>in</strong>ed <strong>in</strong> a cha<strong>in</strong> <strong>of</strong>three beads (diameter 11 mm) carry<strong>in</strong>g a current with cycles<strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>and</strong> decreas<strong>in</strong>g values, are now presented.Figure 7 shows how voltage U <strong>and</strong> power P vary withcurrent I .From the preced<strong>in</strong>g paragraph it can be seen that both Eqs.6 <strong>and</strong> 8, provid<strong>in</strong>garelationbetweenthecurrentI <strong>and</strong> thevoltage U,presentasimilarform:I = A arctan(BU)+CU.Parameters A, B <strong>and</strong> C can be adjusted to obta<strong>in</strong> the best fitwith the experimental data, as shown <strong>in</strong> Figs. 6 <strong>and</strong> 8.4.1.1 Simplified modelsBy identify<strong>in</strong>g parameters A, B <strong>and</strong> C to the correspond<strong>in</strong>gterms <strong>of</strong> the simplified relation between current <strong>and</strong> voltage(Eq. 8), R lc , α <strong>and</strong> T 0 can be determ<strong>in</strong>ed. Table 1 givesthe evolution <strong>of</strong> the latter quantities for successive cycles <strong>of</strong>electric current. Values <strong>of</strong> R lc are identical to those determ<strong>in</strong>edby the slope <strong>of</strong> the U–I plot at low current (see values<strong>of</strong> R lc listed <strong>in</strong> Table 3). The values <strong>of</strong> α are positive <strong>and</strong>decrease slowly with the current I MAX . This <strong>effect</strong> is discussedlater <strong>in</strong> this article. The values (α ≃ 2 × 10 −3 [K −1 ])are close to the values (α ≃ 6 × 10 −3 [K −1 ])given<strong>in</strong>Ref.[12]forvarioussolid/solidcontactsbetweenmetals(Al,Ni,Fe) <strong>and</strong> (α ≃ 1.6 × 10 −3 [K −1 ])given<strong>in</strong>Ref.[22] forasta<strong>in</strong>less steel AISI 420. F<strong>in</strong>ally, an important feature <strong>of</strong> thesimplified model is the prediction <strong>of</strong> temperatures T 0 <strong>of</strong> thebulk <strong>of</strong> the beads with anomalously high values comparedto the expected values around 300 K. This discrepancy maybe attributed to the use <strong>of</strong> Wiedemann–Franz’s law whichhas been found to be <strong>in</strong>adequate for some materials (iron <strong>and</strong>nickel for <strong>in</strong>stance [8]).However, it is <strong>in</strong>terest<strong>in</strong>g to note that an equivalent form<strong>of</strong> this simplified model is used by Falcon et al. [13,14](Eq.(8) <strong>in</strong> Ref. [14]) <strong>and</strong> it correctly models the electro-thermalphenomena <strong>in</strong> the cha<strong>in</strong> <strong>of</strong> sta<strong>in</strong>less steel beads (martensiticsta<strong>in</strong>less steel AISI 420). In this model [13,14], the coefficientα is <strong>in</strong>itially deduced from the relation α −1 = 3.46 T 0(for an austenitic sta<strong>in</strong>less steel AISI 304—see Ref. [26] from[14]) <strong>and</strong> is then replaced by the relation α −1 = 4 T 0 <strong>in</strong> orderto obta<strong>in</strong> a better agreement between predictions <strong>and</strong> experimentaldata for martensitic sta<strong>in</strong>less steel beads AISI 420used <strong>in</strong> the experimental system.Figure 8 compares the experimental data (obta<strong>in</strong>ed <strong>in</strong> ourcha<strong>in</strong> <strong>of</strong> 3 martensitic sta<strong>in</strong>less steel beads AISI 440C) <strong>and</strong>the model [13,14] with α −1 = 1.9 T 0 .Thislastexpressionwith factor 1.9 isfoundtoprovidethebestagreement123


<strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> cha<strong>in</strong>s <strong>of</strong> beadsTable 2 Quantities correspond<strong>in</strong>g to the experimental characteristicsU–I <strong>of</strong> Figs. 7 <strong>and</strong> 8—cha<strong>in</strong> <strong>of</strong> 3 sta<strong>in</strong>less beads (diameter 11 mm)1 2 3 4I MAX (A) 0.5 1 1.5 2α ↓ ∗ 10 −3 (K −1 ) 1.8 1.7 1.4 1.2α ↑ ∗ 10 −3 (K −1 ) 1.8 1.7 1.4 0.9T 0↓ (K) 295 315 365 440T 0↑ (K) 295 315 365 600Fig. 8 Voltage U as a function <strong>of</strong> current I for a cha<strong>in</strong> <strong>of</strong> 3 sta<strong>in</strong>lessbeads (diameter 11 mm) submitted to four successive cycles <strong>of</strong> current.Experimental data (multisymbol), analytical model (solid l<strong>in</strong>es) correspond<strong>in</strong>gto Eqs. 6 <strong>and</strong> 8. Parameters <strong>of</strong> the fit are given <strong>in</strong> Table 3.Analyticalmodel from Falcon et al. (Eq. (8) <strong>in</strong> Ref. [14]) with α −1 = 1.9 T 0(Table 2 gives the evolution <strong>of</strong> T 0 ): (dashed l<strong>in</strong>es with dotted) <strong>in</strong>creas<strong>in</strong>gcurrents <strong>and</strong> (dashed l<strong>in</strong>es) decreas<strong>in</strong>g currentsbetween model <strong>and</strong> experiments for low electric currentsI MAX = 0.5 A.Fortheothercycles<strong>of</strong>electriccurrent,thetemperature T 0 is adjusted to give the best agreement betweenmodel <strong>and</strong> experiments. The results are gathered <strong>in</strong> Table 2.The values <strong>of</strong> α are sensibly smaller than those from modelEq. 8 <strong>and</strong> decrease a little faster with I MAX .Thismodelpredictsalso anomalously high temperatures T 0 .Figure8 showsthat with <strong>in</strong>creas<strong>in</strong>g I MAX ,themodel[13,14] deviatessignificantlyfrom the experimental cycles. Although the experimentalU–I characteristics can be well fitted by the modelsEqs. 6 <strong>and</strong> 8 (see Fig. 8), there exist disagreements on theobta<strong>in</strong>ed parameters from the both preced<strong>in</strong>g models (seeparameter values <strong>in</strong> Table 1 <strong>and</strong> especially the temperatureT 0 ). This shows the failure <strong>of</strong> these models to describe correctlythe electro-thermo-mechanical behavior <strong>of</strong> a cha<strong>in</strong> <strong>of</strong>Table 1 Quantities correspond<strong>in</strong>g to the experimental characteristicsU–I <strong>of</strong> Figs. 7 <strong>and</strong> 8—cha<strong>in</strong> <strong>of</strong> 3 sta<strong>in</strong>less beads (diameter 11 mm)1 2 3 4I MAX (A) 0.5 1 1.5 2R lc↓ () 1.09 0.58 0.43 0.35R lc↑ () 1.08 0.58 0.44 0.41α ↓ ∗ 10 −3 (K −1 ) 2.4 2.3 2.0 2.0α ↑ ∗ 10 −3 (K −1 ) 2.4 2.2 1.9 1.5T 0↓ (K) 543 601 702 968T 0↑ (K) 513 544 632 1071The parameters R lc , α (related to electrical resistivity) <strong>and</strong> T 0 are providedby the simplified model Eq. 8 us<strong>in</strong>g a nonl<strong>in</strong>ear m<strong>in</strong>imizationrout<strong>in</strong>e. Quantities for <strong>in</strong>creas<strong>in</strong>g current are R lc↑ , α ↑ <strong>and</strong> T 0↑ ; quantitiesfor decreas<strong>in</strong>g current are R lc↓ , α↓ <strong>and</strong> T 0↓The model <strong>of</strong> Falcon et al. [13,14] withα −1 = 1.9 T 0 is used. Quantitiesfor <strong>in</strong>creas<strong>in</strong>g current are α ↑ <strong>and</strong> T 0↑ ; quantities for decreas<strong>in</strong>gcurrent are α↓ <strong>and</strong> T 0↓beads carry<strong>in</strong>g various currents <strong>and</strong> submitted to a weak force∼ 1N.4.1.2 Extended modelUnder these conditions, the ‘extended’ model (Eq. 6) describedpreviously must be considered. Parameters A, B <strong>and</strong>Carenowidentifiedtothecorrespond<strong>in</strong>gterms<strong>of</strong>therelationbetween current <strong>and</strong> voltage (Eq. 6). Us<strong>in</strong>g the resistanceR lc evaluated through the slope <strong>of</strong> the U–I plot at low current<strong>and</strong> assum<strong>in</strong>g α(T 0 − T r ) ≪ 1 (a realistic assumption),quantities α <strong>and</strong> β can be estimated. Table 3 gives the evolutions<strong>of</strong> these quantities for cycles <strong>of</strong> electric current (seeFig. 7).For all the cycles <strong>of</strong> electric current, parameters α arepositive <strong>and</strong> β negative. The obta<strong>in</strong>ed values are close toα ≃ 6×10 −3 K −1 <strong>and</strong> 2×10 −4 ≤ β ≤ 12×10 −4 K −1 givenby reference [12] forvarioussolid/solidcontactsbetweenmetals (Al, Ni, Fe) <strong>and</strong> α ≃ 1.6 × 10 −3 K −1 given <strong>in</strong>Table 3 Quantities correspond<strong>in</strong>g to the characteristics U–I <strong>of</strong> Fig. 7—cha<strong>in</strong> <strong>of</strong> 3 sta<strong>in</strong>less beads (diameter 11 mm)1 2 3 4I MAX (A) 0.5 1 1.5 2U MAX (V) 0.93 0.98 1.05 1.1R lc↓ () 1.09 0.58 0.43 0.36R lc↑ () 1.09 0.58 0.44 0.42α ↓ ∗ 10 −3 (K −1 ) 2.2 1.9 1.4 1.0α ↑ ∗ 10 −3 (K −1 ) 2.3 2.0 1.5 0.7β ↓ ∗ 10 −4 (K −1 ) −5.2 −5.0 −4.2 −4.8β ↑ ∗ 10 −4 (K −1 ) −4.3 −3.6 −2.7 −2.5R lc is obta<strong>in</strong>ed from the slope <strong>of</strong> the U–I curve at low current. Parametersα (connected to the electrical resistivity) <strong>and</strong> β (connected to thethermal conductivity) are provided by Eq. 6 us<strong>in</strong>g a nonl<strong>in</strong>ear m<strong>in</strong>imizationrout<strong>in</strong>e. Quantities for <strong>in</strong>creas<strong>in</strong>g current are R lc↑ , α ↑ <strong>and</strong> β ↑ ;quantities for decreas<strong>in</strong>g current are R lc↓ , α ↓ <strong>and</strong> β ↓123


P. Béqu<strong>in</strong>, V. TournatRef. [22] forasta<strong>in</strong>lesssteelAISI420.Thus,an<strong>in</strong>crease<strong>in</strong> temperature when large currents pass through the contactregion between beads leads to an <strong>in</strong>crease <strong>in</strong> the electricalresistivity ρ <strong>and</strong> to a decrease <strong>in</strong> the thermal conductivityλ with<strong>in</strong> the contact<strong>in</strong>g material. Consequently a rise<strong>in</strong> temperature <strong>in</strong>creases resistivity—<strong>and</strong> <strong>Joule</strong> <strong>effect</strong>—<strong>and</strong>decreases thermal conductivity—which reduces the ability<strong>of</strong> the material to dissipate heat by thermal <strong>conduction</strong>. Inthe contact region between beads it is sufficient to cause asignificant heat accumulation. Moreover, it can be observedthat the saturation voltage U MAX <strong>in</strong>creases with the maximumcurrent I MAX .Consequently,thetemperatureatthecontact surface <strong>in</strong>creases <strong>and</strong> tends gradually towards themelt<strong>in</strong>g temperature <strong>of</strong> the contact<strong>in</strong>g material. A s<strong>of</strong>ten<strong>in</strong>g<strong>of</strong> the asperities is expected [13], <strong>and</strong> can lead to alocal micro-s<strong>in</strong>ter<strong>in</strong>g. As a result, the electrical resistivityis found to decrease with current I MAX (α decreases) <strong>and</strong>the thermal conductivity <strong>in</strong>creases with current I MAX (|β|decreases).For a cycle <strong>of</strong> electric current, coefficients α ↑ (<strong>in</strong>creas<strong>in</strong>gcurrent) <strong>and</strong> α ↓ (decreas<strong>in</strong>g current) present roughly equalvalues; <strong>in</strong> contrast coefficients β ↑ <strong>and</strong> β ↓ <strong>of</strong> thermal conductivityhave different values (|β ↓ | > |β ↑ |)thatmeasurementuncerta<strong>in</strong>ty cannot expla<strong>in</strong> al<strong>one</strong>. In model Eq. 6, thedependencies <strong>of</strong> electrical resistivity <strong>and</strong> thermal conductivityon temperature are considered l<strong>in</strong>ear (Eq. 5) overthewhole range <strong>of</strong> temperature (293–1800 K). On the basis <strong>of</strong>the presented results, <strong>one</strong> improvement could be to seek moreelaborated relations for ρ(T ) <strong>and</strong> λ(T ). Thedependenciescan be expressed as a power series <strong>of</strong> temperature T withmore terms than used <strong>in</strong> models [12,27]. Furthermore, it is<strong>in</strong>terest<strong>in</strong>g to note that a positive value <strong>of</strong> β ↑ for the <strong>in</strong>creas<strong>in</strong>gcurrents is deduced from Fig. 6. A thorough analysis <strong>of</strong>the experimental curve shows a po<strong>in</strong>t <strong>of</strong> <strong>in</strong>flection close toI = 0.44 A. This change <strong>of</strong> behavior could be ascribed toan <strong>in</strong>itial s<strong>of</strong>ten<strong>in</strong>g <strong>of</strong> the contact surface when the currentgrows, <strong>and</strong> could partly expla<strong>in</strong> the difference with the values<strong>in</strong> Table 3. The role <strong>of</strong> the latent heat <strong>in</strong> the possiblemicro-melt<strong>in</strong>g <strong>of</strong> the asperities is a highly complex phenomenonto model at this level <strong>of</strong> underst<strong>and</strong><strong>in</strong>g. It has notbeen taken <strong>in</strong>to account <strong>in</strong> the presented models: all the estimatedtemperatures rema<strong>in</strong> significantly lower than the melt<strong>in</strong>gpo<strong>in</strong>t. Only s<strong>of</strong>ten<strong>in</strong>g <strong>of</strong> the contacts <strong>and</strong> micro-s<strong>in</strong>ter<strong>in</strong>ghave been <strong>in</strong>voked here to <strong>in</strong>terpret the results. The study<strong>of</strong> the micro-structural changes <strong>of</strong> the contact areas by othermeans could be pr<strong>of</strong>itable to guide the future improvements<strong>of</strong> the models.In conclusion, these measurements show the diversity <strong>of</strong>electrical <strong>and</strong> thermal phenomena with<strong>in</strong> the cha<strong>in</strong>s <strong>of</strong> beads.The simplified models based on the Wiedemann–Franz’slaw fail to describe the electro-thermo-mechanical phenomena<strong>in</strong> a cha<strong>in</strong> <strong>of</strong> beads carry<strong>in</strong>g currents under a small appliedcompression force ∼1 N.5Electromagnetic<strong>effect</strong>sonacha<strong>in</strong><strong>of</strong>beadsThe l<strong>in</strong>ear <strong>and</strong> nonl<strong>in</strong>ear acoustic properties <strong>of</strong> granular materialsare strongly sensitive to the mechanical properties at thelevel <strong>of</strong> the contacts between beads [4]. For such studies, itcould be extremely convenient to be able to modify contactmechanical properties without any modification <strong>of</strong> the geometry<strong>of</strong> the medium. A controlled electromagnetic wave hasthe ability to produce these mechanical transformations withoutaffect<strong>in</strong>g the rema<strong>in</strong>der <strong>of</strong> the granular structure. In thiscontext, <strong>and</strong> as a complement to the previous part, this sectionreports an analysis <strong>of</strong> the electrical <strong>and</strong> thermal behaviors <strong>of</strong>acha<strong>in</strong><strong>of</strong>beadssubjectedtoastrongelectromagneticpulsecreated by a spark.This study can be viewed as a cont<strong>in</strong>uation <strong>of</strong> the work<strong>of</strong> Dorbolo et al. [21] whichwasdeal<strong>in</strong>gwiththe<strong>in</strong>fluence<strong>of</strong> an electromagnetic wave on the electrical resistance <strong>of</strong>the contacts between two beads. In [21], the electromagneticperturbation is found to affect preferentially the contacts hav<strong>in</strong>ga resistance higher than a threshold value which dependsma<strong>in</strong>ly on both the mechanical characteristics <strong>of</strong> the cha<strong>in</strong> <strong>of</strong>beads <strong>and</strong> <strong>of</strong> the distance between the latter <strong>and</strong> the spark (theelectromagnetic source). Here, we carry out measurementswith a near field electromagnetic excitation. They confirmpartly <strong>and</strong> extend the observations <strong>of</strong> Ref. [21] made<strong>in</strong>thefar field.5.1 Experimental set-upThe experimental set-up is presented <strong>in</strong> Fig. 9. Theelectromagneticwave is produced by a discharge across a spark gapas <strong>in</strong> Refs. [17,28].Experiments were performed us<strong>in</strong>g a “three-electrode system”<strong>in</strong> which the storage capacitor is kept charged at a voltage(from 0 to 20 kV) lower than the breakdown voltage <strong>of</strong>the gap <strong>in</strong> air at atmospheric conditions. A third electrodeis placed between the ma<strong>in</strong> electrodes to provide an <strong>in</strong>itialionization <strong>of</strong> the air necessary to cause the spark breakdownmechanism.5.2 ResultsFigure 10 shows the voltage–current characteristics for acycle <strong>of</strong> current (0–1 A). Dur<strong>in</strong>g this cycle, 5 sparks are created(distance between the cha<strong>in</strong> <strong>of</strong> beads <strong>and</strong> the electrodesr ≃ 120 mm) caus<strong>in</strong>g a voltage drop between the electrodes<strong>of</strong> the cha<strong>in</strong> <strong>of</strong> beads. These voltage drops can be connectedto strong variations <strong>of</strong> the contact impedances. It is observedthat for <strong>in</strong>creas<strong>in</strong>g dc currents I ,theelectricbehavior<strong>of</strong>thecha<strong>in</strong> <strong>of</strong> beads is less <strong>and</strong> less disturbed by the electromagneticpulses.The electromagnetic radiation created by these sparks<strong>in</strong>duces an electric current I sp <strong>in</strong> the cha<strong>in</strong> <strong>of</strong> beads which is123


<strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> cha<strong>in</strong>s <strong>of</strong> beadsFig. 11 Diameter <strong>of</strong> the contact d versus current I deduced from theellipsoidal model for the contact surface. Solid curve: model I U = d ρ —Eq. 2. Cha<strong>in</strong> <strong>of</strong> 5 sta<strong>in</strong>less beads (diameter 11 mm). Dur<strong>in</strong>g the cycle<strong>of</strong> current, 5 sparks were created; r ≃ 120 mm distance between thecha<strong>in</strong> <strong>of</strong> bead <strong>and</strong> the sparkFig. 9 Schematic diagram <strong>of</strong> the experimental set-up to study the <strong>in</strong>fluence<strong>of</strong> an electromagnetic wave pulse on the electromechanical behavior<strong>of</strong> a cha<strong>in</strong> <strong>of</strong> beads. A “three-electrode system” is used for the generation<strong>of</strong> the electromagnetic pulse. V T <strong>and</strong> V HT are the trigger voltage<strong>and</strong> the capacitor voltage. The gap distance is 10 mm <strong>and</strong> r is the distancebetween the axis <strong>of</strong> the discharge <strong>and</strong> the axis <strong>of</strong> the cha<strong>in</strong> <strong>of</strong>beadsFig. 12 Induced current I sp versus distance r between the cha<strong>in</strong> <strong>of</strong>beads <strong>and</strong> the spark. Values estimated at I ≃ 0.5 Adur<strong>in</strong>gacycle<strong>of</strong>current (0–0.5 A) on a cha<strong>in</strong> <strong>of</strong> 5 sta<strong>in</strong>less beads (diameter 11 mm).Dashed l<strong>in</strong>e corresponds to I sp ∝ 1/r 2.1Fig. 10 Voltage U as a function <strong>of</strong> current I . Cha<strong>in</strong> <strong>of</strong> 5 sta<strong>in</strong>less beads(diameter 11 mm). Dur<strong>in</strong>g the cycle <strong>of</strong> current, 5 sparks are produced<strong>and</strong> are <strong>in</strong>dicated by the arrows. The distance between the cha<strong>in</strong> <strong>of</strong>beads <strong>and</strong> the spark is r ≃ 120 mmadded <strong>in</strong> a quadratic way to the dc current I due to the fact thatthey are <strong>in</strong>coherent current sources. Us<strong>in</strong>g the model fromEq. 2 giv<strong>in</strong>g the diameter <strong>of</strong> the contact as a function <strong>of</strong> theadmittance I U = d ρ ,thecontactdiameterisplottedasafunction<strong>of</strong> the current <strong>in</strong> Fig. 11.Thecurrentpulse<strong>in</strong>ducedbytheelectromagnetic pulse contributes to the sudden rise <strong>of</strong> thecontact diameter between beads. After this sudden <strong>in</strong>crease,the diameter rema<strong>in</strong>s constant as long as the dc current Ican flow without modify<strong>in</strong>g the area <strong>of</strong> contact by s<strong>of</strong>ten<strong>in</strong>g[9–11,21].The value <strong>of</strong> the impulse current I sp can be estimated byidentification to the value <strong>of</strong> the dc current I necessary toobta<strong>in</strong> the same diameter <strong>of</strong> contact. With this method, the<strong>in</strong>duced current I sp for the first spark (data correspond<strong>in</strong>g toFigs. 10 <strong>and</strong> 11)isestimatedtobearound0.35 A. In this currentcycle, for dc currents higher than 0.9 A, the presence <strong>of</strong><strong>in</strong>duced impulse currents does not further modify the contactgeometry between the beads. As was previously observed <strong>in</strong>[21], the Fig. 11 shows that the contacts hav<strong>in</strong>g a small diameter<strong>and</strong> thus a high electrical resistance (U I = ρ d —Eq. 2)arestrongly affected by the electromagnetic perturbation.Figure 12 gives the current <strong>in</strong>duced by the electromagneticpulse <strong>of</strong> a spark placed at a distance r from a cha<strong>in</strong> <strong>of</strong> 5 beads.The values <strong>of</strong> this current are estimated us<strong>in</strong>g the methoddescribed previously. This figure shows that the <strong>in</strong>duced currentdecreases monotonically as distance r <strong>in</strong>creases. A firstanalysis at the distances r higher than 50 mm (distances123


P. Béqu<strong>in</strong>, V. Tournatroughly equal or larger than the length <strong>of</strong> the cha<strong>in</strong> <strong>of</strong> beads:5 × 11 mm) shows that the current <strong>in</strong>duced by the spark isproportional to 1/r 2.1 (obta<strong>in</strong>ed through a l<strong>in</strong>ear regressionon log[I sp ]). These results are consistent with those obta<strong>in</strong>ed<strong>in</strong> [21] wherean<strong>in</strong>ducedcurrentproportionalto1/r m withm ≃ 1.2 fordistancesr vary<strong>in</strong>g between 0.1 <strong>and</strong> 2.2 mis observed. Note that the spatial dependence <strong>of</strong> monochromaticelectromagnetic wave amplitude is respectively proportionalto 1/r 2 <strong>in</strong> the near field <strong>and</strong> proportional to 1/r <strong>in</strong>the far field.At this level, the lack <strong>of</strong> <strong>in</strong>formation on the electromagneticfield (amplitude, frequency spectrum <strong>and</strong> directivity)does not allow the development <strong>of</strong> a realistic model to becompared to experimental results. These particular electromagneticbehaviors as a function <strong>of</strong> distance (near field/farfield) will have to be taken <strong>in</strong>to account <strong>in</strong> the models <strong>and</strong>experiments dedicated to the electromechanical behavior <strong>of</strong>agranularmediumwithlargedimensions.6ConclusionCont<strong>in</strong>ued <strong>in</strong>terest <strong>in</strong> granular materials has stimulated newexperiments <strong>and</strong> models to characterize these complex structures.In this article the electrical <strong>and</strong> thermal behaviors <strong>of</strong> acha<strong>in</strong> <strong>of</strong> beads carry<strong>in</strong>g a dc <strong>and</strong> an impulse electric currenthave been <strong>in</strong>vestigated. This work provides theoretical <strong>and</strong>experimental cont<strong>in</strong>uations to the studies <strong>of</strong> Refs. [13,14,21]mostly carried out <strong>in</strong> the context <strong>of</strong> the Branly <strong>effect</strong>.The passage <strong>of</strong> an electric current <strong>in</strong> a cha<strong>in</strong> <strong>of</strong> beadsaffects the nature <strong>of</strong> the contact between beads by caus<strong>in</strong>gaheat<strong>in</strong>g<strong>and</strong>as<strong>of</strong>ten<strong>in</strong>g<strong>of</strong>themetalnearthe<strong>in</strong>terface.These changes are consequent to the heat which is generated<strong>in</strong> the constricted region <strong>of</strong> the current flow <strong>and</strong> lead to an<strong>in</strong>crease <strong>in</strong> the contact surface. We developed specifically anexperimental setup suited to the measurement <strong>of</strong> the electriccurrent <strong>and</strong> voltage for a cha<strong>in</strong> <strong>of</strong> metallic beads. The analysis<strong>of</strong> the voltage–current characteristics <strong>of</strong> such a cha<strong>in</strong><strong>in</strong>dicates that the diameter <strong>of</strong> the contact surface varies l<strong>in</strong>earlywith electric current I .Subjectedtoacycliccurrent,the cha<strong>in</strong> <strong>of</strong> beads presents an electromechanical behavior<strong>of</strong> hysteretic type. The larger are the electric current <strong>and</strong> thenumber <strong>of</strong> beads the larger is the hysteretic <strong>effect</strong> (the loop)<strong>and</strong> the greater is the heat released <strong>in</strong> the cha<strong>in</strong>.Steady states models derived on the assumption <strong>of</strong> equilibriumbetween <strong>Joule</strong> heat<strong>in</strong>g <strong>in</strong> the contact area <strong>and</strong>thermal dissipation by <strong>conduction</strong> with<strong>in</strong> the material areproposed. The simplified models <strong>of</strong> Eq. 8 <strong>and</strong> the modeldeveloped <strong>in</strong> [13,14], all based on the Wiedemann–Franz’slaw (W–F) (which states that the product <strong>of</strong> the thermal conductivity<strong>and</strong> the electrical resistivity <strong>of</strong> a metal is proportionalto the temperature), are observed to be <strong>in</strong>adequate todescribe electromechanical <strong>conduction</strong> <strong>in</strong> cha<strong>in</strong>s <strong>of</strong> beadswith cyclic currents under a weak static compression force∼1N.AnextendedmodelEq.6 is then developed without therestrictions <strong>of</strong> the W–F’s law. The comparisons with experimentaldata provide the variations <strong>of</strong> parameters α <strong>and</strong> βcorrespond<strong>in</strong>g respectively to the l<strong>in</strong>ear evolution <strong>of</strong> the electricalresistivity <strong>and</strong> to the thermal conductivity (Eq. 5). Theseresults could benefit <strong>in</strong> the future from temperature measurementson the beads <strong>and</strong> from the use <strong>of</strong> various materials <strong>and</strong>bead diameters.The <strong>effect</strong> <strong>of</strong> an electromagnetic pulse produc<strong>in</strong>g a pulse<strong>of</strong> electric current through a cha<strong>in</strong> <strong>of</strong> beads is f<strong>in</strong>ally studied.The electromagnetic wave pulse is created by an electric discharge(electric spark) placed near the cha<strong>in</strong> <strong>of</strong> beads. Theexperimental results show that the current can cause appreciablechanges <strong>in</strong> the contact surface when the magnitude <strong>of</strong>the <strong>in</strong>duced current is sufficient but also when the dccurrent rema<strong>in</strong> weak. Evolution <strong>of</strong> the <strong>in</strong>duced current withthe cha<strong>in</strong>/spark distance <strong>in</strong> near field (100 mm) <strong>in</strong> Ref.[21] wherethe1/r dependence is observed.The control <strong>of</strong> the contact surface between beads us<strong>in</strong>gasuitableelectromagneticwavecouldf<strong>in</strong>dapplications<strong>in</strong>particular <strong>in</strong> the study <strong>of</strong> the fundamental processes <strong>in</strong>volved<strong>in</strong> the acoustic propagation through granular media [29–32].Acknowledgments We would like to thank James Blondeau, StéphaneLebon <strong>and</strong> Eric Egon for their assistance <strong>in</strong> the experiments <strong>and</strong>their technical advice. We particularly thank Jean-Marie Genet for hisexperimental work.References1. Duran, J.: S<strong>and</strong>s, Powders <strong>and</strong> Gra<strong>in</strong>s. Spr<strong>in</strong>ger-Verlag, NewYork (1999)2. Kakalios, J.: Granular physics or nonl<strong>in</strong>ear dynamics <strong>in</strong> a s<strong>and</strong>box.Am. J. Phys. 73(1), 8–22 (2005)3. Nesterenko, V.F.: Dynamics <strong>of</strong> Heterogeneous Materials. Spr<strong>in</strong>ger-Verlag, New York (2001)4. Tournat, V., Zaitsev, V., Gusev, V., Nazarov, V., Béqu<strong>in</strong>, P.,Castagnède, B.: Prob<strong>in</strong>g weak forces <strong>in</strong> granular media throughnonl<strong>in</strong>ear dynamic dilatancy: clapp<strong>in</strong>g contacts <strong>and</strong> polarizationanisotropy. Phys. Rev. Lett. 92, 085502(2004)5. Sen, S., Hong, J., Avalos, E., D<strong>one</strong>y, R.: Solitary waves <strong>in</strong> thegranular cha<strong>in</strong>. Phys. Rep. 462, 21–66(2008)6. Johnson, K.L.: Contact Mechanics. Cambridge UniversityPress, Cambridge (1985)7. Holm, R.: Electric Contacts, 3rd edn. Spr<strong>in</strong>ger, Berl<strong>in</strong> (2000)8. Féchant, L.: Le contact électrique. Hermès, Paris (1996)9. Bowden, F.P., Williamson, J.B.P.: <strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> solids.Part I: <strong>in</strong>fluence <strong>of</strong> the passage <strong>of</strong> current on the contact betweensolids. Proc. R. Soc. Lond. Ser. A 246(1244), 1–12 (1958)10. Greenwood, J.A., Williamson, J.B.P.: <strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> solids.Part II: theory <strong>of</strong> temperature-dependent conductors. Proc. R.Soc. Lond. Ser. A 246(1244), 13–31 (1958)123


<strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> cha<strong>in</strong>s <strong>of</strong> beads11. Greenwood, J.A., Harris, J.: <strong>Electrical</strong> <strong>conduction</strong> <strong>in</strong> solids.Part III: the contact <strong>of</strong> iron surfaces. Proc. R. Soc. Lond. Ser.A 257(1288), 83–97 (1960)12. Timsit, R.S. : Ch.1 electrical contact resistance: fundamental pr<strong>in</strong>ciples.In: Slade, P.G. <strong>Electrical</strong> Contacts—Pr<strong>in</strong>ciples <strong>and</strong> Applications,CRC Press, New York (1999)13. Falcon, E., Casta<strong>in</strong>g, B., Creyssels, M.: Nonl<strong>in</strong>ear electrical conductivity<strong>in</strong> a 1D granular medium. Eur. Phys. J. B 38, 475–483 (2004)14. Falcon, E., Casta<strong>in</strong>g, B.: <strong>Electrical</strong> conductivity <strong>in</strong> granularmedia <strong>and</strong> Branly’s coherer: a simple experiment. Am. J.Phys. 73(4), 302–307 (2005)15. Gém<strong>in</strong>ard, J.-C., Bouraya, D., Gayvallet, H.: Thermal conductivityassociated with a bead-bead contact decorated by a liquidbridge. Eur. Phys. J. B 48, 509–517(2005)16. Creyssels, M., Dorbolo, S., Merlen, A., Laroche, C., Casta<strong>in</strong>g, B.,Falcon, E.: Some aspects <strong>of</strong> electrical <strong>conduction</strong> <strong>in</strong> granular systems<strong>of</strong> various dimensions. Eur. Phys. J. E 23, 255–264(2007)17. Raizer, Y.P.: Gas Discharge Physics. Spr<strong>in</strong>ger-Verlag,Berl<strong>in</strong> (1991)18. Dorbolo, S., Ausloos, M., V<strong>and</strong>ewalle, N.: Hysteretic behavior <strong>in</strong>metallic granular matter. Appl. Phys. Lett. 81(5), 936–938 (2002)19. Dorbolo, S., Ausloos, M., V<strong>and</strong>ewalle, N., Houssa, M.: Ag<strong>in</strong>g process<strong>of</strong> electrical contacts <strong>in</strong> granular matter. Appl. Phys. Lett. 94,1040302(R) (2003)20. Dorbolo, S., Ausloos, M., V<strong>and</strong>ewalle, N.: Reexam<strong>in</strong>ation <strong>of</strong> theBranly <strong>effect</strong>. Phys. Rev. E 67(12), 7835–7838 (2003)21. Dorbolo, S., Merlen, A., Creyssels, M., V<strong>and</strong>ewalle, N., Casta<strong>in</strong>g,B., Falcon, E.: Effects <strong>of</strong> electromagnetic waves on the electricalproperties <strong>of</strong> contacts between gra<strong>in</strong>s. EPL 79(54001), 7835–7838 (2007)22. Davis, J.R. (ed.): ASM Specialty H<strong>and</strong>book: Sta<strong>in</strong>less Steels. ASMInternational, New York (1994)23. Omel’chenko, V.T.: Determ<strong>in</strong>ation <strong>of</strong> the excess temperature<strong>of</strong> electrical contacts with cont<strong>in</strong>ous current variation. J. Eng.Phys. 10(1), 45–47 (1966)24. Fournet, G.: Phenomena <strong>in</strong> conductors hav<strong>in</strong>g temperature dependentelectrical <strong>and</strong> thermal conductivities. J. Phys. III 7, 2003–2029 (1997)25. European Sta<strong>in</strong>less Steel Development Association.: Sta<strong>in</strong>lessSteel: Tables <strong>of</strong> Technical Properties. http://www.euro-<strong>in</strong>ox.org(2000)26. Gale, W.F., Totemeir, T.C. (eds.): Smithells Metals ReferenceBook, 8th edn. ASM International, London (2004)27. Tan, X., Conway, P.P., Sarvar, F.: Thermo-mechanical properties<strong>and</strong> regression models <strong>of</strong> alloys: AISI 305, CK 60, CuBe 2 <strong>and</strong>laiton MS 63. J. Mater. Process. Technol. 168, 152–163(2005)28. Ayrault, C., Béqu<strong>in</strong>, P., Legros, M.: Experimental study <strong>of</strong> a sparkdischarge as an acoustic source. In: Proceed<strong>in</strong>gs <strong>of</strong> 19th InternationalCongress on Acoustics. I.C.A., Madrid, Spa<strong>in</strong> (2007)29. Job, S., Melo, F., Sokolow, A., Sen, S.: How hertzian solitarywaves <strong>in</strong>teract with boundaries <strong>in</strong> a 1d granular medium. Phys.Rev. Lett. 94, 178002(2005)30. Daraio, C., Nesterenko, V.F., Herbold, E.B., J<strong>in</strong>, S.: Stronglynonl<strong>in</strong>ear waves <strong>in</strong> a cha<strong>in</strong> <strong>of</strong> teflon beads. Phys. Rev.E 72, 016603(2005)31. Hladky-Hennion, A.-C., de Billy, M.: Experimental validation <strong>of</strong>b<strong>and</strong> gaps <strong>and</strong> localization <strong>in</strong> a <strong>one</strong>-<strong>dimensional</strong> diatomic phononiccrystal. J. Acoust. Soc. Am. 122, 2594–2600(2007)32. Porter, M.A., Daraio, C., Herbold, E.B., Szelengowicz, I., Kevrekidis,P.G.: Highly nonl<strong>in</strong>ear solitary waves <strong>in</strong> phononic crystaldimers. Phys. Rev. E 77, 015601(R)(2008)123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!