04.06.2016 Views

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Published August 26, <strong>2013</strong><br />

RESEARCH<br />

<strong>TILLING</strong> <strong>in</strong> <strong>European</strong> <strong>Rice</strong>:<br />

Hunt<strong>in</strong>g <strong>Mutations</strong> <strong>for</strong> <strong>Cr</strong>op Improvement<br />

Laura <strong>Casella</strong>, Raffaella Greco,* Gianluca Bruschi, Barbara Wozniak, Ludovico Dreni,<br />

Mart<strong>in</strong> Kater, Stefano Cavigiolo, Elisab<strong>et</strong>ta Lupotto, and Pi<strong>et</strong>ro Piffanelli<br />

ABSTRACT<br />

Targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes<br />

(<strong>TILLING</strong>) is a powerful technique that exploits<br />

variation <strong>in</strong>duced by classic<strong>al</strong> mutagenesis<br />

<strong>for</strong> gene discovery and function<strong>al</strong> studies as<br />

well as crop improvement. Here we describe<br />

the development and v<strong>al</strong>idation of the first rice<br />

(Oryza sativa L.) <strong>TILLING</strong> plat<strong>for</strong>m of a <strong>European</strong><br />

temperate japonica accession. A tot<strong>al</strong> of 1860<br />

M 2<br />

<strong>et</strong>hyl m<strong>et</strong>hane sulfonate (EMS)-mutagenized<br />

l<strong>in</strong>es were generated <strong>in</strong> the vari<strong>et</strong>y ‘Volano’, one<br />

of the most widely cultivated <strong>European</strong> rice<br />

vari<strong>et</strong>ies representative of the tradition<strong>al</strong> It<strong>al</strong>ian<br />

high qu<strong>al</strong>ity rice. The v<strong>al</strong>idation of the <strong>TILLING</strong><br />

population was per<strong>for</strong>med by screen<strong>in</strong>g the<br />

M 2<br />

l<strong>in</strong>es <strong>for</strong> variation <strong>in</strong> four targ<strong>et</strong> genes<br />

of relevance <strong>for</strong> the improvement of Volano<br />

(SD1, Hd1, SNAC1, and BADH2, <strong>in</strong>volved<br />

<strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height, flower<strong>in</strong>g time,<br />

drought tolerance, and aroma, respectively).<br />

Two <strong>in</strong>dependent mutations identified <strong>in</strong> the<br />

Green Revolution gene SD1 (semidwarf 1) were<br />

demonstrated to have a significant phenotypic<br />

effect, result<strong>in</strong>g <strong>in</strong> semidwarf progenies with an<br />

average height reduction of 21% <strong>in</strong> the plants<br />

carry<strong>in</strong>g the mutant <strong>al</strong>lele <strong>in</strong> the homozygous<br />

state. The density of one mutation every 373<br />

kb estimated <strong>in</strong> the Volano <strong>TILLING</strong> population<br />

was comparable to that previously obta<strong>in</strong>ed<br />

<strong>in</strong> rice EMS-mutagenized populations and<br />

confirmed the effectiveness of this approach <strong>for</strong><br />

targ<strong>et</strong>ed improvement of <strong>European</strong> temperate<br />

rice germplasm. Besides the v<strong>al</strong>idation of the<br />

<strong>TILLING</strong> plat<strong>for</strong>m, this work <strong>al</strong>so provides<br />

gen<strong>et</strong>ic materi<strong>al</strong> that can be directly exploited<br />

<strong>for</strong> the improvement of the Volano vari<strong>et</strong>y.<br />

L. <strong>Casella</strong>, G. Bruschi, S. Cavigiolo, and E. Lupotto, Consiglio per<br />

la <strong>Rice</strong>rca e la Sperimentazione <strong>in</strong> Agricoltura- <strong>Rice</strong> Research Unit,<br />

13100 Vercelli, It<strong>al</strong>y; R. Greco, B. Wozniak, and P. Piffanelli, <strong>Rice</strong><br />

Genomics Unit, Parco Tecnologico Padano, 26900 Lodi, It<strong>al</strong>y; L. Dreni<br />

and M. Kater, Dep. of Biosciences, Università degli Studi di Milano,<br />

via Celoria 26, <strong>2013</strong>3 Milan, It<strong>al</strong>y. The first two authors contributed<br />

equ<strong>al</strong>ly to this work. Received 18 Dec. 2012. *Correspond<strong>in</strong>g author<br />

(raffaella.greco@tecnoparco.org).<br />

Abbreviations: 2-AP, 2-ac<strong>et</strong>yl-1-pyrrol<strong>in</strong>e; BADH2, b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase; DIOX_N, dioxygenase N-term<strong>in</strong><strong>al</strong>; EMS, <strong>et</strong>hyl<br />

m<strong>et</strong>hane sulfonate; GA, gibberell<strong>in</strong>; GA20, gibberell<strong>in</strong> 20; GA20ox,<br />

gibberell<strong>in</strong> 20-oxidase; Hd1, Head<strong>in</strong>g date-1; MNU, N-m<strong>et</strong>hyl-Nnitrosourea;<br />

NAC, NAM, ATAF, and CUC; NAD, nicot<strong>in</strong>amide<br />

aden<strong>in</strong>e d<strong>in</strong>ucleotide; NGS, next generation sequenc<strong>in</strong>g; PCR, polymerase<br />

cha<strong>in</strong> reaction; SD1, semidwarf 1; SIFT, sort<strong>in</strong>g tolerant from<br />

<strong>in</strong>tolerant; SNAC1, Stress-responsive NAC 1; SNP, s<strong>in</strong>gle nucleotide<br />

polymorphism; <strong>TILLING</strong>, targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes.<br />

<strong>Rice</strong> is the most important food crop <strong>in</strong> the world, represent<strong>in</strong>g<br />

the ma<strong>in</strong> source of energy <strong>in</strong>take <strong>for</strong> more than one third of the<br />

world’s population. Although the majority of the glob<strong>al</strong> rice production<br />

comes from develop<strong>in</strong>g countries such as Ch<strong>in</strong>a, India, Indonesia,<br />

and Bangladesh, northern It<strong>al</strong>y plays an important role provid<strong>in</strong>g<br />

about 50% of the tot<strong>al</strong> <strong>European</strong> rice production (FAO, 2010). Most<br />

of the rice vari<strong>et</strong>ies grown <strong>in</strong> It<strong>al</strong>y belong to the temperate japonica<br />

phylogen<strong>et</strong>ic subgroup (Spada <strong>et</strong> <strong>al</strong>., 2004; Mantegazza <strong>et</strong> <strong>al</strong>., 2008;<br />

Faivre-Rampant <strong>et</strong> <strong>al</strong>., 2010; Courtois <strong>et</strong> <strong>al</strong>., 2012), characterized by<br />

a lower gen<strong>et</strong>ic diversity compared to the tropic<strong>al</strong> japonicas and the<br />

most diverse <strong>in</strong>dica group (Garris <strong>et</strong> <strong>al</strong>., 2005). Indica cultivars had a<br />

limited <strong>in</strong>fluence <strong>in</strong> <strong>European</strong> and It<strong>al</strong>ian breed<strong>in</strong>g programs ma<strong>in</strong>ly<br />

Published <strong>in</strong> <strong>Cr</strong>op Sci. 53:2550–2562 (<strong>2013</strong>).<br />

doi: 10.2135/cropsci2012.12.0693<br />

© <strong>Cr</strong>op Science Soci<strong>et</strong>y of America | 5585 Guil<strong>for</strong>d Rd., Madison, WI 53711 USA<br />

All rights reserved. No part of this periodic<strong>al</strong> may be reproduced or transmitted <strong>in</strong> any<br />

<strong>for</strong>m or by any means, electronic or mechanic<strong>al</strong>, <strong>in</strong>clud<strong>in</strong>g photocopy<strong>in</strong>g, record<strong>in</strong>g,<br />

or any <strong>in</strong><strong>for</strong>mation storage and r<strong>et</strong>riev<strong>al</strong> system, without permission <strong>in</strong> writ<strong>in</strong>g from<br />

the publisher. Permission <strong>for</strong> pr<strong>in</strong>t<strong>in</strong>g and <strong>for</strong> repr<strong>in</strong>t<strong>in</strong>g the materi<strong>al</strong> conta<strong>in</strong>ed here<strong>in</strong><br />

has been obta<strong>in</strong>ed by the publisher.<br />

2550 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


ecause of their failure to grow at northern latitudes, requir<strong>in</strong>g<br />

long-day adaptation and cold tolerance, as well as of sterility<br />

barriers (Courtois <strong>et</strong> <strong>al</strong>., 2012). Due to environment<strong>al</strong><br />

constra<strong>in</strong>ts and consumer tradition, which favor tradition<strong>al</strong><br />

risotto type rice, the It<strong>al</strong>ian rice germplasm has a narrow<br />

gen<strong>et</strong>ic basis, which may benefit from the <strong>in</strong>troduction of<br />

new sources of gen<strong>et</strong>ic variation.<br />

The targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (TILL-<br />

ING) approach, comb<strong>in</strong><strong>in</strong>g classic<strong>al</strong> mutagenesis (by chemic<strong>al</strong><br />

or physic<strong>al</strong> agents) with a high-throughput screen<strong>in</strong>g<br />

m<strong>et</strong>hod to d<strong>et</strong>ect the <strong>in</strong>duced mutations, is a powerful technology<br />

that can be used to <strong>in</strong>duce and characterize gen<strong>et</strong>ic<br />

variation. The <strong>TILLING</strong> approach was first developed <strong>in</strong><br />

Arabidopsis th<strong>al</strong>iana (L.) Heynh. (McC<strong>al</strong>lum <strong>et</strong> <strong>al</strong>., 2000) and<br />

s<strong>in</strong>ce then has been successfully used <strong>in</strong> many other plant as<br />

well as anim<strong>al</strong> species (reviewed <strong>in</strong> Kurowska <strong>et</strong> <strong>al</strong>., 2011;<br />

Rashid <strong>et</strong> <strong>al</strong>., 2011; Wang <strong>et</strong> <strong>al</strong>., 2012). Orig<strong>in</strong><strong>al</strong>ly developed<br />

<strong>for</strong> function<strong>al</strong> genomics studies, as an <strong>al</strong>ternative to<br />

transgenic approaches such as transfer DNA and transposon<br />

<strong>in</strong>sertion<strong>al</strong> mutagenesis or ribonucleic acid <strong>in</strong>terference (An<br />

<strong>et</strong> <strong>al</strong>., 2005; Alonso and Ecker, 2006; Sm<strong>al</strong>l, 2007; Krishnan<br />

<strong>et</strong> <strong>al</strong>., 2009; Gilchrist and Haughn, 2010; Kuromori <strong>et</strong><br />

<strong>al</strong>., 2009), <strong>TILLING</strong> was shown to be <strong>al</strong>so a v<strong>al</strong>uable tool<br />

<strong>in</strong> crop breed<strong>in</strong>g (Kurowska <strong>et</strong> <strong>al</strong>., 2011; Rashid <strong>et</strong> <strong>al</strong>., 2011;<br />

Wang <strong>et</strong> <strong>al</strong>., 2012). Among the various mutagenic agents,<br />

<strong>et</strong>hyl m<strong>et</strong>hane sulfonate (EMS) is ma<strong>in</strong>ly used <strong>in</strong> TILL-<br />

ING as it produces random mutations <strong>in</strong> gen<strong>et</strong>ic materi<strong>al</strong>s<br />

at a very high density (Koornneef, 2002). Thanks to its<br />

capability to create a wide spectrum of different mutations<br />

(missense, nonsense, and splice site) result<strong>in</strong>g <strong>in</strong> a diverse<br />

array of mutant <strong>al</strong>leles, EMS, <strong>in</strong> comb<strong>in</strong>ation with a TILL-<br />

ING approach, can provide a range of different phenotypes<br />

that can be useful <strong>for</strong> breed<strong>in</strong>g (Alonso and Ecker, 2006;<br />

Gilchrist and Haughn, 2005; Henikoff and Comai, 2003).<br />

Favorable mutations d<strong>et</strong>ected with<strong>in</strong> a <strong>TILLING</strong> plat<strong>for</strong>m<br />

can be rather easily <strong>in</strong>trogressed <strong>in</strong>to different gen<strong>et</strong>ic<br />

backgrounds or <strong>TILLING</strong> itself can be developed <strong>in</strong>to the<br />

gen<strong>et</strong>ic materi<strong>al</strong> of <strong>in</strong>terest, as classic<strong>al</strong> mutagenesis can be<br />

applied to any plant species (Henikoff and Comai, 2003).<br />

Sever<strong>al</strong> examples of the successful use of <strong>TILLING</strong><br />

<strong>for</strong> crop improvement have been described <strong>in</strong> different<br />

plant species. Comb<strong>in</strong><strong>in</strong>g <strong>TILLING</strong> mutation discovery<br />

and convention<strong>al</strong> breed<strong>in</strong>g, Slade <strong>et</strong> <strong>al</strong>. (2012) reported the<br />

creation of novel nontransgenic wheat [Triticum aestivum L.<br />

and Triticum turgidum L. subsp. durum (Desf.) Husn.] l<strong>in</strong>es<br />

with high levels of amylose and resistant starch content,<br />

shown to have benefici<strong>al</strong> effects <strong>for</strong> the control of obesity<br />

and diab<strong>et</strong>es. Two mutants with <strong>al</strong>tered seed oligosaccharide<br />

content (raff<strong>in</strong>ose and stachyose <strong>in</strong> the first mutant and<br />

oleic and l<strong>in</strong>oleic acid <strong>in</strong> the second), a phenotype desirable<br />

<strong>for</strong> cook<strong>in</strong>g and <strong>in</strong>dustri<strong>al</strong> oils, were identified <strong>in</strong> a soybean<br />

[Glyc<strong>in</strong>e max (L.) Merr.] <strong>TILLING</strong> collection (Dierk<strong>in</strong>g<br />

and Bilyeu, 2009). The development of a <strong>TILLING</strong> plat<strong>for</strong>m<br />

<strong>in</strong> melon (Cucumis melo L.) <strong>al</strong>lowed the identification<br />

of a mutant with a significantly improved shelf life due to<br />

an <strong>in</strong>duced <strong>al</strong>teration <strong>in</strong> an <strong>et</strong>hylene biosynth<strong>et</strong>ic enzyme<br />

(Dahmani-Mardas <strong>et</strong> <strong>al</strong>., 2010). In tomato (Solanum lycopersicum<br />

L.), <strong>TILLING</strong> led to the identification of two <strong>al</strong>lelic<br />

mutations <strong>in</strong> an <strong>et</strong>hylene receptor gene, caus<strong>in</strong>g delayed<br />

fruit ripen<strong>in</strong>g and prolonged shelf life (Okabe <strong>et</strong> <strong>al</strong>., 2011).<br />

In addition, mutants <strong>for</strong> virus resistance <strong>in</strong> melon (Ni<strong>et</strong>o <strong>et</strong><br />

<strong>al</strong>., 2007) and tomato (Piron <strong>et</strong> <strong>al</strong>., 2010), starch <strong>in</strong> potato<br />

(Solanum tuberosum L.) (Muth <strong>et</strong> <strong>al</strong>., 2008), natur<strong>al</strong> products<br />

<strong>in</strong> sorghum [Sorghum bicolor (L.) Moench] (Blomstedt <strong>et</strong> <strong>al</strong>.,<br />

2012), and nornicot<strong>in</strong>e content <strong>in</strong> tobacco (Nicotiana tabacum<br />

L.) (Julio <strong>et</strong> <strong>al</strong>., 2007) have been described.<br />

The <strong>TILLING</strong> approach was <strong>al</strong>so used to produce<br />

mutant collections <strong>in</strong> rice. The first rice <strong>TILLING</strong> plat<strong>for</strong>m<br />

was created <strong>in</strong> the <strong>in</strong>dica vari<strong>et</strong>y IR64, the most widely<br />

grown cultivar <strong>in</strong> Southeast Asia (Wu <strong>et</strong> <strong>al</strong>., 2005). This<br />

large mutagenized M 2<br />

population was obta<strong>in</strong>ed us<strong>in</strong>g different<br />

mutagenic agents but a low mutation density (1/1000<br />

kb) was observed. Improvements of both the mutagenesis<br />

procedure and the screen<strong>in</strong>g m<strong>et</strong>hod <strong>al</strong>lowed a higher<br />

mutation density (1/300 kb) <strong>in</strong> a <strong>TILLING</strong> population to be<br />

achieved <strong>for</strong> the reference rice vari<strong>et</strong>y Nipponbare (Till <strong>et</strong><br />

<strong>al</strong>., 2007). An even higher mutation density was achieved <strong>in</strong><br />

the Taiwanese japonica rice cultivar Taichung 65 by treat<strong>in</strong>g<br />

poll<strong>in</strong>ated flowers with N-m<strong>et</strong>hyl-N-nitrosourea (MNU)<br />

(Suzuki <strong>et</strong> <strong>al</strong>., 2008). However, so far no <strong>TILLING</strong> plat<strong>for</strong>m<br />

has been developed us<strong>in</strong>g gen<strong>et</strong>ic materi<strong>al</strong> adapted to<br />

grow <strong>in</strong> the temperate <strong>European</strong> pedoclimatic conditions.<br />

In this study we developed gen<strong>et</strong>ic variation <strong>in</strong> the temperate<br />

Oryza sativa subsp. japonica cultivar Volano. This vari<strong>et</strong>y<br />

was chosen as be<strong>in</strong>g representative of the tradition<strong>al</strong> It<strong>al</strong>ian<br />

high qu<strong>al</strong>ity rice. Volano is one of the most widely cultivated<br />

and important It<strong>al</strong>ian rice vari<strong>et</strong>ies, with a large <strong>in</strong>tern<strong>al</strong> mark<strong>et</strong>,<br />

and is exported worldwide as it belongs to the Arborio<br />

class, the most popular risotto type rice of the Long A gra<strong>in</strong><br />

class. In 2011, Volano was cultivated on 20.230 ha (Ente Nazion<strong>al</strong>e<br />

Risi, 2011), represent<strong>in</strong>g 17% of the nation<strong>al</strong> grow<strong>in</strong>g<br />

area of risotto type rice. Volano is a t<strong>al</strong>l vari<strong>et</strong>y (110 cm), which<br />

is a typic<strong>al</strong> trait of tradition<strong>al</strong> It<strong>al</strong>ian rice vari<strong>et</strong>ies, and has a relatively<br />

long life cycle, consist<strong>in</strong>g of 155 d from sow<strong>in</strong>g to seed<br />

ripen<strong>in</strong>g. It has a moderate resistance to diseases, such as blast<br />

and a poor yield per<strong>for</strong>mance when grown <strong>in</strong> water-limited<br />

conditions (Ente Nazion<strong>al</strong>e Risi, 2012b). Due to its v<strong>al</strong>uable<br />

gra<strong>in</strong> qu<strong>al</strong>ity characteristics, Volano is of strategic relevance<br />

<strong>for</strong> ongo<strong>in</strong>g breed<strong>in</strong>g programs and surely will take advantage<br />

from the improvement of sever<strong>al</strong> traits, <strong>in</strong>clud<strong>in</strong>g shorten<strong>in</strong>g of<br />

the plant stature and of the growth cycle and improved resistance<br />

to biotic and abiotic stress conditions.<br />

A tot<strong>al</strong> of 1860 M 2<br />

EMS mutagenized l<strong>in</strong>es were generated<br />

and used <strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g of four agronomic<strong>al</strong>ly<br />

and qu<strong>al</strong>ity relevant targ<strong>et</strong> genes. A mutation density<br />

of 1/373 kb was estimated, show<strong>in</strong>g the effectiveness of this<br />

approach <strong>for</strong> targ<strong>et</strong>ed improvement of <strong>European</strong> temperate<br />

rice germplasm.<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2551


Table 1. Targ<strong>et</strong> genes and primers used <strong>for</strong> targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) an<strong>al</strong>ysis of the Volano <strong>et</strong>hyl<br />

m<strong>et</strong>hane sulfonate–mutagenized population.<br />

Gene Locus † Forward primer Reverse primer Amplicon size (bp)<br />

SD1 Os01g66100 acacacgctctcaactcactcc agcagaggagaacagaggagag 1081<br />

Hd1 Os06g16370 gtccatgtggtgcaagctaaag cgtggcatgtagtaacaactaac 972<br />

SNAC1 Os03g60080 cagcgagaagcaagcaagaag agcatcgatcaccacctgttc 1142<br />

BADH2 Os08g32870 tgagaatcatgttcgggatg acaaagtcccgcacttcaga 840<br />

†<br />

Referr<strong>in</strong>g to Michigan State University v.6.1 rice genome annotation (Ouyang <strong>et</strong> <strong>al</strong>., 2007).<br />

MATERIALS AND METHODS<br />

Mutagenesis and Plant Materi<strong>al</strong><br />

Pure seed samples of O. sativa subsp. japonica ‘Volano’ (Ente Nazion<strong>al</strong>e<br />

Risi, 2012b; Supplement<strong>al</strong> Table S1) were obta<strong>in</strong>ed by the<br />

breed<strong>in</strong>g company Soci<strong>et</strong>à It<strong>al</strong>iana Sementi (Bologna, It<strong>al</strong>y).<br />

Ethyl m<strong>et</strong>hane sulfonate mutagenesis was per<strong>for</strong>med essenti<strong>al</strong>ly<br />

as described by Till <strong>et</strong> <strong>al</strong>. (2007) with the follow<strong>in</strong>g<br />

modifications. To ev<strong>al</strong>uate the toxicity and/or l<strong>et</strong>h<strong>al</strong>ity of the<br />

EMS treatment <strong>in</strong> Volano, a range of doses from 0.25 to 1.0%<br />

of EMS (liquid, product code M0880; Sigma-Aldrich) was first<br />

tested on batches of 200 seeds. Seedl<strong>in</strong>g surviv<strong>al</strong> decreased<br />

markedly at doses above 0.75%. The optimum dosage of 0.75%,<br />

which gave germ<strong>in</strong>ation rates averag<strong>in</strong>g 59% (untreated control<br />

displayed 95%), was hence applied.<br />

A tot<strong>al</strong> of 20,000 seeds were then treated <strong>in</strong> batches of 5000<br />

seeds <strong>in</strong> 1 L flasks. After a presoak<strong>in</strong>g <strong>for</strong> 18 h <strong>in</strong> 400 mL of tap<br />

water, seeds were treated with a solution of 0.75% EMS <strong>in</strong> 0.066<br />

M phosphate buffer (Na 2<br />

HPO 4<br />

and KH 2<br />

PO 4<br />

) at pH 7 <strong>for</strong> 24 h.<br />

After the EMS treatment, seeds were thoroughly washed over<br />

a period of 24 h, first with deionized water (three times <strong>for</strong> 30<br />

m<strong>in</strong>utes each time) and then with tap water (refreshed every<br />

hour <strong>for</strong> the first 5 h). All the 20,000 mutagenized seeds were<br />

dried with w<strong>et</strong> blott<strong>in</strong>g paper and directly sown <strong>in</strong> the open<br />

field. The M 1<br />

plants were grown accord<strong>in</strong>g to standard paddy<br />

rice agronomic practices and harvested at maturity. Twenty M 2<br />

seeds from each M 1<br />

fertile l<strong>in</strong>e (approximately 2000) were sown<br />

<strong>in</strong> the field the follow<strong>in</strong>g grow<strong>in</strong>g season. Of each M 2<br />

l<strong>in</strong>e one<br />

s<strong>in</strong>gle he<strong>al</strong>thy M 2<br />

plant was chosen, leaf samples were taken <strong>for</strong><br />

DNA isolation, and the plants were bagged <strong>in</strong>dividu<strong>al</strong>ly and<br />

<strong>al</strong>lowed to grow to maturity. The DNA extraction was per<strong>for</strong>med<br />

on a s<strong>in</strong>gle fertile M 2<br />

plant per l<strong>in</strong>e. From each selected<br />

M 2<br />

plant, M 3<br />

seeds were collected and stored at 4°C with 7 to<br />

10% relative humidity to ensure their long-term viability.<br />

DNA Isolation and Pool<strong>in</strong>g Strategy<br />

The DNA was isolated from lyophilized leaf tissue <strong>in</strong> 96-well<br />

plates with NucleoSp<strong>in</strong> Plant II (Macherey-Nagel GmbH &<br />

Co. KG), us<strong>in</strong>g a Tecan Freedom EVO150 liquid handl<strong>in</strong>g<br />

robot (Tecan Group Ltd.). Be<strong>for</strong>e pool<strong>in</strong>g, the concentration<br />

of each sample was d<strong>et</strong>erm<strong>in</strong>ed us<strong>in</strong>g the PicoGreen dsDNA<br />

(double-strand DNA) quantitation assay (Life Technologies<br />

Corp.) and norm<strong>al</strong>ized at a standard concentration of 2 ng μL –1 ,<br />

to ensure that each sample was equ<strong>al</strong>ly represented <strong>in</strong> the pool.<br />

Two-dimension<strong>al</strong> pool<strong>in</strong>g (eightfold <strong>for</strong> columns and 12-fold<br />

<strong>for</strong> rows) was per<strong>for</strong>med by comb<strong>in</strong><strong>in</strong>g <strong>al</strong>l samples <strong>in</strong> shared<br />

rows and <strong>al</strong>l samples <strong>in</strong> shared columns, so that each M 2<br />

l<strong>in</strong>e<br />

was represented both <strong>in</strong> the eightfold and <strong>in</strong> the 12-fold pool.<br />

Primer Design<br />

Primers <strong>for</strong> the amplification of the targ<strong>et</strong> genes were designed<br />

from the Nipponbare genome sequence us<strong>in</strong>g CODDLE<br />

(Codons Optimized to Discover Del<strong>et</strong>erious LEsions) (http://<br />

www.proweb.org/coddle; accessed 18 Dec. 2012) and Primer3<br />

(Rozen and Sk<strong>al</strong><strong>et</strong>sky, 2000). The targ<strong>et</strong> genes and the<br />

selected primer sequences are listed <strong>in</strong> Table 1. Forward and<br />

reverse primers were 5¢-end labeled with 6FAM and VIC,<br />

respectively. Labeled and unlabeled oligonucleotides were purchased<br />

from Applied Biosystems (Life Technologies Corp.).<br />

<strong>TILLING</strong> Protocol<br />

The screen<strong>in</strong>g of <strong>in</strong>duced mutations by <strong>TILLING</strong> was per<strong>for</strong>med<br />

essenti<strong>al</strong>ly as described by Till <strong>et</strong> <strong>al</strong>. (2006), with the<br />

follow<strong>in</strong>g modifications. Polymerase cha<strong>in</strong> reactions (PCRs)<br />

were per<strong>for</strong>med <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 10 μL, us<strong>in</strong>g 2 μL of<br />

pooled genomic DNA and HotStarTaq Master Mix (Qiagen).<br />

Labeled and unlabeled primers were mixed <strong>in</strong> a 3:2 ratio, with<br />

a f<strong>in</strong><strong>al</strong> concentration of 0.4 μM. Cycl<strong>in</strong>g was per<strong>for</strong>med on a<br />

TProfession<strong>al</strong> thermocycler (Biom<strong>et</strong>ra GmbH) as follows: 95°C<br />

<strong>for</strong> 15 m<strong>in</strong>; 35 cycles of 94°C <strong>for</strong> 1 m<strong>in</strong>, melt<strong>in</strong>g temperature<br />

–5°C <strong>for</strong> 1 m<strong>in</strong>, and 72°C <strong>for</strong> 1 m<strong>in</strong> and 30 s; and 72°C <strong>for</strong> 10<br />

m<strong>in</strong>. For <strong>al</strong>l the primer pairs an anne<strong>al</strong><strong>in</strong>g temperature of 60°C<br />

was used. After amplification, PCR products were denatured<br />

and anne<strong>al</strong>ed to <strong>for</strong>m h<strong>et</strong>eroduplexes b<strong>et</strong>ween complementary<br />

strands as follows: 94°C <strong>for</strong> 10 m<strong>in</strong> and 90 cycles of 1 m<strong>in</strong> from<br />

94 to 4°C, decreas<strong>in</strong>g by 1°C per cycle. H<strong>et</strong>eroduplexes were<br />

cleaved by digestion with the mismatch-specific endonuclease<br />

ENDO1 (Seri<strong>al</strong> Gen<strong>et</strong>ics, Evry, France) (Triques <strong>et</strong> <strong>al</strong>., 2008),<br />

accord<strong>in</strong>g to the manufacturer’s <strong>in</strong>structions. The reactions<br />

were per<strong>for</strong>med <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 30 μL and <strong>in</strong>cubated at<br />

45°C <strong>for</strong> 20 m<strong>in</strong>. The samples were then <strong>et</strong>hanol (CH 3<br />

CH 2<br />

OH)<br />

precipitated, r<strong>in</strong>sed with <strong>et</strong>hanol 70%, and resuspended <strong>in</strong> 12<br />

μL of Hi-Di Formamide and 0.05 μL of GeneScan 1200 LIZ<br />

Size Standard (Applied Biosystems, Life Technologies Corp.).<br />

To identify the cleavage products result<strong>in</strong>g from h<strong>et</strong>eroduplex<br />

mismatches, ENDO1-digested samples were loaded on an<br />

ABI3730 DNA sequencer (Applied Biosystems, Life Technologies<br />

Corp.) us<strong>in</strong>g a 96-capillary array with POP7 polymer. The<br />

output sequences were then an<strong>al</strong>yzed us<strong>in</strong>g the software GeneMapper<br />

4.0 (Applied Biosystems, Life Technologies Corp.).<br />

V<strong>al</strong>idation of <strong>Mutations</strong><br />

To confirm the mutations d<strong>et</strong>ected, PCR and convention<strong>al</strong><br />

sequenc<strong>in</strong>g were per<strong>for</strong>med on the <strong>in</strong>dividu<strong>al</strong> M 2<br />

DNA samples<br />

identified accord<strong>in</strong>g to the two-dimension<strong>al</strong> pool<strong>in</strong>g strategy.<br />

Polymerase cha<strong>in</strong> reaction amplification was per<strong>for</strong>med <strong>in</strong><br />

a f<strong>in</strong><strong>al</strong> volume of 10 μL, as previously described, except that<br />

only unlabeled primers were used and the cycl<strong>in</strong>g program<br />

2552 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


was stopped after the extension step of 10 m<strong>in</strong> at 72°C. Be<strong>for</strong>e<br />

sequenc<strong>in</strong>g, the PCR products were purified from free primers<br />

and nucleotides us<strong>in</strong>g ExoSAP-IT (GE He<strong>al</strong>thcare), follow<strong>in</strong>g<br />

the manufacturer’s <strong>in</strong>structions.<br />

Sequenc<strong>in</strong>g reactions were s<strong>et</strong> up <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 10 μL<br />

with 10 to 40 ng of purified PCR product and a primer concentration<br />

of 0.32 μM us<strong>in</strong>g the BigDye Term<strong>in</strong>ator v3.1 Cycle<br />

Sequenc<strong>in</strong>g Kit (Applied Biosystems, Life Technologies Corp.).<br />

The follow<strong>in</strong>g conditions were used: 96°C <strong>for</strong> 1 m<strong>in</strong> and 25 cycles<br />

of 96°C <strong>for</strong> 10 sec, 55°C <strong>for</strong> 5 sec, and 60°C <strong>for</strong> 4 m<strong>in</strong>. Samples<br />

were then <strong>et</strong>hanol and <strong>et</strong>hylenediam<strong>in</strong><strong>et</strong><strong>et</strong>raac<strong>et</strong>ic acid precipitated<br />

and an<strong>al</strong>yzed on the ABI3730 DNA sequencer (Applied<br />

Biosystems, Life Technologies Corp.). The output sequences<br />

were an<strong>al</strong>yzed with the software Mutation Surveyor (SoftGen<strong>et</strong>ics,<br />

2010) to identify and v<strong>al</strong>idate the mutations.<br />

To predict wh<strong>et</strong>her a po<strong>in</strong>t mutation would have an effect at<br />

the prote<strong>in</strong> level, the targ<strong>et</strong> am<strong>in</strong>o acid sequences (semidwarf 1<br />

[SD1], Head<strong>in</strong>g date-1 [Hd1], Stress-responsive NAC 1 [SNAC1],<br />

and b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde dehydrogenase [BADH2]) were an<strong>al</strong>yzed<br />

with SIFT (Sort<strong>in</strong>g Tolerant From Intolerant) (Kumar <strong>et</strong> <strong>al</strong>.,<br />

2009) to identify the regions that do not tolerate substitutions.<br />

Phenotypic Field Ev<strong>al</strong>uations<br />

<strong>Rice</strong> plants were grown <strong>in</strong> the field at the Consiglio per la<br />

<strong>Rice</strong>rca e la Sperimentazione <strong>in</strong> Agricoltura-<strong>Rice</strong> Research<br />

Unit <strong>in</strong> Vercelli (It<strong>al</strong>y). Seeds were sown directly <strong>in</strong>to dry soil<br />

and convention<strong>al</strong> submersion was established at the third to<br />

fourth leaf development<strong>al</strong> stage until 1 mo be<strong>for</strong>e harvest<strong>in</strong>g.<br />

Standard fertilization was per<strong>for</strong>med with 150 kg N ha –1 , 40<br />

kg P 2<br />

O 5<br />

ha –1 , and 150 kg K 2<br />

0 ha –1 . The tot<strong>al</strong> rate of N and<br />

K was fractionated <strong>in</strong> two times (one-third be<strong>for</strong>e sow<strong>in</strong>g and<br />

two-thirds at panicle <strong>in</strong>itiation stage) to improve the efficiency<br />

of the two fertilizers. Dur<strong>in</strong>g the grow<strong>in</strong>g season the follow<strong>in</strong>g<br />

agronomic<strong>al</strong> traits were assessed accord<strong>in</strong>g to the Internation<strong>al</strong><br />

Union <strong>for</strong> the Protection of New Vari<strong>et</strong>ies of Plants guidel<strong>in</strong>es<br />

(UPOV): tot<strong>al</strong> plant height (cm), measured at maturity on the<br />

primary tiller, consider<strong>in</strong>g the distance from the soil to the tip of<br />

the panicle (exclud<strong>in</strong>g the awn); panicle length (cm), measured at<br />

maturity on the primary tiller, consider<strong>in</strong>g the distance from the<br />

base to the tip of the panicle (exclud<strong>in</strong>g the awn); panicle type<br />

and panicle attitude <strong>in</strong> relation to stem, both assessed after ripen<strong>in</strong>g;<br />

gra<strong>in</strong> characteristics (length, width, and weight), assessed<br />

after ripen<strong>in</strong>g; and growth cycle, consider<strong>in</strong>g the days from seed<br />

sow<strong>in</strong>g till seed ripen<strong>in</strong>g. At maturity, paddy rice samples were<br />

harvested by hand and stored <strong>in</strong> controlled conditions.<br />

RESULTS<br />

Development of the Volano <strong>TILLING</strong> Population<br />

The Volano <strong>TILLING</strong> plat<strong>for</strong>m was developed us<strong>in</strong>g the<br />

chemic<strong>al</strong> mutagen EMS, shown to be effective <strong>for</strong> rice by<br />

Till <strong>et</strong> <strong>al</strong>. (2007) us<strong>in</strong>g the japonica cultivar Nipponbare,<br />

<strong>in</strong> which a density of <strong>in</strong>duced mutations of 1/300 kb was<br />

reported. However, EMS toxicity and efficiency is genotype<br />

specific and can vary greatly with<strong>in</strong> the same species and<br />

subspecies, as shown by the lower mutation rate observed <strong>in</strong><br />

the EMS-mutagenized <strong>in</strong>dica vari<strong>et</strong>y IR64 (1/1000 bp) (Wu<br />

<strong>et</strong> <strong>al</strong>., 2005). A pilot test us<strong>in</strong>g different doses of EMS was<br />

per<strong>for</strong>med on sm<strong>al</strong>l batches of Volano seeds to identify the<br />

optim<strong>al</strong> quantity of EMS to be used <strong>for</strong> large-sc<strong>al</strong>e mutagenesis<br />

(data not shown). Based on the results obta<strong>in</strong>ed, the<br />

mutagenesis was per<strong>for</strong>med us<strong>in</strong>g 0.75% EMS on 20,000<br />

seeds of Volano. The mutagenized seeds were sown directly<br />

<strong>in</strong> field conditions and the surviv<strong>in</strong>g M 1<br />

plants were grown<br />

to maturity and self-fertilized. Approximately 2000 fertile<br />

M 1<br />

l<strong>in</strong>es were harvested and 20 seeds from each l<strong>in</strong>e<br />

were planted to generate the M 2<br />

generation. Dur<strong>in</strong>g the<br />

growth of the M 2<br />

population, sever<strong>al</strong> mutant phenotypes<br />

were observed at different development<strong>al</strong> stages, rang<strong>in</strong>g<br />

from seedl<strong>in</strong>g to maturity stage. The most common mutant<br />

phenotypes were related to dwarfism, plant sterility, <strong>al</strong>teration<br />

<strong>in</strong> plant architecture, growth cycle duration, and seed<br />

morphology. Examples of the phenotypes observed are<br />

shown <strong>in</strong> Fig. 1. A summary of the phenotypic data collected<br />

<strong>for</strong> plant height, panicle length, growth cycle, and<br />

gra<strong>in</strong> size and shape is reported <strong>in</strong> Supplement<strong>al</strong> Table S2<br />

and Supplement<strong>al</strong> Fig. S1. While the majority of the M 2<br />

l<strong>in</strong>es had an average plant height of 98.6 ± 9.7 cm typic<strong>al</strong> of<br />

Volano, 2.1% of the mutagenized l<strong>in</strong>es showed a semidwarf<br />

phenotype with a reduction <strong>in</strong> height >20 cm (Supplement<strong>al</strong><br />

Fig. S1). Similarly, 1.5% of the M 2<br />

mutagenized plants<br />

showed <strong>in</strong>creased panicle length (>25 cm) with respect to<br />

that of Volano (22 cm) (Supplement<strong>al</strong> Fig. S1). Variability <strong>in</strong><br />

growth cycle duration was <strong>al</strong>so observed, with a range difference<br />

of 40 d b<strong>et</strong>ween the earliest and the latest M 2<br />

l<strong>in</strong>es.<br />

Few “early” mutants show<strong>in</strong>g a shorten<strong>in</strong>g of at least 20 d<br />

b<strong>et</strong>ween the sow<strong>in</strong>g and the ripen<strong>in</strong>g time were recorded<br />

(Supplement<strong>al</strong> Fig. S1).<br />

From the 20 M 2<br />

seeds sown <strong>for</strong> each M 1<br />

l<strong>in</strong>e, one M 2<br />

fertile and he<strong>al</strong>thy-look<strong>in</strong>g <strong>in</strong>dividu<strong>al</strong> plant was chosen<br />

<strong>for</strong> DNA isolation and <strong>for</strong> seed harvest. In tot<strong>al</strong> 1860 M 2<br />

l<strong>in</strong>es were selected to constitute the Volano mutagenized<br />

<strong>TILLING</strong> collection.<br />

D<strong>et</strong>ection of <strong>Mutations</strong> <strong>in</strong> Candidate Genes<br />

To estimate the efficiency of the EMS treatment and to<br />

ev<strong>al</strong>uate the mutation frequency <strong>in</strong> the Volano EMS-treated<br />

population, <strong>TILLING</strong> was <strong>in</strong>iti<strong>al</strong>ly per<strong>for</strong>med on DNA isolated<br />

from 1152 M 2<br />

l<strong>in</strong>es organized us<strong>in</strong>g to a two-dimension<strong>al</strong><br />

pool<strong>in</strong>g strategy. A similar strategy was successfully<br />

used to screen another rice mutagenized population (Till <strong>et</strong><br />

<strong>al</strong>., 2007), where eightfold pools were used <strong>in</strong> both dimensions.<br />

The advantage of us<strong>in</strong>g a 2D pool<strong>in</strong>g strategy is that<br />

the M 2<br />

l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g the mutation can be directly identified<br />

without sequenc<strong>in</strong>g <strong>al</strong>l the samples <strong>in</strong> the pool.<br />

For this pilot screen<strong>in</strong>g, four genes of relevance <strong>for</strong> agronomic<br />

and qu<strong>al</strong>ity traits were selected: SD1 (semidwarf 1),<br />

<strong>in</strong>volved <strong>in</strong> plant height d<strong>et</strong>erm<strong>in</strong>ation (Sasaki <strong>et</strong> <strong>al</strong>., 2002),<br />

Hd1 (Head<strong>in</strong>g date-1), which plays a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g<br />

the flower<strong>in</strong>g time (Yano <strong>et</strong> <strong>al</strong>., 2000), SNAC1 (Stressresponsive<br />

NAC 1), which was shown to be a centr<strong>al</strong> player <strong>in</strong><br />

stomata guard cell closure under water stress conditions (Hu<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2553


Figure 1. Examples of morphologic<strong>al</strong> mutant phenotypes observed <strong>in</strong> the M 2<br />

generation of the Volano <strong>et</strong>hyl m<strong>et</strong>hane sulfonate–mutagenized<br />

population. (a) Abnorm<strong>al</strong> spikel<strong>et</strong> pigmentation, (b) <strong>al</strong>tered gra<strong>in</strong> shape (c and f) dwarfism, (d) early flower<strong>in</strong>g, and (e) late flower<strong>in</strong>g.<br />

<strong>et</strong> <strong>al</strong>., 2006), and BADH2, which is responsible of the typic<strong>al</strong><br />

aroma of fragrant rice (Bradbury <strong>et</strong> <strong>al</strong>., 2005).<br />

The <strong>TILLING</strong> screen<strong>in</strong>g identified three mutations<br />

<strong>in</strong> the SD1 gene, one <strong>in</strong> Hd1, four <strong>in</strong> SNAC1, and two <strong>in</strong><br />

BADH2 (Table 2). The mutations observed were predom<strong>in</strong>antly<br />

G/C to A/T transitions (90%), except <strong>for</strong> one T/C<br />

transition d<strong>et</strong>ected <strong>in</strong> the SD1 gene. These results are <strong>in</strong> l<strong>in</strong>e<br />

with other EMS mutagenesis studies reported <strong>in</strong> literature. In<br />

Arabidopsis th<strong>al</strong>iana, maize (Zea mays L.), and wheat, G/C to<br />

A/T transitions were shown to make up more than 99% of <strong>al</strong>l<br />

EMS-<strong>in</strong>duced mutations (Greene <strong>et</strong> <strong>al</strong>., 2003; Henikoff and<br />

Comai, 2003) whereas <strong>in</strong> other species such as tomato, barley<br />

(Hordeum vulgare L.), and rice, these transitions represent<br />

only 70% of the observed mutations (C<strong>al</strong>dwell <strong>et</strong> <strong>al</strong>., 2004;<br />

Till <strong>et</strong> <strong>al</strong>., 2007; M<strong>in</strong>oia <strong>et</strong> <strong>al</strong>., 2010). The only T/C transition<br />

d<strong>et</strong>ected was h<strong>et</strong>erozygous and there<strong>for</strong>e is unlikely to<br />

have been a natur<strong>al</strong>ly occurr<strong>in</strong>g mutation, consider<strong>in</strong>g the<br />

low estimated rate of spontaneous mutations (10 –7 to 10 –8 bp<br />

per generation) (Greene <strong>et</strong> <strong>al</strong>., 2003).<br />

All but one of the mutations identified occurred <strong>in</strong><br />

exons (Table 2), which may be expected consider<strong>in</strong>g that<br />

25% of the 4035 nucleotides used <strong>for</strong> the screen<strong>in</strong>g spanned<br />

<strong>in</strong>trons (Table 3). Based on the predicted effect on the<br />

prote<strong>in</strong> product, we found 70% missense, 20% silent, and<br />

10% nonsense mutations. Besides the nonsense mutation,<br />

the majority of the missense mutations d<strong>et</strong>ected (six out of<br />

seven) were likely to generate nonfunction<strong>al</strong> prote<strong>in</strong> products,<br />

accord<strong>in</strong>g to SIFT predictions (Kumar <strong>et</strong> <strong>al</strong>., 2009).<br />

The SIFT <strong>al</strong>gorithm predicts wh<strong>et</strong>her an am<strong>in</strong>o acid substitution<br />

<strong>in</strong> a prote<strong>in</strong> will have a phenotypic effect based on its<br />

degree of conservation <strong>in</strong> <strong>al</strong>ignments derived from closely<br />

related sequences. The assumption is that am<strong>in</strong>o acid residues<br />

at positions important <strong>for</strong> prote<strong>in</strong> function should be<br />

conserved throughout evolution among members of a prote<strong>in</strong><br />

family (Kumar <strong>et</strong> <strong>al</strong>., 2009). All but one (the silent<br />

base change <strong>in</strong> SNAC1 mentioned above) of the mutations<br />

identified were found to be h<strong>et</strong>erozygous (Table 3).<br />

To estimate the mutation rate, 200 bp were subtracted<br />

from the length of each screened amplicon accord<strong>in</strong>g to<br />

Greene <strong>et</strong> <strong>al</strong>. (2003), who reported the difficulty to reliably<br />

d<strong>et</strong>ect mutations close to the <strong>TILLING</strong> primers.<br />

The result<strong>in</strong>g estimated average mutation density <strong>in</strong> the<br />

2554 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


Table 2. Ethyl m<strong>et</strong>hane sulfonate–<strong>in</strong>duced mutations identified <strong>in</strong> the Volano targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (TILL-<br />

ING) population.<br />

Gene<br />

Plant<br />

identity †<br />

Nucleotide<br />

change<br />

Position<br />

from ATG ‡<br />

Position<br />

<strong>in</strong> CDS ‡<br />

Am<strong>in</strong>o acid<br />

change SIFT score § Am<strong>in</strong>o acid properties <br />

SD1 860 G/A 144 exon1 W > STOP 0.00 –<br />

1427 C/T 473 exon1 S158F 0.09 N and P ® N and NP<br />

921 T/C 802 exon2 Y234H 0.00 N and P ® B and P<br />

Hd1 782 G/A 242 exon1 C81Y 0.05 N and SP ® N and P<br />

SNAC1 1213 C/T 262 exon1 R88C 0.00 B and P ® N and SP<br />

951 C/T 316 exon1 P106S 0.03 N and NP ® N and P<br />

1523 C/T 467 exon1 S156F 0.00 N and P ® N and NP<br />

269 G/A 756 exon2 E > E – –<br />

BADH2 1133 C/T 2690 exon6 L206F 0.00 N and NP ® N and NP<br />

108 C/T 2829 <strong>in</strong>tron6 – – –<br />

†<br />

M 2<br />

l<strong>in</strong>e carry<strong>in</strong>g the mutation.<br />

‡<br />

Positions refer to the genomic sequences (Michigan State University v.6.1 rice genome annotation [Ouyang <strong>et</strong> <strong>al</strong>., 2007]). CDS, cod<strong>in</strong>g DNA sequence.<br />

§<br />

Prediction based on SIFT (sort<strong>in</strong>g tolerant from <strong>in</strong>tolerant) <strong>al</strong>gorithm (Kumar <strong>et</strong> <strong>al</strong>., 2009). An am<strong>in</strong>o acid substitution predicted to impair the prote<strong>in</strong> function has a score<br />

≤0.05; if tolerated the score is >0.05.<br />

<br />

N, neutr<strong>al</strong>; P, polar; SP, slightly polar; NP, nonpolar; B, basic.<br />

Table 3. Features of the observed mutations identified by the targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) screen<strong>in</strong>g<br />

of the Volano <strong>et</strong>hyl m<strong>et</strong>hane sulfonate–mutagenized population.<br />

Gene<br />

Amplicon<br />

size (bp)<br />

CDS † (bp) Tot<strong>al</strong> Silent Missense Nonsense HET ‡ HOM §<br />

SD1 1081 879 3 0 2 1 3 0<br />

Hd1 972 828 1 0 1 0 1 0<br />

SNAC1 1142 951 4 1 3 0 3 1<br />

BADH2 840 350 2 1 1 0 2 0<br />

Tot<strong>al</strong> 4035 3008 10 2 7 1 9 1<br />

% 20% 70% 10% 90% 10%<br />

†<br />

CDS, cod<strong>in</strong>g DNA sequence.<br />

‡<br />

HET, h<strong>et</strong>erozygous.<br />

§<br />

HOM, homozygous.<br />

Volano <strong>TILLING</strong> population observed <strong>in</strong> the pilot screen<br />

was 1/373 kb.<br />

<strong>TILLING</strong> <strong>for</strong> <strong>Cr</strong>op Improvement<br />

of <strong>European</strong> Temperate <strong>Rice</strong><br />

Four rice genes were selected to v<strong>al</strong>idate the Volano<br />

<strong>TILLING</strong> population based on the agronomic impact of<br />

the phenotypic effect expected from the <strong>al</strong>teration and/or<br />

<strong>in</strong>activation of the encoded polypeptides.<br />

Reduction <strong>in</strong> plant height represents one of the most<br />

important go<strong>al</strong>s of the current breed<strong>in</strong>g programs to<br />

improve the field per<strong>for</strong>mance of the Volano vari<strong>et</strong>y. To<br />

identify Volano l<strong>in</strong>es with shorter stature, we screened <strong>for</strong><br />

EMS-<strong>in</strong>duced mutations <strong>in</strong> the SD1 gene, which is the<br />

most important gene of the rice Green Revolution (Sasaki<br />

<strong>et</strong> <strong>al</strong>., 2002). SD1 encodes <strong>for</strong> a gibberell<strong>in</strong> 20-oxidase, a<br />

key enzyme <strong>in</strong> the gibberell<strong>in</strong> (GA) biosynth<strong>et</strong>ic pathway,<br />

which plays a centr<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height by<br />

affect<strong>in</strong>g cellular and <strong>in</strong>ternode elongation. Alterations <strong>in</strong><br />

the SD1 genomic sequence and encoded prote<strong>in</strong> result <strong>in</strong><br />

decreased levels of GAs due to the defective gibberell<strong>in</strong><br />

20-oxidase (GA20ox) enzyme, which lead to plants with<br />

shorter and thicker culms, improved lodg<strong>in</strong>g resistance,<br />

and a greater harvest <strong>in</strong>dex (Monna <strong>et</strong> <strong>al</strong>., 2002; Sasaki <strong>et</strong><br />

<strong>al</strong>., 2002; Spielmeyer <strong>et</strong> <strong>al</strong>., 2002).<br />

The SD1 gene consists of three exons encod<strong>in</strong>g a<br />

prote<strong>in</strong> product of 389 am<strong>in</strong>o acids with two predicted<br />

conserved function<strong>al</strong> doma<strong>in</strong>s, a non-heme dioxygenase<br />

N-term<strong>in</strong><strong>al</strong> (DIOX_N) doma<strong>in</strong> (IPR026992) spann<strong>in</strong>g<br />

residues 64 to 168 and a oxoglutarate- and iron-dependent<br />

dioxygenase doma<strong>in</strong> (IPR005123), typic<strong>al</strong> of plant<br />

dioxygenases <strong>in</strong>volved <strong>in</strong> hormone and pigment synthesis,<br />

spann<strong>in</strong>g residues 224 to 324.<br />

The <strong>TILLING</strong> screen<strong>in</strong>g of SD1 <strong>in</strong> the Volano mutagenized<br />

population identified three <strong>in</strong>dependent po<strong>in</strong>t<br />

mutations, of which two were predicted to generate missense<br />

products and one a truncated prote<strong>in</strong> (Table 2). The<br />

C/T transition <strong>in</strong> l<strong>in</strong>e M2_1427 led to a nonsynonymous<br />

change from a polar ser<strong>in</strong>e to a nonpolar phenyl<strong>al</strong>an<strong>in</strong>e at<br />

am<strong>in</strong>o acid position 158 of the DIOX_N doma<strong>in</strong>, which<br />

accord<strong>in</strong>g to the SIFT prediction presumably does not<br />

affect prote<strong>in</strong> function (Kumar <strong>et</strong> <strong>al</strong>., 2009). Based on<br />

sequence <strong>al</strong>ignment, four residues other than ser<strong>in</strong>e were<br />

found at a correspond<strong>in</strong>g position 158 <strong>in</strong> orthologous<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2555


dioxigenases from other plant species, among which are<br />

phenyl<strong>al</strong>an<strong>in</strong>e, threon<strong>in</strong>e (less polar than ser<strong>in</strong>e), and to<br />

a lesser extent charged residues such as aspartic acid and<br />

histid<strong>in</strong>e (data not shown). This sequence diversity <strong>in</strong>dicates<br />

that this am<strong>in</strong>o acid position may not be essenti<strong>al</strong> <strong>for</strong><br />

enzyme function.<br />

In contrast, the T/C transition <strong>in</strong> l<strong>in</strong>e M2_921 caused<br />

a tyros<strong>in</strong>e®histid<strong>in</strong>e substitution at position 234 <strong>in</strong> the<br />

oxoglutarate- and iron-dependent dioxygenase doma<strong>in</strong>.<br />

The hydrophobic Tyr234 is highly conserved among plant<br />

dioxygenases and its replacement by any other residue is<br />

expected to be highly del<strong>et</strong>erious <strong>for</strong> the SD1 prote<strong>in</strong><br />

function (SIFT score: 0.00).<br />

The G/A transition <strong>in</strong> the M2_860 l<strong>in</strong>e created a premature<br />

stop codon at position 48 of the prote<strong>in</strong> sequence,<br />

generat<strong>in</strong>g a predicted nonfunction<strong>al</strong> product lack<strong>in</strong>g the<br />

majority of the polypeptide (341 am<strong>in</strong>o acid residues),<br />

<strong>in</strong>clud<strong>in</strong>g the two function<strong>al</strong> doma<strong>in</strong>s. All the M 2<br />

identified<br />

mutations <strong>in</strong> the SD1 gene were h<strong>et</strong>erozygous.<br />

To confirm the <strong>in</strong>heritance of the <strong>in</strong>duced mutations<br />

<strong>in</strong> the SD1 gene and to explore their phenotypic effect,<br />

30 M 3<br />

seeds derived from each M 2<br />

mutant l<strong>in</strong>e were sown<br />

<strong>in</strong> the field and grown to maturity. The DNA was isolated<br />

from each M 3<br />

plant and the s<strong>in</strong>gle nucleotide polymorphism<br />

(SNP) <strong>al</strong>terations confirmed by sequenc<strong>in</strong>g. For<br />

the M 2<br />

l<strong>in</strong>es 921 and 860, M 3<br />

progeny plants carry<strong>in</strong>g the<br />

correspond<strong>in</strong>g mutation <strong>in</strong> the homozygous state showed a<br />

statistic<strong>al</strong>ly significant decrease <strong>in</strong> plant height when compared<br />

to homozygous wild-type plants (Fig. 2) (Wilcoxon<br />

signed-rank test: p < 0.01). An average height reduction<br />

of 19.1 ± 2.2 cm was observed <strong>in</strong> case of M 3<br />

homozygous<br />

mutant progenies derived from M2_860 and 23.8 ± 4.7<br />

cm <strong>in</strong> case of M2_921 (Fig. 3). Furthermore, the M 3<br />

plants<br />

h<strong>et</strong>erozygous <strong>for</strong> the mutations showed an <strong>in</strong>termediate<br />

stature b<strong>et</strong>ween the homozygous mutant and the wild-type<br />

(Fig. 3) (Wilcoxon signed-rank test: p > 0.05), support<strong>in</strong>g<br />

the hypothesis that the observed phenotypes arose specific<strong>al</strong>ly<br />

from the EMS-<strong>in</strong>duced <strong>al</strong>terations <strong>in</strong> the SD1 gene.<br />

In agreement with the predicted effect of the mutation on<br />

the prote<strong>in</strong> function, the M 3<br />

mutant progeny plants derived<br />

from the l<strong>in</strong>e M2_1427 did not differ significantly <strong>in</strong> plant<br />

height from the mutagenized l<strong>in</strong>es not carry<strong>in</strong>g the mutation<br />

(Fig. 3) (Wilcoxon signed-rank test: p > 0.05).<br />

Hd1, a rice ortholog of the A. th<strong>al</strong>iana flower<strong>in</strong>g time<br />

gene CONSTANS (Putterill <strong>et</strong> <strong>al</strong>., 1995), encodes a transcription<strong>al</strong><br />

activator that promotes head<strong>in</strong>g under shortday<br />

conditions and <strong>in</strong>hibits it under long-day conditions<br />

(Yano <strong>et</strong> <strong>al</strong>., 2000). By act<strong>in</strong>g <strong>in</strong> a complex n<strong>et</strong>work with<br />

other flower<strong>in</strong>g genes, such as Hd3a, Ehd1, and Gdh7, it<br />

plays a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g flower<strong>in</strong>g time variation<br />

<strong>in</strong> rice (Tsuji <strong>et</strong> <strong>al</strong>., 2011), which is a relevant trait <strong>in</strong><br />

case of growth at northern latitudes such as Europe. The<br />

Hd1 prote<strong>in</strong> conta<strong>in</strong>s an N-term<strong>in</strong><strong>al</strong> z<strong>in</strong>c f<strong>in</strong>ger doma<strong>in</strong><br />

<strong>in</strong>volved <strong>in</strong> DNA-b<strong>in</strong>d<strong>in</strong>g and a C-term<strong>in</strong><strong>al</strong> CCT doma<strong>in</strong><br />

Figure 2. Example of a “semidwarf” Volano mutant. A M 3<br />

plant<br />

from l<strong>in</strong>e M2_921 carry<strong>in</strong>g the homozygous mutation is shown (on<br />

the left) <strong>in</strong> comparison with a mutagenized plant not carry<strong>in</strong>g the<br />

mutation (on the right) at maturity stage.<br />

Figure 3. Segregation of plant height among M 3<br />

progenies of<br />

the three identified sd1 mutants (l<strong>in</strong>es M2_860, M2_921, and<br />

M2_1427). For each M 2<br />

l<strong>in</strong>e, the blue bars represent the average<br />

height of the homozygous wild-type plants, red bars represent<br />

plants carry<strong>in</strong>g the mutation <strong>in</strong> the h<strong>et</strong>erozygote state, and<br />

green bars represent the homozygous mutant plants. Error bars<br />

are <strong>in</strong>dicated. Double asterisks (**) <strong>in</strong>dicate significant differences<br />

b<strong>et</strong>ween homozygous mutants and wild-type (wt) (p < 0.01; Wilcoxon<br />

signed-rank test). h<strong>et</strong>, h<strong>et</strong>erozygous.<br />

that functions as nuclear loc<strong>al</strong>ization sign<strong>al</strong> (Yano <strong>et</strong> <strong>al</strong>.,<br />

2000). Inactivation of the Hd1 gene results <strong>in</strong> earlier head<strong>in</strong>g<br />

under long days with a reduction of the grow<strong>in</strong>g cycle<br />

(Yano <strong>et</strong> <strong>al</strong>., 2000). One missense mutation was identified<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population <strong>in</strong> this gene (Table<br />

2). The mutation was located <strong>in</strong> the z<strong>in</strong>c f<strong>in</strong>ger doma<strong>in</strong><br />

and caused the substitution of a conserved cyste<strong>in</strong>e residue<br />

2556 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


at position 81 of the second B-box type doma<strong>in</strong> with a<br />

tyros<strong>in</strong>e, predicted to impair prote<strong>in</strong> function (Table 2).<br />

The assessment of M 3<br />

progeny mutant plants <strong>for</strong> phenotypic<br />

variation <strong>in</strong> life cycle length did not show significant<br />

changes when compared to sister l<strong>in</strong>es not carry<strong>in</strong>g the<br />

po<strong>in</strong>t mutation (data not shown).<br />

SNAC1 is a NAM, ATAF, and CUC (NAC) transcription<br />

factor expressed <strong>in</strong> guard cells of rice upon dehydration<br />

and <strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g stomat<strong>al</strong> closure (Hu <strong>et</strong><br />

<strong>al</strong>., 2006). Its overexpression <strong>in</strong> transgenic rice plants was<br />

shown to greatly enhance tolerance to drought and s<strong>al</strong>t<br />

stress while <strong>in</strong>activation resulted <strong>in</strong> <strong>in</strong>creased stomat<strong>al</strong> aperture<br />

and sensitivity to dehydration (Hu <strong>et</strong> <strong>al</strong>., 2006; You <strong>et</strong><br />

<strong>al</strong>., <strong>2013</strong>), suggest<strong>in</strong>g that only ga<strong>in</strong>-of-function mutations<br />

<strong>in</strong> this gene would result <strong>in</strong> a desirable phenotype. All the<br />

three missense mutations identified <strong>in</strong> the SNAC1 gene <strong>in</strong><br />

the Volano <strong>TILLING</strong> population were located with<strong>in</strong> the<br />

conserved NAC DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> (Hu <strong>et</strong> <strong>al</strong>., 2006;<br />

Chen <strong>et</strong> <strong>al</strong>., 2011) and they were <strong>al</strong>l generat<strong>in</strong>g changes <strong>in</strong><br />

am<strong>in</strong>o acid polarity (Table 2). The C/T transition at position<br />

88 led to the substitution of a very conserved arg<strong>in</strong><strong>in</strong>e<br />

(very hydrophilic) with cyste<strong>in</strong>e (hydrophobic) <strong>in</strong> a putative<br />

nuclear loc<strong>al</strong>ization sign<strong>al</strong> with<strong>in</strong> the NAC doma<strong>in</strong> (Hu <strong>et</strong><br />

<strong>al</strong>., 2006). The other two missense mutations resulted <strong>in</strong> a<br />

prol<strong>in</strong>e®ser<strong>in</strong>e and a ser<strong>in</strong>e®phenyl<strong>al</strong>an<strong>in</strong>e replacements<br />

at am<strong>in</strong>o acid positions 106 and 156, respectively. Accord<strong>in</strong>g<br />

to the SIFT scores, <strong>al</strong>l the three am<strong>in</strong>o acid substitutions<br />

are predicted to affect prote<strong>in</strong> function (Table 2). The<br />

progeny of the three M 2<br />

l<strong>in</strong>es carry<strong>in</strong>g the missense mutations<br />

are currently under <strong>in</strong>vestigation to assess the response<br />

under water-limited conditions.<br />

The BADH2 gene encodes the enzyme b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase (BADH2) that cat<strong>al</strong>yses the oxidation<br />

of a precursor of 2-ac<strong>et</strong>yl-1-pyrrol<strong>in</strong>e (2-AP). Inactivation of<br />

this enzyme leads to accumulation of 2-AP, the compound<br />

responsible of the typic<strong>al</strong> aroma of fragrant rice (Bradbury <strong>et</strong><br />

<strong>al</strong>., 2005). The BADH2 enzyme belongs to the nicot<strong>in</strong>amide<br />

aden<strong>in</strong>e d<strong>in</strong>ucleotide (NAD)-dependent <strong>al</strong>dehyde dehydrogenase<br />

family and is predicted to conta<strong>in</strong> three doma<strong>in</strong>s<br />

based on its three-dimension<strong>al</strong> structure: a NAD b<strong>in</strong>d<strong>in</strong>g, a<br />

substrate b<strong>in</strong>d<strong>in</strong>g, and an oligomerization doma<strong>in</strong> (Chen <strong>et</strong><br />

<strong>al</strong>., 2008). While Volano is a nonfragrant vari<strong>et</strong>y carry<strong>in</strong>g the<br />

function<strong>al</strong> BADH2 gene, the missense mutation identified <strong>in</strong><br />

the <strong>TILLING</strong> population caused a leuc<strong>in</strong>e to phenyl<strong>al</strong>an<strong>in</strong>e<br />

substitution at am<strong>in</strong>o acid position 206 <strong>in</strong> the NAD b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong>, likely to impair prote<strong>in</strong> function accord<strong>in</strong>g to SIFT<br />

prediction (Table 2). Assessment of the M 3<br />

progeny from the<br />

missense M 2<br />

mutant l<strong>in</strong>e did not reve<strong>al</strong> the appearance of the<br />

fragrance phenotype (data not shown).<br />

DISCUSSION<br />

Volano is one of the most widely cultivated and important<br />

<strong>European</strong> rice vari<strong>et</strong>ies. In It<strong>al</strong>y, it is the most cultivated<br />

vari<strong>et</strong>y of the Long A gra<strong>in</strong> group and the second most<br />

cultivated vari<strong>et</strong>y at nation<strong>al</strong> level (Ente Nazion<strong>al</strong>e Risi,<br />

2012a). Volano is representative of those temperate japonica<br />

genotypes that are adapted to south <strong>European</strong> pedoclimatic<br />

conditions above the 45th par<strong>al</strong>lel, requir<strong>in</strong>g early maturation<br />

and low photoperiod sensitivity (Okumoto <strong>et</strong> <strong>al</strong>., 1996;<br />

Ichitani <strong>et</strong> <strong>al</strong>., 1997). Europe is one of the most northern<br />

areas where rice is grown extensively as a crop, tog<strong>et</strong>her<br />

with northern Ch<strong>in</strong>a and Japan (Lu and Chang, 1980).<br />

Belong<strong>in</strong>g to the Arborio class, which is the most popular<br />

rice <strong>for</strong> risotto, Volano is considered representative<br />

of the tradition<strong>al</strong> It<strong>al</strong>ian high qu<strong>al</strong>ity rice and is exported<br />

worldwide. Due to its strategic relevance <strong>for</strong> It<strong>al</strong>ian and<br />

<strong>European</strong> breed<strong>in</strong>g programs, this tradition<strong>al</strong> vari<strong>et</strong>y was<br />

chosen <strong>for</strong> the development of the first rice <strong>TILLING</strong><br />

plat<strong>for</strong>m of a <strong>European</strong> temperate japonica accession. The<br />

Volano vari<strong>et</strong>y has various agronomic traits that may benefit<br />

to be improved, <strong>in</strong>clud<strong>in</strong>g plant height, the duration of<br />

the growth cycle, and the resistance to biotic (blast disease)<br />

and abiotic (growth <strong>in</strong> water-limited conditions) stresses.<br />

To create the <strong>TILLING</strong> population EMS was chosen<br />

as a mutagenic agent, which has been used to create mutant<br />

collections of rice and other cere<strong>al</strong> species. Different<br />

mutagens can produce a different spectrum of mutations<br />

and there<strong>for</strong>e different series of <strong>al</strong>leles. Gamma and fast<br />

neutron irradiation have been shown to <strong>in</strong>duce sm<strong>al</strong>l (few<br />

base pairs) and large (hundreds to thousands of base pairs)<br />

del<strong>et</strong>ions, respectively, and ma<strong>in</strong>ly result <strong>in</strong> gene knockout<br />

(Li <strong>et</strong> <strong>al</strong>., 2001; Sato <strong>et</strong> <strong>al</strong>., 2006; Morita <strong>et</strong> <strong>al</strong>., 2009).<br />

On the other hand, chemic<strong>al</strong> mutagens such as EMS and<br />

MNU typic<strong>al</strong>ly <strong>in</strong>duce SNPs randomly throughout the<br />

genome (Henikoff and Comai, 2003; Cooper <strong>et</strong> <strong>al</strong>., 2008;<br />

Suzuki <strong>et</strong> <strong>al</strong>., 2008). These po<strong>in</strong>t mutations lead to the<br />

generation of a series of polymorphic <strong>al</strong>leles, <strong>in</strong>clud<strong>in</strong>g loss<br />

of function, that provides a range of different phenotypes<br />

with a potenti<strong>al</strong> use <strong>in</strong> crop improvement (Gilchrist and<br />

Haughn, 2005). In rice, MNU-<strong>in</strong>duced mutations have<br />

been shown to occur at a rate two times higher (1/135 kb)<br />

(Suzuki <strong>et</strong> <strong>al</strong>., 2008) than those obta<strong>in</strong>ed with EMS (1/300<br />

kb) (Till <strong>et</strong> <strong>al</strong>., 2007). However, to obta<strong>in</strong> such a high<br />

mutation frequency, the treatment with MNU requires<br />

that the flowers are exposed to the mutagen rather than<br />

the seeds (as <strong>for</strong> EMS), mak<strong>in</strong>g the experiment<strong>al</strong> procedure<br />

less amenable to large-sc<strong>al</strong>e mutagenesis.<br />

The density of one mutation every 373 kb estimated<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population described here, based<br />

on a pilot screen<strong>in</strong>g of four targ<strong>et</strong> genes <strong>in</strong> 1152 M 2<br />

l<strong>in</strong>es,<br />

was comparable to what has previously been obta<strong>in</strong>ed <strong>in</strong><br />

other rice EMS-mutagenized populations. This observed<br />

rate is higher than that reported <strong>for</strong> the <strong>in</strong>dica rice vari<strong>et</strong>y<br />

IR64 (1/1000 kb) (Wu <strong>et</strong> <strong>al</strong>., 2005) and slightly lower<br />

than that obta<strong>in</strong>ed <strong>in</strong> Nipponbare (1/300 kb) (Till <strong>et</strong> <strong>al</strong>.,<br />

2007). However, this difference is likely to be due to the<br />

higher dose of EMS (1.5%) used by Till <strong>et</strong> <strong>al</strong>. (2007) compared<br />

to that used <strong>in</strong> this study (0.75%). Over<strong>al</strong>l, the results<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2557


obta<strong>in</strong>ed confirmed the efficiency of the mutagenic treatment<br />

and the suitability of the Volano <strong>TILLING</strong> plat<strong>for</strong>m<br />

as a source of new gen<strong>et</strong>ic variation <strong>in</strong> temperate japonica.<br />

Besides the v<strong>al</strong>idation of the <strong>TILLING</strong> plat<strong>for</strong>m, the<br />

present work provides gen<strong>et</strong>ic materi<strong>al</strong> that can be directly<br />

exploited <strong>for</strong> the agronomic improvement of Volano.<br />

Currently, one of the ma<strong>in</strong> objectives of the breed<strong>in</strong>g programs<br />

is the reduction <strong>in</strong> plant stature. Reduction <strong>in</strong> tot<strong>al</strong><br />

height has been shown to <strong>in</strong>crease plant responses to N<br />

<strong>in</strong>puts, result<strong>in</strong>g <strong>in</strong> a higher yield without culm elongation<br />

and lodg<strong>in</strong>g problems (Ashikari <strong>et</strong> <strong>al</strong>., 2002). Moreover,<br />

a shorter stature can be benefici<strong>al</strong> <strong>for</strong> the plant <strong>in</strong> terms<br />

of tolerance to water-limited conditions, as reduced plant<br />

height leads to a significant reduction of the area <strong>in</strong>volved<br />

<strong>in</strong> loss of water by transpiration, which represents one of<br />

the ma<strong>in</strong> strategies of drought escape (Levitt, 1980).<br />

In this study we identified three <strong>in</strong>dependent mutations<br />

<strong>in</strong> the SD1 (semidwarf 1) gene, which <strong>in</strong> rice plays<br />

a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height (Sasaki <strong>et</strong> <strong>al</strong>.,<br />

2002). SD1 encodes a GA20-oxidase (GA20ox), a key<br />

enzyme <strong>in</strong> the biosynthesis of gibberell<strong>in</strong>s. In particular, it<br />

cat<strong>al</strong>yzes the sequenti<strong>al</strong> oxidation and elim<strong>in</strong>ation of C-20<br />

<strong>in</strong> the GA biosynth<strong>et</strong>ic pathway, provid<strong>in</strong>g a substrate <strong>for</strong><br />

the GA3b-hydroxylase (GA3ox) that cat<strong>al</strong>yzes the last<br />

step of the synthesis of active GAs (Hedden and Phillips,<br />

2000). Two GA20ox genes (GA20ox-1 and GA20ox-2)<br />

have been shown to be present <strong>in</strong> the rice genome (Monna<br />

<strong>et</strong> <strong>al</strong>., 2002; Sasaki <strong>et</strong> <strong>al</strong>., 2002). GA20ox-1 is predom<strong>in</strong>antly<br />

expressed <strong>in</strong> unopened flowers and is necessary <strong>for</strong><br />

flowers to develop and fertilize norm<strong>al</strong>ly (hence ensur<strong>in</strong>g<br />

yield) while GA20ox-2 (correspond<strong>in</strong>g to SD1) is highly<br />

expressed <strong>in</strong> the leaf blade and stems. This function<strong>al</strong><br />

redundancy expla<strong>in</strong>s why loss of SD1 function (and consequently<br />

GA deficiency) can result <strong>in</strong> reduction of plant<br />

height without seed yield be<strong>in</strong>g affected (Monna <strong>et</strong> <strong>al</strong>.,<br />

2002; Sasaki <strong>et</strong> <strong>al</strong>., 2002).<br />

Two of the three mutations <strong>in</strong> the SD1 gene identified<br />

<strong>in</strong> this study displayed a strong phenotypic effect, result<strong>in</strong>g<br />

<strong>in</strong> a significant reduction (about 21% on average) of plant<br />

height. The level of reduction <strong>in</strong> height is correlated with<br />

the <strong>al</strong>lelic status of the mutation, with a stronger effect<br />

associated with the homozygous state when compared to<br />

the h<strong>et</strong>erozygote. Both the mutations were predicted to<br />

affect prote<strong>in</strong> activity: <strong>in</strong> the l<strong>in</strong>e M2_860, the premature<br />

<strong>in</strong>sertion of a stop codon generates an <strong>in</strong>active truncated<br />

GA20ox enzyme and there<strong>for</strong>e leaf- and stem-specific<br />

reduced GA biosynthesis while the l<strong>in</strong>e M2_921 carried<br />

a substitution of a highly conserved tyros<strong>in</strong>e, likely<br />

to generate a loss of prote<strong>in</strong> function. Unexpectedly, the<br />

phenotypic effect on plant stature associated to the missense<br />

mutation appeared to be slightly stronger than that<br />

observed <strong>for</strong> the nonsense mutant. This observation would<br />

deserve a thorough <strong>in</strong>vestigation to unravel the underly<strong>in</strong>g<br />

cellular and regulatory mechanisms.<br />

Sever<strong>al</strong> sd1 <strong>al</strong>leles that cause semidwarfism <strong>in</strong> rice have<br />

been described and used <strong>in</strong> breed<strong>in</strong>g programs worldwide<br />

to improve the agronomic per<strong>for</strong>mance of loc<strong>al</strong> vari<strong>et</strong>ies<br />

(Asano <strong>et</strong> <strong>al</strong>., 2007). Dee-geo-woo-gen, the Ch<strong>in</strong>ese<br />

semidwarf rice cultivar <strong>in</strong> which sd1 was first identified<br />

and the derived high-yield<strong>in</strong>g cultivar IR8 (IRRI, 1967),<br />

the first Green Revolution rice vari<strong>et</strong>y, carry the same sd1<br />

<strong>al</strong>lele harbor<strong>in</strong>g a 383-bp del<strong>et</strong>ion from exon 1 to exon 2<br />

that orig<strong>in</strong>ates a stop codon (Monna <strong>et</strong> <strong>al</strong>., 2002, Sasaki <strong>et</strong><br />

<strong>al</strong>., 2002). An <strong>in</strong>dependent del<strong>et</strong>ion of 280 bp was found<br />

<strong>in</strong> the cod<strong>in</strong>g region of SD1 <strong>in</strong> the <strong>in</strong>dica semidwarf vari<strong>et</strong>y<br />

Doongara (Spielmeyer <strong>et</strong> <strong>al</strong>., 2002). In addition, sever<strong>al</strong><br />

po<strong>in</strong>t mutations occurr<strong>in</strong>g at different positions <strong>in</strong> the<br />

SD1 cod<strong>in</strong>g sequence were shown to cause s<strong>in</strong>gle am<strong>in</strong>o<br />

acid substitutions result<strong>in</strong>g <strong>in</strong> semidwarfism, as found <strong>in</strong> the<br />

japonica semidwarf vari<strong>et</strong>ies Jikkoku, Reimei, and C<strong>al</strong>rose<br />

76 (Spielmeyer <strong>et</strong> <strong>al</strong>., 2002). The two sd1 mutants identified<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population described here represent<br />

v<strong>al</strong>uable gen<strong>et</strong>ic materi<strong>al</strong> <strong>for</strong> breed<strong>in</strong>g programs to<br />

enhanc<strong>in</strong>g yield per<strong>for</strong>mance and adaptation to chang<strong>in</strong>g<br />

climatic conditions (water scarcity dur<strong>in</strong>g the plant maturation<br />

stage) of <strong>European</strong> temperate japonica rice vari<strong>et</strong>ies.<br />

<strong>Rice</strong> is a short day plant exhibit<strong>in</strong>g a high level of<br />

natur<strong>al</strong> variation <strong>in</strong> flower<strong>in</strong>g time that contributed to<br />

its adaptation to grow <strong>in</strong> a wide range of different environments<br />

while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g yield production. The Hd1<br />

(Head<strong>in</strong>g date-1) gene targ<strong>et</strong>ed <strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g <strong>in</strong><br />

this study plays a key role <strong>in</strong> rice by d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g flower<strong>in</strong>g<br />

time (Yano <strong>et</strong> <strong>al</strong>., 2000; Tsuji <strong>et</strong> <strong>al</strong>., 2011) and hence<br />

represents a good candidate to study the gen<strong>et</strong>ic components<br />

<strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g growth cycle duration <strong>in</strong><br />

<strong>European</strong> temperate japonica rice. A short basic veg<strong>et</strong>ative<br />

growth phase, tog<strong>et</strong>her with a low sensitivity to photoperiod,<br />

are the most important traits d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g the adaptability<br />

of rice vari<strong>et</strong>ies to cultivation at high latitudes,<br />

such as It<strong>al</strong>y and south Europe <strong>in</strong> gener<strong>al</strong> (Okumoto <strong>et</strong> <strong>al</strong>.,<br />

1996; Ichitani <strong>et</strong> <strong>al</strong>., 1997). Moreover, as with plant height<br />

reduction, reduc<strong>in</strong>g the growth cycle <strong>al</strong>so represents an<br />

effective strategy <strong>for</strong> drought escap<strong>in</strong>g (Levitt, 1980). In<br />

wheat and barley, shorten<strong>in</strong>g the crop life-cycle duration<br />

has been shown to be an effective breed<strong>in</strong>g strategy to<br />

reduce water consumption (Cattivelli <strong>et</strong> <strong>al</strong>., 2008).<br />

Allelic diversity at the Hd1 locus was demonstrated<br />

to be one of the major d<strong>et</strong>erm<strong>in</strong>ants of flower<strong>in</strong>g time<br />

variation <strong>in</strong> cultivated rice (Takahashi <strong>et</strong> <strong>al</strong>., 2009). The<br />

<strong>TILLING</strong> screen<strong>in</strong>g of the Volano population yielded one<br />

missense mutation <strong>in</strong> the Hd1 cod<strong>in</strong>g sequence that was<br />

predicted to affect prote<strong>in</strong> function <strong>al</strong>though no significant<br />

phenotypic variation <strong>in</strong> growth cycle duration was reve<strong>al</strong>ed<br />

<strong>in</strong> the progeny. These prelim<strong>in</strong>ary results may <strong>in</strong>dicate that<br />

the missense mutation does not affect the prote<strong>in</strong> function<br />

or that Hd1 is not the most relevant gene <strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g<br />

the life cycle duration <strong>in</strong> <strong>European</strong> temperate japonica<br />

germplasm. The photoperiodic control of flower<strong>in</strong>g <strong>in</strong><br />

2558 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


ice <strong>in</strong>volves a complex n<strong>et</strong>work of genes (reviewed <strong>in</strong> Tsuji<br />

<strong>et</strong> <strong>al</strong>., 2011) and variation at other important regulators is<br />

expected <strong>al</strong>so to contribute at d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g adaptation of<br />

rice cultivars to high-latitude climate regions (Xue <strong>et</strong> <strong>al</strong>.,<br />

2008; Takahashi <strong>et</strong> <strong>al</strong>., 2009). The isolation of addition<strong>al</strong><br />

natur<strong>al</strong> or <strong>in</strong>duced Hd1 mutants from <strong>European</strong> rice accessions<br />

will clarify the role of Hd1 <strong>in</strong> regulat<strong>in</strong>g the growth<br />

cycle <strong>in</strong> temperate areas.<br />

A rapid and effective stomat<strong>al</strong> closure <strong>in</strong> a crop is considered<br />

a positive trait <strong>for</strong> the improvement of water use<br />

efficiency <strong>in</strong> drought conditions (S<strong>in</strong>clair and Muchow,<br />

2001). A previous study <strong>in</strong> A. th<strong>al</strong>iana reported the clon<strong>in</strong>g<br />

of a quantitative trait locus regulat<strong>in</strong>g transpiration<br />

efficiency while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g biomass production, hence<br />

uncoupl<strong>in</strong>g the usu<strong>al</strong>ly negative association b<strong>et</strong>ween transpiration<br />

efficiency and both stomat<strong>al</strong> conductance and<br />

biomass production (Masle <strong>et</strong> <strong>al</strong>., 2005). Based on this<br />

f<strong>in</strong>d<strong>in</strong>g the SNAC1 gene, which has been shown to be<br />

<strong>in</strong>volved <strong>in</strong> stomat<strong>al</strong> closure mechanisms <strong>in</strong> the early stages<br />

of drought stress (Hu <strong>et</strong> <strong>al</strong>., 2006), was selected as a targ<strong>et</strong><br />

<strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g of the Volano mutagenized population.<br />

Three <strong>in</strong>dependent M 2<br />

l<strong>in</strong>es carry<strong>in</strong>g missense<br />

mutations <strong>in</strong> the NAC doma<strong>in</strong> of the SNAC1 gene were<br />

identified and the M 3<br />

progeny plants will be ev<strong>al</strong>uated<br />

<strong>in</strong> water-limited conditions <strong>in</strong> the next grow<strong>in</strong>g season.<br />

A “positive” phenotypic effect would be predicted only<br />

<strong>in</strong> case a ga<strong>in</strong>-of-function mutation occurred, caus<strong>in</strong>g an<br />

<strong>al</strong>tered expression of the gene that constitutively activates<br />

it. However, those k<strong>in</strong>ds of mutations are expected to<br />

occur more frequently <strong>in</strong> regulatory rather than cod<strong>in</strong>g<br />

regions, where loss of function mutations are more probable<br />

to take place. In this sense, the next experiment to be<br />

undertaken would be the screen<strong>in</strong>g <strong>for</strong> mutations <strong>in</strong> the<br />

regulatory sequence of SNAC1.<br />

A qu<strong>al</strong>ity trait of rice that is highly appreciated both<br />

<strong>in</strong> Asian and <strong>European</strong> countries is the presence of aromatic<br />

compounds lead<strong>in</strong>g to scented rice gra<strong>in</strong>s. The<br />

major gene <strong>for</strong> gra<strong>in</strong> fragrance ( fgr) encodes the enzyme<br />

BADH2, <strong>in</strong>activation of which leads to the accumulation<br />

of the precursor 2-AP that releases the typic<strong>al</strong> “basmatilike”<br />

perfume (Bradbury <strong>et</strong> <strong>al</strong>., 2005). One s<strong>in</strong>gle base<br />

substitution <strong>in</strong> the BADH2 gene was identified <strong>in</strong> the<br />

Volano <strong>TILLING</strong> population caus<strong>in</strong>g a missense mutation.<br />

The po<strong>in</strong>t mutation identified differs from <strong>al</strong>l the<br />

polymorphisms described so far that have been shown to<br />

impair the enzymatic function, lead<strong>in</strong>g to the fragrant<br />

phenotype (Kovach <strong>et</strong> <strong>al</strong>., 2009), and does not affect the<br />

function<strong>al</strong> NAD-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>.<br />

In this work we have shown that <strong>TILLING</strong>, based on<br />

classic<strong>al</strong> mutagenesis to create new gen<strong>et</strong>ic variation without<br />

the use of transgenic technologies, represents a powerful<br />

technique <strong>for</strong> crop improvement that can be applied to<br />

temperate japonica rice grown <strong>in</strong> <strong>European</strong> areas. The <strong>in</strong>iti<strong>al</strong><br />

screen<strong>in</strong>g of the EMS-mutagenized Volano collection<br />

identified a number of mutations <strong>in</strong> agronomic<strong>al</strong>ly and<br />

qu<strong>al</strong>ity relevant genes that can provide gen<strong>et</strong>ic materi<strong>al</strong> of<br />

direct use <strong>in</strong> marker-assisted breed<strong>in</strong>g programs.<br />

The v<strong>al</strong>idated Volano <strong>TILLING</strong> EMS-mutagenized<br />

population represents a v<strong>al</strong>uable tool to assess the function<br />

of candidate genes <strong>in</strong> controll<strong>in</strong>g targ<strong>et</strong> traits of high<br />

relevance <strong>for</strong> cultivation of rice <strong>in</strong> temperate areas, such as<br />

disease resistance, abiotic stress tolerance, and nutrition<strong>al</strong><br />

properties of the rice seeds. The use of next generation<br />

sequenc<strong>in</strong>g (NGS) approaches will facilitate the discovery<br />

of mutants <strong>in</strong> a large s<strong>et</strong> of candidate genes (Rigola <strong>et</strong><br />

<strong>al</strong>., 2009; Tsai <strong>et</strong> <strong>al</strong>., 2011). In the future, NGS technologies<br />

will <strong>al</strong>so facilitate the resequenc<strong>in</strong>g of mutagenized<br />

l<strong>in</strong>es show<strong>in</strong>g phenotypes of relevance <strong>in</strong> agronomic and<br />

qu<strong>al</strong>ity traits (<strong>for</strong>ward gen<strong>et</strong>ics) to identify novel but y<strong>et</strong><br />

unknown gen<strong>et</strong>ic components.<br />

Supplement<strong>al</strong> In<strong>for</strong>mation Available<br />

Supplement<strong>al</strong> materi<strong>al</strong> is available at http://www.crops.<br />

org/publications/cs.<br />

Acknowledgments<br />

We would like to thank Prof. Chun-M<strong>in</strong>g Liu <strong>for</strong> shar<strong>in</strong>g the EMS<br />

mutagenesis protocol and Dr. Laura Ross<strong>in</strong>i and Dr. John Williams<br />

<strong>for</strong> critic<strong>al</strong> read<strong>in</strong>g of the manuscript. This work was f<strong>in</strong>anci<strong>al</strong>ly<br />

supported by the It<strong>al</strong>ian M<strong>in</strong>istry of Agriculture, Food and Forestry<br />

Policies with<strong>in</strong> the framework of the project VALORYZA (D.M.<br />

301/7303/2006), by the CARIPLO Foundation with<strong>in</strong> the<br />

DRYRICE project (2008-3179) and by the AGER Foundation<br />

with<strong>in</strong> the RISINNOVA project (2010-2369). Laura <strong>Casella</strong> was<br />

supported by a fellowship from the Consiglio per la <strong>Rice</strong>rca e la<br />

Sperimentazione <strong>in</strong> Agricoltura with<strong>in</strong> a PhD program on Plant<br />

Biology and <strong>Cr</strong>op Production (University of Milano, It<strong>al</strong>y).<br />

References<br />

Alonso, J.M., and J.R. Ecker. 2006. Mov<strong>in</strong>g <strong>for</strong>ward <strong>in</strong> reverse:<br />

Gen<strong>et</strong>ic technologies to enable genome-wide phenomic<br />

screens <strong>in</strong> Arabidopsis. Nat. Rev. Gen<strong>et</strong>. 7(7):524–536.<br />

doi:10.1038/nrg1893<br />

An, G., D.H. Jeong, K.H. Jung, and S. Lee. 2005. Reverse gen<strong>et</strong>ic<br />

approaches <strong>for</strong> function<strong>al</strong> genomics of rice. Plant Mol. Biol.<br />

59(1):111–123. doi:10.1007/s11103-004-4037-y<br />

Asano, K., T. Takashi, K. Miura, Q. Qian, H. Kitano, M. Matsuoka,<br />

and M. Ashikari. 2007. Gen<strong>et</strong>ic and molecular an<strong>al</strong>ysis<br />

of utility of sd1 <strong>al</strong>leles <strong>in</strong> rice breed<strong>in</strong>g. Breed. Sci. 57:53–58.<br />

doi:10.1270/jsbbs.57.53<br />

Ashikari, M., A. Sasaki, M. Ueguchi-Tanaka, H. Itoh, A.<br />

Nishimura, S. Datta, K. Ishiyama, T. Saito, M. Kobayashi,<br />

G.S. Khush, H. Kitano, and M. Matsuoka. 2002. Loss-offunction<br />

of a rice gibberell<strong>in</strong> biosynth<strong>et</strong>ic gene, GA20 oxidase<br />

(GA20ox-2), led to the rice “Green Revolution.” Breed.<br />

Sci. 52:143–150. doi:10.1270/jsbbs.52.143<br />

Blomstedt, C.K., R.M. Gleadow, N. O’Donnell, P. Naur, K.<br />

Jensen, T. Laursen, C.E. Olsen, P. Stuart, J.D. Hamill,<br />

B.L. Møller, and A.D. Ne<strong>al</strong>e. 2012. A comb<strong>in</strong>ed biochemic<strong>al</strong><br />

screen and <strong>TILLING</strong> approach identifies mutations <strong>in</strong><br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2559


Sorghum bicolor L. Moench result<strong>in</strong>g <strong>in</strong> acyanogenic <strong>for</strong>age<br />

production. Plant Biotechnol. J. 10:54–66. doi:10.1111/j.1467-<br />

7652.2011.00646.x<br />

Bradbury, L.M.T., T.L. Fitzger<strong>al</strong>d, R.J. Henry, Q. J<strong>in</strong>, and D.L.E.<br />

Waters. 2005. The gene <strong>for</strong> fragrance <strong>in</strong> rice. Plant Biotechnol.<br />

J. 3:363–370. doi:10.1111/j.1467-7652.2005.00131.x<br />

C<strong>al</strong>dwell, D.G., N. McC<strong>al</strong>lum, P. Shaw, G.J. Muehlbauer,<br />

D.F. Marsh<strong>al</strong>l, and R. Waugh. 2004. A structured mutant<br />

population <strong>for</strong> <strong>for</strong>ward and reverse gen<strong>et</strong>ics <strong>in</strong> barley<br />

(Hordeum vulgare L.). Plant J. 40:143–150. doi:10.1111/j.1365-<br />

313X.2004.02190.x<br />

Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A.M. Mastrangelo,<br />

E. Francia, C. Marè, A. Tondelli, and A.M. Stanca.<br />

2008. Drought tolerance improvement <strong>in</strong> crop plants: An<br />

<strong>in</strong>tegrated view from breed<strong>in</strong>g to genomics. Field <strong>Cr</strong>ops Res.<br />

105:1–14. doi:10.1016/j.fcr.2007.07.004<br />

Chen, S., Y. Yang, W. Shi, Q. Ji, F. He, Z. Zhang, Z. Cheng,<br />

X. Liu, and M. Xu. 2008. Badh2, encod<strong>in</strong>g b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase, <strong>in</strong>hibits the biosynthesis of 2-ac<strong>et</strong>yl-<br />

1-pyrrol<strong>in</strong>e, a major component <strong>in</strong> rice fragrance. Plant Cell<br />

20:1850–1861. doi:10.1105/tpc.108.058917<br />

Chen, Q., Q. Wang, L. Xiong, and Z. Lou. 2011. A structur<strong>al</strong><br />

view of the conserved doma<strong>in</strong> of rice stress-responsive NAC1.<br />

Prote<strong>in</strong> Cell 2:55–63. doi:10.1007/s13238-011-1010-9<br />

Cooper, J.L., B.J. Till, R.G. Laport, M.C. Darlow, J.M. Kleffner,<br />

A. Jamai, T. El-Mellouki, S. Liu, R. Ritchie, N. Nielsen,<br />

K.D. Bilyeu, K. Meksem, L. Comai, and S. Henikoff. 2008.<br />

<strong>TILLING</strong> to d<strong>et</strong>ect <strong>in</strong>duced mutations <strong>in</strong> soybean. BMC<br />

Plant Biol. 8:9. doi:10.1186/1471-2229-8-9<br />

Courtois, B., J. Frou<strong>in</strong>, R. Greco, G. Bruschi, G. Droc, C. Hamel<strong>in</strong>,<br />

M. Ruiz, G. Clément, J.-C. Evrard, S. van Coppenole,<br />

D. Katsantonis, M. Oliveira, S. Negrão, C. Matos, S. Cavigiolo,<br />

E. Lupotto, P. Piffanelli, and N. Ahmadi. 2012. Gen<strong>et</strong>ic<br />

diversity and population structure <strong>in</strong> a <strong>European</strong> collection<br />

of rice. <strong>Cr</strong>op Sci. 52:1663. doi:10.2135/cropsci2011.11.0588<br />

Dahmani-Mardas, F., C. Troadec, A. Bou<strong>al</strong>em, S. Lévêque, A.A.<br />

Alsadon, A.A. Aldoss, C. Dogimont, and A. Bendahmane.<br />

2010. Eng<strong>in</strong>eer<strong>in</strong>g melon plants with improved fruit shelf<br />

life us<strong>in</strong>g the <strong>TILLING</strong> approach. PLoS ONE 5(12):E15776.<br />

doi:10.1371/journ<strong>al</strong>.pone.0015776<br />

Dierk<strong>in</strong>g, E.C., and K.D. Bilyeu. 2009. New sources of soybean<br />

seed me<strong>al</strong> and oil composition traits identified through TILL-<br />

ING. BMC Plant Biol. 9:89. doi:10.1186/1471-2229-9-89<br />

Ente Nazion<strong>al</strong>e Risi. 2011. <strong>Rice</strong> statistics. Ente Nazion<strong>al</strong>e Risi,<br />

Milan, It<strong>al</strong>y. http://www.enterisi.it/upload/enterisi/bilanci/<br />

ST1BIS%202011%20provvisorio_15916_74.pdf (accessed 30<br />

Mar. <strong>2013</strong>).<br />

Ente Nazion<strong>al</strong>e Risi. 2012a. <strong>Rice</strong> provision<strong>al</strong> statistics. Ente<br />

Nazion<strong>al</strong>e Risi, Milan, It<strong>al</strong>y. http://www.enterisi.it/upload/<br />

enterisi/documenti<strong>al</strong>legati/St1bis_13660_59.pdf (accessed 30<br />

Mar. <strong>2013</strong>).<br />

Ente Nazion<strong>al</strong>e Risi. 2012b. Volano. Ente Nazion<strong>al</strong>e Risi, Milan, It<strong>al</strong>y.<br />

http://www.enterisi.it/upload/enterisi/gestionedocument<strong>al</strong>e/<br />

volano_784_2283.pdf (accessed 30 Mar. <strong>2013</strong>).<br />

Faivre-Rampant, O., G. Bruschi, P. Abbruscato, S. Cavigiolo, A.M.<br />

Picco, L. Borgo, E. Lupotto, and P. Piffanelli. 2010. Assessment<br />

of gen<strong>et</strong>ic diversity <strong>in</strong> It<strong>al</strong>ian rice germplasm related to<br />

agronomic traits and blast resistance (Magnaporthe oryzae). Mol.<br />

Breed. 27:233–246. doi:10.1007/s11032-010-9426-0<br />

FAO. 2010. FAOSTAT – <strong>Cr</strong>ops. FAO, Rome, It<strong>al</strong>y. http://faostat.<br />

fao.org/site/567/default.aspx#ancor (accessed 18 Dec. 2012).<br />

Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich, and S. McCouch.<br />

2005. Gen<strong>et</strong>ic structure and diversity <strong>in</strong> Oryza sativa L.<br />

Gen<strong>et</strong>ics 169:1631–1638. doi:10.1534/gen<strong>et</strong>ics.104.035642<br />

Gilchrist, E.J., and G.W. Haughn. 2005. <strong>TILLING</strong> without<br />

a plough: A new m<strong>et</strong>hod with applications <strong>for</strong> reverse<br />

gen<strong>et</strong>ics. Curr. Op<strong>in</strong>. Plant Biol. 8:211–215. doi:10.1016/j.<br />

pbi.2005.01.004<br />

Gilchrist, E.J., and G.W. Haughn. 2010. Reverse gen<strong>et</strong>ics techniques:<br />

Eng<strong>in</strong>eer<strong>in</strong>g loss and ga<strong>in</strong> of gene function <strong>in</strong> plants.<br />

Brief<strong>in</strong>gs Funct. Genomics 9:103–110. doi:10.1093/bfgp/elp059<br />

Greene, E.A., C.A. Codomo, N.E. Taylor, J.G. Henikoff, B.J. Till,<br />

S.H. Reynolds, L.C. Enns, C. Burtner, J.E. Johnson, A.R.<br />

Odden, L. Comai, and S. Henikoff. 2003. Spectrum of chemic<strong>al</strong>ly<br />

<strong>in</strong>duced mutations from a large-sc<strong>al</strong>e reverse-gen<strong>et</strong>ic<br />

screen <strong>in</strong> Arabidopsis. Gen<strong>et</strong>ics 164:731–740.<br />

Hedden, P., and A.L. Phillips. 2000. Gibberell<strong>in</strong> m<strong>et</strong>abolism: New<br />

<strong>in</strong>sights reve<strong>al</strong>ed by the genes. Trends Plant Sci. 5:523–530.<br />

doi:10.1016/S1360-1385(00)01790-8<br />

Henikoff, S., and L. Comai. 2003. S<strong>in</strong>gle-nucleotide mutations <strong>for</strong><br />

plant function<strong>al</strong> genomics. Annu. Rev. Plant Biol. 54:375–<br />

401. doi:10.1146/annurev.arplant.54.031902.135009<br />

Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, and L. Xiong.<br />

2006. Overexpress<strong>in</strong>g a NAM, ATAF, and CUC (NAC) transcription<br />

factor enhances drought resistance and s<strong>al</strong>t tolerance<br />

<strong>in</strong> rice. Proc. Natl. Acad. Sci. USA 103(35):12987–12992.<br />

Ichitani, K., Y. Okumoto, and T. Tanisaka. 1997. Photoperiod<br />

sensitivity gene of Se-1 locus found <strong>in</strong> photoperiod <strong>in</strong>sensitive<br />

rice cultivars of the northern limit region of rice cultivation.<br />

Breed. Sci. 47:145–152.<br />

IRRI. 1967. Annu<strong>al</strong> report 1966. Internation<strong>al</strong> <strong>Rice</strong> Research<br />

Institute, Los Baños, Philipp<strong>in</strong>es. p. 59–82.<br />

Julio, E., F. Laporte, S. Reis, C. Rothan, and F. Dorlhac de<br />

Borne. 2007. Reduc<strong>in</strong>g the content of nornicot<strong>in</strong>e <strong>in</strong> tobacco<br />

via targ<strong>et</strong>ed mutation breed<strong>in</strong>g. Mol. Breed. 21:369–381.<br />

doi:10.1007/s11032-007-9138-2<br />

Koornneef, M. 2002. Classic<strong>al</strong> mutagenesis <strong>in</strong> higher plants. In:<br />

P.M. Gilmart<strong>in</strong> and C. Bowler, editors, Molecular plant biology.<br />

Vol. 1. Ox<strong>for</strong>d Univ. Press, Ox<strong>for</strong>d, UK. p. 1–11.<br />

Kovach, M.J., M.N. C<strong>al</strong><strong>in</strong>gacion, M.A. Fitzger<strong>al</strong>d, and S.R.<br />

McCouch. 2009. The orig<strong>in</strong> and evolution of fragrance <strong>in</strong> rice<br />

(Oryza sativa L.). Proc. Natl. Acad. Sci. USA 106(34):14444–<br />

14449. doi:10.1073/pnas.0904077106<br />

Krishnan, A., E. Guiderdoni, G. An, Y.C. Hs<strong>in</strong>g, C. Han, M.C.<br />

Lee, S.-M. Yu, N. Upadhyaya, S. Ramachandran, Q. Zhang,<br />

V. Sundaresan, H. Hirochika, H. Leung, and A. Pereira. 2009.<br />

Mutant resources <strong>in</strong> rice <strong>for</strong> function<strong>al</strong> genomics of the grasses.<br />

Plant Physiol. 149:165–170. doi:10.1104/pp.108.128918<br />

Kumar, P., S. Henikoff, and P.C. Ng. 2009. Predict<strong>in</strong>g the effects<br />

of cod<strong>in</strong>g non-synonymous variants on prote<strong>in</strong> function us<strong>in</strong>g<br />

the SIFT <strong>al</strong>gorithm. Nat. Protoc. 4:1073–1081. doi:10.1038/<br />

nprot.2009.86<br />

Kuromori, T., S. Takahashi, Y. Kondou, K. Sh<strong>in</strong>ozaki, and M.<br />

Matsui. 2009. Phenome an<strong>al</strong>ysis <strong>in</strong> plant species us<strong>in</strong>g lossof-function<br />

and ga<strong>in</strong>-of-function mutants. Plant Cell Physiol.<br />

50(7):1215–1231. doi:10.1093/pcp/pcp078<br />

Kurowska, M., A. Daszkowska-Golec, D. Gruszka, M. Marzec,<br />

M. Szurman, I. Szarejko, and M. M<strong>al</strong>uszynski. 2011. TILL-<br />

ING: A shortcut <strong>in</strong> function<strong>al</strong> genomics. J. Appl. Gen<strong>et</strong>.<br />

52(4):371–390. doi:10.1007/s13353-011-0061-1<br />

Levitt, J. 1980. Responses of plants to environment<strong>al</strong> stresses, Vol.<br />

2. Water, radiation, s<strong>al</strong>t and other stresses. Academic Press,<br />

New York, NY. p. 93–128.<br />

2560 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


Li, X., Y. Song, K. Century, S. Straight, P. Ron<strong>al</strong>d, X. Dong,<br />

M. Lassner, and Y. Zhang. 2001. A fast neutron del<strong>et</strong>ion<br />

mutagenesis-based reverse gen<strong>et</strong>ics system <strong>for</strong> plants. Plant J.<br />

27:235–242. doi:10.1046/j.1365-313x.2001.01084.x<br />

Lu, J.J., and T.T. Chang. 1980. <strong>Rice</strong> <strong>in</strong> its tempor<strong>al</strong> and spati<strong>al</strong><br />

perspectives. In: B.S. Luh, editor, <strong>Rice</strong>: Production and utilization.<br />

AVI Publish<strong>in</strong>g Co., Westport, CT. p. 1–74.<br />

Masle, J., S.R. Gilmore, and G.D. Farquhar. 2005. The ERECTA<br />

gene regulates plant transpiration efficiency <strong>in</strong> Arabidopsis.<br />

Nature 436(7052):866–870. doi:10.1038/nature03835<br />

McC<strong>al</strong>lum, C.M., L. Comai, E.A. Greene, and S. Henikoff. 2000.<br />

Targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) <strong>for</strong><br />

plant function<strong>al</strong> genomics. Plant Physiol. 123:439–442.<br />

doi:10.1104/pp.123.2.439<br />

Mantegazza, R., M. Biloni, F. Grassi, B. Basso, B.-R. Lu, X.X.<br />

Cai, F. S<strong>al</strong>a, and A. Spada. 2008. Tempor<strong>al</strong> trends of variation<br />

<strong>in</strong> It<strong>al</strong>ian rice germplasm over the past two centuries<br />

reve<strong>al</strong>ed by AFLP and SSR markers. <strong>Cr</strong>op Sci. 48:1832–1840.<br />

doi:10.2135/cropsci2007.09.0532<br />

M<strong>in</strong>oia, S., A. P<strong>et</strong>rozza, O. D’Onofrio, F. Piron, G. Mosca, G.<br />

Sozio, F. Cell<strong>in</strong>i, A. Bendahmane, and F. Carriero. 2010.<br />

A new mutant gen<strong>et</strong>ic resource <strong>for</strong> tomato crop improvement<br />

by <strong>TILLING</strong> technology. BMC Res. Notes 3:69.<br />

doi:10.1186/1756-0500-3-69<br />

Monna, L., N. Kitazawa, R. Yosh<strong>in</strong>o, J. Suzuki, H. Masuda, Y.<br />

Maehara, M. Tanji, M. Sato, S. Nasu, and Y. M<strong>in</strong>obe. 2002.<br />

Position<strong>al</strong> clon<strong>in</strong>g of rice semidwarf<strong>in</strong>g gene, sd-1: <strong>Rice</strong><br />

“green revolution gene” encodes a mutant enzyme <strong>in</strong>volved<br />

<strong>in</strong> gibberell<strong>in</strong> synthesis. DNA Res. 9:11–17. doi:10.1093/<br />

dnares/9.1.11<br />

Morita, R., M. Kusaba, S. Iida, H. Yamaguchi, T. Nishio, and<br />

M. Nishimura. 2009. Molecular characterization of mutations<br />

<strong>in</strong>duced by gamma irradiation <strong>in</strong> rice. Genes Gen<strong>et</strong>. Syst.<br />

84:361–370. doi:10.1266/ggs.84.361<br />

Muth, J., S. Hartje, R.M. Twyman, H.-R. Hofferbert, E. Tacke,<br />

and D. Prüfer. 2008. Precision breed<strong>in</strong>g <strong>for</strong> novel starch variants<br />

<strong>in</strong> potato. Plant Biotechnol. J. 6:576–584. doi:10.1111/<br />

j.1467-7652.2008.00340.x<br />

Ni<strong>et</strong>o, C., F. Piron, M. D<strong>al</strong>mais, C.F. Marco, E. Moriones, M.L.<br />

Gómez-Guillamón, V. Truniger, P. Gómez, J. Garcia-Mas,<br />

M.A. Aranda, and A. Bendahmane. 2007. Eco<strong>TILLING</strong> <strong>for</strong><br />

the identification of <strong>al</strong>lelic variants of melon eIF4E, a factor<br />

that controls virus susceptibility. BMC Plant Biol. 7:34.<br />

doi:10.1186/1471-2229-7-34<br />

Okabe, Y., E. Asamizu, T. Saito, C. Matsukura, T. Ariizumi, C. Brès,<br />

C. Rothan, T. Mizoguchi, and H. Ezura. 2011. Tomato TILL-<br />

ING technology: Development of a reverse gen<strong>et</strong>ics tool <strong>for</strong> the<br />

efficient isolation of mutants from Micro-Tom mutant libraries.<br />

Plant Cell Physiol. 52:1994–2005. doi:10.1093/pcp/pcr134<br />

Okumoto, Y., K. Ichitani, H. Inoue, and T. Tanisaka. 1996. Photoperiod<br />

<strong>in</strong>sensitivity gene essenti<strong>al</strong> to the vari<strong>et</strong>ies grown <strong>in</strong><br />

the northern limit region of paddy rice (Oryza sativa L.) cultivation.<br />

Euphytica 92:63–66. doi:10.1007/BF00022829<br />

Ouyang, S., W. Zhu, J. Hamilton, H. L<strong>in</strong>, M. Campbell, K.<br />

Childs, F. Thibaud-Nissen, R.L. M<strong>al</strong>ek, Y. Lee, L. Zheng,<br />

J. Orvis, B. Haas, J. Wortman, and C.R. Buell. 2007. The<br />

TIGR rice genome annotation resource: Improvements and<br />

new features. Nucleic Acid Res. 35(Database Issue):D846–<br />

D851. doi:10.1093/nar/gkl976<br />

Piron, F., M. Nicolaï, S. M<strong>in</strong>oïa, E. Piednoir, A. Mor<strong>et</strong>ti, A. S<strong>al</strong>gues,<br />

D. Zamir, C. Caranta, and A. Bendahmane. 2010. An<br />

<strong>in</strong>duced mutation <strong>in</strong> tomato eIF4E leads to immunity to two<br />

potyviruses. PLoS ONE 5(6):E11313. doi:10.1371/journ<strong>al</strong>.<br />

pone.0011313<br />

Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. 1995.<br />

The CONSTANS gene of Arabidopsis promotes flower<strong>in</strong>g<br />

and encodes a prote<strong>in</strong> show<strong>in</strong>g similarities to z<strong>in</strong>c f<strong>in</strong>ger<br />

transcription factors. Cell 80:847–857. doi:10.1016/0092-<br />

8674(95)90288-0<br />

Rashid, M., G. He, Y. Guanxiao, and Z. Khurram. 2011. Relevance<br />

of till<strong>in</strong>g <strong>in</strong> plant genomics. Aust. J. <strong>Cr</strong>op Sci. 5:411–420.<br />

Rigola, D., J. van Oeveren, A. Janssen, A. Bonné, H. Schneiders,<br />

H.J. a van der Poel, N.J. van Orsouw, R.C.J. Hogers,<br />

M.T.J. de Both, and M.J.T. van Eijk. 2009. High-throughput<br />

d<strong>et</strong>ection of <strong>in</strong>duced mutations and natur<strong>al</strong> variation us<strong>in</strong>g<br />

KeyPo<strong>in</strong>t technology. PLoS ONE 4(3):E4761. doi:10.1371/<br />

journ<strong>al</strong>.pone.0004761<br />

Rozen, S., and H. Sk<strong>al</strong><strong>et</strong>sky. 2000. Primer3 on the WWW <strong>for</strong><br />

gener<strong>al</strong> users and <strong>for</strong> biologist programmers. M<strong>et</strong>hods Mol.<br />

Biol. 132:365–386.<br />

Sasaki, A., M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A.<br />

Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi,<br />

G.S. Khush, H. Kitano, and M. Matsuoka. 2002. Green Revolution:<br />

A mutant gibberell<strong>in</strong>-synthesis gene <strong>in</strong> rice. Nature<br />

416(6882):701–702. doi:10.1038/416701a<br />

Sato, Y., K. Shirasawa, Y. Takahashi, M. Nishimura, and T. Nishio.<br />

2006. Mutant selection from progeny of gamma-ray-irradiated<br />

rice by DNA h<strong>et</strong>eroduplex cleavage us<strong>in</strong>g Brassica p<strong>et</strong>iole<br />

extract. Breed. Sci. 56:179–183. doi:10.1270/jsbbs.56.179<br />

S<strong>in</strong>clair, T.R., and R.C. Muchow. 2001. System an<strong>al</strong>ysis of plant<br />

traits to <strong>in</strong>crease gra<strong>in</strong> yield on limited water supplies. Agron.<br />

J. 93:263. doi:10.2134/agronj2001.932263x<br />

Slade, A.J., C. McGuire, D. Loeffler, J. Mullenberg, W. Sk<strong>in</strong>ner,<br />

G. Fazio, A. Holm, K.M. Brandt, M.N. Ste<strong>in</strong>e, J.F. Goodst<strong>al</strong>,<br />

and V.C. Knauf. 2012. Development of high amylose wheat<br />

through <strong>TILLING</strong>. BMC Plant Biol. 12:69. doi:10.1186/1471-<br />

2229-12-69<br />

Sm<strong>al</strong>l, I. 2007. RNAi <strong>for</strong> reve<strong>al</strong><strong>in</strong>g and eng<strong>in</strong>eer<strong>in</strong>g plant gene<br />

functions. Curr. Op<strong>in</strong>. Biotechnol. 18:148–153. doi:10.1016/j.<br />

copbio.2007.01.012<br />

SoftGen<strong>et</strong>ics. 2010. Mutation Surveyor. DNA variant an<strong>al</strong>ysis<br />

software. SoftGen<strong>et</strong>ics LLC, State College, PA.<br />

Spada, A., R. Mantegazza, M. Biloni, E. Capor<strong>al</strong>i, and F. S<strong>al</strong>a.<br />

2004. It<strong>al</strong>ian rice vari<strong>et</strong>ies: Historic<strong>al</strong> data, molecular markers<br />

and pedigrees to reve<strong>al</strong> their gen<strong>et</strong>ic relationships. Plant<br />

Breed. 123:105–111. doi:10.1046/j.1439-0523.2003.00950.x<br />

Spielmeyer, W., M.H. Ellis, and P.M. Chandler. 2002. Semidwarf<br />

(sd-1), “green revolution” rice, conta<strong>in</strong>s a defective gibberell<strong>in</strong><br />

20-oxidase gene. Proc. Natl. Acad. Sci. USA 99:9043–<br />

9048. doi:10.1073/pnas.132266399<br />

Suzuki, T., M. Eiguchi, T. Kumamaru, H. Satoh, H. Matsusaka, K.<br />

Moriguchi, Y. Nagato, and N. Kurata. 2008. MNU-<strong>in</strong>duced<br />

mutant pools and high per<strong>for</strong>mance <strong>TILLING</strong> enable f<strong>in</strong>d<strong>in</strong>g<br />

of any gene mutation <strong>in</strong> rice. Mol. Gen<strong>et</strong>. Genomics 279:213–<br />

223. doi:10.1007/s00438-007-0293-2<br />

Takahashi, Y., K.M. Teshima, S. Yokoi, H. Innan, and K. Shimamoto.<br />

2009. Variations <strong>in</strong> Hd1 prote<strong>in</strong>s, Hd3a promoters, and<br />

Ehd1 expression levels contribute to diversity of flower<strong>in</strong>g<br />

time <strong>in</strong> cultivated rice. Proc. Natl. Acad. Sci. USA 106:4555–<br />

4560. doi:10.1073/pnas.0812092106<br />

Till, B.J., T. Colbert, C. Codomo, L. Enns, J. Johnson, S.H. Reynolds,<br />

J.G. Henikoff, E.A. Greene, M.N. Ste<strong>in</strong>e, L. Comai,<br />

and S. Henikoff. 2006. High-throughput <strong>TILLING</strong> <strong>for</strong> Arabidopsis.<br />

M<strong>et</strong>hods Mol. Biol. 323:127–135.<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2561


Till, B.J., J. Cooper, T.H. Tai, P. Colowit, E.A. Greene, S.<br />

Henikoff, and L. Comai. 2007. Discovery of chemic<strong>al</strong>ly<br />

<strong>in</strong>duced mutations <strong>in</strong> rice by <strong>TILLING</strong>. BMC Plant Biol.<br />

7:19. doi:10.1186/1471-2229-7-19<br />

Triques, K., E. Piednoir, M. D<strong>al</strong>mais, J. Schmidt, C. Le Signor,<br />

M. Sharkey, M. Caboche, B. Sturbois, and A. Bendahmane.<br />

2008. Mutation d<strong>et</strong>ection us<strong>in</strong>g ENDO1: Application to disease<br />

diagnostics <strong>in</strong> humans and <strong>TILLING</strong> and Eco-<strong>TILLING</strong><br />

<strong>in</strong> plants. BMC Mol. Biol. 9:42. doi:10.1186/1471-2199-9-42<br />

Tsai, H., T. Howell, R. Nitcher, V. Missirian, B. Watson, K.J. Ngo,<br />

M. Lieberman, J. Fass, C. Uauy, R.K. Tran, A.A. Khan, V.<br />

Filkov, T.H. Tai, J. Dubcovsky, and L. Comai. 2011. Discovery<br />

of rare mutations <strong>in</strong> populations: <strong>TILLING</strong> by sequenc<strong>in</strong>g.<br />

Plant Physiol. 156:1257–1268. doi:10.1104/pp.110.169748<br />

Tsuji, H., K. Taoka, and K. Shimamoto. 2011. Regulation of flower<strong>in</strong>g<br />

<strong>in</strong> rice: Two florigen genes, a complex gene n<strong>et</strong>work,<br />

and natur<strong>al</strong> variation. Curr. Op<strong>in</strong>. Plant Biol. 14:45–52.<br />

doi:10.1016/j.pbi.2010.08.016<br />

Wang, T.L., C. Uauy, F. Robson, and B. Till. 2012. <strong>TILLING</strong><br />

<strong>in</strong> extremis. Plant Biotechnol. J. 10(7):761–772. doi:10.1111/<br />

j.1467-7652.2012.00708.x<br />

Wu, J.-L., C. Wu, C. Lei, M. Baraoidan, A. Bordeos, M.R.S.<br />

Madamba, M. Ramos-Pamplona, R. Mauleon, A. Portug<strong>al</strong>,<br />

V.J. Ulat, R. Bruskiewich, G. Wang, J. Leach, G. Khush, and<br />

H. Leung. 2005. Chemic<strong>al</strong>- and irradiation-<strong>in</strong>duced mutants<br />

of <strong>in</strong>dica rice IR64 <strong>for</strong> <strong>for</strong>ward and reverse gen<strong>et</strong>ics. Plant<br />

Mol. Biol. 59:85–97. doi:10.1007/s11103-004-5112-0<br />

Xue, W., Y. X<strong>in</strong>g, X. Weng, Y. Zhao, W. Tang, L. Wang, <strong>et</strong> <strong>al</strong>.<br />

2008. Natur<strong>al</strong> variation <strong>in</strong> Ghd7 is an important regulator of<br />

head<strong>in</strong>g date and yield potenti<strong>al</strong> <strong>in</strong> rice. Nat. Gen<strong>et</strong>. 40:761–<br />

767. doi:10.1038/ng.143<br />

Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T.<br />

Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, and<br />

T. Sasaki. 2000. Hd1, a major photoperiod sensitivity quantitative<br />

trait locus <strong>in</strong> rice, is closely related to the Arabidopsis<br />

flower<strong>in</strong>g time gene CONSTANS. Plant Cell 12:2473–2484.<br />

You, J., W. Zong, X. Li, J. N<strong>in</strong>g, H. Hu, X. Li, J. Xiao, and L.<br />

Xiong. <strong>2013</strong>. The SNAC1-targ<strong>et</strong>ed gene OsSRO1c modulates<br />

stomat<strong>al</strong> closure and oxidative stress tolerance by regulat<strong>in</strong>g<br />

hydrogen peroxide <strong>in</strong> rice. J. Exp. Bot. 64:569–583.<br />

doi:10.1093/jxb/ers349<br />

2562 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!