13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

478 APPENDIX B. SIMPLE MATRICESB.5.4Matrix rotationOrthogonal matrices are also employed to rotate/reflect like vectors othermatrices: [sic] [88,12.4.1] Given orthogonal matrix Q , the product Q T Awill rotate A ∈ R n×n in the Euclidean sense in R n2 because the Frobeniusnorm is orthogonally invariant (2.2.1);‖Q T A‖ F = √ tr(A T QQ T A) = ‖A‖ F (1256)(likewise for AQ). Were A symmetric, such a rotation would depart fromS n . One remedy is to instead form the product Q T AQ because‖Q T AQ‖ F =√tr(Q T A T QQ T AQ) = ‖A‖ F (1257)Matrix A is orthogonally equivalent to B if B=S T AS for someorthogonal matrix S . Every square matrix, for example, is orthogonallyequivalent to a matrix having equal entries along the main diagonal.[125,2.2, prob.3]B.5.4.1bijectionAny product AQ of orthogonal matrices remains orthogonal. Givenany other dimensionally compatible orthogonal matrix U , the mappingg(A)= U T AQ is a linear bijection on the domain of orthogonal matrices.[148,2.1]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!