13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.5. EIGEN DECOMPOSITION 449A.5.0.1.1 Definition. Unique eigenvectors.When eigenvectors are unique, we mean unique to within a real nonzeroscaling and their directions are distinct.△If S is a matrix of eigenvectors of X as in (1144), for example, then −Sis certainly another matrix of eigenvectors decomposing X with the sameeigenvalues.For any square matrix, [209, p.220]distinct eigenvalues ⇒ eigenvectors unique (1148)Eigenvectors corresponding to a repeated eigenvalue are not unique for adiagonalizable matrix;repeated eigenvalue ⇒ eigenvectors not unique (1149)Proof follows from the observation: any linear combination of distincteigenvectors of diagonalizable X , corresponding to a particular eigenvalue,produces another eigenvector. For eigenvalue λ whose multiplicity A.13dim N(X −λI) exceeds 1, in other words, any choice of independentvectors from N(X − λI) (of the same multiplicity) constitutes eigenvectorscorresponding to λ .Caveat diagonalizability insures linear independence which impliesexistence of distinct eigenvectors. We may conclude, for diagonalizablematrices,distinct eigenvalues ⇔ eigenvectors unique (1150)A.5.1EigenmatrixThe (right-)eigenvectors {s i } are naturally orthogonal to the left-eigenvectors{w i } except, for i = 1... m , w T i s i = 1 ; called a biorthogonality condition[238,2.2.4] [125] because neither set of left or right eigenvectors is necessarilyan orthogonal set. Consequently, each dyad from a diagonalization is anindependent (B.1.1) nonorthogonal projector becauseA.13 For a diagonalizable matrix, algebraic multiplicity is the same as geometric multiplicity.[209, p.15]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!