13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

130 CHAPTER 2. CONVEX GEOMETRY000(a) (b) (c)Figure 35: Vectors in R 2 : (a) affinely and conically independent,(b) affinely independent but not conically independent, (c) conicallyindependent but not affinely independent. None of the examples exhibitslinear independence. (In general, a.i. c.i.)has only the trivial solution ζ =0; in words, iff no direction from the givenset can be expressed as a conic combination of those remaining. (Figure 35,for example. A Matlab implementation of test (227) is given inG.2.) Itis evident that linear independence (l.i.) of N directions implies their conicindependence;l.i. ⇒ c.i.Arranging any set of generators for a particular convex cone in a matrixcolumnar,X ∆ = [ Γ 1 Γ 2 · · · Γ N ] ∈ R n×N (228)then the relationship l.i. ⇒ c.i. suggests: the number of l.i. generators inthe columns of X cannot exceed the number of c.i. generators. Denoting byk the number of conically independent generators contained in X , we havethe most fundamental rank inequality for convex conesdim aff K = dim aff[0 X ] = rankX ≤ k ≤ N (229)Whereas N directions in n dimensions can no longer be linearly independentonce N exceeds n , conic independence remains possible:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!