13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

552 APPENDIX E. PROJECTIONAs for all subspace projectors, the range of the projector is the subspace onwhich projection is made; {P 1 Y P 2 | Y ∈ R m×p }. Altogether, for projectorsP 1 and P 2 of any rank this means the projection P 1 XP 2 is unique, orthogonalP 1 XP 2 − X ⊥ {P 1 Y P 2 | Y ∈ R m×p } in R mp (1557)and projectors P 1 and P 2 must each be symmetric (confer (1539)) to attainthe infimum.E.7.2.0.1 Proof. Minimum Frobenius norm (1556).Defining P ∆ = A 1 (A † 1 + B 1 Z T 1 ) ,inf ‖X − A 1 (A † 1 + B 1 Z1 T )X(A †T2 + Z 2 B2 T )A T 2 ‖ 2 FB 1 , B 2= inf ‖X − PX(A †T2 + Z 2 B2 T )A T 2 ‖ 2 FB 1 , B 2()= inf tr (X T − A 2 (A † 2 + B 2 Z2 T )X T P T )(X − PX(A †T2 + Z 2 B2 T )A T 2 )B 1 , B 2(= inf tr X T X −X T PX(A †T2 +Z 2 B2 T )A T 2 −A 2 (A †B 1 , B 22+B 2 Z2 T )X T P T X)+A 2 (A † 2+B 2 Z2 T )X T P T PX(A †T2 +Z 2 B2 T )A T 2(1558)The Frobenius norm is a convex function. [38,8.1] Necessary and sufficientconditions for the global minimum are ∇ B1 =0 and ∇ B2 =0. (D.1.3.1) Termsnot containing B 2 in (1558) will vanish from gradient ∇ B2 ; (D.2.3)(∇ B2 tr −X T PXZ 2 B2A T T 2 −A 2 B 2 Z2X T T P T X+A 2 A † 2X T P T PXZ 2 B2A T T 2+A 2 B 2 Z T 2X T P T PXA †T2 A T 2+A 2 B 2 Z T 2X T P T PXZ 2 B T 2A T 2= −2A T 2X T PXZ 2 + 2A T 2A 2 A † 2X T P T PXZ 2 +)2A T 2A 2 B 2 Z2X T T P T PXZ 2= A T 2(−X T + A 2 A † 2X T P T + A 2 B 2 Z2X T T P T PXZ 2= 0⇔R(B 1 )⊆ N(A 1 ) and R(B 2 )⊆ N(A 2 ))(1559)The same conclusion is obtained were instead P T = ∆ (A †T2 + Z 2 B2 T )A T 2 andthe gradient with respect to B 1 observed. The projection P 1 XP 2 (1555) istherefore unique.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!