13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 501One advantage to vectorization is existence of a traditionaltwo-dimensional matrix representation for the second-order gradient ofa real function with respect to a vectorized matrix. For example, fromA.1.1 no.22 (D.2.1) for square A,B∈R n×n [94,5.2] [10,3]∇ 2 vec X tr(AXBXT ) = ∇ 2 vec X vec(X)T (B T ⊗A) vec X = B⊗A T +B T ⊗A ∈ R n2 ×n 2(1364)To disadvantage is a large new but known set of algebraic rules and thefact that its mere use does not generally guarantee two-dimensional matrixrepresentation of gradients.D.1.3Chain rules for composite matrix-functionsGiven dimensionally compatible matrix-valued functions of matrix variablef(X) and g(X) [135,15.7]∇ X g ( f(X) T) = ∇ X f T ∇ f g (1365)∇ 2 X g( f(X) T) = ∇ X(∇X f T ∇ f g ) = ∇ 2 X f ∇ f g + ∇ X f T ∇ 2f g ∇ Xf (1366)D.1.3.1Two arguments∇ X g ( f(X) T , h(X) T) = ∇ X f T ∇ f g + ∇ X h T ∇ h g (1367)D.1.3.1.1 Example. Chain rule for two arguments. [27,1.1]∇ x g ( f(x) T , h(x) T) =g ( f(x) T , h(x) T) = (f(x) + h(x)) T A (f(x) + h(x)) (1368)[ ] [ ]x1εx1f(x) = , h(x) =(1369)εx 2 x 2∇ x g ( f(x) T , h(x) T) =[ 1 00 ε][ ε 0(A +A T )(f + h) +0 1[ 1 + ε 00 1 + ε](A +A T )(f + h)] ([ ] [ ])(A +A T x1 εx1) +εx 2 x 2(1370)(1371)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!