04.12.2012 Views

MEP-Technical Manual CDN 0408.qxd - Hambro

MEP-Technical Manual CDN 0408.qxd - Hambro

MEP-Technical Manual CDN 0408.qxd - Hambro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Composite<br />

Floor System


INTRODUCTION<br />

This manual has been developed<br />

in order to assist you<br />

in understanding the <strong>Hambro</strong>®<br />

Composite Floor System,<br />

and for you to have at your fingertips<br />

the information necessary<br />

for the most efficient and economical<br />

use of our <strong>Hambro</strong> products.<br />

Suggested detailing and<br />

design information throughout<br />

this manual illustrates methods of use.<br />

To achieve maximum economy and<br />

to save valuable time we suggest that you<br />

contact your local <strong>Hambro</strong> representative.<br />

He/she is qualified and prepared<br />

to assist in the selection of a <strong>Hambro</strong><br />

system that is best suited<br />

to your project’s requirements.<br />

1


1. GENERAL INFORMATION<br />

DESCRIPTION<br />

The <strong>Hambro</strong> Composite Floor System has been used with<br />

different types of construction, i.e. masonry, steel frame<br />

buildings, poured in place or precast concrete as well as<br />

wood construction. Uses range from the single-family<br />

detached house to multistory residential and office<br />

complexes.<br />

The <strong>Hambro</strong> Composite Floor System consists of a hybrid<br />

concrete/steel T-beam in one direction and an integrated<br />

continuous one-way slab in the other direction, and is<br />

illustrated in figures 1 and 2.<br />

Depending on the span, the loads and the type of form to<br />

support concrete poured in place, the <strong>Hambro</strong> steel joist<br />

may have a different configuration at the top chord.<br />

Wire mesh draped<br />

over top chord<br />

to form catenary<br />

1 251 mm (4’-1 1 /4”)<br />

GENERAL INFORMATION<br />

Poured in place<br />

Concrete slab<br />

Slots in top chord to<br />

support reusable Rollbar<br />

(Chord cut for clarity)<br />

Rollbar ®<br />

Handle<br />

Rollbar clips temporary<br />

bottom chord bracing<br />

Rollbar installed and rotated into a<br />

locked position into joists, support<br />

plywood forms<br />

Fig. 1<br />

<strong>Hambro</strong> D500 Composite Floor System<br />

PRODUCT SERIES CONFIGURATION<br />

D500 TM H<br />

MD2000 ® MD2000<br />

Double Top Chord (DTC) LH<br />

Continuous slab over wall or<br />

beam forms an accoustical seal<br />

CANADA PATENT No :<br />

874180<br />

U.S.PATENT Nos :<br />

3818083 3819143<br />

3841597 3845594<br />

3913296 3945168<br />

3979868 4015396<br />

4584815 4729201<br />

OTHER U.S. & FOREIGN PATENTS PENDING<br />

<strong>Hambro</strong> joist<br />

with bearing shoe<br />

Reusable plywood<br />

1 220 mm x 2 440 mm<br />

(4’ x 8’ typ.) forms<br />

Cold rolled top chord “ ”<br />

portion embedded<br />

39 mm (1 1 /2”) in slab for composite action<br />

NOTE: Rollbar are rotated and<br />

unlocked for removal of<br />

plywood forms<br />

1


The unique top chord section has four basic functions:<br />

2<br />

GENERAL INFORMATION<br />

1. It is a compression member component of the<br />

<strong>Hambro</strong> non-composite joist during the concreting<br />

stage. The system is not shored.<br />

2. It is a “high chair” for the welded wire mesh,<br />

developing negative moment capacity in the<br />

concrete slab where it is required - over the joist<br />

top chord.<br />

3. It locks with and supports the slab forming system<br />

(Rollbar ® and forms).<br />

4. It automatically becomes a continuous shear<br />

connector for the composite stage.<br />

The bottom chord acts as a tension member during both<br />

the concreting stage and the service life.<br />

The web system, consisting of bent rods, ties the top and<br />

bottom chords together and resists the vertical shear in the<br />

conventional truss manner.<br />

The concrete slab is reinforced with welded wire mesh at<br />

the required locations and behaves structurally as a<br />

continuous one-way reinforced concrete slab.<br />

65 mm (2 1 /2”)<br />

concrete slab (min.)<br />

Shear connector<br />

embedded 39 mm (1 1 /2”)<br />

into slab<br />

Web<br />

Bottom<br />

chord<br />

1 220 mm (4’-0”)<br />

plywood sheet<br />

Draped<br />

mesh<br />

Rollbar locked<br />

into section<br />

<strong>Hambro</strong> joist spacing*<br />

Fig. 2<br />

* Normally 1 251 mm (4’-1 1 /4”) to accommodate standard<br />

1 220 mm (4’-0”) wide plywood forms, but can be<br />

altered to suit job conditions.<br />

The rigid plywood sheets and Rollbar, when locked into the<br />

section, not only act as simple forms for placing<br />

concrete, but provide the essential lateral and torsional<br />

stability to the entire <strong>Hambro</strong> floor system during the<br />

concreting stage.<br />

The interaction between the concrete slab and <strong>Hambro</strong><br />

joist begins to occur once the wet concrete begins to set.<br />

The necessary composite interaction for construction<br />

loads is achieved once the concrete strength, f’ c , reaches<br />

7.0 MPa (1 000 psi).<br />

This will usually occur within 48 hours. Even in the coldest<br />

of concrete pouring conditions, construction heating will<br />

maintain the concrete at temperatures necessary for this<br />

gain of strength. When in doubt, concrete test cylinders<br />

can be used to verify strength.<br />

It is important to note that the overall floor stiffness after<br />

concreting increases substantially as compared to that<br />

during its non-composite condition prior to concreting.<br />

The result is a composite floor system having a sound<br />

transmission class (STC) of 57 with the addition of a<br />

gypsum board ceiling.<br />

Fire resistance ratings of up to three hours are easily<br />

achieved with the <strong>Hambro</strong> Composite Floor System by the<br />

installation of a gypsum board ceiling directly under the<br />

joists. Other types of fire protection could be used: refer to<br />

U.L.C. and U.L. publications.<br />

The <strong>Hambro</strong> Composite Floor System has been subjected<br />

to many tests both in laboratories and in the field.<br />

ADVANTAGES<br />

• The <strong>Hambro</strong> joists are custom manufactured to suit<br />

particular job conditions and are easily installed. The<br />

<strong>Hambro</strong> joist modular spacing can be adjusted to suit<br />

varying conditions.<br />

• The <strong>Hambro</strong> forming system provides a rigid working<br />

platform. Masonry walls or tie beams may be filled, when<br />

required, using the <strong>Hambro</strong> floor as a working deck.<br />

• Shallower floor depths can be used because of the<br />

increased rigidity of the system resulting from the<br />

composite action.<br />

• The wide <strong>Hambro</strong> joist spacing allows greater flexibility<br />

for mechanical engineers and contractors. Standard pipe<br />

lengths can be threaded through the <strong>Hambro</strong> web system<br />

- this means fewer mechanical joints.<br />

• The ceiling plenum can accommodate all electrical and<br />

mechanical ducting, eliminating the need for bulkheading<br />

and dropped ceilings.<br />

• The interlocking of concrete with steel provides excellent<br />

lateral diaphragm action with the composite joists acting<br />

as stiffeners for the entire system.<br />

• Other subtrades can closely follow <strong>Hambro</strong>, thereby<br />

shortening completion time.<br />

• The Rollbar and plywood sheets are reusable.


APPROVALS AND FIRE RATINGS<br />

APPROVALS 2. FIRE RATINGS<br />

The <strong>Hambro</strong> Composite Floor System is approved,<br />

classified, listed, recognized, certified or accepted by the<br />

following approving bodies or agencies:<br />

1. CCMC No. 06292-R<br />

irc.nrc-cnrc.gc.ca/ccmc/registry/13/06292 f.pdf<br />

2. International Conference of Buildings Officials<br />

(ICBO) Report No. PFC 2869.<br />

www.icc-es.org/reports/pdf files/UBC/pfc2869.pdf<br />

3. Miami-Date County, Florida,<br />

Acceptance No. 06-0420.02<br />

www.miamidade.gov<br />

4. The cities of Los Angeles Report No. RR 25437<br />

www.ladbs.org.<br />

Fire Protection floor/ceiling assemblies using <strong>Hambro</strong> ®<br />

have been tested by independent laboratories. Fire<br />

resistance ratings have been issued by Underwriters<br />

Laboratories Inc. and by Underwriters Laboratories of<br />

Canada (ULC) which cover gypsum board, accoustical tile<br />

and spray on protection systems. Reference to these<br />

published listings should be made in detailing ceiling<br />

construction. Check your UL directory for the latest<br />

updating of these listings, or see the UL website at<br />

http://www.ul.com/database or ULC website at<br />

www.ulc.ca/about ulc/online directories.asp<br />

1


2<br />

FIRE RATINGS<br />

<strong>Hambro</strong> Product UL/ULC/cULC Rating (hr.) Slab thickness (3) Ceiling Beam Rating<br />

D500 LH (1) MD2000 (2) Design No. (mm) (in.) (hr.)<br />

x x - I-506<br />

x x - I-518<br />

2 65 2 1/2 Gypboard 1/2” (12.7 mm) -<br />

2 90 3 1/2 Gypboard 1/2” (12.7 mm) -<br />

1 1/2 65 2 1/2 Gypboard 1/2” (12.7 mm) 2<br />

2 55-75 2 1/4 - 3 Gypboard 1/2” (12.7 mm) 2<br />

- - x I-522 2 75 3 Gypboard 1/2” (12.7 mm) 1 1/2<br />

x - -<br />

I-800 1 - 1 1/2 - 2<br />

65-70 2 1/2 -2 3/4<br />

- - x 70 2<br />

Spray on 1<br />

3/4 Spray on 1<br />

x x -<br />

G-003 2<br />

65 2 1/2<br />

- - x 70 2<br />

Suspended or panel -<br />

3/4 Suspended or panel -<br />

x x x G-213<br />

2<br />

3<br />

75<br />

100<br />

3<br />

4<br />

Suspended or panel<br />

Suspended or panel<br />

2<br />

3<br />

x x -<br />

G-227 2<br />

65 2 1/2<br />

- - x 70 2<br />

Suspended or panel 3<br />

3/4 Suspended or panel 3<br />

x x x G-228 2 80 3 1/4 Suspended or panel 2<br />

x x x G-229<br />

2<br />

3<br />

75<br />

100<br />

3<br />

4<br />

Suspended or panel<br />

Suspended or panel<br />

2<br />

3<br />

x x -<br />

1 - 2 65 2<br />

G-524<br />

1/2 (3) Gypboard 1/2” (12.7 mm) 2<br />

- - x 1 - 2 70 2 3/4 (3) Gypboard 1/2” (12.7 mm) 2<br />

x x x 3 90 3 1/2 (3) Gypboard 1/2” (12.7 mm) 3<br />

x x - G-525 3 80 3 1/4 Gypboard 5/8” (16 mm) 3<br />

x x - G-702 1 - 2 - 3 Varies (3) Spray on -<br />

x x - G-802 1 - 2 - 3 Varies (3) Spray on -<br />

(1) For LH Series, add 1/4 inch concrete for slab thickness<br />

(2) For MD2000 series, the thickness shown in this table is above the decking (deck thickness = 1 1/2”)<br />

(3) Normal and lightweight concrete


3. ACOUSTICAL PROPERTIES<br />

SOUND TRANSMISSION<br />

ACOUSTICAL PROPERTIES<br />

Because sound transmission depends upon a number of<br />

variables relating to the installation and materials used,<br />

<strong>Hambro</strong> makes no representations about the sound transmission<br />

performance of its products as installed. You<br />

should consult with a qualified acoustical consultant if you<br />

would like information about sound performance.<br />

HAMBRO SOUND INFORMATION<br />

All product tests were performed at NGC Testing Services,<br />

Buffalo NY, www.ngctestingservices.com.<br />

SOUND TRANSMISSION CLASS (STC)<br />

The STC is a rating that assigns a numerical value to the<br />

sound insulation provided by a partition separating rooms<br />

or areas. The rating is designed to match subjective<br />

impressions of the sound insulation provided against the<br />

sounds of speech, music, television, office machines and<br />

similar sources of airborne noise that are characteristic of<br />

offices and dwellings.<br />

STC RATINGS: WHAT THEY MEAN<br />

IMPACT INSULATION CLASS (IIC)<br />

The Impact Insulation Class (IIC) is a rating designed to<br />

measure the impact sound insulation provided by the<br />

floor / ceiling construction. The IIC of any assembly is<br />

strongly affected by and dependant upon the type of floor<br />

finish for its resistance to impact noise transmission.<br />

The following chart is provided as a reference only. The<br />

calculations of sound rating and design of floor/ceiling<br />

assemblies with regard to acoustical properties is a building<br />

designer responsibility.<br />

<strong>Hambro</strong> Assemblies STC IIC<br />

2 1/2” slab, 1 layer 1/2” drywall 52 26<br />

IMPACT OF FLOOR FINISHES &<br />

3” slab, 1 layer 1/2” drywall 57 30 HAMBRO FLOOR SYSTEM<br />

4” slab, 1 layer 1/2” drywall<br />

4” slab, 2 layers 1/2” drywall<br />

58<br />

60<br />

32<br />

36 Floor Finishes Additional<br />

STC Rating Practical Guidelines<br />

25 Normal speech easily understood<br />

30 Normal speech audible,<br />

but not intelligible<br />

35 Loud speech audible,<br />

fairly understandable<br />

40 Loud speech audible,<br />

but not intelligible<br />

45 Loud speech barely audible<br />

50 Shouting barely audible<br />

55 Shouting inaudible<br />

IIC points<br />

Carpet and Pad 24<br />

Homasote 1/2” comfort base 18<br />

under wood laminate<br />

www.homasote.com<br />

6 mm cork under engineered hardwood 21<br />

QT scu - QT4010 20<br />

10 mm underlayment under ceramic tile<br />

www.ecoreintl.com<br />

Quiet Walk underlayment 19<br />

under laminate flooring<br />

www.mpglobalproducts.com<br />

Insulayment under engineered wood 20<br />

www.mpglobalproducts.com<br />

1 1/2” Maxxon gypsum 28<br />

underlayment over Enkasonic<br />

sound control mat with quarry<br />

tile over Noble Seal SIS<br />

www.maxxon.com<br />

1 1/2” Maxxon gypsum 29<br />

underlayment over Enkasonic<br />

sound control mat with wood<br />

laminate floor over silent step<br />

www.maxxon.com<br />

1 1/2” Maxxon gypsum 27<br />

underlayment over Enkasonic<br />

sound control mat w/Armstong<br />

Commissions Plus Sheet Vinyl<br />

www.maxxon.com<br />

* All products tested were on a 2 1/2” <strong>Hambro</strong> slab with a<br />

one layer 1/2” drywall ceiling.<br />

1


ACOUSTICAL ASSOCIATIONS & CONSULTANTS<br />

2<br />

ACOUSTICAL PROPERTIES<br />

The following is a list of acoustical associations that may<br />

be found on the World Wide Web.<br />

National Counsel of Acoustical Consultants –<br />

www.ncac.com<br />

Canadian Acoustical Association – www.caa-aca.ca<br />

Acoustical Society of America – www.asa.aip.org<br />

Institute of noise Control Engineers – www.inceusa.org<br />

As a convenience, <strong>Hambro</strong> is providing the following list of<br />

vendors who have worked with this product. This list is not<br />

an endorsement. <strong>Hambro</strong> has no affiliation with these<br />

providers, and makes no representations concerning their<br />

abilities.<br />

Siebein Associates, Inc.<br />

625 NW 60th Street, Suite C<br />

Gainesville, FL 32607<br />

Telephone : 352-331-5111<br />

Octave Acoustique, Inc.<br />

Christian Martel, M.Sc. Arch<br />

963 Chemin Royal<br />

Saint-Laurent-de-l’Île-d’Orléans, (Québec)<br />

Canada G0A 4N0<br />

Telephone : 418-828-0001<br />

Acousti-Lab<br />

Robert Ducharme<br />

C.P. 5028<br />

Ste-Anne-des-Plaines (Québec)<br />

Canada J0N 1H0<br />

Telephone : 450-478-8828


DESIGN PRINCIPLES AND CALCULATIONS<br />

4. DESIGN PRINCIPLES AND CALCULATIONS<br />

4.1 SLAB DESIGN<br />

4.1.1 THE HAMBRO SLAB<br />

The slab component of the <strong>Hambro</strong> Composite Floor System<br />

behaves as a continuous one-way slab carrying loads<br />

transversely to the joists, and often is required to also act<br />

as a diaphragm carrying lateral loads to shear walls or<br />

other lateral load resisting elements.<br />

The slab design is based on CSA Standard A23.3-04, Design<br />

of Concrete Structures which stipulates that in order to<br />

provide adequate safety level, the factored effects shall be<br />

less than the factored resistance.<br />

� S ≤ ø R<br />

Where � = load factor, taking into account the probability<br />

of exceeding the specified load<br />

S = load effect (dead or live)<br />

ø = performance factor<br />

R = member resistance<br />

4.1.2. EFFECTS OF LOADING<br />

The Canadian concrete code (CSA Standard A23.3-04)<br />

cl. 9.2.3.1. requires that we consider dead load to act simultaneously<br />

with the live load applied on:<br />

i) Adjacent spans (maximum negative moment at support)<br />

or<br />

ii) Alternate spans (maximum positive moment at mid-span).<br />

However, if criteria (a) thru (c) of cl. 9.3.3. are satisfied, the<br />

following approximate value may be used in the design of<br />

one-way slabs. Refer to fig. 4 for location of the design<br />

moments.<br />

4.1.2.1 POSITIVE MOMENT<br />

Extra mesh at 1 & 2<br />

when required<br />

1<br />

Spacing S1<br />

S2 /3<br />

Spacing S2<br />

Fig. 4<br />

Exterior span:<br />

M f = W f L 1 2 / 11 ... Location �<br />

Interior span:<br />

M f = W f L i 2 / 16 ... Location �<br />

4.1.2.2 NEGATIVE MOMENT<br />

First interior support:<br />

Mf = Wf L2 / 10 ... Location �<br />

At other interior supports:<br />

M f = W f L 2 / 11 ... Location �<br />

4.1.2.3 SHEAR<br />

At face of first interior support:<br />

Vf = 1.15 Wf L1 / 2 ... Location �<br />

At other interior supports:<br />

V f = W f L i / 2 ... Location �<br />

Where W f = Total factored design load<br />

= 1.25 x dead + 1.5 x live<br />

L1 = First interior span<br />

Li = Interior spans<br />

L = Average of two adjacent spans<br />

Note: L is clear span (mm)<br />

S is joist spacing (mm)<br />

L = (S) - 45<br />

2 4<br />

4 Location<br />

indexing<br />

numbers<br />

3 3<br />

Spacing Si<br />

1


2<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.1.2.4 CONCENTRATED LOAD<br />

In addition to the previous verification, the National<br />

Building Code of Canada cl.4.1.5.10 (1) requires consideration<br />

of a minimum concentrated load to be applied over an<br />

area of 750 mm x 750 mm. The magnitude of the load<br />

depends on the occupancy. This loading does not need to<br />

beconsidered to act simultaneously with the specified<br />

uniform live load.<br />

A<br />

Load Slab<br />

X<br />

L<br />

A<br />

Fig. 5<br />

Lateral Distribution of Concentrated Loads<br />

The intensity of concentrated loads on slabs is reduced<br />

due to lateral distribution. One of the accepted methods of<br />

calculating the “effective slab width” which is used by<br />

<strong>Hambro</strong> actually appears in Section 317 of the British<br />

Standard Code of Practice CP114 and is reproduced<br />

in fig. 5. Note that the amount of lateral distribution<br />

increases as the load moves closer to mid-span, and<br />

reaches a maximum of 0.3L to each side; the<br />

effective slab width resisting the load is a maximum of<br />

load width + 0.6L.<br />

An abbreviated summary of the calculations is shown in<br />

tables 6 and 7.<br />

Effective width<br />

1.2 (X) 1- X ( L)<br />

0.3L<br />

Section A-A<br />

Load width


DESIGN PRINCIPLES AND CALCULATIONS<br />

TABLE 6: Concentrated Loads with 1 251 mm (4’-1 1/4”) Joist Spacing<br />

f’ c = 20 MPa (3 000 psi), F y = 400 MPa (60 000 psi) for Wire Mesh<br />

CONCENTRATED SLAB MESH SIZE SPECIAL REMARKS<br />

LOAD THICKNESS 152 x 152 (6 x 6) (See fig. 1)<br />

MW18.7 x MW18.7 Extra layer @ � and �<br />

70 mm (2 3/4”)<br />

OFFICE BUILDING<br />

to<br />

90 mm (3<br />

(6/6)<br />

MW18.7 x MW18.7 Single layer throughout No<br />

1/2”)<br />

(6/6)<br />

MW25.7 x MW25.7<br />

but S1 ≤ 1 050 mm<br />

Single layer throughout<br />

“chairs” on<br />

Top chord<br />

9 kN on (4/4)<br />

750 mm x 750 mm<br />

100 mm (4”)<br />

to<br />

125 mm (5”)<br />

MW25.7 x MW25.7<br />

(4/4)<br />

MW13.3 x MW13.3 (8/8)<br />

or MW18.7 x MW18.7 (6/6)<br />

Single layer throughout<br />

Double layers throughout<br />

MW18.7 x MW18.7<br />

(6/6)<br />

Double layers throughout<br />

PASSENGER CAR * MW25.7 x MW25.7 Extra layer @ � No<br />

90 mm (3<br />

(4/4) “chairs” on<br />

1/2”)<br />

11 kN on<br />

750 mm x 750 mm<br />

to<br />

115 mm (4<br />

MW25.7 x MW25.7<br />

(4/4)<br />

Single layer throughout<br />

but S1 ≤ 1 050 mm<br />

Top chord<br />

1/2”)<br />

MW13.3 x MW13.3 Double layers throughout<br />

plus 50 mm asphalt (8/8) + Extra layer @ �<br />

MW13.3 x MW13.3<br />

(8/8)<br />

Double layers throughout<br />

but S1 ≤ 1 050 mm<br />

MW18.7 x MW18.7 Double layers throughout No<br />

PASSENGER CAR *<br />

90 mm (3 1/2”)<br />

18 kN on<br />

750 mm x 750 mm<br />

to<br />

115 mm (4<br />

(6/6)<br />

MW25.7 x MW25.7 Extra layer @ � and �<br />

“chairs” on<br />

Top chord<br />

1/2”)<br />

plus 50 mm asphalt<br />

(4/4)<br />

MW25.7 x MW25.7<br />

(4/4)<br />

Single layer throughout<br />

but S1 ≤ 1 050 mm<br />

* See CAN3-S413-94 for Parking Structures Design for more information.<br />

TABLE 7: Concentrated Loads with 1 555 mm (5’-1 1/4”) Joist Spacing<br />

f’ c = 20 MPa (3 000 psi), F y = 400 MPa (60 000 psi) for Wire Mesh<br />

CONCENTRATED SLAB MESH SIZE SPECIAL REMARKS<br />

LOAD THICKNESS 152 x 152 (6 x 6) (See fig. 4)<br />

OFFICE BUILDING<br />

9 kN on<br />

70 mm (2<br />

MW25.7 x MW25.7 Extra layer @ �<br />

3/<br />

750 mm x 750 mm<br />

4”)<br />

to<br />

100 mm (4”)<br />

(4/4)<br />

MW18.7 x MW18.7<br />

(6/6)<br />

Double layers throughout<br />

PASSENGER CAR *<br />

90 mm (3 1/<br />

11 kN on<br />

750 mm x 750 mm<br />

2”)<br />

to<br />

115 mm (4<br />

MW18.7 x MW18.7<br />

(6/6)<br />

Double layers throughout<br />

but S1 ≤ 1 050 mm<br />

1/<br />

plus 50 mm asphalt 2”)<br />

MW25.7 x MW25.7<br />

(4/4)<br />

Single layer throughout<br />

+ Extra layer @ � and �<br />

PASSENGER CAR *<br />

90 mm (3 1/<br />

MW18.7 x MW18.7 Double layers throughout<br />

2”)<br />

18 kN on<br />

to<br />

(6/6) + Extra layer @ � and �<br />

750 mm x 750 mm<br />

115 mm (4 1/<br />

MW25.7 x MW25.7 Double layers throughout<br />

plus 50 mm asphalt 2”)<br />

(4/4)<br />

* See CAN3-S413-94 for Parking Structures Design for more information.<br />

NOTE: For other configurations, please contact your <strong>Hambro</strong> representative.<br />

No<br />

“chairs” on<br />

Top chord<br />

No<br />

“chairs” on<br />

Top chord<br />

No<br />

“chairs” on<br />

Top chord<br />

3


4<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.1.3 MOMENT CAPACITY<br />

The factored moment resistance of a reinforced concrete<br />

section, using an equivalent rectangular concrete stress<br />

distribution is given by:<br />

t<br />

d<br />

Mr = øsAs Fy (d - a/2)<br />

a = depth of the equivalent concrete stress block<br />

= ø s A s F y<br />

� 1 ø c f’ c b<br />

Where Fy = yield strength of reinforcing steel (400 MPa)<br />

f’ c = compressive strength of concrete (20 MPa)<br />

As = area of reinforcing steel in the direction of<br />

analysis (mm2 /m width)<br />

�1 = 0.85 - 0.0015f’ c ≥ 0.67<br />

b = unit slab width (mm)<br />

d = distance from extreme compression fiber to<br />

centroïd of tension reinforcement (mm)<br />

(see tables 8 and 9 on pages 19 and 20)<br />

øs = performance factor of reinforcing steel (0.85)<br />

øc = performance factor of concrete (0.65)<br />

4.1.3.1 SHEAR CAPACITY<br />

The shear stress capacity V, which is a measure of diagonal<br />

tension, is unaffected by the embedment of the section as<br />

this principal tensile crack would be inclined and radiate away<br />

from the section.<br />

The factored shear capacity is given by:<br />

Vr = Vc = øc�ß f’ c bwd √<br />

(CSA A23.3-04, clause 11.3.4)<br />

Fig. 6<br />

c C<br />

Where � = 1.0 for normal density concrete<br />

ß = 0.21 = (CSA A23.3-04, clause 11.3.6.3)<br />

bw = b = width of slab<br />

And ø c ,f’ c and d are as previously described.<br />

T<br />

a<br />

4.1.4 SERVICEABILITY LIMIT STATES<br />

4.1.4.1. CRACK CONTROL PARAMETER<br />

When the specified yield strength, F y , for tension reinforcement<br />

exceeds 300 MPa, cross sections of maximum positive<br />

and negative moments shall be so proportioned that the<br />

quantity Z does not exceed 30 kN/mm for interior exposure<br />

and 25 kN/mm for exterior exposure. Ref. CSA A23.3-04,<br />

clause 10.6.1.<br />

The quantity Z limiting distribution of flexural reinforcement<br />

is given by:<br />

3<br />

Z = fs dcA x 10-3 √<br />

Where fs = stress in reinforcement at specified loads<br />

taken as 0.6Fy dc = thickness of concrete cover measure from<br />

extreme tension fibre to the center of the<br />

reinforcing bar located closest thereto<br />

(dc ≤ 50 mm)<br />

4.1.4.2 DEFLECTION CONTROL<br />

For one-way slabs not supporting or attached to partitions<br />

of other construction likely to be damaged by large deflections,<br />

deflection criteria are considered to be satisfied if the<br />

following span/depth ratio are met:<br />

at location � t ≥ �n/24<br />

Width<br />

Bar spacing<br />

Fig. 7<br />

at location � t ≥ �n/28 (CSA A23.3-04, table 9.2)<br />

�n=Space between joists or joist to wall<br />

d c<br />

d c


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.1.5 SLAB DESIGN EXAMPLE METRIC<br />

Verify the standard <strong>Hambro</strong> slab under various limit states<br />

(strength and serviceability) for residential loading.<br />

Dead load: 3 kPa<br />

Live load: 2 kPa<br />

Slab thickness: 70 mm<br />

Joist spacing: 1 250 mm<br />

Concrete strength (f’ c ): 20 MPa at 28 days<br />

Area of steel: 152 x 152 MW18.7 x MW18.7<br />

As = 123 mm2 /m<br />

1- Analysis (Per Meter of Slab)<br />

a) Factored Load<br />

Wf = 1.25 x 3 + 1.5 x 2 = 6.75 kN/m2 b) Maximum Positive Moment at �<br />

M f + = 6.75 x 1.20 2 /11 = 0.88 kN•m<br />

c) Maximum Negative Moment at �<br />

M f – = 6.75 x 1.20 2 /10 = 0.97 kN•m<br />

d) Maximum Shear<br />

Vf = 6.75 x 1.15 x 1.25 = 4.85 kN<br />

2<br />

2- Resistance<br />

a) Moment Capacity<br />

√<br />

ø = 4 x Awire π<br />

ø = 4 x 18.7 √ = 4.88 mm<br />

π<br />

where ø = wire diameter<br />

at mid-span: 20 mm concrete cover<br />

d = t - (20 + ø/2)<br />

= 70 - (20 + 4.88/2) = 47.6 mm<br />

at support: 38 mm depth of embedded top chord<br />

d = 38 + ø/2<br />

d = 38 + 4.88/2 = 40.4 mm governs<br />

� 1 = 0.85 - 0.0015f’ c = 0.82 ≥ 0.67 OK<br />

a = øs As Fy 0.85 x 123 x 400<br />

=<br />

�1øc f’ c b 0.82 x 0.65 x 20 x 1 000<br />

a = 3.92 mm<br />

Mr = øs As Fy (d - a/2)<br />

M r = 0.85 x 123 x 400 (40.4 - 3.92) x 10-6 2<br />

Mr = 1.61 kN•m > Mf = 0.97 kN•m OK<br />

b) Shear Capacity<br />

Vr = ß � øc f’ c bwd = 0.21 x 1 x 0.65 x 20 x 1 000 x 40.4 x 10-3 √<br />

√<br />

= 24.66 kN >> Vf = 4.85 kN OK<br />

3- Serviceability<br />

a) Crack Control<br />

dc = t - 38 - ø/2 = 29.6 mm ≤ 50.0 mm OK<br />

A = 2 x dc x 152 = 9 000 mm2 fs = 0.6 x 400 = 240 MPa<br />

3<br />

Z = fs dc A x 10-3 Z = 240 x 3 29.6 x 9 000 x 10-3 √<br />

√<br />

Z = 15.5 kN/mm < 25.0 kN/mm exterior exposure OK<br />

< 30.0 kN/mm interior exposure OK<br />

b) Deflection Control<br />

Span/depth = 1 250/70 = 18<br />

Exterior span = 18 < 24 OK<br />

Interior span = 18 < 28 OK<br />

5


6<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

TABLE 8: Slab Capacity Chart (Total Unfactored Load in kN/m 2 ) *<br />

SLAB d MESH SIZE (152 mm x 152 mm) 1 251 mm JOIST SPACING 1 555 mm JOIST SPACING<br />

THICKNESS (t) (mm) f’ c = 20 MPa, � = 2 400 kg/m 3 Exterior Interior Exterior Interior<br />

F y = 400 MPa (1) (1) (1) (1)<br />

70 mm ≤ t < 90 mm<br />

NO CHAIR<br />

90 mm ≤ t < 115 mm<br />

NO CHAIR<br />

115 mm ≤ t ≤ 140 mm<br />

WITH 75 mm CHAIR<br />

INTERIOR AND<br />

EXTERIOR EXPOSURE (1)<br />

2 layers MW9.1 x MW9.1 7.52 8.22 4.92 5.37<br />

40 MW18.7 x MW18.7 7.61 8.42 5.02 5.49<br />

41<br />

MW25.7 x MW25.7 10.17 11.42 6.77 7.4<br />

MW25.7 x MW25.7 10.49 11.49 6.84 7.49<br />

2 layers MW13.3 x MW13.3 10.56 11.59 6.89 7.54<br />

2 layers MW18.7 x MW18.7 14.39 15.69 9.34 10.19<br />

2 layers MW25.7 x MW25.7 19.09 20.59 12.24 13.39<br />

2 layers MW18.7 x MW18.7 14.43 15.83 8.38 9.13<br />

78 2 layers MW25.7 x MW25.7 19.53 21.53 12.63 13.93<br />

* Loads indicated are the total allowable service load (W s ) that the slab<br />

can carry. W s is determined from the conservative equation:<br />

W s = (W f - 1.25D) / 1.5 + D<br />

Where W f = factored total load<br />

D = minimum dead load (weight of slab + joist)<br />

(1) Wire mesh : 1 layer on top chord and 1 layer on high chair<br />

Note: Slab capacities are based on mesh over joist raised as indicated.<br />

2 layers MW34.9 x MW34.9 25.93 28.53 16.73 18.33<br />

Wire mesh designation:<br />

152 x 152 MW9.1 x MW9.1 = 6 x 6 - 10/10<br />

152 x 152 MW13.3 x MW13.3 = 6 x 6 - 8/8<br />

152 x 152 MW18.7 x MW18.7 = 6 x 6 - 6/6<br />

152 x 152 MW25.7 x MW25.7 = 6 x 6 - 4/4<br />

152 x 152 MW34.9 x MW34.9 = 6 x 6 - 2/2


DESIGN PRINCIPLES AND CALCULATIONS<br />

TABLE 9: Slab Capacity Chart (Total Unfactored Load in psf) *<br />

SLAB d MESH SIZE (6” x 6”) 4’-1 1 /4” JOIST SPACING 5’-1 1 /4” JOIST SPACING<br />

THICKNESS (t) (in.) f’ c = 3 000 psi, � = 145 lb./sq. ft. Exterior Interior Exterior Interior<br />

F y = 60 000 psi (1) (1) (1) (1)<br />

2 3/ 4” ≤ t < 3 1/ 2”<br />

NO CHAIR<br />

3 1/ 2” ≤ t ≤ 4 1/ 2”<br />

NO CHAIR<br />

4 1/ 2” ≤ t ≤ 5 1/ 2”<br />

WITH 3” CHAIR<br />

INTERIOR AND<br />

EXTERIOR EXPOSURE (1)<br />

2 layers 10/10 157 172 103 112<br />

1.6 1 layer 6/6 159 176 105 115<br />

1.6<br />

1 layer 4/4 212 239 141 155<br />

1 layer 4/4 219 240 143 156<br />

2 layers 8/8 221 242 144 157<br />

2 layers 6/6 301 328 195 213<br />

2 layers 4/4 399 430 256 280<br />

2 layers 6/6 301 331 175 191<br />

3.1 2 layers 4/4 408 450 264 291<br />

* Loads indicated are the total allowable service load (W s ) that the slab<br />

can carry. W s is determined from the conservative equation:<br />

W s = (W f - 1.25D) / 1.5 + D<br />

Where W f = factored total load<br />

D = minimum dead load (weight of slab + joist)<br />

(1) Wire mesh : 1 layer on top chord and 1 layer on high chair<br />

Note: Slab capacities are based on mesh over joist raised as indicated.<br />

2 layers 2/2 542 596 349 383<br />

7


8<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.2 NON-COMPOSITE DESIGN<br />

2<br />

D<br />

Y<br />

Fig. 8<br />

N.A. of top chord<br />

The top chord must be verified for the loads applied at the<br />

non-composite stage. From the previous example, we<br />

have the following results:<br />

1- Factored Loading<br />

• Dead load:<br />

70 mm slab: 1.65 kN/m2 Formwork and joist: 0.24 kN/m2 1.89 kN/m2 x 1.25 = 2.36 kPa<br />

• Live load:<br />

Construction live load: 0.95* kN/m2 x 1.5 = 1.43 kPa<br />

Total factored load = 3.79 kPa<br />

* Reduces beyond 7 620 mm span at a rate of<br />

0.05 kN/m2 each 760 mm of span.<br />

2- Factored moment resistance<br />

Mr nc =Crd or Trd i.e. Wnc L2 =Crd or Trd, whichever is the lesser<br />

Wnc = 3.79 x joist spacing = kN/m<br />

L = clear span + 100 mm<br />

C = area of top chord (mm2 ) x factored<br />

compressive resistance (MPa)<br />

T = area of bottom chord (mm2 8<br />

) x factored<br />

tensile resistance (MPa)<br />

d = effective lever arm (m)<br />

= (D + 2 mm - y) /1 000<br />

From the above formula, the maximum “limiting span”<br />

may be computed for the non-composite (construction<br />

stage) condition. For spans beyond this value, the top<br />

chord must be strengthened or joist propped.<br />

Strengthening of the top chord, when required, is usually<br />

accomplished by installing one or two rods in the curvatures<br />

of the “S” part of the top chord.<br />

The bottom chord is sized for the total factored load which<br />

is more critical than the construction load.<br />

<strong>Hambro</strong> top chord properties are provided to assist you in<br />

computing the non-composite joist capacities.<br />

d<br />

C r<br />

T r<br />

4.2.1 TOP CHORD PROPERTIES - D500 TM<br />

2 mm<br />

(0.08”)<br />

17 mm<br />

(0.68”)<br />

X X<br />

Fig. 9<br />

METRIC<br />

t = 2.3 mm<br />

Anet * = 361 mm2 Ix = 2.74 x 105 mm4 Top Chord Fy = 350 MPa<br />

Bottom Chord Fy = 380 MPa<br />

IMPERIAL<br />

t = 0.090 in.<br />

Anet * = 0.560 in. 2<br />

Ix = 0.658 in. 4<br />

Top Chord Fy = 50 ksi<br />

Bottom Chord Fy = 55 ksi<br />

A net *= Effective area according to CAN3-S136-01<br />

Y<br />

Y<br />

t


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.2.2 TOP CHORD PROPERTIES - MD2000 ®<br />

3.5 mm<br />

(0.14”)<br />

X X<br />

METRIC<br />

t = 2.3 mm<br />

Anet * = 422 mm2 Ix = 3.65 x 105 mm4 Top Chord Fy = 350 MPa<br />

Bottom Chord Fy = 380 MPa<br />

IMPERIAL<br />

t = 0.090 in.<br />

Anet * = 0.654 in. 2<br />

Ix = 0.877 in. 4<br />

Top Chord Fy = 50 ksi<br />

Bottom Chord Fy = 55 ksi<br />

A net *= Effective area according to CAN3-S136-01<br />

Y<br />

Y<br />

Fig. 10<br />

11.6 mm (0.45”)<br />

t<br />

4.2.3 TOP CHORD PROPERTIES - LH<br />

X X<br />

5.3 mm<br />

(0.21”)<br />

t<br />

Y<br />

Fig. 11<br />

METRIC<br />

t = 2.3 mm<br />

Anet * = 623 mm2 Ix = 2.56 x 105 mm4 Top Chord Fy = 350 MPa<br />

Bottom Chord Fy = 380 MPa<br />

IMPERIAL<br />

t = 0.090 in.<br />

Anet * = 0.966 in. 2<br />

Ix = 0.616 in. 4<br />

Top Chord Fy = 50 ksi<br />

Bottom Chord Fy = 55 ksi<br />

Y<br />

9


10<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.3 COMPOSITE DESIGN<br />

4.3.1 FLEXURE DESIGN<br />

In the past, conventional analysis of composite beam<br />

sections has been linearly elastic. Concrete and steel<br />

stresses have been determined by transforming the<br />

composite section to a section of one material, usually<br />

steel, from which stresses are then determined with the<br />

familiar formula, f = My/I, and then compared to some<br />

limiting values which have been set to ensure an adequate<br />

level of safety. Although this procedure is familiar to most<br />

engineers, it does not predict the level of safety with as<br />

much accuracy as does an ultimate strength approach<br />

which is based on the actual failure strengths of the<br />

component materials.<br />

It is now known that the flexural behavior at “ultimate”<br />

failure stages of composite concrete/steel beams and joists<br />

is similar to that of reinforced concrete beams - the elastic<br />

neutral axis begins to rise under increasing load as the<br />

component materials are stressed into their inelastic<br />

ranges. The typical stress-strain characteristics of the<br />

concrete and steel components are shown in fig. 12.<br />

Concrete stress<br />

Steel stress<br />

F u<br />

F y<br />

f’ c<br />

Inelastic<br />

range<br />

Elastic<br />

range<br />

Inelastic<br />

range<br />

Elastic<br />

range<br />

E y<br />

Concrete strain<br />

Steel strain<br />

Fig. 12<br />

Concrete and Steel Stress - Strain Curves<br />

The various loading stages of the <strong>Hambro</strong> composite joist<br />

are indicated in fig. 13. As load is first applied to the<br />

composite joist, the strains are linear. The “elastic” neutral<br />

axis, concrete and steel stresses can be predicted from the<br />

conventional transformed area method. Generally speaking,<br />

the <strong>Hambro</strong> composite joist behaves in this “elastic”<br />

manner when subjected to the total working loads. With<br />

increasing load, failure always begins initially with yielding<br />

of the bottom chord. In (a), all of the bottom chord has just<br />

reached the yield stress, F y . The maximum concrete<br />

strains will likely have just progressed into the inelastic<br />

concrete range, but the maximum concrete stress will still<br />

be less than � 1 f’ c .<br />

With a further increase in load, large inelastic strains occur<br />

in the bottom chord and the ultimate tensile force, T u ,<br />

remains equal to A s F y . The strain neutral axis rises, as<br />

does the centroid of the compresssion force. Part (b)<br />

depicts the stage when the maximum concrete stress has<br />

just reached � 1 f’ c . At this stage, the ultimate resisting<br />

moment has increased slightly due to a small increase in<br />

Iever arm.


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.3.2 VARIOUS FLEXURE FAILURE STAGES<br />

t<br />

Joist depth “d”<br />

� 1 f’ c<br />

C f a<br />

Upon additional load application, the steel and concrete<br />

strains progress further into their inelastic ranges. The<br />

strain neutral axis continues to rise and the lever arm<br />

continues to increase as the centroid of compression force<br />

continues to rise. In (c), final failure occurs with crushing of<br />

the upper concrete fibres. At this point, the maximum fever<br />

arm e’, has been reached. In load capacity calculations, the<br />

simplified concrete stress block as shown in (c) is universally<br />

used.<br />

According to CAN3-S16.1-M01 (cl.17.9.3) and CSA A23.3-04<br />

(cl.10.1.7), the factored resisting moment of the composite<br />

section is given by:<br />

M rc = ø s A s F y e’ = T r e’<br />

Strain line<br />

T u = A s F y<br />

(a)<br />

Initial steel yield<br />

� 1 f’ c<br />

Where e’ = d + slab thickness – a/2 – y<br />

d = joist depth<br />

a = T r / � 1 ø c f’ c b e<br />

ø s = steel performance factor = 0.90<br />

A s = area of bottom chord<br />

y = neutral axis of bottom chord<br />

E y<br />

T u = A s F y<br />

Elastic<br />

strain<br />

E y<br />

� 1 ø c f’ c<br />

Simplified<br />

concrete<br />

stress block<br />

Inelastic strain<br />

(b)<br />

Secondary yield stages<br />

C u<br />

f’ c<br />

e’<br />

Fig. 13<br />

Elastic<br />

strain<br />

Fy = yield point of steel<br />

øc = concrete performance factor = 0.65<br />

f’ c = concrete compressive strength<br />

be = effective width of concrete top flange<br />

= the lesser of - joist spacing, or<br />

- span /4.<br />

Note: To determine the total allowable service load W s<br />

(see load tables), we convert the factored moment<br />

into a factored linear loading.<br />

Mf = Wf L2 (single span moment)<br />

8<br />

W f = 8 M f<br />

L 2<br />

And<br />

C<br />

T u = A s F y<br />

Inelastic strain<br />

(c)<br />

Ultimate stage<br />

W s = (W f - 1.25 D) + D<br />

1.5<br />

Where D = weight of (slab + joist)<br />

11


12<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.4 INTERFACE SHEAR<br />

The <strong>Hambro</strong> joist comprises a composite concrete slabsteel<br />

joist system with composite action achieved by the<br />

shear connection developed by two means:<br />

(i) by anchorage provided at the joist ends by<br />

means of a steel angle which acts both as a<br />

bearing shoe and as anchorage for the end<br />

diagonal, thereby producing horizontal bearing<br />

forces. This horizontal force is closely associated<br />

with the concrete strength and the vertical<br />

size of the steel angle plate on the shoe.<br />

(ii) by bond or friction between the partially<br />

embedded specially profiled top chord.<br />

Composite action between the section and the concrete<br />

slab exists because of the unique shear resistance developed<br />

along the interface between the two materials. This shear<br />

resistance, which has been called “bond” or “interface<br />

shear” is primarily the result of a “locking” or “clamping”<br />

action in the longitudinal direction between the concrete and<br />

the section when the composite joist is deflected under<br />

load. Another contributing factor to the shear resistance is<br />

the lateral compression stress or “poisson’s effect” which<br />

results from slab continuity in the lateral direction. This<br />

continuity prevents lateral expansion from occuring as a<br />

result of longitudinal compression stresses and thus lateral<br />

compression stress results. However, this effect has been<br />

ignored in determining interface shear capacity which has<br />

been based on full scale testing of spandrel joists having only<br />

a 150 mm slab overhang on one side for its entire span<br />

length. A cross-section of a test specimen is illustrated in<br />

fig. 14.<br />

70 mm<br />

(2 3 /4”)<br />

150 mm (6”) 1 251 mm (4’-1 150 mm (6”)<br />

1 /4”) 1 251 mm (4’-1 1 /4”)<br />

Fig. 14<br />

It was decided to base the limiting interface shear value on<br />

this most critical condition as this could often occur in<br />

practice with large duct openings. Also, one would expect<br />

some additional shear resistance to occur due to some<br />

form of friction (or plain “bond”) mechanism, however,<br />

full scale tests have not shown any significant differences<br />

in results among specimens whose section were<br />

unpainted or painted.<br />

Shear resistance of the steel-concrete interface can be<br />

evaluated by either elastic or ultimate strength procedures;<br />

both methods have shown good correlation with the test<br />

results. The interface shear force resulting from superim-<br />

posed loads on the composite joist may be computed,<br />

using the “elastic approach”, by the well known equation:<br />

......................................................... (A)<br />

Where q = horizontal shear flow per mm of length (N/mm)<br />

V = vertical shear force at the section (N) due to<br />

superimposed loads<br />

Q = statical moment of the effective concrete in<br />

compression (hatched area) about the<br />

elastic N.A. of the composite section (mm3 )<br />

IC = moment of inertia of the composite joist (mm4 )<br />

And Q = by (Yc - y/2) and y = yc but � t<br />

n<br />

Where b = effective concrete flange width (mm) =<br />

smallest of L/4 or joist spacing<br />

n = modular ratio = Es /Ec = 9.4 for f’ c = 20MPa<br />

t = slab thickness (mm)<br />

Yc = depth of N.A. from top of concrete slab<br />

y = Yc when N.A. lies within slab<br />

= t when N.A. lies outside slab<br />

case 1: N.A. within slab (y = Y c )<br />

t<br />

D<br />

y = t<br />

N.A.<br />

q = VQ<br />

I C<br />

case 2: N.A. outside slab (y = t)<br />

b<br />

y Y c<br />

b<br />

Fig. 15<br />

N.A.<br />

Y c


DESIGN PRINCIPLES AND CALCULATIONS<br />

For a uniformly loaded joist, the average interface shear s,<br />

at ultimate load when calculated by ultimate strength<br />

principles, would be:<br />

s = 2T u<br />

L<br />

......................................................... (B)<br />

and would represent the average shear force, per unit<br />

length, between the points of zero and maximum moment.<br />

Some modification to this formula would occur when the<br />

strain neutral axis at failure would be located within<br />

the section. As this modification is slight and would only<br />

occur with bottom chord areas greater that 1 185 mm 2 ,<br />

it is neglected.<br />

The following compares the elastic and ultimate approaches:<br />

Since M u = T u d u equation (B) can be rewritten:<br />

s = 2M u<br />

d u L<br />

......................................................... (C)<br />

Also, for a uniformly distributed load,<br />

Mu =<br />

......................................................... (D)<br />

VuL 4<br />

Subscipts u, are added to equation (A) to represent the<br />

arbitrary “q” force at failure:<br />

q u = V u Q<br />

I c<br />

Combining (C) and (E) results in:<br />

q u = d u L x V u Q<br />

s<br />

2M u<br />

......................................................... (E)<br />

and, substituting (D) into equation (F),<br />

q u = 2Qd u<br />

s<br />

I c<br />

I c<br />

.............................................. (F)<br />

...................................................... (G)<br />

The value I c /Qd u has been calculated for the various<br />

<strong>Hambro</strong> composite joist sizes. It is constant, and = 1.1.<br />

Substituting this in (G), gives:<br />

qu = 1.82<br />

s<br />

This verifies that q and s are closely related and that the<br />

interface shear force does, in fact, vary from a maximum at<br />

zero moment (maximum vertical shear) to a minimum at<br />

maximum moment (zero vertical shear).<br />

The more recent full testing programs have consistently<br />

established a failure value for the horizontal bearing forces<br />

and the friction between steel and concrete. An additional<br />

contributing factor is a hole in the section at each 178 mm<br />

on the length.<br />

(i) Horizontal bearing forces<br />

The test has defined an ultimate value for the<br />

end bearing shoe Bu = 222 kN for a concrete<br />

strength = 20 MPa<br />

(ii) Friction between steel and top chord<br />

The failure value for the interface shear<br />

qu = 36.9 N/mm. This is sometimes converted<br />

to “bond stress” u = q / embedded S perimeter<br />

= q /178 mm. Hence, the ultimate “bond stress”<br />

u = 36.9 / 178 = 207 kPa.<br />

The safety limiting interface shear is defined by<br />

using a safety factor of 2 on point (i) and (ii).<br />

13


14<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.5 WEB DESIGN<br />

4.5.1 VERTICAL SHEAR<br />

The web of the steel joist is designed according to<br />

CAN3-S16.1-M01. Clause 17.3.2 requires the web system<br />

to be proportioned to carry the total vertical shear Vf . The<br />

loading applied to the joist is as follows:<br />

a) A uniformly distributed load equal to the total dead and<br />

live loads.<br />

b) An unbalanced load with 100% of the total dead load<br />

and live loads on any continuous portion of the joist and<br />

25% of the total dead and live loads on the remainder to<br />

produce the most critical effect on any component.<br />

c) A factored concentrated load of 13.5 kN (3.0 kips)<br />

applied at any panel point.<br />

The above loadings need not be applied simultaneously.<br />

H 1<br />

R<br />

T 1<br />

V f1<br />

C 1<br />

V f2<br />

T 2<br />

V f3<br />

C 2<br />

T 3<br />

V f4<br />

(Clear span - 12.5 mm or 1 /2”)<br />

Fig. 16<br />

D500 TM and MD2000 ® Geometry<br />

These assumptions result in calculated bar forces which<br />

have been shown by test to be as much as 15% higher than<br />

the actual values because the slab, acting compositely with<br />

the ~ section, is stiff enough to transmit some load directly<br />

to the support. This is particularly true for web members<br />

at the joist ends – those which are subjected to the highest<br />

vertical shear. However, the slab shear contribution is<br />

disregarded when designing the webs.<br />

Due consideration of the total end reaction being concentrated<br />

at the shoe shall be taken by the specifying engineer<br />

or architect in the design of supporting members.<br />

4.5.2. EFFECTIVE LENGTH<br />

OF COMPRESSION DIAGONAL<br />

The webs are dimensioned using cl. 13.2 for tension members<br />

and cl. 13.3 for compression member. The effective<br />

length of web member KL is taken as 1.0 times the distance<br />

between the intersection of the axis of the web and the<br />

chords. Except for continuous web member.<br />

Note: The web members are sized for the loading specified<br />

including concentrated loads where applicable.<br />

Furthermore, the webs are designed according to the<br />

latest recommendations of the Canadian Institute of<br />

Steel Construction (CISC).<br />

W 1 W 2 W C W C W C W C<br />

C 3<br />

T 4<br />

V f5<br />

C 4<br />

T 5<br />

V f<br />

C 5<br />

d


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.6 DIAPHRAGM DESIGN<br />

4.6.1 THE HAMBRO SLAB AS A DIAPHRAGM<br />

With the increasing use of the <strong>Hambro</strong> system for floor of<br />

buildings in earthquake prone areas such as Anchorage,<br />

Los Angeles, Vancouver, Montreal and Quebec City or in<br />

hurricane prone areas such as Florida as well as for multistorey<br />

buildings where shear transfer could occur at some<br />

level of the building due to the reduction of the floor plan,<br />

it is important to develop an understanding of how the<br />

slabs will be able to transmit horizontal loads while being<br />

part of the <strong>Hambro</strong> floor system.<br />

The floor slab, part of the <strong>Hambro</strong> system, must be designed<br />

by the project structural engineer as a diaphragm to resist<br />

horizontal loads and transmit them to the vertical bracing<br />

system.<br />

Any diaphragm has the following limit states:<br />

1) Shear strength between the supports<br />

2) Out of plane buckling<br />

3) In plane deflection of the diaphragm<br />

4) Shear transmission at the supports<br />

A diaphragm works as the web of a beam spanning<br />

between or extending beyond the supports. In the case of<br />

a floor slab, the slab is the web of the beam spanning<br />

between or extending beyond the vertical elements<br />

designed to transmit to the foundations the horizontal<br />

loads produced by earthquake or wind.<br />

We will use a simple example of wind load acting on a<br />

diaphragm part of a horizontal beam forming a single span<br />

between end walls. The structural engineer responsible for<br />

the design of the building shall establish the horizontal<br />

loads that must be resisted at each floor of the building for<br />

the wind and earthquake conditions prevailing at the building<br />

location. The structural engineer must also identify the<br />

vertical elements that will transmit the horizontal loads to<br />

the foundations in order to calculate the shear that must be<br />

resisted by the floor slab.<br />

4.6.2 SHEAR STRENGTH BETWEEN SUPPORTS<br />

A series of fourteen specimens of concrete slabs, part of a<br />

<strong>Hambro</strong> floor system, were tested in the laboratories of<br />

Carleton University in Ottawa. The purpose of the tests was<br />

to identify the variables affecting the in plane shear strength<br />

of the concrete slab reinforced with welded wire mesh.<br />

The specimens were made of slabs with a concrete thickness<br />

of 63 mm (2.5”) or 70 mm (2.75”) forming a beam with<br />

a span of 610 mm (24”) and a depth of 610 mm (24”). This<br />

beam was loaded with two equal concentrated loads at<br />

152 mm (6”) from the supports. The other variables were:<br />

1) The size of the wire mesh<br />

2) The presence or absence of the <strong>Hambro</strong> joist embedded<br />

top chord parallel to the load in the shear zone<br />

3) The concrete strength<br />

It was found that the shear resistance of the slab is minimized<br />

when the shear stress is parallel to the <strong>Hambro</strong> joist<br />

embedded top chord. A conservative assumption could be<br />

made that the concrete confined steel wire mesh is the<br />

only element that will transmit the shear load over the<br />

embedded top chord.<br />

In the following example of the design procedure, we will<br />

take into account that the steel of the wire mesh is already<br />

under tension stresses produced by the continuity of the<br />

slab over the <strong>Hambro</strong> joist, and that the remaining<br />

capacity of the steel wire mesh will be the limiting factor<br />

for the shear strength of the slab.<br />

The largest bending moment is over the embedded<br />

top chord and is calculated for one meter width. In using<br />

the example from section 4.1.5 page 5, the non factored<br />

moment is:<br />

Dead load*: Mfd = 3KPa x (1.2m) 2 / 10 = 0.43 kN•m<br />

Live load*: MfL = 2KPa x (1.2m) 2 / 10 = 0.29 kN•m.<br />

1) Loads<br />

Factored dead load: 1.25 x 3.0 = 3.75 kPa<br />

Factored live load: 1.50 x 2.0 = 3.00 kPa<br />

Factored total load: 6.75 kPa<br />

And thus the factored live load accounts for 44% of the<br />

factored total load.<br />

2) Bending moment in the slab between joists due to<br />

gravity loads<br />

The smallest lever arm between the compression concrete<br />

surface and the tension steel of the wire mesh is also over<br />

the embedded top chord. This dimension allows us to<br />

calculate the factored bending capacity of the slab to be<br />

Mr = 1.61 kN•m*.<br />

To establish the shear capacity of steel wire mesh for a slab<br />

unit width of one meter, we use the following formula<br />

adapted from CSA A23.3-04 clause 11.5 and simplified<br />

to calculate the resistance of the reinforcing steel only,<br />

considering a shear crack developing at a 45 degree angle<br />

and intersecting the wire mesh in both directions.<br />

V r = ø s x A s x F y x cos (45°)<br />

= 0.85 x 2 x 123 x 400 x 0.707/1 000<br />

= 59.1 kN for a meter width of slab<br />

* See page 5 for calculation.<br />

15


16<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

DESIGN EXAMPLE METRIC<br />

First<br />

<strong>Hambro</strong><br />

Joist<br />

From figure 17 we can establish the horizontal shear that<br />

the floor diaphragm will have to resist in order to transfer<br />

the horizontal load from the walls facing the wind to the<br />

perpendicular walls where a vertical bracing system will<br />

bring that load down to the foundation.<br />

Total wind pressure load from leeward<br />

and windward faces: 1.2 kPa<br />

Storey height: 3.7 m<br />

Span of the beam with the floor slab<br />

acting as the web: 35.5 m<br />

Length of the walls parallel to<br />

the horizontal force: 18.3 m<br />

For the purpose of our example the factored wind load is the<br />

maximum horizontal load calculated according to the provisions<br />

of the local building code, but earthquake load shall also be calculated<br />

by the structural design engineer of the project and the<br />

maximum of the two loads should be used in the calculation.<br />

V f = w f x span / 2<br />

= 3.7 x 1.2 x 35.5 / 2 = 78.8 kN<br />

In our example, the end reaction is distributed along<br />

the whole length of the end wall used to transfer the load,<br />

18.3 m in our example.<br />

V f = 78.8 / 18.3<br />

= 4.3 kN for a meter width of slab<br />

Considering the reduction factor from the National Building<br />

Code 2005 for the simultaneity of gravity live load and horizontal<br />

wind load for our example, the structural engineer of<br />

the project could verify the diaphragm capacity of the floor<br />

slab and it’s reinforcing by verifying that the moment and<br />

shear interaction formulas used below are less than unity:<br />

Load Combinaison 1:<br />

1.25 x M fd + 1.5 x M fL<br />

M r<br />

M r<br />

Doesn’t control<br />

Fig. 17<br />

Wind load = 1.2 kN/m 2<br />

L = 35 500 mm<br />

Load Combinaison 2:<br />

B = 18 300 mm<br />

1.25 x<br />

(Controls)<br />

Load Combinaison 3:<br />

Mfd + 1.5<br />

M<br />

x fL + 0.4<br />

V<br />

x f ≤ 1<br />

Mr Mr Vr (1.25 x 0.43)<br />

+<br />

(1.5 x 0.29 )<br />

+<br />

0.4 x 4.3<br />

= 0.64 ≤ 1 OK<br />

1.61 1.61 59.1<br />

1.25 x M fd + 0.5 x M fL + 1.4 x V f ≤ 1<br />

M r M r V r<br />

(1.25 x 0.43) + (0.5 x 0.29) + 1.4 x 4.3 = 0.53 ≤ 1 OK<br />

1.61 1.61 59.1<br />

These verifications indicate that the wire mesh imbedded<br />

in the slab would provide enough shear strength to<br />

transfer those horizontal loads.<br />

4.6.3 OUT OF PLANE BUCKLING<br />

The floor slab, when submitted to a horizontal shear load,<br />

may tend to buckle out of plane like a sheet of paper being<br />

twisted. The minimum thickness of <strong>Hambro</strong> concrete slab<br />

of 65 mm (2 1 /2”) is properly held in place by the <strong>Hambro</strong><br />

joists spaced at a maximum 1 555 mm (5’-1 1 /4”) and who<br />

are attached at their ends to prevent vertical movement,<br />

so the buckling length of the slab itself will be limited to the<br />

spacing of the joist and the buckling of a floor will normally<br />

not be a factor in the design of the slab as a diaphragm.<br />

4.6.4 IN PLANE DEFLECTION OF THE DIAPHRAGM<br />

As for every slab used as a diaphragm, the deflection of the<br />

floor as a horizontal member between the supports provided<br />

by the vertical bracing system shall be investigated<br />

by the structural engineer of the building to verify that the<br />

horizontal deflection remains within the allowed limits.<br />

4.6.5 SHEAR TRANSMISSION TO<br />

THE VERTICAL BRACING SYSTEM<br />

The structural engineer of the project shall design and indicate<br />

on his drawings proper methods and/or reinforcing to<br />

attach the slab to the vertical bracing system over such a<br />

length as to prevent local overstress of the slab capacity to<br />

transfer shear.


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.7 LATERAL LOAD DISTRIBUTION<br />

Line loads are often encountered in construction, i.e. a<br />

concrete block wall or even a load bearing concrete block<br />

wall. It is always desirable to have a floor system that is<br />

stiff enough to allow these line loads to be distributed to<br />

adjacent joists rather than be carried by the joist that<br />

happens to be directly under it.<br />

The <strong>Hambro</strong> Composite Floor System provides the<br />

designer with this desirable feature.<br />

This was conclusively proven by randomly selecting a<br />

sample of five similar adjacent joists in a bay in an apartment<br />

structure and line loading the centre one.<br />

The joists were 300 mm (12”) deep, had a clear span<br />

of 6 500 mm (21’-4”) and a 75 mm (3”) thick slab. The<br />

loads were applied using brick pallets. At every load stage,<br />

steel strains as well as deflections were measured.<br />

The distribution of load to each of the five joists can be<br />

determined by comparing deflections or stresses at similar<br />

locations in the five joists under investigation.<br />

Tests have demonstrated that for a line load applied to a<br />

typical joist in a bay, the actual distribution of load to that<br />

joist is approximately 40% of the applied load. The distribution<br />

of load to the adjacent joist on either side is approximately<br />

21% of the applied load and to the next adjacent<br />

joist approximately 9% of the applied load.<br />

17


18<br />

DESIGN PRINCIPLES AND CALCULATIONS<br />

4.8 MINI-JOISTS<br />

4.8.1 H SERIES<br />

The standard <strong>Hambro</strong> section, being 95 mm (3 3 /4”) deep,<br />

possesses sufficient flexural strength to become the major<br />

steel component of the mini-joist series. The three sizes<br />

that are currently being used are illustrated in the figure<br />

below and spans beyond 2 400 mm (8’) can be achieved<br />

with the heavier SRTC unit. Other sizes are also available.<br />

The composite capacities of the TC, RTC & SRTC units are<br />

calculated on the basis of “elastic tee beam analysis”.<br />

The effective flange width, b, equals the lesser of span/4,<br />

or joist spacing. With the mini-joist spaced at 1 251 mm<br />

TABLE 10: Mini-joist H Series Span Chart<br />

TC RTC SRTC<br />

PROPERTIES<br />

Fig. 18<br />

(4’-1 1 /4”), b is dictated by span/4. The load table lists<br />

total unfactored load capacity in kN/m (plf) for span up to<br />

2.64 m (8’-8”).<br />

Full scale tests have demonstrated consistently that shoe<br />

plates are not required for TC and RTC - the section is<br />

simply notched at each bearing end with the lower horizontal<br />

portion of the becoming the actual bearing surface.<br />

Note that where the non-composite end reaction<br />

exceeds 4.5 kN (1.0 kip) the notched ends are reinforced<br />

with a 12.7 mm ( 1 /2”) diameter bar 200 mm (8”) long.<br />

This is to prevent the section from “straightening out”at the<br />

bearing ends. It is interesting to note that this is not a problem<br />

during the composite service stage, even with its higher total<br />

loads, as the 70 mm (2 3 /4”) slab carries the vertical shears.<br />

TYPE CONDITIONS I S MAXIMUM CLEAR SPAN (m)<br />

mm 4 x 10 6 mm 3 x 10 3<br />

TC COMPOSITE 0.950 9.8<br />

NON-COMP. 0.275 4.8 UP TO 1.25 m<br />

RTC COMPOSITE 2.120 21.5<br />

NON-COMP. 0.597 11.5 UP TO 1.68 m<br />

SRTC COMPOSITE 4.830 41.8<br />

NON-COMP. 1.660 26.2 UP TO 2.44 m<br />

TABLE 11: Mini-joist H Series Span Chart<br />

PROPERTIES<br />

TYPE CONDITIONS I S MAXIMUM CLEAR SPAN (ft.)<br />

in. 4 in. 3<br />

TC COMPOSITE 2.29 0.60<br />

NON-COMP. 0.66 0.29 UP TO 4’-1”<br />

RTC COMPOSITE 5.09 1.31<br />

NON-COMP. 1.63 0.75 UP TO 5’-6”<br />

SRTC COMPOSITE b = 12” 9.84 2.55<br />

NON-COMP. b = 24” 11.60 1.60 UP TO 8’-0”


DESIGN PRINCIPLES AND CALCULATIONS<br />

4.8.2 MD2000 ® SERIES<br />

The standard <strong>Hambro</strong> MD2000 section, being 95 mm<br />

(3 3 /4”) deep, possesses sufficient flexural strength to become<br />

the major steel component of the mini-joist series. The two<br />

sizes that are currently being used are illustrated in the figure<br />

below and spans beyond 2 400 mm (8’) can be achieved with<br />

the heavier RMD unit. Other sizes are also available.<br />

The composite capacities of the MD & RMD units are calculated<br />

on the basis of “elastic tee beam analysis”. The<br />

effective flange width, b, equals the lesser of span/4 or<br />

joist spacing. With the mini-joist spaced at 1 251 mm<br />

(4’-1 1 /4”), b is dictated by span/4. The load table lists<br />

total unfactored load capacity in kN/m (plf) for span up to<br />

2.64 m (8’-8”).<br />

L 1 5 /8” x 2” x 0.09”<br />

LLH<br />

MD<br />

3 /4” φ rod x 3” length<br />

at each end<br />

TABLE 12: Mini-joist MD2000 Series Span Chart<br />

TABLE 13: Mini-joist MD2000 Series Span Chart<br />

Fig. 19<br />

Full scale tests have demonstrated consistently that shoe<br />

plates are not required - the section is simply notched<br />

at each bearing end with the lower horizontal portion of the<br />

becoming the actual bearing surface. Note that where<br />

the non-composite end reaction exceeds 4.5 kN (1.0 kip)<br />

the notched ends are reinforced with a 12.7 mm ( 1 /2”)<br />

diameter bar 200 mm (8”) long.<br />

This is to prevent the section from “straightening out”<br />

at the bearing ends. It is interesting to note that this is not<br />

a problem during the composite service stage, even with<br />

its higher total loads, as the 70 mm (2 3 /4”) nominal slab<br />

carries the vertical shears.<br />

1 /2” φ rod<br />

L 1 5 /8” x 2” x 0.09”<br />

LLH<br />

RMD<br />

3 /4” φ rod x 3” length<br />

at each end<br />

and<br />

at each 24” c/c<br />

TYPE CONDITIONS PROPERTIES MAXIMUM CLEAR SPAN (m)<br />

I<br />

mm<br />

S<br />

4 x 106 mm3 x 103 t= 70mm<br />

DL = 3.2 Kpa<br />

LL = 1.9 Kpa<br />

t=70mm<br />

DL = 3.2 Kpa<br />

LL = 4.8 Kpa<br />

t=85mm<br />

DL = 3.55 Kpa<br />

LL = 1.9 Kpa<br />

t=85mm<br />

DL = 3.55 Kpa<br />

LL = 4.8 Kpa<br />

MD COMPOSITE 1.186 15.16<br />

NON-COMP. 0.298 7.25 1.65 1.47 1.57 1.42<br />

RMD COMPOSITE 1.775 24.32<br />

NON-COMP. 0.582 13.94 2.40 2.11 2.26 2.06<br />

t = Thickness above steel deck<br />

TYPE CONDITIONS PROPERTIES MAXIMUM CLEAR SPAN (ft.)<br />

I<br />

in.<br />

S<br />

4 in. 3<br />

t= 2<br />

MD COMPOSITE 2.85 0.92<br />

NON-COMP. 0.71 0.44 5’-5” 4’-10” 5’-2” 4’-8”<br />

3/4” t = 2 3/4” t = 3 1/4” t = 3 1/4”<br />

DL = 67 psf<br />

LL = 40 psf<br />

DL = 67 psf<br />

LL = 100 psf<br />

DL = 74 psf<br />

LL = 40 psf<br />

DL = 74 psf<br />

LL = 100 psf<br />

RMD COMPOSITE 4.28 1.49<br />

NON-COMP. 1.40 0.85 7’-10” 6’-11” 7’-5” 6’-9”<br />

t = Thickness above steel deck<br />

19


5. PRODUCT INFORMATION<br />

5.1 D500 TM (H SERIES)<br />

5.1.1 DESCRIPTION<br />

<strong>Hambro</strong> H Series features a top chord made of one<br />

<strong>Hambro</strong> section, an open web of mild steel rods and wide<br />

range of bottom chord angles.<br />

5.1.2 MATERIALS<br />

The <strong>Hambro</strong> top chord acts as a continuous shear connector.<br />

Bottom chord angles and web members are hot or cold<br />

rolled sections, minimum yield Fy = 380 MPa (55 ksi) and<br />

350 MPa (50 ksi) for rods.<br />

5.1.3 WEB GEOMETRY<br />

See below.<br />

5.1.4 JOIST SPACING<br />

1 251 mm (4’-1 1 /4”), typical unless noted.<br />

5.1.5 SPAN AND DEPTH<br />

Span: Up to 13 100 mm (43’-0”).<br />

Depth: Between 200 mm (8”) and 600 mm (24”).<br />

R<br />

P1 t<br />

PRODUCT INFORMATION<br />

5.1.6 SLAB DESIGN<br />

The minimum slab thickness is 65 mm (2 1 /2”) and the slab<br />

capacity chart tables 8 and 9 on page 19 and 20, shows the<br />

total allowable load (including the dead load of the slab)<br />

based on 20 MPa (3000 psi) concrete.<br />

5.1.7 ROLLBAR®<br />

Standard 1 251 mm (4’-1 1 /4”).<br />

Non standard available for specific case.<br />

5.1.8 FORMS<br />

Standard 12.7 mm ( 1 /2”) or 9.5 mm ( 3 /8”) plywood sheets,<br />

1 220 mm x 2 440 mm (4’ x 8’).<br />

5.1.9 INSTALLATION<br />

See installation <strong>Manual</strong> for the <strong>Hambro</strong> D500 Composite<br />

Floor System and drawing ED D500 provided for each specific<br />

project.<br />

5.1.10 TYPICAL DETAILS<br />

See typical details section page 1 to 11.<br />

P P P P<br />

W 1 W 2 W C W C<br />

P1 b<br />

P2 b<br />

WEB GEOMETRY (mm)<br />

NOM. DEPTH “d” P1 t P1 b P2 b P<br />

200, 250 152 to 305 152 to 406 305 508<br />

300 254 to 406 254 to 533 406 610<br />

350, 400 381 to 610 381 to 813 508 610<br />

450, 500, 550, 600 483 to 610 483 to 813 610 610<br />

P P P<br />

(Clear span - 12.5 mm or 1 /2”)<br />

W C<br />

“n” Continuous panels<br />

Fig. 20<br />

D500 and MD2000 ® Web Geometry<br />

W C<br />

WEB GEOMETRY (in.)<br />

NOM. DEPTH “d” P1 t P1 b P2 b P<br />

d<br />

8, 10 6 to 12 6 to 16 12 20<br />

12 10 to 16 10 to 21 16 24<br />

14, 16 15 to 24 15 to 32 20 24<br />

18, 20, 22, 24 19 to 24 19 to 32 24 24<br />

1


5.2 MD2000 ® SERIES<br />

5.2.1 DESCRIPTION<br />

<strong>Hambro</strong> MD2000 Series features a top chord made of<br />

2 pieces welded together in order to receive the metal deck<br />

each side. The open web is made with mild steel rods and<br />

a wide range of bottom chord. The steel deck is used as<br />

formwork only during pouring.<br />

5.2.2 MATERIALS<br />

The <strong>Hambro</strong> top chord acts as a continuous shear connector.<br />

Bottom chord angles and web members are hot or cold<br />

rolled sections, minimum yield Fy = 380 MPa (55 ksi) and<br />

350 MPa (50 ksi) for rods.<br />

5.2.3 WEB GEOMETRY<br />

The web geometry is exactly the same of D500TM presented in page 33.<br />

5.2.4 JOIST SPACING<br />

Between 300 mm (1’-0”) and 1 450 mm (4’-9”) according<br />

to the steel deck capacity in single span. The standard<br />

spacing is 1 220 mm (4’-0”).<br />

5.2.5 SPAN AND DEPTH<br />

Span: Up to 13 100 mm (43’-0”)<br />

Depth: Between 200 mm (8”) and 600 mm (24”)<br />

2<br />

PRODUCT INFORMATION<br />

Slab<br />

Thickness<br />

MD2000 Joist<br />

Depth<br />

Top of Slab<br />

Fig. 21<br />

5.2.6 SLAB DESIGN<br />

The minimum “TOTAL SLAB THICKNESS” is 110 mm<br />

(4 1 /4”) including the steel deck. See figure 21 for more<br />

information.<br />

5.2.7 STEEL DECK<br />

The steel deck used is P-3606, 22 GA (0.76 mm). The depth<br />

is 38 mm (1 1 /2”). The deck must be designed in single span<br />

(spacing between joist). For more information, see the<br />

Canam brochure about it. The deck must be connected on<br />

the MD2000 top chord by welding or screwing.<br />

5.2.8 INSTALLATION<br />

Installation shall be in accordance with the manufacturer’s<br />

recommendations and the erection drawings.<br />

5.2.9 PERMANENT BRIDGING<br />

Bridging must be installed as specified on erection<br />

drawings.<br />

5.2.10 TYPICAL DETAILS<br />

See typical details section page 13 to 22.<br />

38 mm<br />

(1 1 /2”)<br />

38 mm (1 1 /2”) Steel Deck<br />

(22 GA. MIN.)<br />

Total slab thickness = Slab thickness + 38 mm (1 1 /2”)<br />

Total slab thickness ≥ 110 mm (4 1 /4”)<br />

Slab thickness ≥ 70 mm (2 3 /4”)<br />

Total slab<br />

thickness


5.3 DTC (LH SERIES)<br />

5.3.1 DESCRIPTION<br />

This series features a top chord made of two <strong>Hambro</strong><br />

sections, an open web of light channels or angles and a<br />

range of heavier bottom chord angles.<br />

<strong>Hambro</strong> composite long span floors provide greater<br />

economy for heavy service loads and longer spans with<br />

live load deflections less than half those of conventional<br />

systems.<br />

5.3.2 MATERIALS<br />

The <strong>Hambro</strong> top chord acts as a continuous shear connector.<br />

Bottom chord angles and web members are hot or cold<br />

rolled sections, minimum yield Fy = 380 MPa (55 ksi) and<br />

350 MPa (50 ksi) for rods.<br />

5.3.3 WEB GEOMETRY<br />

See below.<br />

5.3.4 JOIST SPACING<br />

Note the new standard spacing <strong>Hambro</strong> LH Series,<br />

1 285 mm (4’-2 5 /8”) center to center, which is obtained<br />

when using standard Rollbar ® (1 251 mm (4’-1 1 /4”)<br />

spacing plus 35 mm (1 3 /8”) web thickness).<br />

P 1<br />

(P 1 + VAR 1 ) /2<br />

P 1<br />

PRODUCT INFORMATION<br />

VAR 1<br />

Variable panel<br />

(Clear span – 12 mm or 1 /2”)<br />

Fig. 22<br />

DTC Web Geometry<br />

5.3.5 SPAN AND DEPTH<br />

Span: Up to 16 155 mm (53’-0”).<br />

Depth: Between 400 mm (16”) and 900 mm (36”).<br />

5.3.6 SLAB DESIGN<br />

The minimum slab thickness is 70 mm (2 3 /4”) and the slab<br />

capacity chart tables 8 and 9 on page 19 and 20 shows the<br />

total allowable load (including the dead load of the slab)<br />

based on 20 MPa (3 000 psi) concrete.<br />

5.3.7 ROLLBAR<br />

Standard 1 251 mm (4’-1 1 /4”) roll bars are used to support<br />

the plywood forms.<br />

5.3.8 FORMS<br />

Regular 1 220 mm (4’-0”) plywood forms must be slit in<br />

half, 610 mm x 2 440 mm (2’ x 8’) panels, to allow insertion<br />

between the top chords. Normally 12.7 mm ( 1 /2”) plywood<br />

is used.<br />

5.3.9 INSTALLATION<br />

Installation shall be in accordance with the manufacturer’s<br />

recommendations. Particular attention should be paid to<br />

the erection of the long span <strong>Hambro</strong> joists and bridging<br />

must be installed as specified on the <strong>Hambro</strong> drawing.<br />

5.3.10 TYPICAL DETAILS<br />

See typical details section page 23 to 27.<br />

610 mm VAR<br />

2<br />

610 mm 610 mm<br />

24” 24” 24”<br />

Variable panel P<br />

d = Joist depth<br />

P1 = d + 300 mm (12”) ≤ 1 170 mm (46”)<br />

VAR 1 = 0 to 150 mm (6”)<br />

VAR 2 = 150 mm (6”) to 610 mm (24”)<br />

“n” Continuous panels<br />

d<br />

3


JOIST DEPTH SELECTION TABLES<br />

6. JOIST DEPTH SELECTION TABLES<br />

METRIC<br />

6.1 GENERAL INFORMATION<br />

6.1.1 JOIST DEPTH SELECTION TABLES<br />

The following load tables give the optimized depth and the<br />

minimum depth for a specific span and a specific load<br />

following a certain slab thickness. Values indicated present<br />

a uniform load on all the length with a regular spacing<br />

and a f’ c = 20 MPa. The regular spacing is 1 251 mm for<br />

D500TM (H Series), 1 285 mm for DTC (LH Series) and<br />

1 220 mm for MD2000 ®.<br />

The tables have been done for three types of loading with<br />

different thickness of concrete. The three types are residential<br />

(live load = 1.92 kPa), office (live load = 2.4 kPa)<br />

and corridor or lobby (live load = 4.8 kPa). These three<br />

types are used in the tables as example. Any others types<br />

of loading can be used for the <strong>Hambro</strong> design.<br />

The tables have been created with a certain super-imposed<br />

dead load. Even if your superimposed dead load is a little<br />

bit different, the optimal depth and the minimum depth in<br />

the table will be right.<br />

6.1.2 DEFLECTION CRITERIA<br />

For all cases presented in the tables, deflection for live load<br />

does not exceed L / 360.<br />

6.1.3 JOIST IDENTIFICATION<br />

The load tables are provided to aid engineers in selecting<br />

the most optimal depth of joist for a particular slab thickness<br />

and a specific loading.<br />

The engineer should specify the joist depth, slab thickness,<br />

the design loads, dead, live and total together with special<br />

point loads and line loads where applicable. Canam will<br />

provide composite joists designed to specifically meet<br />

these requirements.<br />

6.1.4 JOIST DESIGNATION<br />

The joist designation should simply be the joist depth<br />

followed by the total allowable service load and live load in<br />

kN per meter applied on the joist.<br />

Example: H250-7/3 for <strong>Hambro</strong> D500<br />

Example: LH600-7/3 for <strong>Hambro</strong> DTC<br />

Example: MDH300-7/3 for <strong>Hambro</strong> MD2000<br />

6.1.5 EXAMPLE<br />

Find the optimal depth and the minimum depth for the<br />

following office project with <strong>Hambro</strong> D500 (H Series).<br />

Span: 9 750 mm<br />

Slab thickness: 100 mm<br />

Joist spacing: 1 251 mm<br />

Concrete strength: 20 MPa<br />

Yield point of steel: 380 MPa<br />

Concrete density: 2 400 kg/m3 Dead load: 3.65 kN/m2 Joist: 0.12 kN/m2 Concrete: 2.32 kN/m2 Mechanical: 0.10 kN/m2 Ceiling (13 mm): 0.14 kN/m2 Partition: 0.96 kN/m2 TOTAL: 3.65 kN/m2 Live load (According to NBC): 2.40 kN/m2 Solution:<br />

From tables, find slab thickness = 100 mm with<br />

a span = 9 750 mm<br />

In the table, with dead load = 3.65 kN/m2 and<br />

live load = 2.40 kN/m2 , we find:<br />

Optimal depth = H500<br />

Minimum depth = H350<br />

Then:<br />

H500 means depth = 500 mm<br />

H350 means depth = 350 mm<br />

1


METRIC<br />

6.2 D500 TM (H SERIES)<br />

2<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 251 mm<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H200 and H250.<br />

Slab thickness = 65 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 KPa)<br />

Dead Load (KPa) 2.83 2.83 2.83<br />

Live Load (KPa) 1.92 2.40 4.80<br />

Total Load (KPa) 4.75 5.23 7.63<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H250 H300 H350<br />

min = H200 min = H200 min = H200<br />

H300 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H400<br />

min = H200 min = H200 min = H200<br />

H400 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H400 H450<br />

min = H300 min = H300 min = H300<br />

H400 H400 H500<br />

min = H300 min = H300 min = H300<br />

H450 H450 H500<br />

min = H300 min = H300 min = H300<br />

H500 H500 H550<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H350 min = H350 min = H350<br />

H550 H550 H600<br />

min = H400 min = H400 min = H400<br />

H550 H550 H600<br />

min = H400 min = H400 min = H400<br />

H600 H600<br />

min = H400 min = H400<br />

H600 H600<br />

min = H450 min = H450<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 75 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 KPa)<br />

Dead Load (Kpa) 3.11 3.11 3.11<br />

Live Load (KPa) 1.92 2.40 4.80<br />

Total Load (KPa) 5.03 5.51 7.91<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H250 H300 H350<br />

min = H200 min = H200 min = H200<br />

H300 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H400<br />

min = H200 min = H200 min = H200<br />

H400 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H400 H450<br />

min = H300 min = H300 min = H300<br />

H400 H450 H500<br />

min = H300 min = H300 min = H300<br />

H450 H450 H500<br />

min = H300 min = H300 min = H300<br />

H500 H550 H550<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H400 min = H400 min = H400<br />

H550 H550<br />

min = H400 min = H400<br />

H600 H600<br />

min = H400 min = H400<br />

H600 H600<br />

min = H450 min = H450


METRIC<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 251 mm<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H200 and H250.<br />

Slab thickness = 90 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 KPa)<br />

Dead Load (KPa) 3.40 3.4 3.4<br />

Live Load (KPa) 1.92 2.4 4.8<br />

Total Load (KPa) 5.32 5.8 8.2<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H200 H200 H300<br />

min = H200 min = H200 min = H200<br />

H250 H250 H350<br />

min = H200 min = H200 min = H200<br />

H300 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H250 min = H250 min = H250<br />

H350 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H400 H450<br />

min = H300 min = H300 min = H300<br />

H400 H450 H500<br />

min = H300 min = H300 min = H300<br />

H450 H450 H500<br />

min = H300 min = H300 min = H300<br />

H450 H500 H500<br />

min = H350 min = H350 min = H350<br />

H500 H500 H500<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H400 min = H400 min = H400<br />

H550 H550<br />

min = H400 min = H400<br />

H600 H600<br />

min = H450 min = H450<br />

H600 H600<br />

min = H500 min = H500<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 100 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.65 3.65 3.65<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.57 6.05 8.45<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

H200 H200 H250<br />

min = H200 min = H200 min = H200<br />

H200 H200 H250<br />

min = H200 min = H200 min = H200<br />

H250 H250 H350<br />

min = H200 min = H200 min = H200<br />

H300 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H250 min = H250 min = H250<br />

H350 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H450 H450<br />

min = H300 min = H300 min = H300<br />

H500 H500 H550<br />

min = H300 min = H300 min = H300<br />

H500 H500 H550<br />

min = H300 min = H300 min = H300<br />

H500 H500 H500<br />

min = H350 min = H350 min = H350<br />

H500 H500 H500<br />

min = H350 min = H350 min = H400<br />

H500 H500<br />

min = H400 min = H400<br />

H550 H550<br />

min = H450 min = H450<br />

H600 H600<br />

min = H500 min = H500<br />

H600 H600<br />

min = H500 min = H500<br />

3


METRIC<br />

4<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 251 mm<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H200 and H250.<br />

Slab thickness = 115 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.97 3.97 3.97<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.89 6.37 8.77<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

H200 H200 H250<br />

min = H200 min = H200 min = H200<br />

H250 H250 H300<br />

min = H200 min = H200 min = H200<br />

H250 H250 H350<br />

min = H200 min = H200 min = H200<br />

H300 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H400<br />

min = H250 min = H250 min = H250<br />

H350 H400 H400<br />

min = H250 min = H250 min = H250<br />

H400 H450 H450<br />

min = H300 min = H300 min = H300<br />

H450 H500 H500<br />

min = H300 min = H300 min = H300<br />

H500 H500 H500<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H400 min = H400 min = H400<br />

H500 H550<br />

min = H450 min = H450<br />

H550 H550<br />

min = H500 min = H500<br />

H600 H600<br />

min = H500 min = H500<br />

H600 H600<br />

min = H500 min = H500<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 125 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 4.30 4.30 4.30<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 6.22 6.70 9.10<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

H200 H200 H200<br />

min = H200 min = H200 min = H200<br />

H300 H300 H300<br />

min = H200 min = H200 min = H200<br />

H300 H300 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H200 min = H200 min = H200<br />

H350 H350 H350<br />

min = H250 min = H250 min = H250<br />

H350 H350 H350<br />

min = H250 min = H250 min = H250<br />

H400 H400 H500<br />

min = H300 min = H300 min = H300<br />

H450 H450 H500<br />

min = H300 min = H300 min = H300<br />

H500 H500 H500<br />

min = H350 min = H350 min = H350<br />

H500 H500 H550<br />

min = H400 min = H400 min = H400<br />

H500 H500<br />

min = H450 min = H450<br />

H550 H550<br />

min = H450 min = H450<br />

H600 H600<br />

min = H500 min = H500<br />

H600 H600<br />

min = H550 min = H550


METRIC<br />

6.3 MD2000 ® SERIES<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 220 mm<br />

Slab thickness = 110 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.35 3.35 3.35<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.27 5.75 8.15<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

MDH200 MDH200 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH200 MDH300 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH250 MDH300 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH300 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH450<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH400 MDH400 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH450 MDH450 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH450 MDH450 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH600<br />

min = MDH450 min = MDH450 min = MDH450<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

min = MDHXXX<br />

: Optimal MD2000 ® Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 115 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.50 3.50 3.50<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.42 5.90 8.30<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

MDH200 MDH200 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH200 MDH300 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH250 MDH300 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH300 MDH350 MDH400<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH450<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH400 MDH400 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH450 MDH450 MDH500<br />

min = MDH300 min = MDH300 min = MDH400<br />

MDH450 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH600 MDH600<br />

min = MDH450 min = MDH450 min = MDH450<br />

5


METRIC<br />

6<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 220 mm<br />

Slab thickness =125 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.78 3.78 3.78<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.70 6.18 8.58<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

MDH200 MDH200 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH200 MDH300 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH250 MDH300 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH300 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH450<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH400 MDH450 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH450 MDH450 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH450 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH500 MDH550<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH500 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH600<br />

min = MDH450 min = MDH450<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

: Optimal MD2000 ® Series Joist Depth (mm)<br />

min = MDHXXX : Minimum Depth (mm) Allowed<br />

Slab thickness = 140 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 4.07 4.07 4.07<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.99 6.47 8.87<br />

SPAN c/c (mm)<br />

3 600 MDH200 MDH200 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

4 300 MDH200 MDH300 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

4 900 MDH250 MDH300 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

5 500 MDH300 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

6 100 MDH350 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

6 700 MDH350 MDH350 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

7 300 MDH400 MDH400 MDH450<br />

min = MDH250 min = MDH250 min = MDH250<br />

7 900 MDH400 MDH400 MDH450<br />

min = MDH300 min = MDH300 min = MDH300<br />

8 550 MDH400 MDH500 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

9 150 MDH500 MDH500 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

9 750 MDH500 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

10 350 MDH500 MDH500 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

10 975 MDH500 MDH500 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

11 575 MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

12 200 * MDH550 MDH550 MDH550<br />

min = MDH450 min = MDH450 min = MDH450<br />

13 100 * MDH550 MDH550<br />

min = MDH500 min = MDH500


METRIC<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 220 mm<br />

Slab thickness =150 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 4.36 4.36 4.36<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 6.28 6.76 9.16<br />

SPAN c/c (mm)<br />

3 600<br />

4 300<br />

4 900<br />

5 500<br />

6 100<br />

6 700<br />

7 300<br />

7 900<br />

8 550<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

13 100 *<br />

MDH200 MDH200 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH250 MDH300 MDH300<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH300 MDH300 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH300 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH350<br />

min = MDH200 min = MDH200 min = MDH200<br />

MDH350 MDH350 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH350 MDH400 MDH400<br />

min = MDH250 min = MDH250 min = MDH250<br />

MDH400 MDH400 MDH400<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH400 MDH400 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH500 MDH500 MDH500<br />

min = MDH300 min = MDH300 min = MDH300<br />

MDH500 MDH550 MDH500<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH550 MDH550 MDH550<br />

min = MDH350 min = MDH350 min = MDH350<br />

MDH500 MDH500 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH400 min = MDH400 min = MDH400<br />

MDH550 MDH550 MDH550<br />

min = MDH450 min = MDH450 min = MDH450<br />

MDH550 MDH550<br />

min = MDH500 min = MDH500<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

: Optimal MD2000 ® Series Joist Depth (mm)<br />

min = MDHXXX : Minimum Depth (mm) Allowed<br />

7


METRIC<br />

6.4 DTC (LH SERIES)<br />

8<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 285 mm<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 75 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.16 3.16 3.16<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.08 5.56 7.96<br />

SPAN c/c (mm)<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

12 800 *<br />

13 400 *<br />

14 025 *<br />

14 630 *<br />

15 240 *<br />

15 850 *<br />

LH500 LH500 LH600<br />

min = LH400 min = LH400 min = LH500<br />

LH500 LH600 LH800<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH600 LH700<br />

min = LH400 min = LH400 min = LH600<br />

LH600 LH600 LH700<br />

min = LH500 min = LH500 min = LH600<br />

LH700 LH800 LH800<br />

min = LH500 min = LH500 min = LH700<br />

LH800 LH800 LH900<br />

min = LH500 min = LH500 min = LH700<br />

LH700 LH800 LH900<br />

min = LH500 min = LH500 min = LH800<br />

LH800 LH900 LH900<br />

min = LH600 min = LH600 min = LH800<br />

LH800 LH800 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH800 LH900 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900<br />

min = LH600 min = LH600<br />

LH900 LH900<br />

min = LH600 min = LH600<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 90 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.45 3.45 3.45<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.37 5.85 8.25<br />

SPAN c/c (mm)<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

12 800 *<br />

13 400 *<br />

14 025 *<br />

14 630 *<br />

15 240 *<br />

15 850 *<br />

LH500 LH500 LH600<br />

min = LH400 min = LH400 min = LH500<br />

LH500 LH600 LH700<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH600 LH700<br />

min = LH400 min = LH400 min = LH600<br />

LH700 LH700 LH800<br />

min = LH400 min = LH400 min = LH600<br />

LH700 LH700 LH800<br />

min = LH500 min = LH500 min = LH700<br />

LH800 LH800 LH900<br />

min = LH500 min = LH500 min = LH700<br />

LH700 LH800 LH800<br />

min = LH500 min = LH500 min = LH800<br />

LH800 LH900 LH900<br />

min = LH600 min = LH600 min = LH800<br />

LH900 LH900 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH800 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900<br />

min = LH600 min = LH600<br />

LH900 LH900<br />

min = LH600 min = LH600


METRIC<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 285 mm<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 100 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 3.78 3.78 3.78<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.70 6.18 8.58<br />

SPAN c/c (mm)<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

12 800 *<br />

13 400 *<br />

14 025 *<br />

14 630 *<br />

15 240 *<br />

15 850 *<br />

LH500 LH500 LH600<br />

min = LH400 min = LH400 min = LH500<br />

LH500 LH600 LH700<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH700 LH800<br />

min = LH400 min = LH400 min = LH600<br />

LH700 LH800 LH800<br />

min = LH400 min = LH400 min = LH600<br />

LH800 LH800 LH800<br />

min = LH500 min = LH500 min = LH700<br />

LH700 LH800 LH800<br />

min = LH500 min = LH500 min = LH700<br />

LH800 LH800 LH800<br />

min = LH500 min = LH500 min = LH800<br />

LH800 LH800 LH900<br />

min = LH600 min = LH600 min = LH800<br />

LH800 LH900 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900<br />

min = LH600 min = LH600<br />

LH900 LH900<br />

min = LH700 min = LH700<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed<br />

Slab thickness = 115 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 4.00 4.00 4.00<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 5.92 6.40 8.80<br />

SPAN c/c (mm)<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

12 800 *<br />

13 400 *<br />

14 025 *<br />

14 630 *<br />

15 240 *<br />

15 850 *<br />

LH500 LH500 LH600<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH600 LH700<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH700 LH800<br />

min = LH400 min = LH400 min = LH600<br />

LH800 LH800 LH800<br />

min = LH500 min = LH500 min = LH600<br />

LH800 LH800 LH800<br />

min = LH500 min = LH500 min = LH600<br />

LH800 LH800 LH800<br />

min = LH600 min = LH600 min = LH700<br />

LH800 LH800 LH800<br />

min = LH600 min = LH600 min = LH800<br />

LH900 LH900 LH900<br />

min = LH600 min = LH600 min = LH800<br />

LH900 LH800 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900<br />

min = LH700 min = LH700<br />

LH900<br />

min = LH700<br />

9


METRIC<br />

10<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 20 MPa; density = 2 400 kg/m 3<br />

Joist spacing = 1 285 mm<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 125 mm<br />

Residential Office Other Loading<br />

Building Building (LL=4,8 kPa)<br />

Dead Load (kPa) 4.30 4.30 4.30<br />

Live Load (kPa) 1.92 2.40 4.80<br />

Total Load (kPa) 6.22 6.70 9.10<br />

SPAN c/c (mm)<br />

9 150<br />

9 750<br />

10 350<br />

10 975<br />

11 575<br />

12 200 *<br />

12 800 *<br />

13 400 *<br />

14 025 *<br />

14 630 *<br />

15 240 *<br />

LH500 LH500 LH600<br />

min = LH400 min = LH400 min = LH500<br />

LH600 LH600 LH800<br />

min = LH400 min = LH400 min = LH500<br />

LH700 LH700 LH700<br />

min = LH500 min = LH500 min = LH600<br />

LH800 LH800 LH800<br />

min = LH500 min = LH500 min = LH600<br />

LH800 LH800 LH800<br />

min = LH600 min = LH600 min = LH600<br />

LH800 LH800 LH800<br />

min = LH600 min = LH600 min = LH700<br />

LH800 LH800 LH800<br />

min = LH600 min = LH600 min = LH800<br />

LH900 LH900 LH900<br />

min = LH600 min = LH600 min = LH800<br />

LH900 LH800 LH900<br />

min = LH600 min = LH600 min = LH900<br />

LH900 LH900<br />

min = LH700 min = LH700<br />

LH900 LH900<br />

min = LH700 min = LH700<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (mm)<br />

: Minimum Depth (mm) Allowed


JOIST DEPTH SELECTION TABLES<br />

7. JOIST DEPTH SELECTION TABLES<br />

IMPERIAL<br />

7.1 GENERAL INFORMATION<br />

7.1.1 JOIST DEPTH SELECTION TABLES<br />

The following load tables give the optimized depth and the<br />

minimum depth for a specific span and a specific load<br />

following a certain slab thickness. Values indicated present<br />

a uniform load on all the length with a regular spacing and<br />

a f’ c = 3000 psi. The regular spacing is 4’-1 1 /4” for D500TM (H Series), 4’-2 5 /8” for DTC (LH Series) and 4’-0” for<br />

MD2000 ®.<br />

The tables have been done for three types of loading with<br />

different thickness of concrete. The three types are residential<br />

(live load = 40 psf), office (live load = 50 psf) and<br />

corridor or lobby (live load = 100 psf). These three types<br />

are used in the tables as example. Any others types of<br />

loading can be used for the <strong>Hambro</strong> design.<br />

The tables have been created with a certain super-imposed<br />

dead load. Even if your superimposed dead load is a little<br />

bit different, the optimal depth and the minimum depth in<br />

the table will be right.<br />

7.1.2 DEFLECTION CRITERIA<br />

For all cases presented in the tables, deflection for live load<br />

does not exceed L / 360.<br />

7.1.3 JOIST IDENTIFICATION<br />

The load tables are provided to aid engineers in selecting<br />

the most optimal depth of joist for a particular slab thickness<br />

and a specific loading.<br />

The engineer should specify the joist depth, slab thickness,<br />

the design loads, dead, live and total together with special<br />

point loads and line loads where applicable. Canam will<br />

provide composite joists designed to specially meet these<br />

requirements.<br />

7.1.4 JOIST DESIGNATION<br />

The joist designation should simply be the joist depth<br />

followed by the total allowable service load and live load in<br />

pounds per linear foot applied on the joist.<br />

Example: H10-493/205 for <strong>Hambro</strong> D500<br />

Example: LH24-493/205 for <strong>Hambro</strong> DTC<br />

Example: MDH10-493/205 for <strong>Hambro</strong> MD2000<br />

7.1.5 EXAMPLE<br />

Find the optimal depth and the minimum depth for the<br />

following office project with <strong>Hambro</strong> D500 (H Series).<br />

Span: 32’-0”<br />

Slab thickness: 4”<br />

Joist spacing: 4’-1 1 /4”<br />

Concrete strength: 3 000 psi<br />

Yield point of steel: 55 ksi<br />

Concrete density: 145 lb./ft. 3<br />

Dead load: 77 psf<br />

Joist: 2.5 psf<br />

Concrete: 48.5 psf<br />

Mechanical: 3.0 psf<br />

Ceiling (1/2”): 3.0 psf<br />

Partition: 20 psf<br />

TOTAL: = 77 psf<br />

Live load<br />

According to NBC: 50 psf<br />

Solution:<br />

From tables, find slab thickness = 4” with a span = 32’-0”<br />

In the table, with dead load = 77 psf and live load = 50 psf,<br />

we find:<br />

Optimal depth = H20<br />

Minimum depth = H14<br />

Then:<br />

H20 means depth = 20”<br />

H14 means depth = 14”<br />

11


IMPERIAL<br />

7.2 D500 TM (H SERIES)<br />

12<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-1 1/4”<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H8 and H10.<br />

Slab thickness = 2 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 59 59 59<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 99 109 159<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H10 H12 H14<br />

min = H8 min = H8 min = H8<br />

H12 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H16<br />

min = H8 min = H8 min = H8<br />

H16 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H16 H18<br />

min = H12 min = H12 min = H12<br />

H16 H16 H20<br />

min = H12 min = H12 min = H12<br />

H18 H18 H20<br />

min = H12 min = H12 min = H12<br />

H20 H20 H22<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H14 min = H14 min = H14<br />

H22 H22 H24<br />

min = H16 min = H16 min = H16<br />

H22 H22 H24<br />

min = H16 min = H16 min = H16<br />

H24 H24<br />

min = H16 min = H16<br />

H24 H24<br />

min = H18 min = H18<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed<br />

Slab thickness = 3”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 65 65 65<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 105 115 165<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H10 H12 H14<br />

min = H8 min = H8 min = H8<br />

H12 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H16<br />

min = H8 min = H8 min = H8<br />

H16 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H16 H18<br />

min = H12 min = H12 min = H12<br />

H16 H18 H20<br />

min = H12 min = H12 min = H12<br />

H18 H18 H20<br />

min = H12 min = H12 min = H12<br />

H20 H22 H22<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H16 min = H16 min = H16<br />

H22 H22<br />

min = H16 min = H16<br />

H24 H24<br />

min = H16 min = H16<br />

H24 H24<br />

min = H18 min = H18


IMPERIAL<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-1 1/4”<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H8 and H10.<br />

Slab thickness = 3 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 71 71 71<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 111 121 171<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H8 H8 H12<br />

min = H8 min = H8 min = H8<br />

H10 H10 H14<br />

min = H8 min = H8 min = H8<br />

H12 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H10 min = H10 min = H10<br />

H14 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H16 H18<br />

min = H12 min = H12 min = H12<br />

H16 H18 H20<br />

min = H12 min = H12 min = H12<br />

H18 H18 H20<br />

min = H12 min = H12 min = H12<br />

H18 H20 H20<br />

min = H14 min = H14 min = H14<br />

H20 H20 H20<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H16 min = H16 min = H16<br />

H22 H22<br />

min = H16 min = H16<br />

H24 H24<br />

min = H18 min = H18<br />

H24 H24<br />

min = H20 min = H20<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed<br />

Slab thickness = 4”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 77 77 77<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 117 127 177<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

H8 H8 H10<br />

min = H8 min = H8 min = H8<br />

H8 H8 H10<br />

min = H8 min = H8 min = H8<br />

H10 H10 H14<br />

min = H8 min = H8 min = H8<br />

H12 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H10 min = H10 min = H10<br />

H14 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H18 H18<br />

min = H12 min = H12 min = H12<br />

H20 H20 H22<br />

min = H12 min = H12 min = H12<br />

H20 H20 H22<br />

min = H12 min = H12 min = H12<br />

H20 H20 H20<br />

min = H14 min = H14 min = H14<br />

H20 H20 H20<br />

min = H14 min = H14 min = H16<br />

H20 H20<br />

min = H16 min = H16<br />

H22 H22<br />

min = H18 min = H18<br />

H24 H24<br />

min = H20 min = H20<br />

H24 H24<br />

min = H20 min = H20<br />

13


IMPERIAL<br />

14<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-1 1/4”<br />

NOTE: Plywood forms are to be slit in half with depths<br />

of H8 and H10.<br />

Slab thickness = 4 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 83 83 83<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 123 133 183<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

H8 H8 H10<br />

min = H8 min = H8 min = H8<br />

H10 H10 H12<br />

min = H8 min = H8 min = H8<br />

H10 H10 H14<br />

min = H8 min = H8 min = H8<br />

H12 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H16<br />

min = H10 min = H10 min = H10<br />

H14 H16 H16<br />

min = H10 min = H10 min = H10<br />

H16 H18 H18<br />

min = H12 min = H12 min = H12<br />

H18 H20 H20<br />

min = H12 min = H12 min = H12<br />

H20 H20 H20<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H16 min = H16 min = H16<br />

H20 H22<br />

min = H18 min = H18<br />

H22 H22<br />

min = H20 min = H20<br />

H24 H24<br />

min = H20 min = H20<br />

H24 H24<br />

min = H20 min = H20<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

HXXX<br />

min = HXXX<br />

: Optimal H Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed<br />

Slab thickness = 5”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 89 89 89<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 129 139 189<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

H8 H8 H8<br />

min = H8 min = H8 min = H8<br />

H12 H12 H12<br />

min = H8 min = H8 min = H8<br />

H12 H12 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H8 min = H8 min = H8<br />

H14 H14 H14<br />

min = H10 min = H10 min = H10<br />

H14 H14 H14<br />

min = H10 min = H10 min = H10<br />

H16 H16 H20<br />

min = H12 min = H12 min = H12<br />

H18 H18 H20<br />

min = H12 min = H12 min = H12<br />

H20 H20 H20<br />

min = H14 min = H14 min = H14<br />

H20 H20 H22<br />

min = H16 min = H16 min = H16<br />

H20 H20<br />

min = H18 min = H18<br />

H22 H22<br />

min = H18 min = H18<br />

H24 H24<br />

min = H20 min = H20<br />

H24 H24<br />

min = H22 min = H22


IMPERIAL<br />

7.3 MD2000 ® SERIES<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-0”<br />

Slab thickness = 4 1/4”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 70 70 70<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 110 120 170<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

MDH8 MDH8 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH8 MDH12 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH10 MDH12 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH18<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH16 MDH16 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH18 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH18 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH24<br />

min = MDH18 min = MDH18 min = MDH18<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

: Optimal MD2000 Series Joist Depth (in.)<br />

min = MDHXXX : Minimum Depth (in.) Allowed<br />

Slab thickness = 4 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 73 73 73<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 113 123 173<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

MDH8 MDH8 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH8 MDH12 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH10 MDH12 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH14 MDH16<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH18<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH16 MDH16 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH18 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH24 MDH24<br />

min = MDH18 min = MDH18 min = MDH18<br />

15


IMPERIAL<br />

16<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-0”<br />

Slab thickness = 5”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 79 79 79<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 119 129 179<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

MDH8 MDH8 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH8 MDH12 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH10 MDH12 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH18<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH16 MDH18 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH18 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH18 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH22<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH20 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH24<br />

min = MDH18 min = MDH18<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

: Optimal MD2000 ® Series Joist Depth (in.)<br />

min = MDHXXX : Minimum Depth (in.) Allowed<br />

Slab thickness = 5 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 85 85 85<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 125 135 185<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

MDH8 MDH8 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH8 MDH12 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH10 MDH12 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH18<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH18<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH16 MDH20 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH20 MDH20 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH20 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH18 min = MDH18 min = MDH18<br />

MDH22 MDH22<br />

min = MDH20 min = MDH20


IMPERIAL<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-0”<br />

Slab thickness = 6”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 91 91 91<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 131 141 191<br />

SPAN c/c<br />

12’-0”<br />

14’-0”<br />

16’-0”<br />

18’-0”<br />

20’-0”<br />

22’-0”<br />

24’-0”<br />

26’-0”<br />

28’-0”<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

43’-0” *<br />

MDH8 MDH8 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH10 MDH12 MDH12<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH12 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH12 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH14<br />

min = MDH8 min = MDH8 min = MDH8<br />

MDH14 MDH14 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH14 MDH16 MDH16<br />

min = MDH10 min = MDH10 min = MDH10<br />

MDH16 MDH16 MDH16<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH16 MDH16 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH20 MDH20 MDH20<br />

min = MDH12 min = MDH12 min = MDH12<br />

MDH20 MDH22 MDH20<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH22 MDH22 MDH22<br />

min = MDH14 min = MDH14 min = MDH14<br />

MDH20 MDH20 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH16 min = MDH16 min = MDH16<br />

MDH22 MDH22 MDH22<br />

min = MDH18 min = MDH18 min = MDH18<br />

MDH22 MDH22<br />

min = MDH20 min = MDH20<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

MDHXXX<br />

: Optimal MD2000 ® Series Joist Depth (in.)<br />

min = MDHXXX : Minimum Depth (in.) Allowed<br />

17


IMPERIAL<br />

7.4 DTC (LH SERIES)<br />

18<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-2 5/8”<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 3”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 66 66 66<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 106 116 166<br />

SPAN c/c<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

42’-0” *<br />

44’-0” *<br />

46’-0” *<br />

48’-0” *<br />

50’-0” *<br />

52’-0” *<br />

LH20 LH20 LH24<br />

min = LH16 min = LH16 min = LH20<br />

LH20 LH24 LH32<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH24 LH28<br />

min = LH16 min = LH16 min = LH24<br />

LH24 LH24 LH28<br />

min = LH20 min = LH20 min = LH24<br />

LH28 LH32 LH32<br />

min = LH20 min = LH20 min = LH28<br />

LH32 LH32 LH36<br />

min = LH20 min = LH20 min = LH28<br />

LH28 LH32 LH36<br />

min = LH20 min = LH20 min = LH32<br />

LH32 LH36 LH36<br />

min = LH24 min = LH24 min = LH32<br />

LH32 LH32 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH32 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36<br />

min = LH24 min = LH24<br />

LH36 LH36<br />

min = LH24 min = LH24<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed<br />

Slab thickness = 3 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 72 72 72<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 112 122 172<br />

SPAN c/c<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

42’-0” *<br />

44’-0” *<br />

46’-0” *<br />

48’-0” *<br />

50’-0” *<br />

52’-0” *<br />

LH20 LH20 LH24<br />

min = LH16 min = LH16 min = LH20<br />

LH20 LH24 LH28<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH24 LH28<br />

min = LH16 min = LH16 min = LH24<br />

LH28 LH28 LH32<br />

min = LH16 min = LH16 min = LH24<br />

LH28 LH28 LH32<br />

min = LH20 min = LH20 min = LH28<br />

LH32 LH32 LH36<br />

min = LH20 min = LH20 min = LH28<br />

LH28 LH32 LH32<br />

min = LH20 min = LH20 min = LH32<br />

LH32 LH36 LH36<br />

min = LH24 min = LH24 min = LH32<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH32 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36<br />

min = LH24 min = LH24<br />

LH36 LH36<br />

min = LH24 min = LH24


IMPERIAL<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-2 5/8”<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 4”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 79 79 79<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 119 129 179<br />

SPAN c/c<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

42’-0” *<br />

44’-0” *<br />

46’-0” *<br />

48’-0” *<br />

50’-0” *<br />

52’-0” *<br />

LH20 LH20 LH24<br />

min = LH16 min = LH16 min = LH20<br />

LH20 LH24 LH28<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH28 LH32<br />

min = LH16 min = LH16 min = LH24<br />

LH28 LH32 LH32<br />

min = LH16 min = LH16 min = LH24<br />

LH32 LH32 LH32<br />

min = LH20 min = LH20 min = LH28<br />

LH28 LH32 LH32<br />

min = LH20 min = LH20 min = LH28<br />

LH32 LH32 LH32<br />

min = LH20 min = LH20 min = LH32<br />

LH32 LH32 LH36<br />

min = LH24 min = LH24 min = LH32<br />

LH32 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36<br />

min = LH24 min = LH24<br />

LH36 LH36<br />

min = LH28 min = LH28<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed<br />

Slab thickness = 4 1/2”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 84 84 84<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 124 134 184<br />

SPAN c/c<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

42’-0” *<br />

44’-0” *<br />

46’-0” *<br />

48’-0” *<br />

50’-0” *<br />

52’-0” *<br />

LH20 LH20 LH24<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH24 LH28<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH28 LH32<br />

min = LH16 min = LH16 min = LH24<br />

LH32 LH32 LH32<br />

min = LH20 min = LH20 min = LH24<br />

LH32 LH32 LH32<br />

min = LH20 min = LH20 min = LH24<br />

LH32 LH32 LH32<br />

min = LH24 min = LH24 min = LH28<br />

LH32 LH32 LH32<br />

min = LH24 min = LH24 min = LH32<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH32<br />

LH36 LH32 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36<br />

min = LH28 min = LH28<br />

LH36<br />

min = LH28<br />

19


IMPERIAL<br />

20<br />

JOIST DEPTH SELECTION TABLES<br />

Concrete: f’ c = 3 000 psi; density = 145 lb./ft. 3<br />

Joist spacing = 4’-2 5/8”<br />

NOTE: Plywood forms have to be slit in half for<br />

any depth.<br />

Slab thickness = 5”<br />

Residential Office Other Loading<br />

Building Building (LL=100 psf)<br />

Dead Load (psf) 90 90 90<br />

Live Load (psf) 40 50 100<br />

Total Load (psf) 130 140 190<br />

SPAN c/c<br />

30’-0”<br />

32’-0”<br />

34’-0”<br />

36’-0”<br />

38’-0”<br />

40’-0” *<br />

42’-0” *<br />

44’-0” *<br />

46’-0” *<br />

48’-0” *<br />

50’-0” *<br />

LH20 LH20 LH24<br />

min = LH16 min = LH16 min = LH20<br />

LH24 LH24 LH32<br />

min = LH16 min = LH16 min = LH20<br />

LH28 LH28 LH28<br />

min = LH20 min = LH20 min = LH24<br />

LH32 LH32 LH32<br />

min = LH20 min = LH20 min = LH24<br />

LH32 LH32 LH32<br />

min = LH24 min = LH24 min = LH24<br />

LH32 LH32 LH32<br />

min = LH24 min = LH24 min = LH28<br />

LH32 LH32 LH32<br />

min = LH24 min = LH24 min = LH32<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH32<br />

LH36 LH36 LH36<br />

min = LH24 min = LH24 min = LH36<br />

LH36 LH36<br />

min = LH28 min = LH28<br />

LH36 LH36<br />

min = LH28 min = LH28<br />

* Permanent line of cross bridging shall be installed at mid-span.<br />

LHXXX<br />

min = LHXXX<br />

: Optimal LH Series Joist Depth (in.)<br />

: Minimum Depth (in.) Allowed


8. TYPICAL DETAILS<br />

8.1 D500 TM (H SERIES)<br />

TYPICAL DETAILS<br />

SECTION NO. DESCRIPTION PAGE<br />

1<br />

2<br />

3<br />

4<br />

Standard Shoe<br />

Standard Shoe / Mini-joist<br />

Bolted Joist at Column Flange / Web<br />

Bolted Joists at Beam } .................................................... 2<br />

5<br />

6<br />

7<br />

8<br />

Joist Bearing on Masonry or Concrete Wall<br />

Joist Bearing on Masonry or Concrete Wall<br />

Joist Bearing on Concrete Wall With Insulated Forms<br />

Joist Bearing on Concrete Wall With Insulated Forms } .................................................... 3<br />

9<br />

10<br />

11<br />

12<br />

Joist Bearing on Steel Beam<br />

Joists Bearing on Steel Beam<br />

Joist Bearing on Steel Stud Wall<br />

Joists Bearing on Steel Stud Wall } .................................................... 4<br />

13 Joist Bearing on an Exterior Steel Stud Wall<br />

14 Joist Bearing on a Wood Stud Wall .....................................................5<br />

15 Joist Bearing on a Wood Stud Wall<br />

16 Expansion Joint at Intermediate Floor (at Masonry Wall)<br />

17 Expansion Joint at Roof (Masonry Wall)<br />

18 Expansion Joint at Intermediate Floor (Steel Beam)<br />

19 Expansion Joint at Roof (Steel Beam)<br />

20 Minimum Clearance for Opening and Hole in the Slab<br />

.................................................... 6<br />

21<br />

22<br />

23<br />

24<br />

Joist Parallel to Expansion Joint<br />

Joist Parallel to a Masonry or Concrete Wall<br />

Joist Parallel to Concrete Wall with Insulated Forms<br />

Joist Parallel to a Beam } .................................................... 7<br />

25<br />

26<br />

27<br />

Joist Parallel to a Steel Stud Wall or Wood Stud Wall<br />

Deep Shoe to Suit Slab Thickness<br />

Thicker Slab } .................................................... 8<br />

28 Mini-joist at Corridor<br />

29 Mini-joist with Hanger Plate at Corridor<br />

30 Header Support<br />

31 Flange Hanger for Beam and Wall<br />

32 Masonry Hanger for Insulated Concrete Form<br />

33 Cantilevered Balcony (Shallow Joist Parallel to Balcony)<br />

34 Cantilevered Balcony (Joist Parallel to Balcony)<br />

35 Cantilevered Balcony (Joist Perpendicular to Balcony)<br />

36 Maximum Duct Openings (D500)<br />

}<br />

}<br />

} }<br />

}<br />

.................................................... 9<br />

.................................................. 10<br />

.................................................. 11<br />

1


SECTION 3 - BOLTED JOIST AT COLUMN (FLANGE / WEB)<br />

SECTION 1 - STANDARD SHOE<br />

2<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

TOP OF SLAB<br />

21 x 32 mm ( 13/16” x 1 1 /4”) SLOTS @ 125 mm (5”) C/C (HAMBRO SHOE)<br />

21 mm ( 13/16”) Ø HOLES @ 125 mm (5”) C/C (SUPPORT)<br />

65 mm (2 1 /2”)<br />

TOP CHORD<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

100 mm<br />

(4”)<br />

100 mm<br />

(4î)<br />

6 mm ( 1 /4”)<br />

45 mm (1 3/4”)<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

T+ 6 mm ( 1 /4”)<br />

TYPICAL DETAILS<br />

STEEL COLUMN, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

FIRST DIAGONAL<br />

- T+ 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

- SHOE WIDTH = 190 mm (7 1 /2”)<br />

SECTION 4 - BOLTED JOISTS AT BEAM<br />

SECTION 2 - STANDARD SHOE /MINI-JOIST<br />

203 mm (8”) FLANGE BETWEEN 254 mm (10”) TO 303 mm (11<br />

230 mm (9”) FLANGE OF 305 mm (12”) AND MORE<br />

7/8”)<br />

152 mm (6”) FLANGE BETWEEN 230 mm (9”) TO 252 mm (9 7/8”)<br />

127 mm (5”) FLANGE BETWEEN 190 mm (7 1/2”) TO 228 mm (8 7/8”)<br />

102 mm (4”) FLANGE BETWEEN 152 mm (6”) TO 188 mm (7 3/8”)<br />

70 mm (2 3/4”) FLANGE BETWEEN 127 mm (5”) TO 150 mm (5 7/8”)<br />

58 mm (2 1/4”) FLANGE BETWEEN 100 mm (4”) TO 125 mm (4 7/8”)<br />

21 x 32 mm ( 13/16” x 1 1 /4”) SLOTS<br />

@ 125 mm (5”) C/C (HAMBRO SHOE)<br />

21 mm ( 13 /16”) Ø HOLES<br />

@ 125 mm (5”) C/C (SUPPORT)<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

MINI JOIST<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR,<br />

UNDER THE JOIST SHOE)<br />

REBAR<br />

(IF REQUIRED BY<br />

CEILING EXTENSION<br />

T+ 6 mm ( 1 /4”)<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

THE CONSULTING ENGINEER)<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm (1/4”) = SLAB THICKNESS + SHOE THICKNESS


SECTION 7 - JOIST BEARING ON CONCRETE WALL<br />

WITH INSULATED FORMS<br />

SECTION 5 - JOIST BEARING ON MASONRY OR CONCRETE WALL<br />

NO ANCHORED PLATE OR MECHANICAL FASTENER IS<br />

REQUIRED TO FIX THE JOIST TO THE CONCRETE WALL.<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

NOTCH RIGID INSULATION<br />

NO ANCHORED PLATE<br />

OR MECHANICAL<br />

FASTENER IS REQUIRED<br />

TO FIX THE JOIST TO<br />

THE CONCRETE WALL.<br />

WELDED WIRE-MESH<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING<br />

ENGINEER)<br />

WELDED WIRE-MESH<br />

(D) (T)<br />

SLAB<br />

(T)<br />

SLAB<br />

(D)<br />

NOMINAL<br />

JOIST DEPTH<br />

TOP OF BEARING<br />

T + 6 mm ( 1/4”)<br />

NOMINAL<br />

JOIST DEPTH<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

SOLID MASONRY WALL OR REINFORCED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

REINFORCED INSULATED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

T+ 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

SECTION 8 - JOISTS BEARING ON CONCRETE WALL<br />

WITH INSULATED FORMS<br />

SECTION 6 - JOISTS BEARING ON MASONRY OR CONCRETE WALL<br />

NO ANCHORED PLATE OR MECHANICAL FASTENER IS<br />

REQUIRED TO FIX THE JOIST TO THE CONCRETE WALL.<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

WELDED WIRE-MESH<br />

NOTCH RIGID INSULATION (TYP.)<br />

WELDED WIRE-MESH<br />

NO ANCHORED PLATE<br />

OR MECHANICAL FASTENER IS<br />

REQUIRED TO FIX THE JOIST<br />

TO THE CONCRETE WALL.<br />

(T)<br />

SLAB<br />

(T)<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

T + 6 mm ( 1/4”)<br />

TOP OF BEARING<br />

CEILING EXTENSION<br />

REINFORCED INSULATED CONCRETE<br />

WALL, ACCORDING TO THE<br />

SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

SOLID MASONRY WALL OR REINFORCED<br />

CONCRETE WALL, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

3


SECTION 11 - JOIST BEARING ON STEEL STUD WALL<br />

SECTION 9 - JOIST BEARING ON STEEL BEAM<br />

4<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

65 mm (2 1/2”)<br />

90 mm (3<br />

MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

**<br />

5 mm ( 3/16”) 40 mm (1 1 /2”)<br />

WELDED WIRE-MESH<br />

WELDED WIRE-MESH<br />

40 mm<br />

(1 1/2”)<br />

5 mm<br />

( 3/16”)<br />

SLAB<br />

(T)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

TOP OF<br />

BEARING<br />

T + 6 mm ( 1/4”)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

TYPICAL DETAILS<br />

POUR STOP<br />

(BY OTHERS)<br />

THE METAL STUD AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

** WELD THE JOIST TO THE STEEL BEAM OR WITH THE AGREEMENT OF THE<br />

CONSULTING ENGINEER, USE 2-HILTI (X-EDNI 22P8) OR EQUIVALENT, INSTALLED<br />

ACCORDING TO THE MANUFACTURING SPECIFICATIONS.<br />

SECTION 12 - JOISTS BEARING ON STEEL STUD WALL<br />

SECTION 10 - JOISTS BEARING ON STEEL BEAM<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

65 mm (2 1/2”)<br />

90 mm (3<br />

MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

40 mm (1 1 /2”)<br />

** 5 mm ( 3/16)<br />

5 mm ( 3/16”) 40 mm (1 1 /2”)<br />

WELDED WIRE-MESH<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

T + 6 mm ( 1/4”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

T + 6 mm ( 1 /4”)<br />

TOP OF BEARING<br />

THE METAL STUD AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

NOTE; STAGGERED JOISTS<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

** WELD THE JOIST TO THE STEEL BEAM OR WITH THE AGREEMENT OF THE<br />

CONSULTING ENGINEER, USE 2-HILTI (X-EDNI 22P8) OR EQUIVALENT, INSTALLED<br />

ACCORDING TO THE MANUFACTURING SPECIFICATIONS.


SECTION 15 - JOISTS BEARING ON A WOOD STUD WALL<br />

SECTION 13 - JOIST BEARING ON AN EXTERIOR STEEL STUD WALL<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

JOIST SHOE ANCHORED TO PLANK<br />

WITH SCREWS OR NAILS<br />

WELDED WIRE-MESH<br />

40 mm (1<br />

WELDED WIRE-MESH<br />

1 /2”)<br />

5 mm ( 3/16”)<br />

SLAB<br />

(T)<br />

(T)<br />

SLAB<br />

(D)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

NOMINAL<br />

JOIST DEPTH<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

TYPICAL DETAILS<br />

THE WOOD WALL AND THE TOP PLATE<br />

CAPACITY, ACCORDING TO THE<br />

SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

NOTE; STAGGERED JOISTS<br />

CEILING EXTENSION<br />

THE METAL STUD AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

SECTION 16 - EXPANSION JOINT AT INTERMEDIATE FLOOR (MASONRY WALL)<br />

SECTION 14 - JOIST BEARING ON A WOOD STUD WALL<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

FIBRE BOARD 12 mm ( 1 /2”)<br />

DO NOT WELD THE SHOE ON THE ANGLE<br />

ANGLE ANCHORED TO THE MASONRY<br />

WALL ACCORDING TO THE<br />

SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

JOIST SHOE ANCHORED TO PLANK WITH SCREWS OR NAILS<br />

WELDED WIRE-MESH<br />

WELDED WIRE-MESH<br />

(D) (T)<br />

SLAB<br />

T + 6 mm (<br />

TOP OF BEARING<br />

1/4”)<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

REBAR (IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

NOMINAL<br />

JOIST DEPTH<br />

TOP OF BEARING<br />

T + 6 mm ( 1/4”)<br />

CEILING EXTENSION<br />

SUPPORT ANGLE, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER.<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE<br />

SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

CEILING EXTENSION<br />

TEMPORARY SUPPORT UNDER EACH JOIST AND<br />

EACH END UNTIL ALL FLOORS HAVE BEEN POURED.<br />

(PROVIDED AND DESIGNED BY OTHERS)<br />

THE WOOD WALL AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

5


SECTION 19 - EXPANSION JOINT AT ROOF (STEEL BEAM)<br />

SECTION 17 - EXPANSION JOINT AT ROOF (MASONRY WALL)<br />

6<br />

65 mm (2 1 90 mm (3<br />

/2”) MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

DO NOT WELD THE SHOE<br />

ON EMBEDED MATERIAL<br />

12 mm ( 1/2”) Ø ROD x 600 mm (24”)<br />

@ 600 mm (24”) c /c<br />

GREASE OR WRAP THIS END<br />

OF ROD WITH BUILDING PAPER<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

FIBRE BOARD 12 mm ( 1 /2”)<br />

FIBRE BOARD 12 mm ( 1/2”)<br />

**<br />

12 mm ( 1/2”) Ø ROD x 600 mm (24”)<br />

@ 600 mm (24”) c/c.<br />

5 mm (<br />

GREASE OR WRAP THIS END<br />

OF ROD, WITH BUILDING PAPER<br />

3/16”) 40 mm (1 1 /2”)<br />

WELDED WIRE-MESH<br />

DO NOT WELD THE SHOE ON THE BEAM<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

T + 6 mm ( 1 /4”)<br />

TOP OF BEARING<br />

CEILING EXTENSION<br />

T + 6 mm ( 1 /4”)<br />

TOP OF BEARING<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING<br />

TO THE SPECIFICATIONS OF<br />

SOLID MASONRY WALL, ACCORDING<br />

TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH<br />

MORTAR, UNDER THE JOIST SHOE)<br />

REBAR (IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

THE CONSULTING ENGINEER (U.N.O)<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

** WELD THE JOIST TO THE STEEL BEAM OR WITH THE AGREEMENT OF THE<br />

CONSULTING ENGINEER, USE 2-HILTI (X-EDNI 22P8) OR EQUIVALENT, INSTALLED<br />

ACCORDING TO THE MANUFACTURING SPECIFICATIONS.<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

SECTION 20 - MINIMUM CLEARANCE FOR OPENING<br />

AND HOLE IN THE SLAB<br />

SECTION 18 - EXPANSION JOINT AT INTERMEDIATE FLOOR<br />

(STEEL BEAM)<br />

DIAMETER � 200 mm (8”)<br />

**REBAR AROUND THE HOLE IS NOT REQUIRED<br />

**THE QUANTITY OF HOLE AT 6” AND MORE<br />

OF THE JOIST IS NOT IMPORTANT<br />

150 mm (6”) 150 mm (6”)<br />

MIN. MIN.<br />

OPENING<br />

SEE TYPICAL<br />

REINFORCEMENT<br />

FOR SLAB OPENING.<br />

150 mm (6”)<br />

MIN.<br />

END OF<br />

SLAB<br />

FIBRE BOARD 12 mm (<br />

DO NOT WELD THE SHOE ON THE ANGLE<br />

1/2”)<br />

65 mm (2 1 90 mm (3<br />

/2”) MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

5 mm ( 3 /16”) 40 mm (1 1 /2”)<br />

**<br />

WELDED WIRE-MESH<br />

(T)<br />

SLAB<br />

HOLE<br />

WELDED WIRE-MESH<br />

(D)<br />

NOMINAL<br />

JOIST DEPTH<br />

( 3/4”) 19 mm<br />

(APPLICABLE<br />

AT EACH CASE)<br />

( 3/4”) 19 mm<br />

(APPLICABLE<br />

AT EACH CASE)<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

STIFFENER<br />

STIFFENER<br />

STIFFENER<br />

(IF REQUIRED)<br />

CEILING EXTENSION<br />

T + 6 mm ( 1 /4”)<br />

TOP OF BEARING<br />

SUPPORT ANGLE, ACCORDING<br />

TO THE SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER (U.N.O)<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING<br />

TO THE SPECIFICATIONS OF<br />

THE CONSULTING ENGINEER<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

** WELD THE JOIST TO THE STEEL BEAM OR WITH THE AGREEMENT OF THE<br />

CONSULTING ENGINEER, USE 2-HILTI (X-EDNI 22P8) OR EQUIVALENT, INSTALLED<br />

ACCORDING TO THE MANUFACTURING SPECIFICATIONS.


SECTION 23 - JOIST PARALLEL TO CONCRETE WALL WITH INSULATED FORMS<br />

SECTION 21 - JOIST PARALLEL TO EXPANSION JOINT<br />

FIBRE BOARD 12 mm ( 1 /2”)<br />

2 LAYERS OF ROOFING PAPER<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

WELDED WIRE-MESH<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

(T)<br />

SLAB<br />

TOP OF BEARING<br />

T + 6 mm ( 1/4”)<br />

FLANGE HANGER<br />

(FIXED, ED-D500)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 6 mm ( 1/4”)<br />

TOP OF BEARING<br />

FLANGE<br />

HANGER<br />

(FIXED,<br />

SEE ED-D500)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING<br />

ENGINEER)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

REINFORCED INSULATED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

TYPICAL DETAILS<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

(NOTE: IF THE FLANGE HANGER IS NOT USED, TOP OF BEARING = T + 20 mm ( 3 /4”))<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

(NOTE: IF THE FLANGE HANGER IS NOT USED, TOP OF BEARING = T + 20 mm ( 3 /4”))<br />

SECTION 24 - JOIST PARALLEL TO A BEAM<br />

SECTION 22 - JOIST PARALLEL TO A MASONRY OR CONCRETE WALL<br />

WELDED WIRE-MESH<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

WELDED-WIRE-MESH<br />

SLAB<br />

(T)<br />

(T)<br />

SLAB<br />

TOP OF<br />

BEARING<br />

T + 6 mm ( 1 /4”)<br />

FLANGE HANGER<br />

(FIXED, SEE ED-D500)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

TOP OF BEARING<br />

T + 6 mm ( 1 /4”)<br />

FLANGE HANGER<br />

(FIXED, SEE ED-D500)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL BEAM,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

SOLID MASONRY WALL<br />

OR REINFORCED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS<br />

(NOTE: IF THE FLANGE HANGER IS NOT USED, TOP OF BEARING = T + 20 mm ( 3 /4”))<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

(NOTE: IF THE FLANGE HANGER IS NOT USED, TOP OF BEARING = T + 20 mm ( 3 /4”))<br />

7


SECTION 27 - THICKER SLAB<br />

SECTION 25 - JOIST PARALLEL TO A STEEL STUD WALL<br />

OR WOOD STUD WALL<br />

8<br />

* THE HANGER PLATE IS USED TO THICKEN<br />

UNDER SIDE OF THE CONCRETE SLAB.<br />

75 mm<br />

(3”)<br />

* 4 DIFFERENTS STANDARD THICKNESS OF<br />

CONCRETE CAN BE CONSIDERED<br />

WITH THE HANGER PLATE<br />

(SEE DETAIL)<br />

TOP OF<br />

BEARING<br />

T + 6 mm (1/4”)<br />

WELDED WIRE-MESH<br />

152 mm<br />

(6”)<br />

(T)<br />

SLAB<br />

FLANGE HANGER<br />

(FIXED, SEE ED-D500)<br />

50 mm<br />

(2”)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

TYPICAL DETAILS<br />

127 mm<br />

(5”)<br />

ROLLBAR<br />

HANGER<br />

PLATE<br />

THE METAL OR WOOD STUD WALL<br />

AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

(NOTE: IF THE FLANGE HANGER IS NOT USED, TOP OF BEARING = T + 20 mm (3/4”))<br />

SECTION 28 - MINI-JOIST AT CORRIDOR<br />

SECTION 26 - DEEP SHOE TO SUIT SLAB THICKNESS<br />

SLAB THICKNESS 130 mm (5 1 /4”)<br />

REINFORCED STEEL BY THE<br />

CONSULTING ENGINEER<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

DEEP SHOE TO SUIT THE THICKER SLAB<br />

T + 6 mm (<br />

TOP OF<br />

1/4”)<br />

BEARING<br />

WELDED WIRE-MESH<br />

300 mm (12”)<br />

300 mm (12”)<br />

90 mm (3 1 /2”) MIN. FOR<br />

100 mm (4”) SHOE (TYP.)<br />

WELDED<br />

WIRE MESH<br />

SLAB<br />

(T)<br />

SLAB<br />

(T)<br />

JOIST DEPTH<br />

(D)<br />

NOMINAL<br />

(TS)<br />

THICKER SLAB<br />

100 mm (4”) MIN.<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING<br />

ENGINEER)<br />

100 mm (4”) MIN.<br />

CEILING EXTENSION<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH<br />

MORTAR, UNDER THE JOIST SHOE)<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

(T + TS) + 6 mm ( 1/4”)<br />

CORRIDOR<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING<br />

ENGINEER)<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

SOLID MASONRY WALL, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

(T + TS) + 6 mm ( 1 /4”) = (SLAB THICKNESS + THICKER SLAB) + SHOE THICKNESS<br />

T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS


SECTION 31 - FLANGE HANGER FOR BEAM AND WALL<br />

SECTION 29 - MINI-JOIST WITH HANGER PLATE AT CORRIDOR<br />

SLAB THICKNESS 130 mm (5 1/4”)<br />

REINFORCED STEEL BY THE CONSULTING ENGINEER<br />

25 @ 300 mm (1” @ 12”)<br />

5 mm ( 3/16”)<br />

90 mm (3 1/ 2”) MIN.<br />

FOR 100 mm (4”) SHOE (TYP.)<br />

300 mm<br />

(12”)<br />

90 mm (3 1/2”)<br />

MIN. FOR<br />

100 mm (4”)<br />

SHOE (TYP.)<br />

WELDED WIRE-MESH<br />

TOP OF<br />

BEARING<br />

T + 6 mm ( 1 /4”)<br />

300 mm<br />

(12”)<br />

WELDED<br />

WIRE<br />

MESH<br />

NO SHOE<br />

(U.N.O.)<br />

ON MINI JOIST<br />

ROLLBAR<br />

NOMINAL<br />

JOIST DEPTH SLAB<br />

(D) (T)<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

FLANGE HANGER (TYPE F.H)<br />

HANGER PLATE<br />

FOR THICKER SLAB<br />

CORRIDOR<br />

STEEL BEAM, STEEL STUD WALL, WOOD STUD WALL,<br />

MASONRY WALL OR CONCRETE WALL<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

T + 6 mm ( 1 /4”) = SLAB THICKNESS + SHOE THICKNESS<br />

SECTION 32 - FLANGE HANGER FOR INSULATED CONCRETE FORM<br />

SECTION 30 - HEADER SUPPORT<br />

WELDED WIRE-MESH<br />

5 mm ( 3/16”) 20 mm ( 3 /4”)<br />

20 mm ( 3/4”) Ø HOLES<br />

AT 600 mm (24”) C/C<br />

FOR ANCHORED<br />

(T)<br />

SLAB<br />

(1 1/2”)<br />

39 mm<br />

FLANGE HANGER<br />

(TYPE M.H)<br />

HEADER BEAM<br />

ROLLBAR<br />

REINFORCED INSULATED CONCRETE WALL<br />

IF THERE IS A JOIST SITTING ON THE HEADER BEAM,<br />

THE DIMENSION 39 mm (1 1/2”) WILL BECOME 45 mm (1 3/4”) AND “(T)”<br />

WILL BECOME “T + 6 mm ( 1/4”) = SLAB THICKNESS + SHOE THICKNESS”<br />

9


SECTION 33 - CANTILEVERED BALCONY (SHALLOW JOIST PARALLEL TO BALCONY)<br />

10<br />

SEE SPECIFICATIONS OF THE ARCHITECT VARIABLE 1251 mm (4’-1 1 /4”)<br />

REBAR ACCORDING TO<br />

THE SPECIFICATIONS OF<br />

THE CONSULTING ENGINEER<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

JOIST SHORTER<br />

T + 50 mm (2”)<br />

OF 50 mm (2”) TOP OF BEARING<br />

25 mm (1”)<br />

SLOPE<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

FLANGE HANGER<br />

TEMPORARY SUPPORT FOR BALCONY<br />

(DESIGNED AND SUPPLIED BY OTHERS)<br />

TYPICAL DETAILS<br />

BRIDGING TO BOTTOM CHORD MAY BE<br />

NECESSARY IF UPLIFT DUE TO CANTILEVER<br />

BALCONY EXCEEDS GRAVITY LOAD.<br />

(IF REQUIRED BY THE ENGINEER)<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

IMPORTANT;<br />

BRIDGING ANGLES TO BE INSTALLED AFTER FORMS STRIPPED BUT<br />

BEFORE THE REMOVAL OF BALCONY TEMPORARY SUPPORTS<br />

SECTION 34 - CANTILEVERED BALCONY (JOIST PARALLEL TO BALCONY)<br />

VARIABLE 1251 mm (4’-1 1/4”)<br />

SEE SPECIFICATIONS OF THE ARCHITECT<br />

WELDED WIRE-MESH<br />

25 mm (1”)<br />

REBAR ACCORDING TO<br />

THE SPECIFICATIONS OF<br />

THE CONSULTING ENGINEER<br />

SLOPE<br />

SLAB<br />

(T)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

FLANGE HANGER<br />

HANGER PLATE TO THICKEN SLAB<br />

MORE 50 (2”), 76 (3”), 127 (5”)<br />

OR 152 (6”) THAN BASE SLAB<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

BRIDGING TO BOTTOM CHORD MAY BE<br />

NECESSARY IF UPLIFT DUE TO CANTILEVER<br />

BALCONY EXCEEDS GRAVITY LOAD.<br />

(IF REQUIRED BY THE ENGINEER)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

TEMPORARY SUPPORT<br />

FOR BALCONY<br />

(DESIGNED AND SUPPLIED<br />

BY OTHERS)<br />

IMPORTANT;<br />

BRIDGING ANGLES TO BE INSTALLED AFTER FORMS STRIPPED BUT<br />

BEFORE THE REMOVAL OF BALCONY TEMPORARY SUPPORTS


SECTION 36 - MAXIMUM DUCT OPENING (D500 TABLES)<br />

SECTION 35 - CANTILEVERED BALCONY<br />

(JOIST PERPENDICULAR TO BALCONY)<br />

DEPTH PANEL D S R<br />

(mm) (mm) (mm) (mm) (mm x mm)<br />

200 508 90 90 150 x 60<br />

250 508 140 115 180 x 80<br />

300 610 185 145 230 x 110<br />

350 610 215 170 240 x 130<br />

280 x 110<br />

400 610 240 190 265 x 140<br />

330 x 100<br />

450 610 260 210 280 x 160<br />

315 x 130<br />

500 610 280 225 305 x 160<br />

330 x 140<br />

550 610 305 245 305 x 190<br />

355 x 140<br />

600 610 315 255 330 x 180<br />

355 x 150<br />

90 mm (3 1 /2”) MIN FOR 100 mm (4”) SHOE (TYP.)<br />

SEE SPECIFICATIONS OF THE ARCHITECT<br />

DEEP SHOE TO SUIT THE THICKER SLAB<br />

REBAR<br />

(SEE THE CONSULTING<br />

ENGINEER)<br />

WELDED WIRE-MESH<br />

25 mm (1")<br />

SLOPE<br />

SLAB<br />

(T)<br />

THICKER SLAB<br />

(TS)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

TYPICAL DETAILS<br />

HANGER PLATE<br />

CEILING<br />

EXTENSION<br />

T + TS<br />

TOP OF BEARING<br />

THICKER SLAB TO SUIT BALCONY<br />

TEMPORARY SUPPORT<br />

FOR BALCONY (DESIGNED<br />

& SUPPLIED BY OTHERS)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

DEPTH PANEL D S R<br />

(in.) (in.) (in.) (in.) (in. x in.)<br />

8 20 3 1/2 3 1/2 6 x 2 1/2<br />

10 20 5 1/2 4 1/2 7 x 3 1/4<br />

12 24 7 1/4 5 3/4 9 x 4 1/4<br />

14 24 8 1/2 6 3/4 9 1/2 x 5 1/4<br />

11 x 4 1/4<br />

16 24 9 1/2 7 1/2 10 1/2 x 5 1/2<br />

13 x 4<br />

18 24 10 1/4 8 1/4 11 x 6 1/4<br />

12 1/2 x 5<br />

20 24 11 9 12 x 6 1/4<br />

13 x 5 1/2<br />

22 24 12 9 3/8 12 x 7 1/2<br />

14 x 5 1/2<br />

24 24 12 3/8 10 13 x 7<br />

14 x 6<br />

SECTION 36 - MAXIMUM DUCT OPENINGS (D500)<br />

** WEB OPENINGS ARE ALIGNED ONLY WITH JOISTS WHICH HAVE IDENTICAL LENGTHS **<br />

PANEL<br />

TOP OF SLAB<br />

SS<br />

D<br />

R<br />

NOMINAL<br />

JOIST DEPTH<br />

NOTE: The maximum limitation has been determined from the joist geometry,<br />

with a bottom chord of 50 mm (2”) and a web of 22 mm (7/8”). If more<br />

information needed, please contact the <strong>Hambro</strong> technical department.<br />

D = MAXIMUM DIAMETER<br />

S = MAXIMUM SQUARE<br />

R = MAXIMUM RECTANGLE<br />

11


12<br />

TYPICAL DETAILS


8.2 MD2000 ® SERIES<br />

TYPICAL DETAILS<br />

SECTION NO. DESCRIPTION PAGE<br />

1 Standard Shoe<br />

2 Bolted Joist at Steel Column (Flange / Web)<br />

3 Bolted Joist at Steel Beam<br />

4 Joist Bearing on Masonry or Concrete Wall<br />

5 Joists Bearing on Masonry or Concrete Wall<br />

6 Joist Bearing on Concrete Wall With Insulated Form<br />

7 Joists Bearing on Concrete Wall With Insulated Form<br />

8 Joist Bearing on Steel Beam<br />

9 Joists Bearing on Steel Beam<br />

10 Joist Bearing on Steel Stud Wall<br />

11 Joists Bearing on Steel Stud Wall<br />

12 Joist Bearing on a Wood Stud<br />

13 Joists Bearing on Wood Stud Wall<br />

14 Expansion Joint at Intermediate Floors (at Masonry Wall)<br />

15 Expansion Joint at Roof (at Masonry Wall)<br />

16 Expansion Joint at Floors (at Steel Beam)<br />

17 Expansion Joint at Roof (at Steel Beam)<br />

18 Minimum Clearance for Opening and Hole in the Slab<br />

19 Joist Parallel to Expansion Joint<br />

20 Joist Parallel to a Masonry Wall or Concrete Wall<br />

21 Joist Parallel to a Concrete Wall with Insulated Form<br />

22 Joist Parallel to a Steel Beam<br />

23 Joist Parallel to a Steel Stud Wall<br />

24 Joist Parallel to a Wood Wall<br />

.............................................. 14<br />

.............................................. 15<br />

.............................................. 16<br />

.............................................. 17<br />

.............................................. 18<br />

.............................................. 19<br />

25 Thicker Slab<br />

}<br />

26 Header Support .............................................. 20<br />

27 Cantilevered Balcony (Joist Perpendicular to Balcony)<br />

28 Cantilevered Balcony (Shallow Joist Parallel to Balcony)<br />

29 Cantilevered Balcony (Joist Parallel to Balcony)<br />

.............................................. 21<br />

30 Maximum Duct Openings ............................................................................................................... 22<br />

}<br />

}<br />

}<br />

}<br />

}<br />

}<br />

}<br />

13


SECTION 3 - BOLTED JOIST AT STEEL BEAM<br />

SECTION 1 - STANDARD JOIST SHOE<br />

14<br />

58 mm (2 1 /4”) FLANGE BETWEEN 100 mm (4”) @ 125 mm (4 7 /8”)<br />

70 mm (2 3/4”) FLANGE BETWEEN 127 mm (5”) @ 150 mm (5 7 /8”)<br />

102 mm (4”) FLANGE BETWEEN 152 mm (6”) @ 188 mm (7 3 /8”)<br />

127 mm (5”) FLANGE BETWEEN 190 mm (7 1 /2”) @ 228 mm (8 7 /8”)<br />

152 mm (6”) FLANGE BETWEEN 230 mm (9”) @ 252 mm (9 7 /8”)<br />

203 mm (8”) FLANGE BETWEEN 254 mm (10”) @ 303 mm (11 7/8”)<br />

230 mm (9”) FLANGE OF 305 mm (12”) AND MORE<br />

TOP OF SLAB<br />

21 x 32 mm ( 13/16”x 1 1/4”) SLOTS<br />

@ 125 mm (5”) c/c (HAMBRO SHOE)<br />

21 mm ( 13 /16”)Ø HOLES<br />

@ 125 mm (5”) c /c (SUPPORT)<br />

TOTAL SLAB<br />

T + 38 mm (1 1/2”)<br />

NOMINAL<br />

SLAB (T)<br />

TOP CHORD<br />

STEEL DECK<br />

75 mm (3”)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

WELDED WIRE-MESH<br />

TOTAL<br />

SLAB<br />

L 100 x 75 x 6 x 150 mm<br />

(L 4”x 3”x 1/4”x<br />

100 mm<br />

(4”)<br />

6”)<br />

6 mm ( 1 /4”)<br />

TYPICAL DETAILS<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1<br />

TOP OF BEARING<br />

1/2”)<br />

FIRST DIAGONAL<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

CEILING EXTENSION<br />

T + 38 mm (1 1 /2”) = NOMINAL SLAB THICKNESS<br />

+<br />

STEEL DECK DEPTH<br />

SECTION 4 - JOIST BEARING ON MASONRY OR CONCRETE WALL<br />

SECTION 2 - BOLTED JOIST AT STEEL COLUMN (FLANGE / WEB)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

STEEL<br />

DECK<br />

WELDED<br />

WIRE-MESH<br />

21 x 32 mm ( 13 /16” x 1 1 /4”) SLOTS @ 125 mm (5”) c /c (HAMBRO SHOE)<br />

21 mm ( 13 /16”)Ø HOLES @ 125 mm (5”) c/c (SUPPORT)<br />

65 mm (2 1 /2”)<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

SLAB<br />

(T)<br />

WELDED WIRE-MESH<br />

STEEL DECK<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

100 mm<br />

(4”)<br />

CEILING EXTENSION<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

SOLID MASONRY WALL OR REINFORCEMENT CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR, UNDER THE JOIST SHOE)<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

CEILING EXTENSION<br />

STEEL COLUMN,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

- SHOE WIDTH = 190 mm (7 1/2”)


SECTION 7 - JOISTS BEARING ON CONCRETE WALL<br />

WITH INSULATED FORM<br />

SECTION 5 - JOISTS BEARING ON MASONRY OR CONCRETE WALL<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

NOTCH RIGID INSULATION (TYP.)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

TOTAL<br />

SLAB<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

CEILING EXTENSION<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

CEILING EXTENSION<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

SOLID MASONRY WALL OR REINFORCED<br />

CONCRETE WALL, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR,<br />

UNDER THE JOIST SHOE)<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

REINFORCED INSULATED CONCRETE WALL<br />

ACCORDING TO THE SPECIFICATIONS,<br />

OF THE CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

SECTION 8 - JOIST BEARING ON STEEL BEAM<br />

SECTION 6 - JOIST BEARING ON CONCRETE WALL<br />

WITH INSULATED FORM<br />

65 mm (2 1 /2”) MIN. FOR 75 mm (3”)<br />

OR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

40 mm (1 1 /2”)<br />

5 mm ( 3 /16”)<br />

STEEL DECK<br />

WELDED<br />

WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

STEEL<br />

DECK<br />

WELDED<br />

WIRE-MESH<br />

TOTAL<br />

SLAB<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

POUR STOP<br />

(BY OTHERS)<br />

NOTCH RIGID INSULATION<br />

REINFORCED INSULATED CONCRETE WALL, ACCORDING<br />

TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

15


SECTION 11 - JOISTS BEARING ON STEEL STUD WALL<br />

SECTION 9 - JOISTS BEARING ON STEEL BEAM<br />

16<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

65 mm (2 1 /2”) MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

40 mm (1 1/2”)<br />

5 mm ( 3 /16”)<br />

65 mm (2 1/2”) MIN. FOR 75 mm (3”)<br />

OR 100 mm (4”) SHOE (TYP.)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

40 mm (1 1/2”)<br />

5 mm ( 3/16”)<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

TOTAL<br />

SLAB<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1/2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

THE METAL STUD AND THE TOP PLATE<br />

CAPACITY, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

NOTE: STAGGERED JOISTS<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

SECTION 12 - JOIST BEARING ON A WOOD WALL<br />

SECTION 10 - JOIST BEARING ON STEEL STUD WALL<br />

SHOE ANCHORED TO THE PLANK<br />

WITH SCREWS OR NAILS<br />

NOMINAL<br />

SLAB<br />

(T)<br />

90 mm (3 1 /2”) MIN.<br />

FOR 100 mm (4”) SHOE (TYP.)<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

65 mm (2 1/2”) MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

STEEL<br />

DECK<br />

WELDED<br />

WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

40 mm (1 1 /2”)<br />

5 mm ( 3 /16”)<br />

STEEL<br />

DECK<br />

WELDED<br />

WIRE-MESH<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1/2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D) TOTAL<br />

SLAB<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

CEILING EXTENSION<br />

THE WOOD WALL AND THE TOP PLATE CAPACITY, ACCORDING<br />

TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

CEILING EXTENSION<br />

THE METAL STUD AND THE TOP PLATE<br />

CAPACITY, ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER


SECTION 15 - EXPANSION JOINT AT ROOF (AT MASONRY WALL)<br />

SECTION 13 - JOISTS BEARING ON WOOD STUD WALL<br />

FIBRE BOARD 12 mm (<br />

DO NOT WELD THE SHOE<br />

ON THE EMBEDED MATERIAL<br />

STEEL DECK<br />

1/2”)<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

12 mm ( 1 /2”)Ø ROD x 600 mm (24”)<br />

@ 600 mm (24”) c/c.<br />

GREASE OR WRAP THIS END<br />

OF ROD WITH BUILDING PAPER<br />

SHOE ANCHORED TO THE PLANK<br />

WITH SCREWS OR NAILS<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

NOMINAL<br />

SLAB<br />

(T)<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

WELDED WIRE-MESH<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D) TOTAL<br />

SLAB<br />

T + 38 mm (1 1/2”)<br />

TOP OF BEARING<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR,<br />

UNDER THE HAMBRO SHOE)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER<br />

THE WOOD WALL AND THE TOP PLATE<br />

CAPACITY, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

NOTE: STAGGERED JOIST<br />

SECTION 16 - EXPANSION JOINT AT FLOORS (AT STEEL BEAM)<br />

SECTION 14 - EXPANSION JOINT AT INTERMEDIATE FLOORS<br />

(AT MASONRY WALL)<br />

40 mm<br />

OR<br />

1 5 mm<br />

1 /2”<br />

3 /16”<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

ANGLE ANCHORED TO<br />

THE MASONRY WALL, ACCORDING<br />

TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

NOMINAL<br />

SLAB<br />

(T)<br />

FIBRE BOARD 12 mm (<br />

DO NOT WELD THE<br />

SHOE ON THE ANGLE<br />

STEEL DECK<br />

1/2”)<br />

65 mm (2 1 /2”) MIN. FOR 75 mm (3”)<br />

OR 100 mm (4”) SHOE (TYP.)<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

SLAB<br />

(T)<br />

FIBRE BOARD 12 mm (<br />

STEEL DECK<br />

1/2”)<br />

DO NOT WELD THE SHOE<br />

ON THE ANGLE<br />

WELDED WIRE-MESH<br />

TOTAL<br />

SLAB<br />

SLAB<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D) TOTAL<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

CEILING EXTENSION<br />

STIFFENER (IF REQUIRED)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

SUPPORT ANGLE, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

STEEL BEAM, ACCORDING TO<br />

THE SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER (U.N.O)<br />

SUPPORT ANGLE, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

TEMPORARY SUPPORT UNDER EACH JOIST AND<br />

EACH END UNTIL ALL FLOORS HAVE BEEN POURED<br />

(PROVIDED AND DESIGNED BY OTHERS)<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

17


SECTION 19 - JOIST PARALLEL TO EXPANSION JOINT<br />

SECTION 17 - EXPANSION JOINT AT ROOF (AT STEEL BEAM)<br />

18<br />

65 mm (2 1 /2”) MIN. FOR 75 mm (3”)<br />

OR FOR 100 mm (4”) SHOE (TYP.)<br />

40 mm (1 1 /2”)<br />

5 mm ( 3/16”)<br />

NOMINAL<br />

SLAB (T)<br />

TOTAL<br />

SLAB<br />

FIBRE BOARD 12 mm ( 1 75 mm (3”) MIN.<br />

DO NOT WELD THE STEEL DECK<br />

TYP.<br />

ON THE EMBEDED MATERIAL<br />

/2”) WELDED WIRE-MESH<br />

FIBRE BOARD 12 mm ( 1 /2”)<br />

12 mm ( 1 /2”)Ø ROD x 600 mm (24”)<br />

@ 600 mm (24”) c /c<br />

GREASE OR WRAP THIS END<br />

OF ROD WITH BUILDING PAPER<br />

NOMINAL<br />

SLAB<br />

(T)<br />

DO NOT WELD THE<br />

SHOE ON THE BEAM<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL DECK<br />

TOTAL<br />

SLAB<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 38 (1 1 /2”)<br />

TOP OF BEARING<br />

TYPICAL DETAILS<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

STEEL BEAM ACCORDING TO<br />

THE SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER (UNO)<br />

SECTION 20 - JOIST PARALLEL TO A MASONRY WALL<br />

OR CONCRETE WALL<br />

SECTION 18 - MINIMUM CLEARANCE FOR OPENING<br />

AND HOLE IN THE SLAB<br />

STEEL DECK ANCHORED<br />

TO THE WALL<br />

WELDED WIRE-MESH<br />

50 mm (2”) MIN.<br />

TYP.<br />

NOMINAL<br />

SLAB (T)<br />

TOTAL<br />

SLAB<br />

DIAMETER � 200 mm (8”)<br />

** REBAR AROUND THE<br />

HOLE IS NOT REQUIRED<br />

** THE QUANTITY OF HOLE<br />

AT 150 mm (6”) & MORE<br />

OF THE JOIST IS<br />

NOT IMPORTANT<br />

150 mm (6”)<br />

MIN.<br />

150 mm (6”)<br />

MIN.<br />

OPENING<br />

SEE TYPICAL<br />

REINFORCEMENT<br />

FOR SLAB OPENING.<br />

150 mm (6”)<br />

MIN.<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL DECK<br />

SOLID MASONRY WALL OR REINFORCED CONCRETE<br />

WALL, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

SLAB<br />

(T)<br />

20 mm ( 3 /4”) MIN.<br />

APPLICABLE<br />

IN EACH CASE<br />

20 mm ( 3 /4”) MIN.<br />

APPLICABLE<br />

IN EACH CASE<br />

END OF<br />

SLAB<br />

TOTAL<br />

SLAB<br />

HOLE<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL DECK<br />

WELDED WIRE-MESH<br />

TEMPORARY<br />

SUPPORT<br />

(DESIGNED<br />

& SUPPLIED<br />

BY OTHERS)


SECTION 23 - JOIST PARALLEL TO A STEEL STUD WALL<br />

SECTION 21 - JOIST PARALLEL TO A CONCRETE WALL<br />

WITH INSULATED FORM<br />

OR #12 SELF TAPPING FASTENERS<br />

ARC WELDING<br />

20 mm ( 3/4”) TYP.<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

SLAB (T)<br />

WELDED WIRE-MESH<br />

50 mm (2”) MIN.<br />

TYP.<br />

NOMINAL<br />

SLAB<br />

(T)<br />

TOTAL<br />

SLAB<br />

WELDED WIRE-MESH<br />

50 mm (2”) MIN.<br />

TYP.<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

METAL DECK<br />

T + 38 mm (1 1/2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL DECK<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

TYPICAL DETAILS<br />

THE METAL STUD AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

REINFORCEMENT INSULATED CONCRETE<br />

WALL, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

SECTION 24 - JOIST PARALLEL TO A WOOD WALL<br />

SECTION 22 - JOIST PARALLEL TO A STEEL BEAM<br />

METAL DECK<br />

ANCHORED TO THE PLANK WITH WOOD SCREW #12<br />

OR #12 SELF TAPPING FASTENERS<br />

ARC WELDING<br />

19 mm ( 3/4”) TYP.<br />

NOMINAL<br />

SLAB<br />

(T)<br />

75 mm (3”) MIN.<br />

TYP.<br />

WELDED WIRE-MESH<br />

TOTAL<br />

SLAB<br />

(T)<br />

NOMINAL<br />

SLAB<br />

WELDED WIRE-MESH<br />

50 mm (2”) MIN.<br />

TYP.<br />

NOMINAL<br />

JOIST DEPTH<br />

(D) TOTAL<br />

SLAB<br />

STEEL DECK<br />

T + 38 mm (1 1/2”)<br />

TOP OF BEARING<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL DECK<br />

STEEL BEAM,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

T + 38 mm (1 1 /2”)<br />

TOP OF BEARING<br />

WOOD WALL AND THE TOP PLATE CAPACITY,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

19


SECTION 27 - CANTILEVERED BALCONY<br />

(JOIST PERPENDICULAR TO BALCONY)<br />

SECTION 25 - THICKER SLAB<br />

20<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

SEE SPECIFICATIONS<br />

OF THE ARCHITECT<br />

DEEP SHOE TO SUIT THE THICKER SLAB<br />

NOMINAL<br />

SLAB (T)<br />

TOTAL SLAB<br />

(S)<br />

REBARS, SEE<br />

THE CONSULTING<br />

ENGINEER<br />

WELDED<br />

WIRE-MESH<br />

STEEL DECK<br />

25 mm (1”)<br />

SLOPE<br />

TYPICAL DETAILS<br />

NOMINAL<br />

JOIST DEPTH (D)<br />

THICKER SLAB<br />

(TS)<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

ANGLE FOR<br />

THICKER SLAB<br />

SOLID MASONRY WALL, ACCORDING TO THE<br />

SPECIFICATIONS OF THE CONSULTING ENGINEER<br />

(FILL THE MASONRY BLOCK WITH MORTAR,<br />

UNDER THE JOIST SHOE)<br />

TEMPORARY SUPPORT<br />

FOR BALCONY<br />

(DESIGNED & SUPPLIED<br />

BY OTHERS)<br />

S + TS<br />

TOP OF BEARING<br />

ANGLE WELDED TO THE TOP CHORD TO GET<br />

A THICKER SLAB OF 50 mm (2”) AND MORE<br />

(SEE SECTION OF BALCONY)<br />

50 mm (2”)<br />

AND MORE<br />

SECTION 26 - HEADER SUPPORT<br />

WELDED WIRE-MESH<br />

20 mm ( 3 /4”)<br />

5 mm ( 3 /16”)<br />

TOTAL<br />

SLAB<br />

NOMINAL<br />

SLAB<br />

(T)<br />

80 mm<br />

(3 1/8”)<br />

STEEL<br />

DECK<br />

HEADER BEAM<br />

IF THERE IS A JOIST SITTING ON THE HEADER BEAM<br />

THE DIMENSION 80 mm (3 1/8”) WILL BECOME 76 mm (3”)


SECTION 28 - CANTILEVERED BALCONY (SHALLOW JOIST PARALLEL TO BALCONY)<br />

SEE PLAN<br />

SEE PLAN<br />

SEE SPECIFICATIONS<br />

OF THE ARCHITECT<br />

TOTAL SLAB (S)<br />

NOMINAL<br />

SLAB (T)<br />

THICKER SLAB<br />

(TS)<br />

50 mm (2”) MIN.<br />

TYP.<br />

WELDED<br />

WIRE-MESH<br />

25 mm (1”)<br />

REBAR,<br />

ACCORDING ACCORDING TO TO THE<br />

THE<br />

SPECIFICATIONS SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER ENGINEER ENGINEER<br />

SLOPE<br />

NOMINAL<br />

JOIST<br />

DEPTH (D)<br />

STEEL DECK<br />

TYPICAL DETAILS<br />

SOLID MASONRY WALL,<br />

ACCORDING TO THE<br />

SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

BRIDGING TO BOTTOM CHORD MAY<br />

BE NECESSARY IF UPLIFT DUE TO<br />

CANTILEVER BALCONY EXCEEDS<br />

GRAVITY LOAD. (IF REQUIRED BY<br />

THE ENGINEER)<br />

TEMPORARY<br />

SUPPORT<br />

FOR BALCONY<br />

(DESIGNED &<br />

SUPPLIED BY OTHERS)<br />

REBAR<br />

(IF REQUIRED BY<br />

THE CONSULTING ENGINEER)<br />

S + TS<br />

TOP OF BEARING<br />

IMPORTANT;<br />

BRIDGING ANGLES TO BE INSTALLED AFTER FORMS STRIPPED BUT<br />

BEFORE THE REMOVAL OF BALCONY TEMPORARY SUPPORTS<br />

SECTION 29 - CANTILEVERED BALCONY (JOIST PARALLEL TO BALCONY)<br />

SEE PLAN<br />

SEE PLAN<br />

SEE SPECIFICATIONS<br />

OF THE ARCHITECT<br />

TOTAL SLAB (S)<br />

NOMINAL<br />

SLAB (T)<br />

THICKER SLAB<br />

(TS)<br />

WELDED<br />

WIRE-MESH<br />

50 mm (2”) MIN.<br />

TYP.<br />

REBAR,<br />

ACCORDING TO TO TO THE<br />

THE<br />

SPECIFICATIONS OF THE THE THE<br />

CONSULTING ENGINEER<br />

ENGINEER<br />

25 mm (1”)<br />

SLOPE<br />

NOMINAL<br />

JOIST<br />

DEPTH (D)<br />

ANGLE FOR<br />

THICKER SLAB<br />

BRIDGING TO BOTTOM CHORD MAY<br />

BE NECESSARY IF UPLIFT DUE TO<br />

CANTILEVER BALCONY EXCEEDS<br />

GRAVITY LOAD. (IF REQUIRED BY<br />

THE ENGINEER)<br />

STEEL DECK<br />

TEMPORARY<br />

SUPPORT<br />

FOR BALCONY<br />

(DESIGNED &<br />

SUPPLIED BY OTHERS)<br />

S + TS<br />

TOP OF BEARING<br />

SOLID MASONRY WALL, ACCORDING<br />

TO THE SPECIFICATIONS OF THE<br />

CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

IMPORTANT;<br />

BRIDGING ANGLES TO BE INSTALLED AFTER FORMS STRIPPED BUT<br />

BEFORE THE REMOVAL OF BALCONY TEMPORARY SUPPORTS<br />

21


SECTION 30 - MAXIMUM DUCT OPENINGS<br />

22<br />

DEPTH PANEL D S R<br />

(mm) (mm) (mm) (mm) (mm x mm)<br />

200 508 110 90 150 x 60<br />

250 508 140 115 180 x 80<br />

300 610 185 145 230 x 110<br />

350 610 215 170 240 x 130<br />

280 x 110<br />

400 610 240 190 265 x 140<br />

330 x 100<br />

450 610 260 210 280 x 160<br />

315 x 130<br />

500 610 280 225 305 x 160<br />

330 x 140<br />

550 610 305 245 305 x 190<br />

355 x 140<br />

600 610 315 255 330 x 180<br />

355 x 150<br />

** WEB OPENINGS ARE ALIGNED ONLY WITH JOISTS WHICH HAVE IDENTICAL LENGTHS **<br />

PANEL<br />

TOP OF SLAB<br />

SS<br />

D<br />

R<br />

NOMINAL<br />

JOIST DEPTH<br />

TYPICAL DETAILS<br />

S = MAXIMUM SQUARE<br />

R = MAXIMUM RECTANGLE<br />

D = MAXIMUM DIAMETER<br />

DEPTH PANEL D S R<br />

(in.) (in.) (in.) (in.) (in. x in.)<br />

8 20 4 1/4 3 1/2 6 x 2 1/2<br />

10 20 5 1/2 4 1/2 7 x 3 1/4<br />

12 24 7 1/4 5 3/4 9 x 4 1/4<br />

14 24 8 1/2 6 3/4 9 1/2 x 5 1/4<br />

11 x 4 1/4<br />

16 24 9 1/2 7 1/2 10 1/2 x 5 1/2<br />

13 x 4<br />

18 24 10 1/4 8 1/4 11 x 6 1/4<br />

12 1/2 x 5<br />

20 24 11 9 12 x 6 1/4<br />

13 x 5 1/2<br />

22 24 12 9 3/4 12 x 7 1/2<br />

14 x 5 1/2<br />

24 24 12 1/2 10 13 x 7<br />

14 x 6<br />

NOTE: The maximum limitation has been determined from the joist geometry<br />

with a bottom chord of 50 mm (2”) and web of 22 mm (7/8”). If more<br />

information needed, please contact the <strong>Hambro</strong> technical department.


8.3 DTC (LH SERIES)<br />

TYPICAL DETAILS<br />

SECTION NO. DESCRIPTION PAGE<br />

1 Standard Shoe<br />

2 Bolted Joists at Steel Beam<br />

3 Bolted Joist at Column (Flange / Web)<br />

4 Joist Bearing on Steel Beam<br />

5 Minimum Clearance for Openings and Holes in the Slab<br />

6 Joist Parallel to a Steel Beam<br />

7 Thicker Slab<br />

8 Flange Hanger for Steel Beam and Wall<br />

9 Flange Hanger for Insulated Concrete Form<br />

10 Maximum LH Duct Openings<br />

11 Joist Parallel to a Concrete Wall With Insulated Form<br />

12 Joist Bearing on Concrete Wall With Insulated Form<br />

}<br />

} }<br />

}<br />

.................................................. 24<br />

.................................................. 25<br />

.............................................. 26<br />

.............................................. 27<br />

23


SECTION 3 - BOLTED JOIST AT COLUMN (FLANGE / WEB)<br />

SECTION 1 - STANDARD SHOE<br />

24<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

TOP OF SLAB<br />

(2 1 65 mm<br />

(2 /2”) 1 65 mm<br />

/2”)<br />

21 x 32 mm ( 13/16”x1 1/4”) SLOTS @ 165 mm (6 1/2”) c/c (HAMBRO SHOE)<br />

21mm ( 13/16”)Ø HOLES @ 165 mm (6 1 /2”) c /c (SUPPORT)<br />

TOP CHORD<br />

WELDED WIRE-MESH<br />

39 mm (1 1/2”)<br />

SLAB<br />

(T)<br />

(T)<br />

SLAB<br />

75 mm (3”)<br />

TOP OF BEARING<br />

T + 35 (1 3/8”)<br />

100 mm (4”)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

10 mm ( 3/8”)<br />

100 mm<br />

(4”)<br />

TYPICAL DETAILS<br />

CEILING EXTENSION<br />

(L 4” x 3” x 3 L 100 x 75 x 10 x 150 mm<br />

/8” x 6”)<br />

STEEL COLUMN, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

FIRST DIAGONAL<br />

- T + 35 mm (1 3/8) = SLAB THICKNESS + SHOE THICKNESS<br />

- SHOE WIDTH = 190 mm (7 1 /2”)<br />

SECTION 4 - JOIST BEARING ON STEEL BEAM<br />

SECTION 2 - BOLTED JOISTS AT STEEL BEAM<br />

90 mm (3 1/2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

65 mm (2 1 /2”) MIN. FOR 75 mm (3”) SHOE (TYP.)<br />

5 mm ( 3 /16”) 40 mm (1 1 /2”)<br />

WELDED WIRE-MESH<br />

21 x 32 mm ( 13/16” x 1 1 /4”) SLOTS<br />

@ 165 mm (6 1 /2”) c /c (HAMBRO SHOE)<br />

21 mm ( 13/16”) Ø HOLES<br />

@ 165 mm (6 1/2”) c/c (SUPPORT)<br />

SLAB<br />

(T)<br />

FLANGE BETWEEN 102 mm (4”) & 125 mm (4 7/8”)<br />

FLANGE BETWEEN 127 mm (5”) & 150 mm (5 7/8”)<br />

FLANGE BETWEEN 152 mm (6”) & 188 mm (7 3/8”)<br />

FLANGE BETWEEN 190 mm (7 1 /2”) & 228 mm (8 7 /8”)<br />

FLANGE BETWEEN 230 mm (9”) & 252 mm (9 7/8”)<br />

FLANGE BETWEEN 254 mm (10”) & 303 mm (11 7 /8”)<br />

FLANGE OF 305 mm (12”) & MORE<br />

58 mm (2 1/4”)<br />

70 mm (2 3 /4”)<br />

102 mm (4”)<br />

127 mm (5”)<br />

152 mm (6”)<br />

203 mm (8”)<br />

230 mm (9”)<br />

WELDED WIRE-MESH<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

T + 35 mm (1<br />

TOP OF BEARING<br />

3/8”)<br />

SLAB<br />

(T)<br />

CEILING EXTENSION<br />

TOP OF BEARING<br />

T + 35 mm (1 3/8”)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

STEEL BEAM,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

POUR STOP<br />

(BY OTHERS)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

STEEL BEAM, ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

T + 35 mm (1 3/8”) = SLAB THICKNESS + SHOE THICKNESS<br />

T + 1 3 /8” = SLAB THICKNESS + SHOE THICKNESS


SECTION 7 - THICKER SLAB<br />

SECTION 5 - MINIMUM CLEARANCE FOR OPENINGS<br />

AND HOLES IN THE SLAB<br />

* THE HANGER PLATE IS USED TO THICKEN<br />

UNDER SIDE OF THE CONCRETE SLAB.<br />

DIAMETER � 200 mm (8”)<br />

178 mm (7”)<br />

MIN.<br />

178 mm (7”)<br />

MIN.<br />

(4 1 /4”)<br />

108 mm<br />

* 4 DIFFERENTS STANDARD THICKNESS<br />

OF CONCRETE CAN BE CONSIDERED<br />

WITH THE HANGER PLATE<br />

(SEE DETAIL)<br />

** REBAR AROUND THE HOLE<br />

IS NOT REQUIRED<br />

** THE QUANTITY OF HOLE<br />

AT 7” & MORE OF THE JOIST<br />

IS NOT IMPORTANT<br />

OPENING<br />

SEE TYPICAL<br />

REINFORCEMENT<br />

FOR SLAB OPENING.<br />

178 mm (7”)<br />

MIN.<br />

END OF<br />

SLAB<br />

(7 1/4”)<br />

184 mm<br />

SLAB<br />

(T)<br />

HOLE<br />

82 mm<br />

(3 1 /4”)<br />

TYPICAL DETAILS<br />

158 mm<br />

(6 1/4”)<br />

NOMINAL JOIST DEPTH<br />

(D)<br />

WELDED WIRE-MESH<br />

20 mm ( 3 /4”)<br />

(APPLICABLE AT<br />

EACH CASE)<br />

20 mm ( 3 /4”)<br />

(APPLICABLE AT<br />

EACH CASE)<br />

HANGER PLATE ROLLBAR<br />

SECTION 8 - FLANGE HANGER FOR STEEL BEAM AND WALL<br />

SECTION 6 - JOIST PARALLEL TO A STEEL BEAM<br />

WELDED WIRE-MESH<br />

25 @ 300 mm (1” @ 12”)<br />

5 mm ( 3/16”)<br />

SLAB<br />

(T)<br />

FLANGE HANGER<br />

(FIXED, SEE ED-D500)<br />

ROLLBAR<br />

STEEL BEAM,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER (U.N.O)<br />

FLANGE HANGER (TYPE F.H)<br />

STEEL BEAM, CONCRETE WALL, WOOD WALL,<br />

STEEL STUD WALL OR MASONRY WALL<br />

25


SECTION 10 - MAXIMUM LH DUCT OPENINGS TABLES<br />

SECTION 9 - FLANGE HANGER FOR INSULATED CONCRETE FORM<br />

26<br />

DEPTH PANEL D S R<br />

(mm) (mm) (mm) (mm) (mm x mm)<br />

610 610 415 335 455 x 275<br />

560 x 225<br />

660 610 445 360 455 x 305<br />

560 x 250<br />

711 610 475 380 460 x 335<br />

610 x 245<br />

762 610 500 400 560 x 300<br />

685 x 220<br />

813 610 525 420 560 x 325<br />

685 x 240<br />

864 610 545 435 560 x 350<br />

735 x 225<br />

914 610 565 455 610 x 335<br />

735 x 240<br />

965 610 585 470 610 x 360<br />

735 x 260<br />

20 mm ( 3/4”)Ø HOLES<br />

AT 600 mm (24”) c /c<br />

FOR ANCHORED<br />

TYPICAL DETAILS<br />

FLANGE HANGER<br />

(TYPE M.H)<br />

ROLLBAR<br />

REINFORCED INSULATED CONCRETE WALL<br />

DEPTH PANEL D S R<br />

(in.) (in.) (in.) (in.) (in. x in.)<br />

24 24 16 1/2 13 1/4 18 x 10 3/4<br />

22 x 8 3/4<br />

26 24 17 1/2 14 18 x 12<br />

22 x 9 3/4<br />

28 24 18 3/4 15 18 x 13 1/4<br />

24 x 9 3/4<br />

30 24 19 3/4 15 3/4 22 x 11 3/4<br />

27 x 8 3/4<br />

32 24 20 1/2 16 1/2 22 x 12 3/4<br />

27 x 9 1/2<br />

34 24 21 1/2 17 1/4 22 x 13 3/4<br />

29 x 8 3/4<br />

36 24 22 1/4 18 24 x 13 1/4<br />

29 x 9 1/2<br />

38 24 23 18 1/2 24 x 14 1/4<br />

29 x 10 1/4<br />

SECTION 10 - MAXIMUM DUCT OPENINGS (LH)<br />

** WEB OPENINGS ARE ALIGNED ONLY WITH JOISTS WHICH HAVE IDENTICAL LENGTHS **<br />

PANEL PANEL PANEL PANEL<br />

TOP OF SLAB<br />

S<br />

D<br />

R<br />

JOIST DEPTH<br />

NOMINAL<br />

S = MAXIMUM SQUARE<br />

R = MAXIMUM RECTANGLE<br />

D = MAXIMUM DIAMETER<br />

NOTE: The maximum limitation has been determined from the joist geometry,<br />

with a bottom chord of 50 mm (2”) and web of 35 mm (1 3/8”). If more<br />

information needed, please contact the <strong>Hambro</strong> technical department.


SECTION 11 - JOIST PARALLEL TO A CONCRETE WALL<br />

WITH INSULATED FORM<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

WELDED WIRE-MESH<br />

(T)<br />

SLAB<br />

FLANGE HANGER<br />

(FIXED, SEE ED-D500)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

TYPICAL DETAILS<br />

REINFORCED INSULATED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

SECTION 12 - JOIST BEARING ON CONCRETE WALL<br />

WITH INSULATED FORM<br />

90 mm (3 1 /2”) MIN. FOR 100 mm (4”) SHOE (TYP.)<br />

NO ANCHORED PLATE OR MECHANICAL<br />

FASTENER IS REQUIRED TO FIX<br />

THE JOIST TO THE CONCRETE WALL.<br />

NOTCH RIGID INSULATION (TYP.)<br />

WELDED WIRE-MESH<br />

SLAB<br />

(T)<br />

T + 35 mm (1<br />

TOP OF BEARING<br />

3/8”)<br />

NOMINAL<br />

JOIST DEPTH<br />

(D)<br />

CEILING EXTENSION<br />

CEILING EXTENSION<br />

REINFORCED INSULATED CONCRETE WALL,<br />

ACCORDING TO THE SPECIFICATIONS<br />

OF THE CONSULTING ENGINEER<br />

REBAR<br />

(IF REQUIRED BY THE<br />

CONSULTING ENGINEER)<br />

27


9. SPECIFICATIONS<br />

PART 1-GENERAL<br />

1.1 SCOPE<br />

The supplier shall:<br />

(a) Furnish all labor, materials, equipment and services<br />

necessary for, and incidental to, the fabrication of the<br />

<strong>Hambro</strong> Composite Floor System in accordance with<br />

these specifications and applicable drawings. <strong>Hambro</strong><br />

Steel joists and Rollbar shall be manufactured and<br />

marketed by <strong>Hambro</strong> or their authorized representatives.<br />

(b) Fully coordinate the <strong>Hambro</strong> Composite Floor<br />

System with the other structural, mechanical, electrical<br />

and architectural components of the buildings.<br />

PART 2 - TYPICAL SPECIFICATION<br />

2.1 CODES<br />

All fabrication shall be in strict accordance with the <strong>Hambro</strong><br />

Shop Standard Practice, using steel conforming to Canadian<br />

Standards Association CAN/CSA G40.21-04 or similar ASTM<br />

Standards, or their engineering equivalent capacities.<br />

2.2 DESIGN<br />

Flexural design shall be by the Limit States Design<br />

method and as described in the <strong>Hambro</strong> literature. The<br />

slab shall be designed in accordance with CAN/CSA A23.3-<br />

04 “Design of Concrete Structures for Buildings”, the<br />

top chord shall be designed in accordance with<br />

CAN3-S136-M94 “Cold-Formed Steel Structural Members”,<br />

the bottom chord and webs shall be designed in<br />

accordance with CAN/CSA S16.01 - “Steel Structures for<br />

Buildings (Limit States Design)”.<br />

2.3 QUALIFICATIONS<br />

(a) All welding materials and methods used for fabrication<br />

shall be in accordance with the requirements of<br />

the Canadian Welding Bureau.<br />

(b) All field welders shall be certified, qualified operators<br />

in accordance with the requirements of CWB for the<br />

materials and methods being used, except that<br />

<strong>Hambro</strong> joist repairs or modifications that may be<br />

required may be done by factory approved personnel.<br />

2.4 DRAWINGS<br />

(a) Submit detailed erection drawings to the Architect,<br />

Engineer or the General Contractor for approval<br />

showing material lists, mark numbers, types, locations,<br />

and spacing of all joists and accessories. Show<br />

method of attachment of the joist to supporting<br />

members. Contract drawing notes relative to the<br />

<strong>Hambro</strong> system shall be considered a part of this<br />

specification as though fully set forth herein.<br />

SPECIFICATIONS<br />

(b) Shop drawings prepared only from approved erection<br />

drawings shall be used for fabrication and erection.<br />

(c) Figured dimensions only shall be used, scaling<br />

drawings shall not be permitted.<br />

2.5 HANDLING AND STORAGE<br />

Care shall be exercised at all times to avoid damage to<br />

<strong>Hambro</strong> joists through careless handling during unloading,<br />

storing and erecting.<br />

PART 3 - PRODUCTS<br />

3.1 MATERIALS<br />

(a) <strong>Hambro</strong> joists:<br />

1- All composite joists shall be fabricated in accordance<br />

with Section 2.1 and 2.2 of these Specifications.<br />

2- Top chord member shall act as a continuous shear<br />

connector of cold rolled steel, minimum 13 gauge<br />

with Fy = 350 MPa (50 ksi) minimum.<br />

3- Bottom chord member shall consist of either hot<br />

rolled angles with Fy = 380 MPa (55 ksi) minimum<br />

or cold rolled angles of equal capacities of steel.<br />

4- Web members shall consist of minimum 13 mm ( 1 /2”)<br />

diameter hot rolled bars of Fy = 350 MPa (50 ksi)<br />

minimum.<br />

5- All composite joists shall be shop painted with a<br />

rust inhibitive primer. According to CISC/CPMA<br />

Standard 1-73a one coat paint.<br />

(b) Rollbar shall be designed specifically to support<br />

10 mm ( 3 /8”) to 15 mm ( 5 /8”) plywood forms, a 2 kPa<br />

(40 psf) construction load and slab weight until the<br />

slab has cured sufficiently (concrete cylinder strength<br />

of 3.5 MPa (500 psi)), and act as temporary bridging<br />

and spacers for <strong>Hambro</strong> composite joists.<br />

(c) Standard bearing shoes shall be angle shape<br />

100 x 50 x 6 x 120 (4” x 2” x 1 /4” x 4 3 /4”) wide, unless<br />

otherwise noted.<br />

(d) Slab reinforcement shall be minimum<br />

152 x 152 MW13.3 x MW13.3 ( 6 x 6 - 8/8) welded<br />

wire fabric, with Fy = 400 MPa (60 ksi) minimum<br />

unless otherwise required by structural engineer.<br />

(e) Forms shall be 1 220 mm (4’-0”) or 1 500 mm (4’-11”)<br />

plywood sheets, and may be 10 mm ( 3 /8”) to 15 mm ( 5 /8”)<br />

thick.<br />

(f) Concrete<br />

1- Minimum ultimate compressive strength f’ c = 20 MPa<br />

(3 000 psi) at 28 days for <strong>Hambro</strong> design.<br />

2- Standard density i.e. 2 450 kg/m3 (145 pounds / ft. 3 ).<br />

3- Maximum size coarse aggregate: 19 mm ( 3 /4”).<br />

1


3.2 FABRICATION<br />

(a) Fabrication shall be in accordance with the <strong>Hambro</strong><br />

Shop Standard Practice.<br />

(b) The joist top chord shall be fabricated to allow for<br />

40 mm (1 1 /2”) embedment into the concrete slab.<br />

(c) Provide <strong>Hambro</strong> joist bottom chord ceiling extensions<br />

unless otherwise noted.<br />

(d) After installation, permissible <strong>Hambro</strong> joist sweep<br />

shall be 25 mm (1”) in 6 m (20’-0”).<br />

(e) <strong>Hambro</strong> joists shall be fabricated with an appropriate<br />

camber to suit span and slab thickness. The camber<br />

shall be designed according to the non-composite<br />

dead load.<br />

3.3 QUALITY CONTROL<br />

Joist shall be manufactured in a fabricator’s facility<br />

having a continuous quality control program. The<br />

inspection shall include checking of size, span,<br />

assembly and weld.<br />

PART 4 - EXECUTION<br />

4.1 ERECTION<br />

(a) Installation shall be in accordance with the latest<br />

Installation <strong>Manual</strong> for the <strong>Hambro</strong> Composite<br />

Floor System, approved erection drawings and<br />

any amendments which may be issued by the manufacturer.<br />

(b) All joists shall be erected in such a manner so that<br />

they are vertical, level and plumb and at the proper<br />

elevation. Any shimming that may be required shall<br />

be done with metal.<br />

(c) Special conditions requiring top and/or bottom<br />

bracing shall be shown on erection drawings prepared<br />

by supplier.<br />

(d) Welded Wire Fabric - Lapping shall be in accordance<br />

with the provisions of CAN/CSA A23.3-04 and<br />

<strong>Hambro</strong> construction drawings.<br />

(e) End anchorage - Joist shoes shall be properly<br />

welded, anchored or embedded as per engineer’s or<br />

architect’s drawings.<br />

(f) Concreting Practice<br />

2<br />

1- Do not pour concrete in excess of the slab thickness<br />

stated on the erection drawings.<br />

2- Do not drop large bucket loads in concentrated<br />

areas over <strong>Hambro</strong> joists. Lightly vibrate concrete.<br />

SPECIFICATIONS<br />

3- Construction joints made parallel to the joists should be<br />

made midway between the joists but never closer than<br />

150 mm (6”) to the top chord. Construction joints made<br />

perpendicular to the joists should be located over the<br />

supporting wall or beam.<br />

4- It is recommended that the following publications be<br />

followed:<br />

(a) CAN/CSA A23.3-04 “Design of Concrete Structures<br />

for Buildings”.<br />

(b) CAN/CSA A23.2-04 “Methods of Test for Concrete”.<br />

(c) CAN/CSA A23.1-04 “Concrete Materials and<br />

Methods of Concrete Construction”.<br />

(g) Stripping - Under normal conditions form work may be<br />

stripped at such time as the concrete has reached a<br />

cylinder strength of 3.5 MPa (500 psi).<br />

(h) Construction Loads<br />

1- Bundles of plywood or roll bars should not be placed<br />

on joist system but rather on supporting walls or<br />

beams.<br />

2- During construction, the minimum non-composite<br />

joist capacity for a 70 mm (2 3 /4”) slab and joist<br />

spacing of 1 251 mm (4’-1 1 /4”) on center, shall be<br />

3.5 kN/m (240 plf). Joists spaced at greater than<br />

1 251 mm (4’-1 1 /4”) on center shall have their noncomposite<br />

capacity adequately increased to carry the<br />

additional load. Construction loads may be applied<br />

when the concrete has reached a cylinder strength of<br />

7 MPa (1000 psi).<br />

(i) Minimum joist bearing shall be as follows:<br />

1- Steel support: 65 mm (2 1 /2”) for 75 mm (3”) shoe<br />

90 mm (3 1 /2”) for 100 mm (4”) shoe.<br />

2- Masonry, concrete, wood and metal stud support:<br />

90 mm (3 1 /2”). Bearing surface of supporting units<br />

to comply with applied shoe end reaction, based<br />

on minimum supplied bearing area of 107 cm 2<br />

(16.6 in. 2 ).


BUSINESS UNITS AND THEIR WEB ADDRESSES<br />

www.canam.ws www.canam.ws<br />

www.canamgroup.ws<br />

www.structalstructure.ws www.structalbridges.ws www.technyx.ws<br />

www.hambro.ws www.murox.ws<br />

PUBLICATIONS TECHNICAL QUESTIONS<br />

» FLOOR SYSTEM D500 TM<br />

»<br />

»<br />

»<br />

»<br />

FLOOR SYSTEM D510 TM<br />

FLOOR SYSTEM MD2000 ®<br />

TECHNICAL MANUAL<br />

INSTALLATION MANUAL<br />

www.hambro.ws<br />

www.canaminternational.ws<br />

1


2<br />

Canada - Main Office<br />

270, chemin Du Tremblay<br />

Boucherville, Quebec J4B 5X9<br />

Telephone: 450-641-4000<br />

Toll-free: 1-866-506-4000<br />

Fax: 450-641-4001<br />

www.hambro.ws<br />

United States - Main Office<br />

450 East Hillsboro Boulevard<br />

Deerfield Beach, Florida 33441<br />

Telephone: 954-571-3030<br />

Toll-free: 1-800-546-9008<br />

Fax: 954-571-3031<br />

Fax: 1-800-592-4943<br />

For local sales offices or distributors call:<br />

1-800-506-4000<br />

Canam as well as all logos identifying each business unit, are trademark of Canam Group Inc.<br />

except for <strong>Hambro</strong>, which is a trademark of <strong>Hambro</strong> ® International (Structures) Limited, a<br />

wholly-owned subsidiary of Canam Group Inc.<br />

Printed in Canada 03/2009<br />

© Canam Group Inc., 2003-2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!