13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.6. SINGULAR VALUE DECOMPOSITION, SVD 455Expressions for U , Q , and Σ follow readily from (1165),AA T U = UΣΣ T and A T AQ = QΣ T Σ (1167)demonstrating that the columns of U are the eigenvectors of AA T and thecolumns of Q are the eigenvectors of A T A. −Neil Muller et alii [170]A.6.4SVD of symmetric matricesA.6.4.0.1 Definition. Step function. (confer6.3.2.0.1)Define the signum-like entrywise vector-valued function ψ : R n → R n thattakes the value 1 corresponding to an entry-value 0 in the argument:[ψ(a) =∆limx i →a ix i|x i | = { 1, ai ≥ 0−1, a i < 0 , i=1... n ]∈ R n (1168)Eigenvalue signs of a symmetric matrix having diagonalizationA = SΛS T (1153) can be absorbed either into real U or real Q from the fullSVD; [226, p.34] (conferC.5.2.1)orA = SΛS T = Sδ(ψ(δ(Λ))) |Λ|S T ∆ = U ΣQ T ∈ S n (1169)A = SΛS T = S|Λ|δ(ψ(δ(Λ)))S T ∆ = UΣ Q T ∈ S n (1170)where |Λ| denotes entrywise absolute value of diagonal matrix Λ .A.6.5Pseudoinverse by SVDMatrix pseudoinverse (E) is nearly synonymous with singular valuedecomposition because of the elegant expression, given A = UΣQ TA † = QΣ †T U T ∈ R n×m (1171)that applies to all three flavors of SVD, where Σ † simply inverts nonzeroentries of matrix Σ .Given symmetric matrix A∈ S n and its diagonalization A = SΛS T(A.5.2), its pseudoinverse simply inverts all nonzero eigenvalues;A † = SΛ † S T (1172)△

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!